QJEGH

Quarterly Journal of Engineering Geology and Hydrogeology
https://doi.org/10.1144/qjegh2020-183 | Vol. 55 | 2022 | qjegh2020-183

Research article

Machine learning applied to pore-space geometry in sandstones:)

a tool for evaluating grain-scale similarity?

Check for
updates

Alexander Hall", Martin Gillespie, Paul Everett, Vyron Christodoulou and Jo Walsh

British Geological Survey, The Lyell Centre, Research Avenue South, Edinburgh EH14 4BA, UK
AH, 0000-0003-4173-0555; MG, 0000-0002-1585-7344; PE, 0000-0002-9378-9615; JW, 0000-0003-0268-2263
* Correspondence: ahall@bgs.ac.uk

Abstract: The ability to identify similar sandstones to a given sample is important where the provenance of the sample is
unknown or the quarry of origin is no longer in operation. In the case of building stones from heritage buildings in protected
areas, it may be mandatory. Here, a proof of concept for an automated similarity measure is presented by means of a
convolutional autoencoder that is able to extract features from a sample thin section and use these features to identify the most
similar sample in an existing image library. The approach considers only the shape of the pore space between grains, as, if
the pore space alone contains enough information to distinguish between samples, the required image pre-processing and
training of a model is greatly simplified. The trained model is able to predict correctly the progenitor quarry of a thin section,
from an eight-class dataset of Scottish sandstones, with an accuracy of 47.9%. This prototype, although insufficient for
commercial purposes, forms a benchmark for future models against which improvements can be assessed and some of which
are suggested.

Thematic collection: This article is part of the Digitization and Digitalization in engineering geology and hydrogeology
collection available at: https:/www.lyellcollection.org/cc/digitization-and-digitalization-in-engineering-geology-and-

hydrogeology

Received 30 November 2020; revised 18 June 2021; accepted 18 June 2021

An objective and reliable means of quantitatively ranking multiple
sandstone samples in terms of their grain-scale geological similarity
would have wide application in, and beyond, the field of geology.
An automated system that can accomplish this programmatically
using digital image analysis software would find a variety of
applications. If successful, it may be able to augment or even
replace manual interpretation, offering potentially huge advantages,
particularly when applied to large sample suites and image datasets.
Some examples of such applications in the geosciences include;
correlating strata across boreholes, defining regional lithological
variations between sandstone units, and monitoring the consistency
of'a quarry’s output. If such a system can be designed and proven to
be successful for these tasks, it will have the potential to reduce
errors, and drastically improve consistency and robustness, when
compared to standard manual interpretation methods, particularly
when they may be completed by various teams of geologists.
However, this has remained an elusive goal to date.

Judging similarity is the central aim when identifying the most
suitable currently available stones to use in repairing old sandstone
buildings. As the original stone used for these buildings is often not
known or actively quarried today, achieving a close match can be
challenging. For sandstone buildings in particular, a key consider-
ation is matching the pore-space characteristics of the original
and replacement stone as closely as possible because the porous
nature of sandstones exerts a strong control on their weathering
characteristics. Microscope analysis should therefore be employed to
evaluate grain-scale similarity when proposing stone replacement.
The British Geological Survey (BGS) regularly provides ‘stone-
matching’ advice to this end, and possesses a baseline of sandstone
quarry samples and thin sections geared towards this purpose.
The direct benefit that a computationally derived similarity measure
could deliver for sandstone ‘stone matching’ and the availability of
a well-established baseline dataset well suited for image analysis
provided the impetus for the study we describe in this paper.

Human specialists using simple visual examination techniques
such as petrographical analysis struggle to make objective
assessments of similarity because of the sheer number of grain-
scale variables such as constituents and texture, and the often
subtle distinctions between sandstones. Instrument-based methods
of analysing rocks — for example, X-ray diffraction or fluorescence
(XRD, XRF) and low-count energy-dispersive X-ray spectra such
as QEMSCAN™ _ provide far greater potential for objectivity;
however, human expertise must still be applied to results to achieve
a similarity ranking, thereby reducing overall objectivity. Most
previous attempts to apply digital image analysis to sandstone have
had the aim of quantifying specific rock properties such as mineral
proportions, grain size, porosity and pore connectivity, rather than
achieving a similarity ranking (Chen ef al. 2001; Moreira et al.
2012; Aziz 2013; Bukharev er al. 2018). Success has been
achieved in automatically calculating these pre-determined
parameters by applying colour filters to images and extracting
areas that are identified as pore space (Berrezueta et al. 2015;
Buckman ef al. 2017). For applications where the properties of a
sandstone are to be derived from thin-section images, this
approach is suitable. However, visual similarity between sand-
stones is governed by a wider selection of factors that cannot
necessarily be simplified into human-perceptible metrics. An
approach that did not require the pre-selection of parameters was
therefore sought.

Machine learning (ML) software applied to image recognition
and classification is a rapidly developing field that may present
opportunities to create new tools for geomaterials analysis. Artificial
neural networks (ANNSs) are currently the most popular family of
ML algorithms for image analysis. In this paper we describe the
methodology and preliminary outcomes of a study that uses a ML
approach to rank samples of sandstone according to the geometry of
their pore spaces, using a type of ANN known as a convolutional
autoencoder.

© 2021 UKRI. The British Geological Survey. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License
(http:/creativecommons.org/licenses/by/4.0/). Published by The Geological Society of London. Publishing disclaimer: www.geolsoc.org.uk/pub_ethics

Downloaded from http://pubs.geoscienceworld.org/gjegh/article-pdf/doi/10.1144/qjegh2020-183/5521455/qjegh2020-183.pdf
bv Britich Geoloaical Survev user

http://orcid.org/0000-0003-4173-0555
http://orcid.org/0000-0002-1585-7344
http://orcid.org/0000-0002-9378-9615
http://orcid.org/0000-0003-0268-2263
mailto:ahall@bgs.ac.uk
https://www.lyellcollection.org/cc/digitization-and-digitalization-in-engineering-geology-and-hydrogeology
https://www.lyellcollection.org/cc/digitization-and-digitalization-in-engineering-geology-and-hydrogeology
https://www.lyellcollection.org/cc/digitization-and-digitalization-in-engineering-geology-and-hydrogeology
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.geolsoc.org.uk/pub_ethics
http://crossmark.crossref.org/dialog/?doi=10.1144/qjegh2020-183&domain=pdf
https://doi.org/10.1144/qjegh2020-183?ref=pdf&rel=cite-as&jav=VoR

2 A. Hall et al.

Some basic concepts of machine learning

ANNSs are a family of ML algorithms that have found widespread
use for analysing large or complex datasets (Schmidhuber 2015).
Collectively, ANNs comprise a broad collection of individual
algorithms with numerous applications. As such, it is difficult to
group them into a single area on a map of the ML ecosystem.
Figure 1 demonstrates a simplified taxonomy of the ML space and
showcases some typical applications of selected algorithms for
geostatistical problems. In the geosciences, ANNs can be applied to
image analysis problems at any range of scales where a baseline of
images exists; from the microscope scale in the case of geomaterial
analysis, to landscape and continental scales in, for example,
regional surveys or remote sensing studies. Furthermore, while
‘image analysis’ is a popular description of the purpose to which
these algorithms are put, they can be applied in exactly the same way
to any high-resolution raster dataset (e.g. geophysical data,
hyperspectral scans, etc.) as in data terms a raster is analogous to
a digital image, consisting of a grid of regular cells or pixels each
with values that correspond to colour or any other quantified
property.

