
1. Introduction
Earth's polar regions are extreme ecosystems, marked by perennial darkness and seasonal mosaics of sea ice 
that modify the salinity, temperature, and incoming light of subsurface waters. Recent work in the Arctic 
has shown that phytoplankton can thrive underneath sea ice, dwarfing previous estimates for phytoplank-
ton productivity across the annual cycle (Arrigo et al., 2012, 2014; Assmy et al., 2017), and raising questions 
of how sea ice influences under ice phytoplankton.

The effects of sea ice on phytoplankton in the Southern Ocean remains largely unknown as much research 
has focused on the Arctic Ocean, although more recent studies have expressed the possibility of widespread 
microbial life under Antarctic sea ice from observations (Arteaga et al., 2020; Cimoli et al., 2020; Hague & 
Vichi, 2021). Phytoplankton in the Southern Ocean are primarily limited by light and iron, and massive 
blooms under ice sea are generally not suspected in this region. However, nutrient replenishment from 
deeper Winter mixed layer depths combined with light at the onset of Spring may enable phytoplankton 
growth under ice. Still needed are assessments of how ice characteristics affect the under ice environment. 
On one hand, the thicker snow cover of Southern Ocean sea ice compared to the Arctic may prohibit the 
transmission of light to the waters below because the snow has a higher albedo than sea ice. On the other 
hand, most Antarctic sea ice melts in the Austral Spring and Summer (Pfirman et al., 1990), which may 
create a stable mixed layer and enhance growth of an already active under ice phytoplankton population 
previously living in deeper mixed layers (Hague & Vichi, 2021; Petty et al., 2014).

Abstract Little is known about Southern Ocean under-ice phytoplankton, despite their suspected 
potential—ice and stratification conditions permitting—to produce blooms. We use a distributional 
approach to ask how Southern Ocean sea ice and under-ice phytoplankton characteristics are related, 
circumventing the dearth of co-located ice and phytoplankton data. We leverage all available Argo float 
profiles, together with freeboard (height of sea ice above sea level) and lead (ice fractures yielding open 
water) data from ICESat-2, to describe co-variations over time. We calculate moments of the probability 
distributions of maximum chlorophyll, particulate backscatter, the depths of these maxima, freeboard, and 
ice thickness. Argo moments correlate significantly with freeboard variance, lead fraction, and mixed layer 
depth, implying that sea ice dynamics drive plankton by modulating how much light they receive. We 
discuss ecological implications in the context of data limitations and advocate for diagnostic models and 
field studies to test additional processes influencing under-ice phytoplankton.

Plain Language Summary While sea ice undoubtedly influences under ice phytoplankton 
to some extent, little is known about under-ice phytoplankton in the Southern Ocean due to the paucity 
of field data. In the absence of plankton and ice measurements made at the same time and place, we 
can make inferences about the potential links between the two by comparing the average and variability 
of many measurements made within the same region. We do so with satellite-based measurements of 
freeboard (the thickness of sea ice above the water level) versus measurements made from profiling floats 
that measure plankton characteristics. We find that the average freeboard is unrelated to these plankton 
measures but that when freeboard is more variable, phytoplankton stocks tend to be higher and occur at 
shallower depths. These nonintuitive results encapsulate how plankton communities' response to light is 
complex, and suggest that plankton may respond positively to a more variable light field.
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Antarctic sea ice extent has increased in recent decades (Holland, 2014; 
Maksym et al., 2012) (although this trend has reversed in recent years), 
and the Southern Ocean is predicted to experience enhanced precipi-
tation (Emori & Brown, 2005; Vignon et al., 2021) in the coming years 
which will affect snow on sea ice processes (e.g., sea ice flooding as well as 
sea ice thinning via insulation Jacobs & Comiso, 1993), all of which will 
influence sea ice thickness and albedo to some extent (Arrigo et al., 2014; 
Maksym & Markus,  2008). Aside from physical processes, sea ice also 
directly influences the biogeochemistry of the water column (Tagliabue 
& Arrigo, 2006) and potential for phytoplankton growth, supplying up to 
70% of the daily iron flux during melting periods (Lannuzel et al., 2007; 
Wang et al., 2014). As phytoplankton form the base of the marine ecosys-
tem and as polar regions will continue to be modified by climate change, 
it is critical to document any relationships between phytoplankton and 
sea ice now, in order to both describe current conditions and to motivate 
future research directions.

