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1.  INTRODUCTION

Maps of the spatial distribution of endangered and
vulnerable marine animals are powerful tools in eco-

system-based marine spatial planning for the cre-
ation of marine protected areas (MPAs) and in envi-
ronmental impact assessments of human activities
such as fisheries, shipping, oil and gas exploitation
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ABSTRACT: Tracking data of marine predators are increasingly used in marine spatial manage-
ment. We developed a spatial data set with estimates of the monthly distribution of 6 pelagic sea-
bird species breeding in the Northeast Atlantic. The data set was based on year-round global loca-
tion sensor (GLS) tracking data of 2356 adult seabirds from 2006−2019 from a network of seabird
colonies, data describing the physical environment and data on seabird population sizes. Tracking
and environmental data were combined in monthly species distribution models (SDMs). Cross-
validations were used to assess the transferability of models between years and breeding loca-
tions. The analyses showed that birds from colonies close to each other (<500 km apart) used the
same nonbreeding habitats, while birds from distant colonies (>1000 km) used colony-specific
and, in many cases, non-overlapping habitats. Based on these results, the SDM from the nearest
model colony was used to predict the distribution of all seabird colonies lying within a species-
specific cut-off distance (400−500 km). Uncertainties in the predictions were estimated by cluster
bootstrap sampling. The resulting data set consisted of 4692 map layers, each layer predicting the
densities of birds from a given species, colony and month across the North Atlantic. This data set
represents the annual distribution of 23.5 million adult pelagic seabirds, or 87% of the Northeast
Atlantic breeding population of the study species. We show how the data set can be used in pop-
ulation and spatial management applications, including the detection of population-specific non-
breeding habitats and identifying populations influenced by marine protected areas.
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and offshore wind farms (Lascelles et al. 2012, Harri-
son et al. 2018, Hays et al. 2019). Traditionally, spatial
data are collected on surveys where organisms are
counted and mapped in a given area. For migratory
animals, the provenance, or origin, of the observed
individuals is often unknown (Perrow et al. 2015,
Sansom et al. 2018), and for survey data, it might be
difficult to link a spatial environmental risk or man-
agement measure to the potential impacts on popula-
tion dynamics. For example, without knowledge of
provenance, it can be challenging to identify the
breeding populations affected by an oil spill that kills
seabirds at sea during the nonbreeding period (e.g.
Cadiou et al. 2004). Similarly, it can be difficult to
assess the population consequences of bycatch in off-
shore fisheries of e.g. seabirds, sea turtles and mar-
ine mammals.

The missing link between space and population
can be resolved by tagging individuals at the breed-
ing site and tracking them during the nonbreeding
period. In this way, it is possible to obtain data that
will help identify population-specific migratory path-
ways and staging and wintering areas, thus shifting
the focus from an area-centred to a population-
 centred approach. The population-centred approach
is particularly useful for animals roaming over large
areas that would otherwise be difficult to cover by
traditional surveys (see e.g. Block et al. 2011, Las-
celles et al. 2016, Carneiro et al. 2020).
However, animals from different breed-
ing populations might use different
staging and wintering areas (e.g. Fayet
et al. 2017, Merkel et al. 2021a). Ac -
cordingly, when the goal is to identify
important areas for marine mega -
fauna, or ‘hot spots’ at sea (e.g. Block et
al. 2011, Lascelles et al. 2016, Hindell
et al. 2020), it is necessary to obtain a
balanced sample of all breeding popu-
lations that could potentially use the
area (i.e. Aarts et al. 2008, Péron et al.
2018). In other words, a population-
centred approach requires a spatially
explicit design with respect to the pop-
ulations covered.

Building on the trove of positional
data generated through recent method-
ological and technical ad vances, spe-
cies distribution models (SDMs) have
become a widely used tool for predict-
ing and mapping the distribution of
flora and fauna (Guisan & Thuiller
2005, Elith & Leathwick 2009). SDMs

are used in various management applications such as
conservation planning of endangered species, impact
assessments of human activities and spatial planning
of protected areas (Guisan & Thuiller 2005, Melo-
Merino et al. 2020). Briefly, SDMs are empirical mod-
els that relate species occurrence data to environ-
mental predictors (Guisan & Zimmermann 2000).
The relationship can be estimated by various statisti-
cal methods and is expected to reflect the environ-
mental niche utilized by the species. If the realized
niche is constant across space, the relationship can
be used to predict the spatial distribution of the spe-
cies in areas where the environmental variables are
known. Given the environmental conditions, the re -
sulting model predictions represent a quantitative
estimate of the distribution of a species and are fre-
quently used to inform decision makers in manage-
ment processes (Guisan & Thuiller 2005, Elith &
Leathwick 2009).