ANNS consist of multiple interconnected hidden layers of nodes,
where a node takes multiple inputs to produce a single output.
Individual nodes are connected by weights, with the sum of
products of the individual incoming inputs and weights being the
overall input to each node. Typically, an input layer consists of the
input data and is passed through sequential hidden layers until an
output is computed on the final layer. If labelled data are available,
and the class of each data point is known, it is possible to train a
‘supervised” ANN to predict the class of new data. This is achieved
by repeated feed-forward and backpropagation operations. A feed-
forward operation involves passing through an element from a
‘training set’ of data and evaluating how well the network is able to
predict the class of each input. For each data point passed forward
through the network, the weights are adjusted to attempt to correct
for prediction error. This intermittent and incremental correction of
the network weights is referred to as backpropagation. A separate
‘test set’ of data is required to evaluate the performance of the
network. This typically consists of some fraction of the total data
available and must be distinct from the training set. By presenting
the network with new data to which it was not exposed during
training, a representative measure of the network’s predictive
accuracy is obtained. A model trained on a training set that is
subsequently able to predict the class of new data is referred to as a
classifier. While it is possible to train classifiers that can predict

across thousands of classes, these are generally applied to distinct and
discrete classes such as objects (He et al. 2015). However, natural
geomaterials like sandstone are different: no two sandstones are
identical, the features that distinguish them may be subtle and similar
features may be shared by multiple sandstones. Consequently, a
classifier used to assess a sandstone that was not included in the
training set may not perform well as it can only choose from the
classes it has been trained on. By contrast, a similarity-based model is
able to produce results based on similarity alone and does not attempt
to force predictions into predetermined classes. Thus, the aim of this
study was to test the potential for ML to rank sandstone similarity
rather than explicitly predict sandstone class.

For unlabelled data (i.e. data, such as images, that are not assigned
a class label), ANNs may be used in an ‘unsupervised’ manner to
cluster similar data points together, allowing a user to determine
which points are the most similar. In the case presented here, we
sought to use an unsupervised algorithm to evaluate the similarity of
different sandstones from images of those sandstones but used the
class labels to determine the performance of the network.

The following terminology is used below to discuss the operation
of the neural network used in this study.

e Activation function: as connected layers only perform
simple element-wise multiplication and addition, they can
only compute linear functions. Applying a chosen non-
linear activation function to a node’s output allows the
network to account for non-linearity.

* Loss function: this is a characterization of error produced by
the network. The aim of a trained neural network is to
minimize the loss function.

e Optimizer: the optimizer is a regime that defines how the
network weights and biases are changed on each iteration of
backpropagation.

e Hyperparameter: an ANN is also defined by a number of
fixed parameters that can be adjusted to alter the model
characteristics. The process of retraining a model with
different hyperparameter values is referred to as ‘hyperpara-
meter tuning’.

¢ Learning rate: the learning rate is a hyperparameter that
defines how quickly the network values are changed during
backpropagation. An ideal learning rate is high enough to
allow for fast training but low enough to allow the network to
detect subtle features and maintain stability.

¢ QGraphics processing unit (GPU): a class of computer
processor typically used to train ANNS.

Machine Learning

Learning Type
= . - - v v
Algorithm Family —— Parametric | [Non-parametric _ Clustering /Similarity [cenerative | [Rule-based
based
. .
Sub-family [ANNs | [Tree-models | ANNS
A A A
Example Logistic Regression | [Naive Bayes | [CNN Random Forest Support Vector Self [Autoencoder | [Kmeans | [GaAN | [Apriori
Algorithm Machines -
Organising
maps
, v ¢ v
o Clustering . o
Example i i faati Identifying ; Creating Identifying
eostgﬁsﬁca| Binary. Stratigraphy Classification of features of Identifying trends Automatically Identifying similar ground synthetic conditions
geostatis classification classification from high-resolution A h . h b~ clustering cell movement i "
Application " interest in from numerical drilling - samples to a user training data which may
pp! for small numerical borehole borehole tial dat colonies from ted 1 events to find i limited frect drill
datasets data images geospatial- ata plate images | [Presented sample| | "y, oce witn | | oM @ limite affect drilling
derived data similar causes size dataset performance

Fig. 1. Simplified map of some ML methods, along with typical applications in the field of geostatistics. Note that due to the broad and variable nature of
ANN-based algorithms, they are generally found in most families of ML algorithm.

Downloaded from http://pubs.geoscienceworld.org/gjegh/article-pdf/doi/10.1144/qjegh2020-183/5521455/qjegh2020-183.pdf
bv Britich Geoloaical Survev user

Automated sandstone similarity ranking 3

This study made use of a convolutional neural network (CNN).
CNNs are a type of ANN that perform well in image analysis
problems and have been demonstrated as solutions for geological
thin-section classification (Cheng and Guo 2017). A CNN typically
consists of the following layers:

« Input layer: this is the input data. For the data presented in
this experiment, the input layer consisted of a 2D array,
henceforth referred to as a map.

« Convolutional layers: these generate feature maps from the
previous layer. This is achieved by passing a filter, or kernel,
across the layer in incremental strides, with the stride size
being predefined. The filter consists of a relatively small 2D
array of weights that are multiplied element-wise by the
values in the underlying layer and summed to produce a
single output value for each step. The resulting array of
output values forms a single 2D output array. A convolu-
tional layer with » filters will result in an output array »
layers deep.

» Max pooling: as a convolutional layer seeks to extract useful
features, the presence of such features is then summarized by
downscaling the image by downsampling to a degree
defined in a max-pooling layer. This applies a small array
stepwise across the feature map and takes the maximum
pixel value from each step.

o Fully connected layer: repeated convolution and max
pooling results in the feature maps being reshaped to a
vector. A fully connected layer consists of another vector
that is connected element-wise to the input vector by a series
of weights and biases. Applying each weight, summing and
adding the bias term results in a populated fully connected
layer.