Ideally, mechanistic relationships between sea ice and phytoplankton 
would be quantified using numerous coupled direct sea ice—phyto-

plankton observations from field campaigns spanning season and location to capture a spectrum in sea ice 
thickness, nutrient, and light limitations. Unfortunately, the scarcity of field measurements in the Southern 
Ocean severely limits any such investigation currently. Instead, remote observations from either underwater 
profiling floats (such as the Argo program Bittig et al., 2019; Roemmich et al., 2009) or lidar satellites (e.g., 
ICESat-2; Markus et al., 2017) greatly improve our ability to observe sea ice and water column properties 
during all times of the year. However, despite abundant remote observations from satellite and autonomous 
underwater floats, there are still very few same-day matchups of under ice phytoplankton and sea ice char-
acteristics. As an illustration of this data paucity we plot the maximum chlorophyll concentration ([Chl], 
a pigment common to all phytoplankton) in the surface of an under ice float against the freeboard (height 
of sea ice above the sea surface), with ancillary information from daily sea ice concentration (Figure 1), 
totaling just seven observations of 1,020 total, or less than 1% of available observations. All points shown 
are within a radius of 25 km (a liberal range, given the phytoplankton decorrelation lengthscales in the 
Southern Ocean of 10–15 km Haëntjens et al., 2017; Bisson et al., 2020). Given that under ice [Chl], sea 
ice concentration, and freeboard are uncoupled in space and time, sea ice paired within 25 km of an under 
ice float profile may not share the same water mass, and variable sea ice features (i.e., deformation, ridges, 
leads) will adjust the under ice light environment in ways not explicitly accounted for this type of match-up 
comparison. Clearly, a paired-observation style analysis severely reduces the amount of available data and 
consequently reduces the questions that can be addressed regarding sea ice and phytoplankton.

While there are issues associated with using paired sea ice—phytoplankton data, it is plausible to expect 
some relationship between under ice biology and sea ice characteristics because sea ice influences light 
availability and mixed layer depths as mentioned above (see also Behrenfeld et al., 2017, Arteaga et al., 2020, 
and Behera et al., 2020). In this study, we employ a distributional approach to leverage all available under 
ice observations during the same time period as the ICESat-2 satellite. The advantage of a distributional 
approach is to relate the quantities of interest via their probability distributions' moments rather than on 
a point -per-point basis, and ultimately to learn how one underlying distribution may affect the other on 
broad scales of space and time. Distributional approaches have been used to identify new versus old ice 
apparent in the biomodal distributions of Arctic sea ice's total freeboard (e.g., Kwok et al., 2019), and these 
approaches have also been used to overcome data sparsity in linking ocean biological measurements across 
scales (Cael et al., 2018, 2021). Our aim here is to describe the variability of the under ice biological environ-
ment (via changes in the chlorophyll concentration and particulate backscattering, 𝐴𝐴 𝐴𝐴𝐴𝐴𝑏𝑏 , which is known to 
covary with phytoplankton carbon) and to identify areas for future research.

Figure 1. Maximum chlorophyll concentration of each under ice Argo 
profile is plotted against the same day freeboard from ICESat-2's ATL10 
product, matched within a 25 km radius and colored by daily sea ice 
concentration values at a 25 × 25 km grid spacing. The Argo floats used in 
this plot are numbered “5,904,767,” “5,905,995,” and “5,905,102”.
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2. Materials and Methods
2.1. Under Ice Argo Floats

Vertical under ice profiles of particulate backscattering ( 𝐴𝐴 𝐴𝐴𝐴𝐴𝑏𝑏 , 𝐴𝐴 m−1 , 700 nm hereafter referred to as 𝐴𝐴 𝐴𝐴𝐴𝐴𝑏𝑏 ) and 
adjusted chlorophyll concentration ([Chl], ug 𝐴𝐴 L−1 ) were acquired from the Southern Ocean Carbon and 
Climate Observations and Modeling Project (SOCCOM). As in Bisson et al. (2019), profiles were despiked 
with a three point moving the median to remove contamination from bubbles and/or the presence of rare, 
large non-algal particles. Under ice, Argo profiles are flagged from an ice avoidant algorithm, which forces 
a float to retreat from its ascent if the median of the seven near surface (20–50 m depth) temperatures is less 
than −1.78 𝐴𝐴 ◦ C (Klatt et al., 2007). We removed profiles with sea ice concentration 𝐴𝐴 𝐴 15% (via satellite data, 
see Supporting Information S1) to be consistent with the ICESat-2 freeboard processing.