Drawing on seabird population monitoring pro-
grams in the UK, Faroe Islands, Iceland, Russia and
Norway, the SEATRACK project aims to track sea-
birds from a representative sample of seabird colonies
in the Northeast Atlantic using global location sensor
(GLS) loggers (Strøm et al. 2021, this Theme Section)
(Fig. 1). In combination with data on seabird colony
sizes across the study area, these tracking data pro-
vide a unique opportunity to model not only habitat
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Fig. 1. Seabird colonies with seabird position data sets (GLS data) used to 
model the distribution of Northeast Atlantic seabirds
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utilization but also ex tend the modelling approach to
model seabird abundances for populations across the
Northeast Atlantic for multiple seabird species.

In this study, we combined position data from the
SEATRACK database with data on the marine envi-
ronment and seabird population data to model the
year-round spatial distribution of Northeast Atlantic
populations of 6 pelagic seabird species: northern
fulmar Fulmarus glacialis, black-legged kittiwake
Rissa tridactyla, common murre Uria aalge, thick-
billed murre Uria lomvia, little auk Alle alle and
Atlantic puffin Fratercula arctica. These species rep-
resent the most numerous seabird species breeding
in the Northeast Atlantic (Barrett et al. 2006, Fred-
eriksen 2010). However, due to recent population
declines, several of the species are listed in the Euro-
pean Red List of Birds (BirdLife International 2015).
These are the northern fulmar (endangered), black-
legged kittiwake (vulnerable) common murre (near
threatened) and Atlantic puffin (endangered). While
all 6 species are long-lived pelagic seabirds, they dif-

fer in trophic level and foraging mode (Del Hoyo et
al. 1992), and it is therefore expected that they will
utilize different habitats and show different responses
to the marine environment and potential stressors.

The workflow of our analyses is shown in Fig. 2.
Position data from the SEATRACK database were
combined with environmental data to model the
monthly habitat use of the species from each SEA -
TRACK colony. Environmental variables were de -
rived from data on bathymetry and remote sensing
data of sea surface temperature (SST), sea surface
height and primary production. We used cross-
 validation to assess how the models performed when
predicting the spatial distribution of birds in other
years and birds from other colonies, and we used
cluster bootstrap sampling to estimate the CIs of the
predictions. To link the habitat models to seabird
populations, we compiled a colony database for the
Northeast Atlantic and conducted spatial analyses to
justify distance rules for assigning the populations in
the colony database to the nearest modelled seabird
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Fig. 2. Workflow, including input
data sets (blue boxes) and analyses
(green boxes) to obtain a spatial
data set with estimates of the
monthly distribution of 6 pelagic
seabird species breeding in the
Northeast Atlantic. IRMA: informed 

random movement algorithm
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colony. Based on the distance rules, we predicted the
habitat use of each colony covered by the SEA -
TRACK design. Finally, we weighted the estimates
with population size, yielding monthly maps of the
abundance of Northeast Atlantic breeding seabirds.
We show how the maps of the predicted distributions
can be used in (1) population management applica-
tions, by identifying the year-round distribution of
vulnerable or threatened populations; and (2) spatial
management applications, by identifying the popula-
tions potentially affected by area-specific human
stressors or management efforts.

2.  MATERIALS AND METHODS

The study area covered the North Atlantic Ocean
from 78° W to 80° E and from 35−85° N. Position data
sets were given as time and geographical coordi-
nates. Environmental variables were aggregated on
a 0.25 × 0.25° geographic grid covering the study
area, and model predictions were conducted on the
same grid. All distances used in the analyses were
calculated as great-circle distances in km, and when
relevant, the distances were calculated around land
masses. Maps presented are shown in a stereo-
graphic projection with the origin at 90° N and 0° E.
All analyses were conducted in R v.3.6.3 (R Develop-
ment Core Team 2020).

2.1.  Data sets

2.1.1. GLS data

GLS data from 6 species of pelagic seabirds (north-
ern fulmar, black-legged kittiwake, common murre,
thick-billed murre, little auk and Atlantic puffin)
were obtained from 25 seabird colonies (Fig. 1) from
2006−2019. Note that data be fore 2014 were col-
lected as part of projects other than the SEATRACK
project. The number of tracks, birds, years with data
and positions are given in Table S1 in the Supple-
ment at www. int-res. com/ articles/ suppl/ m676 p255_
supp .pdf for each species, colony and month. See
Table 1 for overall sample sizes for each species. In
total, the data set comprised 2356 tracked birds,
resulting in 4827 bird-tracking years. Adult breeding
birds were equipped during the breeding season
and recaptured to retrieve the logger in following
breeding seasons. The raw light data yielded up to 2
locations ind.−1 d−1 (12:00− 00:00 h). The positions ob -
tained from light measurements are prone to a num-