« Upsampling layer: this is the reverse of the max-pooling
layers. By duplicating pixels stepwise, the prior layer can be
increased in size.

In order to compute an output, a convolutional layer must perform
the following number of operations:

N = k(m*f*nin,)

where N is the number of operations, & is a constant, m is the spatial
size of the layer, f'is the size of the filter, »; is the number of input
filters and n,, is the number of output filters. Hence, training time for
a typical CNN grows at least proportionally to the square of the
image size. However, since the number of filters is usually increased
for larger images, so the relationship between training time and
image size is often cubic (He and Sun 2015). Beyond a given
threshold for image size, the required number of operations will
exceed the available GPU memory and training will not be able to
proceed.

Sandstone samples

Sandstone is a sedimentary rock composed mainly of sand grains
between 0.064 and 2 mm in diameter. Most sandstones are porous,
and up to around 30% of their total volume can consist of pore
space. In any given sandstone, the character of the pore space,
including the size, shape, distribution and connectivity of pores, and
the proportion of rock volume they occupy is a product of two
things: the physical attributes of the sand grains when they were
deposited (including their size and roundness, and the extent to
which they define a fabric such as layering); and the cumulative
effect of subsequent processes, such as compaction, mineral growth
and mineral dissolution, that occur in association with diagenesis
and other geological processes. Sandstones from different bedrock
formations are very unlikely to be identical, or even particularly
similar, in these respects, and so the pore-space character of the
sandstone from a single formation to some extent may be distinctive.
Thus, a central hypothesis of this study is that the geometrical
properties of the pore-space component in a sandstone contain a
‘geological fingerprint’ of that sandstone (and the rock formation
from which it was sourced), which can be recognized by a ML
algorithm. If that is so, it should be possible for the algorithm to
compare multiple samples and produce a similarity ranking. The
natural variability of geological processes means that pore-space
character inevitably will vary to some extent within all sandstone
formations, at all scales. Controlling parameters may include, for
example, the variations in flow rate and turbulence that occur in
space and time as sand grains are deposited from a fluid, and
resulting changes in sand-grain properties both laterally and
vertically in a succession. A key objective of a future phase of
this study will be to determine whether sandstone samples from
different parts of a formation retain a detectable ‘fingerprint’ in their
pore-space component.

Analytical method

Eight samples of sandstone, available at the project Gitlab
repository (Hall et al. 2020), were selected for the study, each
representing a different sandstone-dominated bedrock formation in
Scotland. The formations span four main chronostratigraphic
divisions, and comprise sandstones of varying colour and from
different depositional environments (Table 1). The samples also
present a range of grain-scale characteristics that will have a material
influence on the geometrical character of their pore spaces: for
example, the extent to which quartz overgrowths, other mineral
cements and intragranular (as well as intergranular) pore space are
developed. The character and potential influence of these features
have not been evaluated for this proof-of-concept study but their
role in affecting the ML results will be important factors in future
work. It should be noted that eight samples in isolation would be too
few to build a reliable matching tool for all UK sandstones as the

Table 1. Details of the sandstones included in the trial. The first column details four-letter abbreviations of the sandstone name that were used for image

filenames, etc., and which also appear in subsequent figures

Depositional environment

Abbreviated label ~ Formation and source Chronostratigraphic division and colour

Gull Gullane Formation: Craigleith Quarry, Edinburgh Carboniferous Fluvial, grey

Hopm Hopeman Formation: Clashach Quarry, Hopeman, Moray Jurassic—Cretaceous Fluvial/aeolian, buff
Kinn Kinnesswood Formation: Hawkhill Wood Quarry, Craigmillar, Edinburgh Cretaceous Fluvial, pinkish grey
Loch Locharbriggs Formation: Knowehead Quarry, Locharbriggs, Dumfries Permian—Triassic Aeolian, orange

Pass Passage Formation: Germiston Quarry, Glasgow Carboniferous Fluvial, grey to buff
Radd Raddery Formation: Milton Of Redcastle Quarry, Muir of Ord Devonian Fluvial, brownish orange
Swan Swanshaw Formation: Culzean Bay Quarry, Ayrshire Devonian Fluvial, purplish grey
ULFS Upper Limestone Formation: Drumhead Quarry, Denny, Stirlingshire Carboniferous Seafloor, grey to buff

Downloaded from http://pubs.geoscienceworld.org/gjegh/article-pdf/doi/10.1144/qjegh2020-183/5521455/qjegh2020-183.pdf
bv Britich Geoloaical Survev user

4 A. Hall et al.

low sample number does not provide the required variability.
However, with each sample consisting of eight high-resolution
images, there was sufficient raw information available to train up a
neural-network-based matching tool that is able to distinguish
between only those eight samples. As discussed in the following
‘Image processing’ subsection, the images for each sample were
subdivided to produce 8064 data points (1008 per sandstone
sample).

Images for training and testing the ML algorithm were obtained
from thin sections in which the rock slice has maximum dimensions
of 20 x 40 mm. Prior to thin-section preparation, the rock samples
were vacuum-impregnated with a blue resin; in the resulting thin
sections, all of the pore space appears blue (Fig. 2). Thin-section
images were captured using a Zeiss Axio Imager.A2m optical
microscope with dedicated digital camera (Zeiss Axiocam 305
colour) and ZEN image capture software. Test images produced at
x1.25, x2.5 and x5 magnification were evaluated; those produced
with the x2.5 objective lens provided the best combination of
fine detail, sharp focus and even lighting across the field of view, as
well as a reasonably large field of view. The field of view of images
produced with this lens are 3.4 x2.8 mm (9.5 mm?), which is
roughly 1/70 of the area in a typical rock slice. To represent the
natural variation within each thin section, a series of eight images
was obtained from a single ‘traverse’ made across the middle of the
thin section and parallel to its long axis (Fig. 3).

Image processing

The dataset used to train and test the ML algorithm consisted of 64
RGB images (eight images from each of eight thin sections), with a
resolution of 2464 x 2056 pixels. As training time grows rapidly
with image size, the raw images were much too large to use as inputs
and so were sliced into 256 x 256 pixel subsections. This size was
sufficiently small to train a network but empirically large enough to
retain pore-space features that humans are able to distinguish.
Choosing a size in the form 2" also simplified the implementation of
layers in the network. Using a large number of small images also
avoided the problem that a small number of input raw images leads
to few and infrequent backpropagation runs, making the trained
network susceptible to overfitting (Le ef al. 2020). The natural
components of a sandstone (mineral grains, etc.) are never blue, so
the presence of blue resin in the pore spaces made it simple to
produce an accurate binary (i.e. black/white) map of the pore space
in each subsection. The Python implementation of OpenCV
(Bradski 2000) was used to apply colour filters defined by values
for hue, saturation and value (HSV). The HSV values [70, 50, 50]
and [140, 255, 255] were used for the lower-bound and upper-
bound filters, respectively. This converted each image subsection to
a256 x 256 pixel binary map with a value of ‘1’ representing pixels
that passed the filter and ‘0’ representing those that did not. The
maps were saved as binary.png images for ease of analysis and to
allow for visual inspection. For the purpose of the study, each
sandstone (as represented by one thin section) is considered a
‘class’, and each map was labelled with its class using the
abbreviated terms in 1.