We also calculate mixed layer depth (MLD, see Supporting  Information  S1) for each float based on the 
density gradient method (Dong et al., 2008). The MLD is thought to exert a large control on phytoplankton 
growth based on both bottom-up processes (light and nutrients) as well as the concentration of phytoplank-
ton exposed to grazing pressure (Arteaga et al., 2020; Behrenfeld et al., 2013). We also compare Argo charac-
teristics with the mean temperature within the MLD, as the temperature is known to affect photosynthetic 
rates (Eppley, 1972). Altogether we note that the surface structure of under ice profiles is incomplete (due 
to missing surface data), and therefore our derived MLD is an imperfect approximation of the true MLD 
that may be achievable if the full profile were available. In total, we have 1,020 independent profiles across 
the shared time period of November 2018 to October 2020 where ATL20 data are available (more details in 
Supporting Information S1). Note, we do not include under ice Argo data from January to March, as sea ice 
extent is minimal during these times and there are only several Argo profiles available. Otherwise, the me-
dian number of Argo profiles available per given month and year is 51, with a range of 16–79 observations.

Rather than for example, calculating the median [Chl] and 𝐴𝐴 𝐴𝐴𝐴𝐴𝑏𝑏 values within the mixed layer or euphotic 
depth (Bisson et al., 2019), we characterize under ice phytoplankton by reporting the maximum [Chl] and 

𝐴𝐴 𝐴𝐴𝐴𝐴𝑏𝑏 values within a profile as well as the depth at which a maximum is found. Deeper [Chl] maxima that 
do not co-occur with the maxima of 𝐴𝐴 𝐴𝐴𝐴𝐴𝑏𝑏 may imply changes due to photoacclimation rather than enhanced 
biomass. In our data set, there are zero instances where the depth of maximum [Chl] or 𝐴𝐴 𝐴𝐴𝐴𝐴𝑏𝑏 (hereafter 𝐴𝐴 𝐴𝐴𝑐𝑐 , 𝐴𝐴 𝐴𝐴𝑏𝑏 ) 
is the shallowest depth in the profile, which suggests the reported 𝐴𝐴 𝐴𝐴𝑐𝑐 or 𝐴𝐴 𝐴𝐴𝑏𝑏 value is likely a good approxima-
tion of the true 𝐴𝐴 𝐴𝐴𝑐𝑐 or 𝐴𝐴 𝐴𝐴𝑏𝑏 value. One notable exception is if there are biomass peaks in the near surface (1–5 
m) waters that are not captured with the floats, which can be the case for ice algae sloughing from the ice 
bottom from melting ice (Ardyna et al., 2020).

2.2. Sea Ice Data Products

We acquire total freeboard from ICESat-2 (Ice, Cloud, and land Elevation Satellite), distributed via the 
National Snow and Ice Data Center (NSIDC) and downloaded using Icepyx (Scheick, Arendt, Heagu, & 
Perez, 2019; Scheick, Arendt, Heagu, Paolo, et al., 2019). ICESat-2 was launched in October 2018 with the 
primary goal of quantifying cryosphere and terrestrial elevations with extremely high precision never before 
achieved from spacecraft (Markus et al., 2017). The primary instrument aboard ICESat-2 is Advanced Top-
ographic Laser Altimeter System (ATLAS), which is a lidar that generates roughly 10,000 laser pulses per 
second and converts the time it takes for a small fraction of photons to return into a distance, and ultimately 
into a surface height. In this study, we use the ATL07, ATL10, and ATL20 products.