ber of errors. First, latitude cannot be estimated
adequately within a few weeks of the equinox in
autumn and spring, when the day length is virtually
the same everywhere on Earth. Second, neither lati-
tude nor longitude can be determined in Arctic areas
during polar day and polar night, when the diurnal
variation in light level is insufficient to be detected
by the light loggers. Finally, shading due to behav-
iour or weather can prevent the loggers from
recording twilight events properly. A threshold
method was used to calculate positions from the
light data (Lisovski et al. 2020); next, raw positions
were filtered with speed, distribution, angle, distance
and loess filters. The protocol for obtaining positions
from the raw light measurement, including calibra-
tion of different GLS models and filtering proce-
dures, is described in Bråthen et al. (2021). In addi-
tion to the light sensor, the GLS loggers include a
salinity sensor (‘wet/dry’) that records periods when
the logger is submerged in saltwater. These data
were used to determine when the birds departed
and arrived at the breeding colony and whether
they were mostly sitting on their nest (dry) or at sea
(wet) during the breeding season (see below). The
precision of the GLS tracks is relatively low and
likely to change throughout the tracking period
(Lisovski et al. 2020). Thus, it is only possible to
identify habitat use on a relatively coarse spatial
scale (i.e. 100s of km) (Phillips et al. 2004).

2.1.2.  Environmental data

Environmental data were used as predictors in the
SDMs. Ideally, the predictors should encompass fea-
tures with a direct link to the species’ habitat selec-
tion. However, the available predictors were limited
to data sets covering the entire study area. For dynamic
environmental variables, these were restricted to
parameters measured by remote sensing which, in
many cases, will serve as proxies for more direct
drivers of habitat selection such as food availability.
Specification of the environmental variables and
data sources are given in Table S2. SST (SST) is an
im portant parameter often used to differentiate
water masses and to model the distribution of sea-
birds (Tremblay et al. 2009). We used monthly values
of SST as predictors in the SDMs. Seabirds are often
attracted to frontal areas where marine production is
concentrated (Fauchald 2009). We calculated the
spatial variation in SST (Front) and used this measure
as a proxy for frontal areas between water masses.
Meso-scale eddies are oceanographic features that
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can influence the distribution of seabirds (Hyrenbach
et al. 2006). We used the average monthly sea sur-
face level, i.e. sea surface level above geoid (Adt), to
reflect meso-scale eddies in the study area. Areas
with high primary production could indirectly influ-
ence seabird distribution through enhanced food
availability. We used the integrated annual primary
production (Prim) to reflect areas of high primary pro-
duction. S tatic environmental variables included in
the SDMs were bottom depth (Depth), indicating fea-
tures such a s seamounts and shelves; spatial vari-
ance in Depth (Slope), indicating important bathymet-
ric features such as the continental edge affecting
currents and delineating water masses; and distance
to coast (CoastD), reflecting terrestrial input and
influence. Finally, seabirds are visual predators, and
we hypothesized that short daylength could be a lim-
iting factor in the northernmost areas during the
darkest winter months. Daylength (Daylen) was there-
fore included as a predictor from November through
January. We assumed that the seabirds did not use
heavily sea-ice covered areas, and we compiled
monthly data on sea ice to mask areas with sea ice
concentration >80%. All predictors were adjusted to
fit the spatial raster covering the study area and with
a pixel resolution of 0.25 × 0.25°. Data with a lower
spatial resolution were either disaggregated or re -
sampled with a bilinear local interpolation using the
‘raster’ package v.3.4-5 (Hijmans 2020).

2.1.3.  Seabird population data

Population count data were compiled from differ-
ent sources to generate a representative data set of
the breeding populations of the 6 seabird species in
the Northeast Atlantic. Data sources are given in
Table S3. Note that in the present definition of
Northeast Atlantic populations, we excluded the
relatively small seabird populations from the Baltic
Sea, Kattegat, Germany, France and the southern
portions of the UK and Ireland. The spatial resolu-
tion of the defined ‘colonies’ differed among data
sources, and for several regions, the data set com-
prised a large number of small proximate breeding
sites. To obtain a homogeneous and manageable
data set, the original colony data set was aggre-
gated using a spatial hierarchical cluster analysis
using the ‘hclust’ procedure from ‘stats’ package
v.3.6.3. A cut-off distance equal to 50 km was used
in the clustering procedure. The clustering reduced
the number of colonies (site–species combinations)
from 2315 to 689.