Training and testing datasets

For most ML applications, the proportional split between train and
test images is usually around 80/20 (i.e. 80% are used for training
and 20% for testing). A rather different split of 25/75 was used in the
current study because, with only eight full-size raw images available
to derive subsections for each class, the feasibility of the underlying
method is likely to be better demonstrated with a relatively large test
set. To augment the unusually small training dataset, the maps
comprising the dataset were each duplicated and rotated in three 90°

increments. This ‘rotational augmentation’ quadrupled the amount
of raw data in the training set but did not necessarily proportionally
increase the amount of useful information available to the model,
as the underlying data are unchanged with each rotation. After
processing and augmenting the dataset, the final training set
consisted of 4608 binary 256 % 256 pixel maps and the test
set consisted of 3456 binary 256 x 256 pixel maps. The training
set images were derived from two of the raw images for each class,
while the test-set images were derived from the remaining six
images from each class. The progression from raw images to the
training and testing sets is summarized in Figure 4.

Machine learning methodology

The aim of this experiment was to demonstrate the concept that
similarity between pairs of images can be determined and ranked.
To do this, an algorithm capable of simplifying images into an
easy-to-compare form by means of extracting spatial features had to
be used (Wang and Rajan 2020). This was achieved by means of a
convolutional autoencoder (Karimpouli and Tahmasebi 2019). This
consisted of three parts, as shown in Figure 5:

(1) An encoder: this passed the input maps through repeated
pairs of convolutional and pooling layers until the output
tensor was reduced to a 2048 element vector. The repeated
convolutions served to construct feature maps from the
input images, while the max-pooling layers incrementally
performed dimensionality reduction.

(2) A code layer: this was the vector produced by the encoder
section of the autoencoder. If the autoencoder was able to
identify distinguishing features between different classes,
they would be encoded within the individual elements of
this code layer.

(3) A decoder: this was the inverse of the encoder layer, and
applied repeated pairs of convolutional and upsampling
layers. By repeatedly performing these operations, a 256 X
256 pixel output map was the output of the autoencoder.

Training consisted of presenting batches of input maps to the
autoencoder. Each map was reduced to a vector through the encoder
section and then reconstructed through the decoder section. The
reconstruction error between the input map and that reconstructed
by the autoencoder was evaluated by calculating a loss function,
in this case the binary crossentropy between the two. Binary
crossentropy as a measure of reconstruction error has previously
been demonstrated as a suitable loss function for maps with pixel
values between 0 and 1, and is also the computationally cheapest
function (Creswell et al. 2017). Then, through backpropagation, the
network’s weights between layers were adjusted in response to the
value of the binary crossentropy. This process was repeated for each
input map, with the network weights being repeatedly adjusted to
minimize the loss between the input and output map. The entire
training dataset was passed through the network multiple times,
with each full pass referred to as an ‘epoch’. To limit training time,
training consisted of a fixed period of 300 epochs.

The aim was to train an autoencoder that could reconstruct the
input map as accurately as possible. The lower the reconstruction
error, the better the autoencoder would be able to encode maps to a
vector using the encoder half of the network. A sufficiently low
reconstruction error would only be possible if the input maps
contained enough features to allow them to be meaningfully
compressed in this manner.

The autoencoder was built in Tensorflow via the Keras API
(Chollet et al. 2015) through a series of Python scripts (https:/
gitlab.com/bgsdatalab/building-stones). Training runs were carried
out on a single machine equipped with an NVidia GTX1060 GPU.

Downloaded from http://pubs.geoscienceworld.org/gjegh/article-pdf/doi/10.1144/qjegh2020-183/5521455/qjegh2020-183.pdf
bv Britich Geoloaical Survev user

https://gitlab.com/bgsdatalab/building-stones
https://gitlab.com/bgsdatalab/building-stones
https://gitlab.com/bgsdatalab/building-stones

Automated sandstone similarity ranking

Gullane Sandstone (Gull) Hopeman Sandstone (Hopm)

a

e €, N2 P
Locharbriggs Sandstone (Loch)
» g P ey ' % o
A Wk Y g @
. of 5

Passage Sandstone (Pass

Fig. 2. Each of these full-size raw images has a size of 3.4 x 2.8 mm and each shows the typical appearance of each sandstone. Blue areas are resin-filled
pore space.

Downloaded from http://pubs.geoscienceworld.org/gjegh/article-pdf/doi/10.1144/gjegh2020-183/5521455/qjegh2020-183.pdf
bv Rritich Geoloaical Survev user

6 A. Hall et al.

Fig. 3. Black outlines show the position of each image in a ‘traverse’
across the thin section. Blue areas are resin-filled pore space.

Model architecture

The encoder half of the network consisted of the layers detailed in
Table 2 through which the input map was passed in order to reduce it
to a 2048-length vector. Note, all convolutional layers had a stride of 1.

The resulting vector was then converted back to a 256 x 256 pixel
map through the decoder, which consisted of the layers detailed in
Table 3. Again, all convolutional layers had a stride of 1.

An Adam optimizer (Kingma and Ba 2014) was used to adjust the
network weights after each training batch was fed forward through
the above layers. Since the input data relied on differentiation of fine

Raw training images Convert to

binary

Slice into
256 x 256 pixels
segments

Input Code output

l l

%—/

Encoder Decoder

!

Input image Encoded image Output image

Fig. 5. Input compression and subsequent reconstruction via an
intermediate code layer — collectively forming the autoencoder.

features, it was expected that relatively small adjustments would be
necessary to the network’s weights during each backpropagation
run in order to preserve fine detail in the network. A learning rate
value was chosen after several trial runs to determine a sensible
value. The chosen value was 5E-4, which was lower than the default
value of 0.01 assigned by Keras but not atypical for image
recognition problems.

To arrive at the final chosen learning rate, training runs were carried
out with learning rates between 1E-6 and 1E-2, with each run requiring
3 h of compute time using the available computing infrastructure.
Model accuracy was highly sensitive to learning rate, with most values
leading to an unstable model. In this context, instability refers to a
network that adjusts its weights too quickly during the training process.
This would lead to it being unable to detect fine detail in the input
images as the large weight adjustments only allow it to detect coarse

Splitinto
training/testing sets

ol | 6 |40
L\ Al 'Q\{

-l o .
S U IR

Fig. 4. Summary of the processing steps
applied to the raw images to obtain training
and testing datasets.