Sea ice types are provided in ATL07 (Kwok et al., 2021b) and are used to compute the fraction of sea ice 
segments that lead relative to the total segment length. While ICESat-2 delivers ungridded data in along-
track granules, over the course of a month, the along-track segments approximate a 2D field (see Horvat 
et  al.,  2020). In this study, we use the specular lead (i.e., narrow gaps and fractures within the ice and 
between ice floes Petty et al., 2021), identification, which is determined from an empirical decision tree. 
ATL10 data (Kwok et al., 2021a) provide same-day freeboard for under ice Argo data shown in Figure 1. The 
ATL20 product (Petty et al., 2021) provides monthly means of freeboard (m) in 25 × 25 km pixels. Freeboard 
is determined from leads (which provide a reference sea surface height) along each beam from the ATL07 
photon height product, and the data do not include cloudy conditions or when daily sea ice concentration 
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𝐴𝐴 𝐴 15%. Only the strong beams were used in the analysis, and we use ICESat-2 products from October 2018 
to October 2020.

Total freeboard ( 𝐴𝐴 𝐴𝐴  , hereafter 𝐴𝐴 𝐴𝐴  from the ATL20 product) is the sum of sea ice and snow present above the 
ocean's surface. The total sea ice thickness ( 𝐴𝐴 𝐴𝐴 , meters) will vary depending on the ratio of sea ice thickness 
to snow depth, or 𝐴𝐴 𝐴𝐴 . We calculate sea ice thickness in addition to 𝐴𝐴 𝐴𝐴  , where 𝐴𝐴 𝐴𝐴 values are calculated dynam-
ically from 𝐴𝐴 𝐴𝐴  depending on the location of the sea ice (Li et al., 2018). We note that we choose to show our 
results using 𝐴𝐴 𝐴𝐴  rather than 𝐴𝐴 𝐴𝐴 due to the assumptions and error in calculating 𝐴𝐴 𝐴𝐴 , but choosing 𝐴𝐴 𝐴𝐴 rather than 𝐴𝐴 𝐴𝐴  
did not change our results. Finally, daily gridded (25 × 25 km) sea ice concentration data were downloaded 
for the same day paired ATL10-Argo data shown in Figure 1. Argo and sea ice data were aggregated into 
unique year-month bins to facilitate comparison between both classes of data. We use these broad space/
time constraints due to the location uncertainty in under ice floats as well as temporal resolution differences 
between Argo and ice data (which do not permit a point-by-point examination). We take Argo observations 
within a given month to be representative of that month, due to good spatial coverage of the Southern 
Ocean (See Supporting Information S1).

2.3. Statistical Framework

The complexity underlying the distributions of 𝐴𝐴 𝐴𝐴  , 𝐴𝐴 𝐴𝐴 , 𝐴𝐴 𝐴𝐴𝐴𝐴𝑏𝑏 , [Chl], 𝐴𝐴 𝐴𝐴𝑐𝑐 , and 𝐴𝐴 𝐴𝐴𝑏𝑏 is distilled and described through 
the first three moments of each distribution: the mean, variance, and skewness. While the mean and vari-
ance describe the average and spread of the data, skewness quantifies how lopsided a distribution is relative 
to a perfectly symmetrical distribution (i.e., a positively skewed distribution has a heavier tail on the right 
side, meaning the mean exceeds the median). We calculate the mean, variance, and skewness for each dis-
tribution (i.e., 𝐴𝐴 𝐴𝐴𝐴𝐴𝑏𝑏 , [Chl], 𝐴𝐴 𝐴𝐴𝑏𝑏 , 𝐴𝐴 𝐴𝐴𝑐𝑐 , 𝐴𝐴 𝐴𝐴  , 𝐴𝐴 𝐴𝐴 ), for each unique month and year when data are available. Both 𝐴𝐴 𝐴𝐴𝐴𝐴𝑏𝑏 and 
[Chl] are logarithmically distributed (i.e., span a large dynamic range) so we calculate their moments of the 
log-transformed variables. The strength of any relationships between variables is assessed through Kendall's 

𝐴𝐴 𝐴𝐴 , a non-parametric rank correlation.