2.2.  Correcting for sampling biases

Data gathered from tracking devices are presence-
only data. This means that an observed location rep-
resents a ‘true’ presence of an individual, but the
data set gives no information of the contrast, i.e.
observations of ‘true’ absences of individuals. As a
consequence, any sampling bias in the tracking data
is directly translated into a bias in the estimated spa-
tial distribution of the population. For example, gaps
in the positions obtained from the GLS tags due to
stable light conditions during polar night or polar day
will bias the presence data set to the south, out of
Arctic areas with continuous darkness or daylight. In
other words, non-random gaps in the data set will
contribute to sampling biases that will affect the
interpretation of the spatial distribution. Such gaps
include the lack of registration of positions during
equinoxes and polar night/day or removal of ‘false’
positions over land and fast sea-ice. To alleviate
these biases, we used an informed random move-
ment algorithm (IRMA) to model new locations to fill
in these non-random gaps (Fauchald et al. 2019).
IRMA builds on a method originally proposed by
Technitis et al. (2015) to generate plausible locations
using additional information available: (1) conductiv-
ity data, to determine attendance at the colony;
(2) land masks, to constrain positions over the ocean;
(3) longitudes (that can be estimated during the equi -
noxes) and (4) light levels, indicating if the birds
were north or south of the Arctic Circle (i.e. continu-
ous day/night recorded by the loggers). In addition,
because we focused on pelagic species, we assumed
that all GLS positions occurring over land areas were
wrong, and the locations were thus removed before
running IRMA through the entire data set.

2.3.  SDMs

Several modelling techniques are available for fit-
ting SDMs from presence-only data (see e.g. Guisan
& Thuiller 2005, Elith & Leathwick 2009). These
include regression techniques such as generalized
linear models (GLMs) and generalized additive mod-
els (GAMs) and machine learning techniques such as
boosted regression trees and maximum entropy.
Ensemble models that combine the output from sev-
eral modelling techniques have also been advocated
(Scales et al. 2016). In the present study, we used the
GAM technique (Hastie & Tibshirani 1990, Wood
2017). GAM is a well-proven and computational effi-
cient regression method that relates a linear response

259



Mar Ecol Prog Ser 676: 255–276, 2021

variable to smooth functions of predictor variables.
GAM offers a straightforward interpretation of the
fitted model and regularization of the predictor func-
tion to avoid overfitting, and comparisons suggest its
performance is similar to machine learning tech-
niques (see Wisz et al. 2008, Elith et al. 2010, Scales
et al. 2016, Norberg et al. 2019).

In SDMs of presence-only data, it is necessary to
introduce background points to contrast the recorded
presences in the analyses (Elith & Leathwick 2009,
Barbet-Massin et al. 2012). It is essential that the
background data constitutes a representative set of
environmental conditions available to the species
(Phillips et al. 2009). In the present analyses, back-
ground data points were selected randomly from an
area defined by the minimum convex polygon of all
positions of the species (including IRMA positions)
using the ‘mcp’ function in the ‘adehabitatHR’ pack-
age in R (Calenge 2006). To the polygon, we added a
buffer with a width equal to 10% of the radius of a
circle defined by the area of the minimum convex
polygon. We assumed that the seabirds did not occur
over land and fast sea-ice, and we accordingly
removed areas covered by land and areas with more
than 80% sea-ice concentration. For each model, we
drew 20 000 background points from the defined
potential habitat and extracted the relevant environ-
mental data at each location. SDMs of presence-
background data for each species, colony and month
were fitted using the ‘gam’ function in the ‘mgcv’
package v.1.8-33 (Wood 2017). The probability of
presence/background was modelled using a logit-
link function with a binomial distribution.

2.3.1.  Dynamic and static predictors

Our purpose was to model the monthly distribution
of each species from each colony. Accordingly, data
from all available years were combined in separate
SDMs for each species, colony and month. Because
year-to-year changes in the marine environment were
expected to affect the spatial distribution of birds, en-
vironmental data were assigned to the presence data
by matching position, year and month. Of the envi-
ronmental variables included in the models, SST,
Front and Adt varied by month and year, Prim varied
by year, Daylen varied by month only, and Depth,
Slope and CoastD were static variables (Table S2).
Year-to-year changes in the environment were ac-
cordingly accounted for by SST, frontal areas, sea sur-
face height and primary production. To account for
the environmental dynamics in the selection of back-

ground points, the environmental variables in the po-
tential habitats were extracted for each month and
year, giving monthly data sets of potential habitats. In
order to combine background points from different
years in the models, the number of background points
drawn from a potential habitat was proportional to the
number of presences in that year, keeping the total
number of background points equal to 20 000. Accord-
ing to this procedure, the models estimate the average
response to the environment corresponding to the
sample size in each year. Note that the models were
(1) evaluated ac cording to how they predicted the dis-
tribution of birds in out-of-sample years (Section 2.4),
and (2) the habitat predictions given in the final data
set are based on the environment in 2018 (Section
2.7), a year that was well represented in the sample.