Downloaded from http://pubs.geoscienceworld.org/gjegh/article-pdf/doi/10.1144/gjegh2020-183/5521455/qjegh2020-183.pdf
bv Britich Geoloaical Survev user

Automated sandstone similarity ranking 7

Table 2. Structure of the encoder section

Layer type Filters Kernel size
2D convolutional + LeakyReL'U activation 8 5x5
Max pooling 2x2
2D convolutional + LeakyReL U activation 16 5x5
Max pooling 2x2
2D convolutional + LeakyReL'U activation 32 3x3
Max pooling 2x2
2D convolutional + LeakyReL U activation 64 3x3
Max pooling 2x2
2D convolutional + LeakyReLU activation 128 3x3
Max pooling 2x2
2D convolutional + LeakyReL U activation 256 3x3
Max pooling 2x2
2D convolutional + LeakyReL'U activation 512 1x1
Max pooling 2x2
2D convolutional + LeakyReL U activation 2048 1x1
Max pooling 2x2

features. An unstable network therefore tends to adjust its weight
values rapidly in opposing directions on subsequent backpropagation
runs and never converges on final values.

Model testing

Only the encoder half of the autoencoder was used during the
testing stage. The trained encoder was used to compress all the
images in the testing set into vectors, as illustrated in Figure 6. By
computing the cosine of the angle between two vectors, the distance
between the vectors in n-dimensional space is measured. This
measure is referred to as the ‘cosine similarity’, and is a common
and computationally cheap method to determine vector—vector
similarity (Han et al. 2012).

The cosine similarity between every pair of vectors in the training
set was computed. A ‘most similar’ candidate image was derived by
taking each test-set image in turn and finding that with the lowest
cosine similarity in the rest of the test set. These most similar
candidates were then used to evaluate the model performance. As
the original dataset was labelled (with its abbreviated sandstone
name), it was possible to determine the extent to which each test-set
image was predicted to be most similar to another image from the
same class. Each 256 x 256 pixel extract from each individual raw
test-set image was evaluated individually. For each raw test-set

Table 3. Structure of the decoder section

Layer type Filters Kernel size
Fully connected layer (length =2048)

2D convolutional + LeakyReL U activation 2048 1x1
Upsampling 2x%x2
2D convolutional + LeakyReL U activation 512 1x1
Upsampling 2x2
2D convolutional + LeakyReLU activation 128 3x3
Upsampling 2x%x2
2D convolutional + LeakyReL U activation 64 3x3
Upsampling 2x2
2D convolutional + LeakyReL U activation 32 3x3
Upsampling 2x%x2
2D convolutional + LeakyReLU activation 16 5x5
Upsampling 2x2
2D convolutional + LeakyReLU activation 8 5x5
Upsampling 2x%x2
2D convolutional + sigmoid activation 1 5x5

Input Code

s

—_ | —

!

Encoded image

—0

Inputimage Compare to all other

encoded images in the test

Fig. 6. Using the decoder, extracted from the trained autoencoder, to
extract features from new images to be compared to feature representations
from the other test-set images.

image, the most frequently predicted class across all of the extracts
was recorded and taken to be the overall class prediction for that raw
image. The process of evaluating individual extracts to predict an
entire full-size test image is summarized in Figure 7. By summing
the correct predictions across the entire test set, a measure of model
accuracy was calculated.

Results

The confusion matrix obtained by predicting on the test set is shown
in Figure 8. This summarizes the class predictions for the entire test
set in a tabulated format that displays the number of times the
predicted class of each image coincided with the known class of
that image. This was our primary means of evaluating the overall
performance of the trained model.

The model accuracy was 47.9% across eight classes, where
accuracy was defined as the ability of the model to predict correctly
a sandstone from a given image. The accuracy was not uniform
across classes, with some sandstones being correctly predicted more
often than others. Of the six Swan images, all six were correctly
predicted by the model, although it also incorrectly predicted an
additional four images as Swan when they were actually other
classes. Expressed formally, this gave a precision of 60% and a
recall of 100% for the Swan class. The Hopm and Kinn classes also
showed relatively good results with precisions of 50 and 45%, and
recalls of 83 and 83%, respectively.

Plotting the training loss against the epoch number (Fig. 9) results
in an initially rapidly falling loss value as the model learned coarser
features, with the rate slowing over time as the network weights
were progressively adjusted less and less. Ten per cent of the
training set was reserved for model validation. Plotting the
validation loss against the epoch number results in a less
pronounced loss curve with relatively large fluctuations evident.
This is likely to be due in part to the limited number of images
available for validation and, indeed, the relatively small test set
acting as a barrier to improved accuracy. The validation loss was
generally higher than the training loss, which indicates some degree
of overfitting. Again, this was not unexpected due to the limited
training data.

Downloaded from http://pubs.geoscienceworld.org/gjegh/article-pdf/doi/10.1144/qjegh2020-183/5521455/qjegh2020-183.pdf
bv Britich Geoloaical Survev user

8 A. Hall et al.

New image Slice into Take one
256 x 256 pixels
segments
[] []

¥
R

Input Code

e

[]
([T

-
Encoder

Fig. 7. Every individual 256 x 256 pixel
L segment is tested separately and the class

Discussion

The practical implementation of the network architecture, and
subsequent training using the thin-section dataset, has demonstrated
the potential for this class of algorithm to distinguish between
sandstones. Using a limited dataset allowed for a relatively rapid
training of the network in order to serve as a proof-of-concept for the
methodology. However, the accuracy achieved (just under 50%) is
insufficiently good for a practical similarity evaluation tool.

The relatively high recall for the Swan, Hopm and Kinn classes
suggests that the model may be able to extract and identify features
from these classes more effectively than others. However, the Kinn
and Hopm samples in particular had a tendency to be over-
represented in the predictions, leading to these classes being falsely

6
g-100000-0
g
§.0010010 5
[G]
2 00 0.20001 \
-0 0 0 0 0 0 0
8 -3
g0 01 0 0 0 0
b= 4
2-0 1 1 0,2 2 0 o -2
5
5-000100.0 N
2
5-0010.101
S T) ' -0

| | | | |
Radd Gull Pass Swan Hopm ULFS Kinn Loch

Predicted

Fig. 8. Summary of model performance obtained by predicting on the test
set. For example, the model predicted Radd sandstone correctly in one
instance and misclassified it as Kinn in five other instances.