We note that while 𝐴𝐴 𝐴𝐴𝐴𝐴𝑏𝑏 and [Chl] both covary with phytoplankton biomass, neither variable perfectly quan-
tifies phytoplankton. Although 𝐴𝐴 𝐴𝐴𝐴𝐴𝑏𝑏 has better performance metrics with phytoplankton carbon compared to 
chlorophyll (see Graff et al., 2015), 𝐴𝐴 𝐴𝐴𝐴𝐴𝑏𝑏 is imperfect as it also covaries with non-algal particles. For most of 
the year, the majority of particles under the ice will be phytoplankton, but there may be times in the Austral 
summer (e.g., export of fecal material and cell aggregates ; Moreau et al., 2020) when a portion of particles 
are non-algal. On the other hand, [Chl] is found in all phytoplankton, but it is plastic and varies with the 
light field. A change in [Chl] does not necessarily imply a change in biomass because cells can modify their 
pigment concentration according to irradiance levels. Both quantities are useful to assess phytoplankton 
under ice, and 𝐴𝐴 𝐴𝐴𝐴𝐴𝑏𝑏 might be useful for assessing particles under the ice for times of the year when particles 
are expected.

3. Temporal Patterns in Under Ice Properties
Distributions of 𝐴𝐴 𝐴𝐴𝐴𝐴𝑏𝑏 and [Chl] show clear seasonality for the month and year pairings when all data are 
available (Figure 2). The maximum 𝐴𝐴 𝐴𝐴  occurs in December and there are subtle shifts in the width of 𝐴𝐴 𝐴𝐴  
throughout the annual cycle, with June and July representing the least variable 𝐴𝐴 𝐴𝐴  distributions in both 2019 
and 2020.

The shapes of maximum 𝐴𝐴 𝐴𝐴𝐴𝐴𝑏𝑏 vary tremendously from month to month across the annual cycle, with long 
tails of 𝐴𝐴 𝐴𝐴𝐴𝐴𝑏𝑏 in October–December, and shorter tails in June and July. There are times of the year when the 
distribution of 𝐴𝐴 𝐴𝐴𝐴𝐴𝑏𝑏 is unimodal, and other times when it's roughly bimodal (e.g., December 2018, May 2019, 
September–December 2019, August–September 2020). Like 𝐴𝐴 𝐴𝐴𝐴𝐴𝑏𝑏 , [Chl] distributions tend to have longer tails 
from October - December, but unlike 𝐴𝐴 𝐴𝐴𝐴𝐴𝑏𝑏 , [Chl] distributions tend to be left-skewed from April to June. In 
general [Chl] has wider distributions throughout the annual cycle compared to 𝐴𝐴 𝐴𝐴𝐴𝐴𝑏𝑏 .

The seasonal cycle in 𝐴𝐴 𝐴𝐴𝐴𝐴𝑏𝑏 and [Chl] is more pronounced than that of 𝐴𝐴 𝐴𝐴  or 𝐴𝐴 𝐴𝐴𝑏𝑏 and 𝐴𝐴 𝐴𝐴𝑐𝑐 . Previous work found 
that under ice phytoplankton growth initiates before melting (Hague & Vichi, 2021), and also that phyto-
plankton can grow under low light conditions compared to what was previously thought in the Antarctic 
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(Arteaga et al., 2020). Our work is in broad agreement with these studies, especially as there are long tails in 
the distribution of 𝐴𝐴 𝐴𝐴𝐴𝐴𝑏𝑏 and [Chl] from August through September, implying more instances of anomalously 
high biomass.

What differences in the distributions of sea ice and phytoplankton characteristics might be expected? For 
example, 𝐴𝐴 𝐴𝐴𝐴𝐴𝑏𝑏 or [Chl] reflect a balance between phytoplankton growth and losses, ultimately depending on 
the light and nutrient environment as well as viral activity and grazing pressure. Photoacclimation and 
physical mixing in the water column influence 𝐴𝐴 𝐴𝐴𝑏𝑏 and 𝐴𝐴 𝐴𝐴𝑐𝑐 , including algae released into waters from the base 
of melting sea ice (Yoshida et al., 2020). One might expect enhanced 𝐴𝐴 𝐴𝐴𝐴𝐴𝑏𝑏 and [Chl] with decreasing 𝐴𝐴 𝐴𝐴 ( 𝐴𝐴 𝐴𝐴  ) and 

𝐴𝐴 𝐴𝐴 ( 𝐴𝐴 𝐴𝐴 ) if phytoplankton are primarily light limited. If algae living in sea ice are a dominant control on varia-
bility in 𝐴𝐴 𝐴𝐴𝑏𝑏 or 𝐴𝐴 𝐴𝐴𝑐𝑐 , we expect 𝐴𝐴 𝐴𝐴𝑏𝑏 and 𝐴𝐴 𝐴𝐴𝑐𝑐 will shoal in tandem with melting ice.