2.3.2.  Constraining predictors

The habitat used by a population of seabirds is the
result of a combination of the birds’ selection of spe-
cific environmental features and the birds’ spatial
constraints. One obvious spatial constraint is the dis-
tance to the breeding colony, which will have a sea-
sonally shifting impact on habitat use depending on
the birds’ behavioural bonds to the colony. Distance to
colony (ColD) was therefore included as a predictor in
the models. Other spatial constraints could be inher-
ited or learned spatial behaviour, including fixed mi-
gration routes or wintering areas (Merkel et al. 2021a,
Léandri-Breton et al. 2021, this Theme Section). Stud-
ies show that the seabird species in our study area
have colony-specific migration routes and wintering
areas (Frederiksen et al. 2012, 2016, Fayet et al. 2017,
Merkel et al. 2021b, this Theme Section, Amélineau
et al. 2021, this Theme Section), indicating that such
constraints are important in our study system (Léan-
dri-Breton et al. 2021, Merkel et al. 2021a). The
east−west direction is particularly important because
the seasonal migration of seabirds is generally domi-
nated by an east−west component, and as a conse-
quence, several initial models predicted false positive
presences in the far east or west of the available habi-
tat. Therefore, to better model colony-specific habitat
use in the east−west direction, we included longitude
(Easting) as a predictor in the models.

2.3.3.  Spatial dependencies

One important problem related to SDMs of animal
track data is the spatial dependencies, or serial auto-
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correlation, among positions of the same individual
(Aarts et al. 2008). This problem arises because posi-
tions that are near in time on a continuous track will
also be geographically close to each other and have
similar environmental attributes. Such spatial de -
pendencies will increase the tendency of model over-
fitting and the detection of spurious relationships
with environmental variables. To alleviate this prob-
lem, Aarts et al. (2008) suggested including individ-
ual tracks as a random component in a mixed-model
setting. This was computationally unfeasible for our
data set, and to reduce the impact from over-fitting,
we limited the complexity of the models by restrict-
ing the number of possible non-linear relationships.
We assumed linear relationships for variables where
we expected a dominant monotonic, either increas-
ing or decreasing relationship with the presence of
birds. These variables included Front, Adt, Prim,
Depth, Slope, Coastd and Daylen. Daylength was
only in cluded in the models during the 3 darkest
months (November− January). We assumed that the
relationship between presences and ColD, Easting
and SST were likely non-linear and modelled these
variables with tensor product smooth functions with
cubic regression splines as basis. The optimal degree
of smoothing was determined by generalized cross-
validation (GCV). In cases when the models did not
converge, the complexity of the models was con-
strained by specifying a maximum number of knots
in the smooth function (k = 5 or 4).

2.3.4.  Multicollinearity

Several of the explanatory variables describe, at
least partly, similar physical or biological features.
For example, SST, daylength and sea surface height
have a natural south to north gradient, resulting in
large-scale positive spatial correlations among these
variables (Pearson’s r ranging between 0.24 and
0.72). However, removing any of these variables
from the models reduced the models’ ability to pre-
dict presences, and therefore we decided to include
all variables in the models. Because multicollinearity
inflates the variance of the parameter estimates, it is
a serious problem for model inference, i.e. focusing
on the model’s parameter estimates. However, mul-
ticollinearity does not affect the accuracy of model
predictions within the range of the data. In other
words, if the main purpose of the model is to predict
new cases within the range of the sampled data (i.e.
to interpolate), the model will do this reliably as
long as the collinearity between variables remains

constant (Dormann et al. 2013). In the present study,
all predictions are done within the temporal and
spatial range of the data, and collinearity among
predictors will therefore have little effect on our
results. Nevertheless, we calculated the variance in -
flation factor (VIF) of the predictors of each SDM
(Fig. S1). The ColD variable coincided with longi-
tude for the northeastern colonies (the Russian
colonies), and the VIF values for ColD and Easting
were accordingly high for models of these colonies
(VIF > 10). Clearly, this collinearity would affect the
interpretation of how distance to colony impacts the
habitat use of birds from the northeastern colonies;
however, it will not affect the predicted distribution
of birds. Potentially more problematic is the high
VIF values of SST (VIF values between 5 and 10).
This is because SST varies between years and
would be an important parameter to address when
projecting future seabird distribution under climate
change. The high VIF values were mainly due to
collinearity with Daylen (Pearson’s r = 0.63). Be -
cause daylength is fixed among years and could
limit the northerly distribution of seabirds during
winter, predictions of changed winter distribution
based on projected increases in sea temperature
would accordingly be problematic. The present
models can therefore be used to assess the habitat
use of seabirds within the sampling period, but
collinearity among important static and dynamic
drivers would preclude the models’ ability to project
the distribution of birds into a warmer future.

2.4.  Model performance

The performance of habitat models is usually
assessed by dividing the data set into a training data
set, used to fit the model, and an independent test
data set, used to evaluate the predictions from the
model (i.e. cross-validation). We first evaluated the
within-colony performance by withholding data from
one year at a time as a test data set and used the data
from the remaining years to fit the model (i.e.
between-year transferability; Péron et al. 2018). The
fitted model was used to predict the distribution in
the test year, and model performance was evaluated
by comparing model predictions and the test data
set. All combinations of test and training years were
pooled in the performance statistics.