Repeat for all segments

with the most predictions is taken as the
predicted class for the original raw image.

attributed to other samples. This may be further evidence of an
imbalance in the training set, where a large proportion of the images
contained features seen in these over-represented classes. Such an
imbalance may have led to a model biased towards certain features
and so with the tendency to infer only a limited set of the classes
available to it. Interestingly, these false positives seem to be
attributed to certain classes. For example, of the 11 predictions for
Kinn, five were correct but another five were for Radd images,
which suggest an underlying similarity between these two classes.
In the case of Radd, the inverse also appeared to be true, in that false
negatives for this class were also clustered — of the five instances
where the model predicted Radd, the actual image was Gull.
Collectively, this appears to suggest an intransitive set of similarities
between Radd, Kinn and Gull, where Gull is similar to Radd and
Radd is similar to Kinn but Kinn is not similar to Gull.

Conversely, classes such as Gull and Loch were barely correctly
predicted. The model showed very little tendency to predict these
classes at all (incorrectly or correctly). This suggests a model not
sufficiently trained to identify the features exhibited by these
sandstones either due to a lack of model training or to an absence of
sufficiently similar samples in the training set.

It is important to stress that due to the low number of instances for
each class in the test set (six images), statistical significance cannot
be inferred from these results; therefore, individual classes
outperforming the model may have occurred due to chance.

A number of refinements to the method and associated data,
which should improve the model accuracy and prospects of creating
a viable tool, are discussed below.

Improvements to input data

With just two full-size, high-resolution images used to derive
training data for each class in this experiment, the dataset was
too small for comprehensive training. A first step to improving
performance would be to simply build a dataset with more images
for training. Data for other sandstone components could be obtained
by a similar method and used in combination with the pore-space

Downloaded from http://pubs.geoscienceworld.org/gjegh/article-pdf/doi/10.1144/qjegh2020-183/5521455/qjegh2020-183.pdf
bv Britich Geoloaical Survev user

Automated sandstone similarity ranking 9

Training and Validation Loss

025

02
0
w
S o i

T
0.1 e
e
0.05 = Training Loss
Validation Loss
0
0 20 40 60 80 100 120 140 160 180 200
Epoch

Fig. 9. Plot of the training and validation loss as the training epochs progressed.

data to provide a more powerful basis for discriminating and
comparing different sandstones: for example, a map of the opaque
mineral component in sandstone thin-section images could be
extracted using colour filters optimized for black rather than blue.
However, any measures that increase the training data volume come
at the expense of additional training time. Table 4 details time
estimations for a single training run for different dataset sizes and
different hardware solutions. Note that it is common practice to
perform training runs on multi-GPU clusters. For multi-GPU
computation, the estimated times may be divided by the number of
GPUs available in a cluster to give a final time estimate.

Improvements to model architecture

The addition of more filters or additional convolutional layers
may be necessary to properly extract useful features from the input
images. However, any such changes also involve a trade-off
between training time and potential model performance. Although
the primary solution to model overfitting will be an improved
dataset, regularization (Poernomo and Kang 2018) may provide a
secondary means of mitigating this problem. In this case,
regularization would add random noise to the input, making the
network more robust to anisotropy between input images. To
improve training time and overall simplicity, no regularization was
used during the training stage of this study; it is therefore unclear
whether introducing regularization by means of dropout layers, for
example, would yield an improvement. Other potential architecture
improvements include alternative activation functions, the addition
of batch normalization layers, varied filter and step sizes, and the
addition of more fully connected layers. This experiment served

to demonstrate a permutation of the network with relatively
conventional choices and values for these parameters. A third
time-performance trade-off lies in the model hyperparameters. With
sufficient experimentation, a set of hyperparameters that result in a
well-trained network, even with the addition of new training data,
would be desirable. The hyperparameters that defined the training of
the autoencoder were tuned to a limited degree for this experiment
as different values of batch size and learning rate were considered
but learning-rate decay and variations in the activation functions
were not. An appropriate implementation of either Bayesian
optimization (Wu et al. 2019) or a genetic algorithm (Itano et al.
2018) would allow for efficient tuning of hyperparameters. In
addition, the loss graphs produced by lower learning rates did not
level off after the training period of 300 epochs, which suggests
longer training runs with lower learning rates would yield improved
results. Reliable model testing presented difficulty in obtaining the
final result. A successful ‘sandstone similarity tool’ will need to be
able to accommodate many more sandstones than just the eight that
were used in this study. An alternative approach to model testing
that does not treat each sandstone as a separate class and, instead,
directly evaluates how well the model predicts similarity between
images would be preferable.

Improvements to model evaluation

The method used for model testing was designed to rapidly and
simply assess the success by which the overall experimental
approach was able to match images to the correct sandstone.
Therefore, the degree to which this was achieved is not simply a
reflection of the accuracy of the ANN’s performance but also the

Table 4. Estimated time for a single training run for different dataset sizes and GPU hardware options

CNN speed benchmark index

Number of raw images Estimated training time

GPU (Dettmers 2020) in training dataset (h)
NVidia GTX1060 (as used in this study) 1 16 3 (as recorded)
160 30
1600 300
NVidia RTX 3090 (fastest consumer model) 5.6 16 0.54
160 5.36
1600 53.57
NVidia Tesla A100 (fastest single GPU at time of writing) 8.8 16 0.34
160 3.41
1600 34.09

Downloaded from http://pubs.geoscienceworld.org/gjegh/article-pdf/doi/10.1144/qjegh2020-183/5521455/qjegh2020-183.pdf
bv Britich Geoloaical Survev user

10 A. Hall et al.

distinguishability of the input data. Therefore, our method of
evaluating model accuracy is not a true representation of the
actual performance of the ANN itself, as the two most similar
images in a dataset will not always come from the same sandstone.
Due to similar features appearing across multiple sandstones, it is
inevitable that in some cases the most similar image will originate
from a different sandstone. Inversely, there is considerable variation
within natural materials like sandstones. So, relatively dissimilar
images may also originate from the same sandstone. Introducing a
prior stage of model testing that does not treat each sandstone as a
separate class and, instead, directly evaluates how well the model
predicts similarity between images in isolation may help to better
tune the method. Regardless of distinguishability issues, in general,
images from the same sandstone are expected to be more similar to
each other than they are to those of another sandstone. Therefore,
class prediction accuracy would still be expected to increase with
better similarity prediction from the model. Since accuracy
significantly higher than that which would be achieved through
random chance is demonstrated, this supports the viability of
this method for use with a larger dataset and a more finely tuned
autoencoder.

An additional approach to model evaluation is possible by
attempting to understand how the model operates internally.
Although neural networks often appear as ‘black boxes’, it is
possible to examine internal layers to understand how models
interpret and classify features. One such method is by the creation of
saliency maps that create visual representations of layers, allowing
users to pick out manually features that the model identifies as
important for classification (Dabkowski and Gal 2017).