There are seasonal patterns in the distributions of 𝐴𝐴 𝐴𝐴𝑏𝑏 and 𝐴𝐴 𝐴𝐴𝑐𝑐 as well, where the mean 𝐴𝐴 𝐴𝐴𝑏𝑏 is usually much less 
than 𝐴𝐴 𝐴𝐴𝑐𝑐 during November and December, but 𝐴𝐴 𝐴𝐴𝑏𝑏 slightly exceeds 𝐴𝐴 𝐴𝐴𝑐𝑐 during Winter and Spring. The former 
might imply a flux of algae and their aggregates into the water from melting sea ice (Moreau et al., 2020), 
and/or possibly fecal pellets from krill feeding on algal ice populations at the near surface (Arrigo & Thom-
as, 2004). We note that algal ice is expected to contribute a greater fraction of productivity (relative to the 
in water phytoplankton) in October and November (Lizotte, 2001), so it is plausible that there could be 
enhanced export flux (i.e., higher particle loads, or enhanced 𝐴𝐴 𝐴𝐴(𝑏𝑏𝑏𝑏𝑏𝑏) relative to 𝐴𝐴 𝐴𝐴 [Chl]) in November and 
December. A combination of sloughing algae from sea ice, as well as export of particles (including senescent 
algal cells), might create bimodal distributions in 𝐴𝐴 𝐴𝐴𝐴𝐴𝑏𝑏 , [Chl], 𝐴𝐴 𝐴𝐴𝑏𝑏 and 𝐴𝐴 𝐴𝐴𝑐𝑐 , as is observed to different degrees from 
September through December.

4. Relating Distributions Through Their Moments
A distributional approach doesn't provide causal links between sea ice and phytoplankton, but it is nev-
ertheless useful to identify what the current data suggests. The Argo moments (in particular the mean, 

𝐴𝐴 𝐴𝐴(⋅) ) correlate moderately well with ice variance ( 𝐴𝐴 𝐴𝐴(⋅) ) and ice skewness but not with ice mean (Figure 3). 
Both 𝐴𝐴 𝐴𝐴(𝑏𝑏𝑏𝑏𝑏𝑏) and 𝐴𝐴 𝐴𝐴 ([Chl]) increase with increasing ice variance, and 𝐴𝐴 𝐴𝐴(𝑧𝑧𝑐𝑐) and 𝐴𝐴 𝐴𝐴(𝑧𝑧𝑏𝑏) decrease with increas-
ing 𝐴𝐴 𝐴𝐴(𝐹𝐹 ) . In general, the Argo 𝐴𝐴 𝐴𝐴 moments do not relate well to ice moments, with the exception of 𝐴𝐴 𝐴𝐴(𝑏𝑏𝑏𝑏𝑏𝑏) , 
which is positively correlated with 𝐴𝐴 𝐴𝐴(𝐹𝐹 ) . 𝐴𝐴 𝐴𝐴(𝑧𝑧𝑏𝑏) increases with increasing ice skewness. Put another way, a 
variable ice environment coincides with higher 𝐴𝐴 𝐴𝐴𝐴𝐴𝑏𝑏 and [Chl] at shallower depths. Months with greater pro-
portions of thicker ice have deeper depths of maximum 𝐴𝐴 𝐴𝐴𝐴𝐴𝑏𝑏 . Neither 𝐴𝐴 𝐴𝐴(𝑏𝑏𝑏𝑏𝑏𝑏) nor 𝐴𝐴 𝐴𝐴 [Chl] are significantly cor-
related with statistical moments of temperature (p values exceed 0.1 in all cases, and generally exceed 0.5).  