Secondly, we evaluated the between-colony per-
formance by using the model from one colony to pre-
dict the distribution of occurrences of birds from
other colonies. The between-colony performance is
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instrumental to evaluate the representativity of the
models i.e. whether a model from one colony can be
used to predict the distribution of birds from other
colonies (Péron et al. 2018). The fitted model from
one training colony was used to predict the distribu-
tion of birds from a test colony, and the occurrence
data from the test colony was used to evaluate the
performance of the model predictions. Performance
statistics were calculated for all combinations of
training and test colonies. We restricted the analyses
to the period from September to February (winter
and non-breeding in the Northern Hemisphere), a
period where the birds are expected to be less spa-
tially constrained by the colony.

We used 2 different statistics to evaluate model
performance: area under the receiver operating char-
acteristic curve (AUC-ROC) and the Boyce index.
Traditionally, the performance of SDMs have been
measured by the AUC-ROC (see Lobo et al. 2008).
AUC-ROC measures the ability of a model to distin-
guish between classes. In the case of SDMs on pres-
ence-only data, it measures how well the model is
able to discriminate between presence and back-
ground points. For AUC-ROC values close to 1, the
classification is close to perfect; for values equal to
0.5, the model classification is not better than a ran-
dom classification; and for values below 0.5, the
model performs an inverse classification — it predicts
presences in areas dominated by background points.
The use of AUC-ROC as a measure of model per-
formance has been criticized and is particularly
questionable in models of presence-only data (Lobo
et al. 2008). The major reason is that the background
points do not represent ‘true absences’. Accordingly,
the AUC-ROC measure is sensitive to the definition
of the area from where the background points were
drawn. By expanding the area outside the core area
of the species, the AUC-ROC value will increase.
The AUC-ROC value should accordingly be assessed
relative to the definition of the potential habitat. In
the present study, this area was defined by the extent
of all observations of the species in the data set.
Accordingly, all models of the same species used the
same area when drawing background points. More-
over, the same procedure was used when defining
the potential habitat of all 6 species. Therefore, we
argue that the AUC-ROC values obtained in this
study can be compared within species and also, with
some limitations, across species. It is, however, im -
portant to note that the AUC scores should be inter-
preted relative to the extent of the area occupied by
the Northeast Atlantic populations of the species.
AUC-ROC values were calculated using the ‘auc’

procedure in the ‘spatstat’ package v.1.64-1 (Badde-
ley et al. 2015).

Boyce et al. (2002) suggested a performance indi-
cator based on the relationship between the number
of occurrences and the corresponding binned values
of suitability (Boyce index) (Hirzel et al. 2006). The
relationship is measured by the Spearman rank cor-
relation coefficient. A Boyce index value close to 1
suggests a close relationship between the number of
occurrences and the predicted suitability; a value
equal to 0 suggests no relationship; while a negative
value suggests an inverse relationship between the
predicted suitability and number of occurrences.
Contrary to the AUC-ROC, the Boyce index is inde-
pendent of the area of the defined available habitat
and has therefore been suggested to be an appropri-
ate measure for the performance of presence-only
SDMs (Hirzel et al. 2006). We calculated the Boyce
index using the moving window method suggested
by (Hirzel et al. 2006) by applying the ‘boyce’ func-
tion in the ‘ecospat’ package v.3.1 (Broennimann et
al. 2020).

To investigate how model performance varied with
sample size (Delord et al. 2014, Lascelles et al. 2016),
we fitted linear models using the AUC-ROC and
Boyce index as response variables, and species, num-
ber of tracks and interaction thereof as explanatory
variables. Number of tracks used to fit the models
varied from 18 to 194. To attain normality of residu-
als, the Boyce index was logit([x + 1] / 2)-transformed
and the AUC-ROC was logit(x)-transformed in the
analyses.

2.5.  Estimation of uncertainty

The spatial dependencies among positions col-
lected on the track of an individual need to be con-
sidered when estimating the uncertainty around
SDMs predictions. To meet this goal, we used a
cluster bootstrap procedure to estimate CIs for the
model predictions. Nonparametric bootstrapping
(Efron & Tibshirani 1993, Davison & Hinkley 1997)
is a robust technique that builds sampling distribu-
tions for the statistics by resampling the observa-
tions from a data set. To deal with within-individual
dependencies among observations, cluster boot-
strapping resamples at the level of clusters or indi-
viduals rather than at the level of single measure-
ments (Davison & Hinkley 1997). This implies that
when a subject (e.g. a track) is drawn into a boot-
strap sample, all observations from the subject are
part of the bootstrap sample.
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For each SDM, we built 400 bootstrap samples of
occurrences by resampling at the level of individual
tracks. For each bootstrap sample, we fitted the cor-
responding GAM and predicted the suitability values
in the habitat. From the 400 bootstrap habitat predic-
tions, we estimated 95% CIs for the predictions using
the 2.5−97.5th percentile intervals for the predicted
logit values.