Improvements to computing infiastructure

To train on a larger dataset, the model training time would increase
proportionally as the number of images to feed into and back-
propagate through the network increases. Using a more compre-
hensive dataset of sandstones would therefore increase the runtime
for a single training run to the order of days rather than hours.
However, as hyperparameter tuning and/or model architecture
changes would require multiple training runs, training on a single
consumer-grade machine would become infeasible.

One potential modification that was not explored in this study was
altering the size of the input maps. This was due to the previously
discussed relationship between input map size and training time,
where large maps become prohibitively expensive to train on.
Training image size is a compromise between maximum identifi-
able feature size, the speed at which the network is able to learn such
features and the available memory, which is limited by the GPU
choice. We were unable to explore this compromise due to the
aforementioned hardware limitations. There are a number of options
available to researchers wanting to access the required hardware for
further investigation. The most readily available is through a number
of commercial online cloud service providers, with Amazon EC2
being the most popular at the time of writing.

All of the discussed improvements would require multiple or
longer training runs and therefore an increase in compute
requirements. Due to cost limitations, only consumer-grade
hardware was available for this experiment, so simply carrying
out training runs on an up-to-date ML-optimized GPU would be
likely to result in a training speed-up of around an order of
magnitude (Wang et al. 2019). This would be a minimum
requirement to fully explore the available training options.

Conclusion

With limited data and compute time, we have devised and trained
an ANN architecture that is able to demonstrate a limited, but

promising, capability to distinguish between sandstones on the basis
of their pore-space geometrical character. Evaluating the ability
of'a model to assess similarity is difficult but using class prediction
accuracy as a proxy the model demonstrated a classification
accuracy of 47.9% across an eight-class dataset of Scottish
sandstones. This is not yet sufficiently good for a viable tool but
this was expected due to the limited size of the dataset. Some classes
were predicted correctly more often than others, which suggests that
certain sandstones exhibit features that are easier to distinguish
between for the model. By using a larger dataset, it may be possible
to statistically demonstrate that certain sandstones are consistently
easier to predict. In addition, further analysis of the network
structure through saliency mapping may allow us to understand why
these sandstones are easier to predict, which could guide future
optimizations to the model and allow predictive accuracy to be
improved for less distinguishable sandstones.

Using the architecture presented here, a model that is able to
consistently outperform a human at identifying sandstone samples
would require an extensive training set to learn the sometimes subtle
differences between sandstones. As this experiment was a broad
assessment of the feasibility of ANNs to measure sandstone
similarity, only limited variants of the model architecture and
hyperparameters were considered. These showed, however, that the
chosen architecture was highly sensitive to both the learning rate and
selected activation functions. This suggests that future experiments
based on varying the architecture and performing more compre-
hensive hyperparameter tuning will yield a more refined model.

Having shown promise for similarity detection, it is hoped that
this or a comparable ANN architecture may find quick uptake for
other geoscience problems, and its development within the BGS, as
an organization with research interests that span the range of
geoscience disciplines, can be expected to facilitate this. Another
research angle would be to apply this style of ANN architecture to
grouping large sets of image data (including mapping) to permit
extrapolation of point observations to larger groups and areas. As
the geosciences continue to advance into the realm of ‘big data’,
geologists must equip themselves with tools to review large and
complex datasets that human perception will struggle to digest
without machine assistance.

Acknowledgements The authors wish to thank Andy Kingdon (BGS)
for providing useful suggestions to the manuscript. This manuscript was
published with the permission of the Executive Director of the British Geological
Survey (UKRI).

Author contributions AH: conceptualization (equal), formal analysis
(lead), investigation (supporting), methodology (lead), software (equal), writing
— original draft (lead), writing — review & editing (equal); MG: investigation
(equal), project administration (lead), supervision (equal), writing — original draft
(equal), writing — review & editing (lead); PE: data curation (equal), investigation
(supporting), validation (equal), writing — review & editing (equal); VC: formal
analysis (equal), methodology (supporting), software (equal), validation (equal),
writing — review & editing (supporting); JW: methodology (equal), software
(equal), validation (equal).

Funding This work was funded by the British Geological Survey.

Data availability The datasets generated during and/or analysed during
the current study are available in the building-stones repository, https:/github.
com/BritishGeologicalSurvey/building-stones

Scientific editing by Jonathan Smith; Martin Geach

References

Aziz, 1.A. 2013. Comparing point counting & image analysis in sandstone, North
Carnarvon Basin, Australia. In: 2nd International Conference on Geological
and Environmental Sciences. International Proceedings of Chemical,
Biological and Environmental Engineering (IPCBEE), 52, 20-24.

Downloaded from http://pubs.geoscienceworld.org/gjegh/article-pdf/doi/10.1144/qjegh2020-183/5521455/qjegh2020-183.pdf
bv Britich Geoloaical Survev user

https://github.com/BritishGeologicalSurvey/building-stones
https://github.com/BritishGeologicalSurvey/building-stones

Automated sandstone similarity ranking 11

Berrezueta, E. Gonzélez, L. et al. 2015. Optical image analysis applied to pore
network quantification of sandstones under experimental CO, injection. Paper
H41D-1351 presented at the AGU Fall Meeting Abstracts, 14-18 December
2015, San Francisco, California, USA.

Bradski, G. 2000. The OpenCV Library. Dr. Dobb’s Journal of Sofiware Tools,
120, 122-125.

Buckman, J., Bankole, S., Zihms, S., Lewis, H., Couples, G. and Corbett, P.2017.
Quantifying porosity through automated image collection and batch image
processing: case study of three carbonates and an aragonite cemented
sandstone. Geosciences, 7, 70, https:/doi.org/10.3390/geosciences7030070

Bukharev, A.Y., Budennyy, S.A., Pachezhertsev, A.A., Belozerov, B.V. and
Zhuk, E.A. 2018. Automatic analysis of petrographic thin section images of
sandstone. /n: Proceedings of ECMOR XVI — 16th European Conference on
the Mathematics of Oil Recovery. European Association of Geoscientists and
Engineers (EAGE), Houten, The Netherlands, https:/doi.org/10.3997/2214-
4609.201802177

Chen, Y., Nishiyama, T. and Ito, T. 2001. Application of image analysis to
observe microstructure in sandstone and granite. Resource Geology, 51,
249-258, https:/doi.org/10.1111/j.1751-3928.2001.tb00096.x

Cheng, G. and Guo, W. 2017. Rock images classification by using deep
convolution neural network. Journal of Physics: Conference Series, 887,
012089, https:/doi.org/10.1088/1742-6596/887/1/012089

Chollet, F. et al. 2015. Keras, Available at: https:/github.com/fchollet/keras

Creswell, A., Arulkumaran, K. and Bharath, A.A. 2017. On denoising autoencoders
trained to minimise binary cross-entropy, http:/arxiv.org/abs/1708.08487

Dabkowski, P. and Gal, Y. 2017. Real time image saliency for black box
classifiers. /n: Proceedings of the 31st International Conference on Neural
Information Processing Systems (NIPS °17). Curran Associates Inc., Red
Hook, NY, 6970-6979.