Figure 2. Ridge plot comparing probability density functions of 𝐴𝐴 𝐴𝐴  (gray, left), 𝐴𝐴 𝐴𝐴𝐴𝐴𝑏𝑏 (orange, log10 transformed), [Chl] (green, log10 transformed), 𝐴𝐴 𝐴𝐴𝑐𝑐 (teal), and 𝐴𝐴 𝐴𝐴𝑏𝑏 
(purple) across month (y-axis). Note that January–March are not shown and are not included in analyses because there are too few Argo observations in those 
months.
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MLD correlates most strongly and negatively with phytoplankton 
( 𝐴𝐴 𝐴𝐴 (MLD) and 𝐴𝐴 𝐴𝐴 ( 𝐴𝐴 𝐴𝐴𝐴𝐴𝑏𝑏 ) have a 𝐴𝐴 𝐴𝐴 of −0.73 and a p-value 𝐴𝐴 𝐴  0.005, while 𝐴𝐴 𝐴𝐴 (MLD) 
and 𝐴𝐴 𝐴𝐴 ([Chl]) have a 𝐴𝐴 𝐴𝐴 of −0.54 and a p-value 𝐴𝐴 𝐴 0.005), evincing that light 
exerts a strong control over phytoplankton in this study. We cannot assess 
the role of nutrients (and iron in particular) in this study due to lack of 
data, and therefore cannot say, for example, if iron versus sea ice and 
MLD has a stronger influence on phytoplankton under ice.

The presence of significant, moderate correlations between sea ice var-
iance and Argo moments, as opposed to the weak correlations between 
sea ice mean and Argo moments, implies that variance in ice thickness 
is more influential than mean ice thickness for phytoplankton growth. 
The negative relationship between ice variance and 𝐴𝐴 𝐴𝐴(𝑧𝑧𝑏𝑏) is somewhat 
counter intuitive, as one might expect 𝐴𝐴 𝐴𝐴𝑏𝑏 to become more variable as ice 
variance increases.

However, if the relationship between 𝐴𝐴 𝐴𝐴  and plankton characteristics is 
nonlinear, it is plausible that 𝐴𝐴 𝐴𝐴(𝐹𝐹 ) is what drives greater and shallower 
plankton stocks. Light transmission through sea ice is 𝐴𝐴 ∝ 𝑒𝑒−𝑘𝑘 F (Beer's law) 
for a given k related to sea ice properties. As light penetration decreases 
nonlinearly with ice thickness, there's a greater difference in light trans-
mission through 𝐴𝐴 𝐴𝐴  of for example, 0 and 1 m than between 1 and 2 m, 
and so on as 𝐴𝐴 𝐴𝐴  increases. All other factors constant, average light pene-
tration in a region is affected by how much of the total ice is sufficiently 
thin to permit light transmission, and by how thick ice is in this area—in 
other words, the low tail of 𝐴𝐴 𝐴𝐴  . The low tail of 𝐴𝐴 𝐴𝐴  is best captured by 𝐴𝐴 𝐴𝐴(𝐹𝐹 ) 
given that 𝐴𝐴 𝐴𝐴  is positively skewed, so ultimately, this low tail of small- 𝐴𝐴 𝐴𝐴  
values can be what dominates total light penetration, and hence plankton 
characteristics.

Underlying the statistically significant relationships of sea ice, MLD, and 
phytoplankton are possible mechanistic explanations. The near seasonal-
ity in 𝐴𝐴 𝐴𝐴𝐴𝐴𝑏𝑏 and [Chl], coupled with the correlations of Argo moments to ice 

variance and leads implies leads and/or thin sea ice permit light to reach the phytoplankton at all times of 
the year to varying degrees (Figure 4). Indeed, the seasonal cycle of maximum 𝐴𝐴 𝐴𝐴𝐴𝐴𝑏𝑏 tracks very well with the 
sea ice specular lead fraction (Figure 4, note that Spearman's rank correlation between lead fraction and 

𝐴𝐴 𝐴𝐴(𝑏𝑏𝑏𝑏𝑏𝑏) is 0.78, and 𝐴𝐴 𝐴𝐴  = 0.58), where higher specular lead fractions also coincide with greater incident photo-
synthetically active radiation in the Southern Ocean and more shallow MLD. Under ice phytoplankton are 
mobile, embedded in water masses transiting beneath both snow covered ice and brief exposure to open 
water, and consequently are likely to experience intermittent pulses of light that they may have adapted to 
use efficiently.