The cluster bootstrap procedure accounts for the
spatial dependencies of positions within tracks.
However, the sample included birds tracked over
more than 1 yr, giving more than one track for these
individuals. Overall, the data set included 4827
tracks of 2356 individuals (Table 1), giving on aver-
age 2 tracking years per individual bird. If individu-
als show site fidelity among years, there will be a
spatial dependency among tracks of the same indi-
vidual. The present bootstrap procedure did not ac -
count for variation at the individual level, and indi-
vidual site fidelity has been shown to be important
in the study system (Léandri-Breton et al. 2021,
Merkel et al. 2021a). This will reduce the effective
sample size of the present study and eventually
increase the CI. Thus, while the cluster bootstrap
procedure gives a robust estimate of CIs based on
tracks, it should be noted that individual site fidelity
could increase the CI in cases when the number of
tracked individuals is small (i.e. <20 individuals; cf.
sample sizes in Table S1).

2.6.  Assigning breeding population data to SDMs

To generate population maps from the habitat
models, it was necessary to link the seabird popula-
tion data set to the SDMs of the model colonies. To
this end, we used the SDM from the nearest model
colony. Distance between colonies was measured as
the shortest ocean distance (i.e. around land masses)
using the function ‘gridDistance’ in the ‘raster’ pack-
age v.3.4-5 (Hijmans 2020). A cut-off distance was
used to exclude colonies not adequately covered by
the spatial design of model colonies. The cut-off dis-
tance was justified by analyses of model perform-
ance among colonies (see Section 2.4). The accuracy
of models in predicting the occurrences of birds from
other colonies decreased with increasing distance
(for Boyce index, see Fig. 3; For AUC-ROC, see
Fig. S2). In general, the relationships suggested that
the validity of models was high for nearby colonies
and decreased and became highly variable for
colonies separated by more than ca. 500 km. Clearly,
deciding a cut-off distance involves a trade-off

between the proportion of populations covered by
the design and the validity of the models (see Fig. 3).
Based on these considerations, we adopted cut-off
distances between 400 and 500 km, optimizing the
trade-off for each species. The percentage of the
Northeast Atlantic populations covered by the
SEATRACK design was, according to this design,
90.6% for northern fulmar, 90.4% for black-legged
kittiwake, 86.4% for common murre, 83.6% for
thick-billed murre, 79.1% for little auk and 85.5% for
Atlantic puffin.

2.7.  Predictions

In the last step, the SDMs were used to predict the
monthly distribution of the 6 pelagic seabird species
covered by the SEATRACK design, using environ-
mental data from 2018. While the environmental pre-
dictors were the same for all colonies, one important
predictor was colony-specific, namely distance to
colony. Thus, predictions had to be calculated sepa-
rately for each colony. Predictions were calculated
for the assigned SDM as well as for each of the corre-
sponding 400 bootstrap SDMs giving a bootstrap
sample of predictions.

Predictions were done on a 0.25° × 0.25° raster cov-
ering the habitat defined for each species (see
above). SDM predictions give the relative likelihood
of occurrence, and to scale these values to population
size we used the following equation:

where n̂i is the predicted number of birds from a
colony in raster cell i, N is the number of breeding
birds in the colony (i.e. colony size), p̂i is the relative
likelihood of occurrence predicted by the model and
ai is the area of raster cell i.

ˆ
ˆ

ˆ∑=n N
p a

p a
i

i i

i i i
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                                       Colonies    Individuals     Annual 
                                                                                   tracks

Northern fulmar                   7                 312              606
Black-legged kittiwake      16                796             1642
Common murre                    9                 357              844
Thick-billed murre              8                 329              754
Little auk                              4                 194              290
Atlantic puffin                     10                368              691
Total                                                        2356            4827

Table 1. Samples of seabirds tracked with GLS. Number of
colonies, number of tracked individuals and number of 

annual tracks in total and for each species
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2.8.  Applications

The resulting data set comprised 4692 rasters of
predicted monthly distribution of 6 pelagic seabird
species from 391 colonies in the Northeast Atlantic.
For each raster, a bootstrap sample was available for
constructing CIs with respect to the SDM used. The
data set has 2 immediate utilisations reflecting dis-
tinct management purposes that we detail below
along with concrete examples.