Dettmers, T. 2020. The Best GPUs for Deep Learning in 2020 — An In-Depth
Analysis, https:/timdettmers.com/2020/09/07/which-gpu-for-deep-learning/
[accessed 11 February 2021].

Hall, A., Walsh, J. and Christodoulou, V. 2020. Building-Stones. GitLab
Repository, GitLab, https://github.com/BritishGeologicalSurvey/building-
stones

Han, J., Kamber, M. and Pei, J. 2012. Getting to know your data. /n: Han, J.,
Kamber, M. and Pei, J. (eds) Data Mining. 3rd edn. The Morgan Kaufmann
Series in Data Management Systems. Morgan Kaufmann, Boston, MA,
39-82, https:/doi.org/10.1016/B978-0-12-381479-1.00002-2

He, K. and Sun, J. 2015. Convolutional neural networks at constrained time cost.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). Institute of Electrical and Electronics Engineers (IEEE),
New Piscataway, NJ, 5353-5360.

He, K., Zhang, X., Ren, S. and Sun, J. 2015. Deep residual learning for image
recognition, http:/arxiv.org/abs/1512.03385

Itano, F., de Abreu de Sousa, M.A. and Del-Moral-Hernandez, E. 2018.
Extending MLP ANN hyper-parameters optimization by using genetic
algorithm. In: 2018 International Joint Conference on Neural Networks
(IJCNN). Institute of Electrical and Electronics Engineers (IEEE), New
Piscataway, NJ, https:/doi.org/10.1109/IJCNN.2018.8489520

Karimpouli, S. and Tahmasebi, P. 2019. Segmentation of digital rock images
using deep convolutional autoencoder networks. Computers & Geosciences,
126, 142-150, https:/doi.org/10.1016/j.cage0.2019.02.003

Kingma, D. and Ba, J. 2014. Adam: A method for stochastic optimization, http:/
arxiv. org/abs/1412.6980

Le, X., Mei, J., Zhang, H., Zhou, B. and Xi, J. 2020. A learning-based approach
for surface defect detection using small image datasets. Neurocomputing, 408,
112-120, https:/doi.org/10.1016/j.neucom.2019.09.107

Moreira, A.C., Appoloni, C.R., Mantovani, I.F., Fernandes, J.S., Marques, L.C.,
Nagata, R. and Fernandes, C.P. 2012. Effects of manual threshold setting on
image analysis results of a sandstone sample structural characterization by
X-ray microtomography. Applied Radiation and Isotopes, 70, 937-941,
https:/doi.org/10.1016/j.apradis0.2012.03.001

Poernomo, A. and Kang, D.-K. 2018. Biased dropout and crossmap dropout:
learning towards effective dropout regularization in convolutional neural
network. Neural Networks, 104, 60-67, https:/doi.org/10.1016/j.neunet.
2018.03.016

Schmidhuber, J. 2015. Deep learning in neural networks: an overview. Neural
Networks, 61, 85-117, https:/doi.org/10.1016/j.neunet.2014.09.003

Wang, L. and Rajan, D. 2020. An image similarity descriptor for classification
tasks. Journal of Visual Communication and Image Representation, 71,
102847, https:/doi.org/10.1016/j.jvcir.2020.102847

Wang, Y.E., Wei, G.-Y. and Brooks, D. 2019. Benchmarking TPU, GPU, and
CPU platforms for deep learning, http:/arxiv.org/abs/1907.10701

Wu, J., Chen, X.-Y., Zhang, H., Xiong, L.-D., Lei, H. and Deng, S.-H. 2019.
Hyperparameter optimization for machine learning models based on Bayesian
optimization. Journal of Electronic Science and Technology, 17, 2640,
https:/doi.org/10.11989/JEST.1674-862X.80904120

Downloaded from http://pubs.geoscienceworld.org/gjegh/article-pdf/doi/10.1144/qjegh2020-183/5521455/qjegh2020-183.pdf
bv Britich Geoloaical Survev user

https://doi.org/10.3390/geosciences7030070
https://doi.org/10.3390/geosciences7030070
https://doi.org/10.3997/2214-4609.201802177
https://doi.org/10.3997/2214-4609.201802177
https://doi.org/10.3997/2214-4609.201802177
https://doi.org/10.1111/j.1751-3928.2001.tb00096.x
https://doi.org/10.1111/j.1751-3928.2001.tb00096.x
https://doi.org/10.1088/1742-6596/887/1/012089
https://doi.org/10.1088/1742-6596/887/1/012089
https://github.com/fchollet/keras
http://arxiv.org/abs/1708.08487
http://arxiv.org/abs/1708.08487
https://timdettmers.com/2020/09/07/which-gpu-for-deep-learning/
https://timdettmers.com/2020/09/07/which-gpu-for-deep-learning/
https://github.com/BritishGeologicalSurvey/building-stones
https://github.com/BritishGeologicalSurvey/building-stones
https://doi.org/10.1016/B978-0-12-381479-1.00002-2
https://doi.org/10.1016/B978-0-12-381479-1.00002-2
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://doi.org/10.1109/IJCNN.2018.8489520
https://doi.org/10.1109/IJCNN.2018.8489520
https://doi.org/10.1016/j.cageo.2019.02.003
https://doi.org/10.1016/j.cageo.2019.02.003
http://arxiv. org/abs/1412.6980
http://arxiv. org/abs/1412.6980
http://arxiv. org/abs/1412.6980
https://doi.org/10.1016/j.neucom.2019.09.107
https://doi.org/10.1016/j.neucom.2019.09.107
https://doi.org/10.1016/j.apradiso.2012.03.001
https://doi.org/10.1016/j.apradiso.2012.03.001
https://doi.org/10.1016/j.neunet.2018.03.016
https://doi.org/10.1016/j.neunet.2018.03.016
https://doi.org/10.1016/j.neunet.2018.03.016
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.jvcir.2020.102847
https://doi.org/10.1016/j.jvcir.2020.102847
http://arxiv.org/abs/1907.10701
http://arxiv.org/abs/1907.10701
https://doi.org/10.11989/JEST.1674-862X.80904120
https://doi.org/10.11989/JEST.1674-862X.80904120