Figure 3. Trends in Argo moments and ice variance (top panel) as well as 
Argo 𝐴𝐴 𝐴𝐴𝑏𝑏 and ice skewness (bottom panel) across Argo variates ( 𝐴𝐴 𝐴𝐴𝐴𝐴𝑏𝑏 , [Chl], 𝐴𝐴 𝐴𝐴𝑏𝑏 
and 𝐴𝐴 𝐴𝐴𝑐𝑐 ). For top plot, separate y-ticks are given for each moment-variable 
combination to show their ranges. Note that 𝐴𝐴 𝐴𝐴𝐴𝐴𝑏𝑏 and [Chl] are shown in 
log-scales, and all points are the monthly values.

Figure 4. Time series of 𝐴𝐴 𝐴𝐴(𝑏𝑏𝑏𝑏𝑏𝑏) ( 𝐴𝐴 𝐴𝐴−1 ) using all available under ice Argo data and the sea ice lead fraction of specular 
leads (gaps and fractures between ice floes). Error bars represent the coefficient of variation for each month.
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Our findings differ with those of the Lowry et al.  (2018) study, which found that leads inhibited phyto-
plankton blooms via convective mixing in the Arctic Ocean. In the Southern Ocean, we found that a higher 
fraction of leads corresponds to larger maxima in under ice [Chl] that occur at more shallow depths, which 
is most similar to the findings of Assmy et al. (2017) in the Arctic Ocean. The magnitude of under ice [Chl] 
in the Southern Ocean is generally less than that of Arctic blooms, but the magnitude of under ice [Chl] in 
the Southern Ocean is comparable (at times exceeding) to that of the ice-free areas of the Southern Ocean 
(Haëntjens et al., 2017; Rembauville et al., 2017; i.e., in this study the maximum [Chl] is 8 𝐴𝐴 𝐴𝐴 g per L).

5. Concluding Remarks
We have employed a statistical approach as a way to overcome the shortage of data. Although there are 
numerous measurements of either Argo of ICESat-2 observations by themselves, there were no true paired 
observations between ICESat-2 and Argo. The inherent position uncertainty associated with under ice Argo 
floats almost certainly means no exact match ups (i.e., those within reasonable space and time constraints) 
between Argo and any other sensor can be expected in the future unless under ice acoustic positioning can 
help decrease position uncertainty. Still, the continued presence of Argo floats in the Southern Ocean will 
undoubtedly help to address the role of sea ice and phytoplankton growth. Ideally, all SOCCOM Argo floats 
would be equipped with photosynthetically active radiation sensors, unlike those used herein. While there 
were sufficient profiles in this study to examine monthly distributions, we could not examine regional dif-
ferences due to the data set size. In the coming years, more under ice data will become available and perhaps 
permit such an analysis. Here we found enhanced phytoplankton biomass and variability with decreasing 
MLD, increasing 𝐴𝐴 𝐴𝐴  variance, and increasing lead fractions, which might plausibly be explained by factors 
not addressed in this study (i.e., spatial differences in iron availability and grazing pressure).

Despite the limitations, statistical approaches remain useful to understand general patterns in under-ice 
phytoplankton, and time series analyses will become important as more data become available in the com-
ing decades. In order to build a mechanistic understanding of phytoplankton under sea ice, synergistic 
models could incorporate data from Argo with other platforms. Large-scale climate modeling is also im-
portant for assessing the likelihood of phytoplankton growth based on environmental conditions (e.g., ice 
cover, MLD) that might be informed from our findings here.

Neither models nor statistical methods replace fieldwork. We recommend field studies incorporating under 
ice light, phytoplankton, and zooplankton in particular, as well as measuring sea-ice algal communities 
(Cimoli et al., 2017). Under the ice, phytoplankton blooms have commonly been treated as the result of 
bottom-up processes (i.e., light and nutrient status), and our study focused on ice and phytoplankton char-
acteristics. More Information about nutrient status, zooplankton (perhaps from the deployment of imaging 
sensors, such as the Underwater Vision Profiler), and other heterotrophic activity would help to more ex-
plicitly characterize the many mechanisms influencing phytoplankton under sea ice beyond what has been 
considered here.

Data Availability Statement
The Argo Program is part of the Global Ocean Observing System. ICEsat-2 data can be accessed via https://
nsidc.org/data/atl07. The full Argo archive is available at https://doi.org/10.17882/42182.
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