2.8.1.  Population management applications

The data set can be used to identify the seasonal
habitats of specific populations. For this application,
the goal would typically be to map important habitats
and identify the potential threats and stressors pres-
ent. Clearly, this application will be particularly im -
portant in the protection of threatened species or the
management of populations of special concern. Con-
servation applications often involve the delineation
and management of ‘populations’ within specific
administrative or biogeographic boundaries. Within
the spatial extent of the SEATRACK design, breed-
ing populations can be defined and aggregated at
any level, from the individual colony to marine eco-
systems or administrative boundaries, depending on
the focus of a given application. Additionally, the
bootstrap samples can be used to calculate CIs for the
predicted seabird distribution.

In the first example of this application, we used the
data set to map the overall distribution of the com-
bined populations of 6 Northeast Atlantic pelagic sea-
bird species. The goal was to identify marine areas of
special importance for these species. The predicted
distributions of birds from each breeding colony cov-
ered by the SEATRACK design were summed and
averaged in 3 mo bins, giving the combined quar-
terly distribution of the 6 species.

In the second example, we demonstrate how the
data can be used to map the year-round distribution
of a population of special concern. Due to popula-
tion declines, the black-legged kittiwake is cur-
rently listed as Vulnerable on the IUCN Red List
(BirdLife International 2020), and the population
breeding in Norway is listed as endangered on the
Norwegian Red List (Henriksen & Hillmo 2015). To
estimate the spatial distribution of the Norwegian
part of the population, we aggregated the estimates
from all col onies on the Norwegian mainland. Boot-
strap estimates were aggregated similarly and,
based on the percentiles from the resulting boot-

strap sample, we calculated 95% CIs of the pre-
dicted spatial distributions.

2.8.2.  Spatial management applications

The data set can also be used to address threats to
seabirds in marine spatial planning (e.g. Lascelles et
al. 2012, 2016). Specifically, the data set can be used
to identify how human activities or management ac-
tions in a given area could impact the seabird popula-
tions. The data set can provide colony-specific esti-
mates of the number of birds spending time in the
marine area in question as well as when they enter
and when they leave that area, and the bootstrap esti-
mates can be used to construct bootstrap samples for
calculating corresponding CIs. It is important to note
that such assessments are limited to the populations
covered by the study design. It is accordingly a possi-
bility that some important populations or species are
missing from the analyses. Reducing the risk of omit-
ting important species or populations would involve
increasing the spatial extent and number of species
covered by the study design, and it is recommended
that the representativity of the study design is vali-
dated by independent sources of information such as
expert assessments and data from surveys at sea.

Recently, a 641 612 km2 area in the mid-Atlantic
was proposed as a MPA in the Area Beyond National
Jurisdiction (ABNJ) of region V as defined in the
Oslo-Paris (OSPAR) convention (OSPAR 2021). The
proposed area, named the ‘North Atlantic Current
and Evlanov Seamount’ (NACE), has been identified
as an important area for a number of migrating pel -
agic seabirds, including the 6 species covered by the
present study. The importance of the area for sea-
birds has been documented by a designated study
where a large seabird tracking data set covering 21
species was compiled and analysed (Davies et al.
2021). Here, we used the proposed delineation to
identify the populations in the SEATRACK data set
that use the NACE area. We calculated the seasonal
habitat use and constructed CIs based on the boot-
strap samples.

3.  RESULTS

3.1.  Model performance

In total, 648 SDMs were fitted, each representing a
unique combination of species, colony and month.
Model statistics (adjusted R2 and proportion of

264



Fauchald et al.: Distribution of Northeast Atlantic seabirds

deviance explained) and 2 measures of model per-
formance (Boyce index and AUC-ROC) are given for
each model in Table S1. A summary of the model
performance indicators for each species is given in
Table 2. Both indicators increased with increasing
sample size (i.e. the number of tracks in the sample:
Boyce index, p = 0.001; AUC-ROC, p = 0.002). How-
ever, the increase was modest, and model perform-
ances were generally high across the range of sam-
ple sizes (Fig. S2). Therefore, we decided to keep all
models in the subsequent analyses.

3.2.  Model transferability

The ability of models to predict the distribution of
birds from other colonies (i.e. transferability among
colonies) decreased with increasing inter-colony dis-
tances (Figs. 3 & S3). Performance indicators were
generally high for distances less than ca. 500 km and
became highly variable for longer distances. For dis-
tances longer than ca. 1000 km, the indicators varied
between values close to 1, suggesting that the model
colony predicted the occurrence of birds from the test
colony well, to values below 0 (below 0.5 for AUC-
ROC), indicating that the model colony predicted the
inverse of the distribution of birds from the test colony
(Fig. 3). Thus, while colonies close to each other tended
to use the same habitats, the analysis suggested that
for distant colonies, the nonbreeding habitats were
colony-specific and in many cases, non-overlapping.
Accordingly, the SDMs could not be extrapolated to
distant populations; in our cases, the limit for mean-
ingful predictions was 400−500 km (see Section 2.6).

3.3.  Model predictions

Based on the distance rules from model colonies,
we predicted the spatial distribution of 391 seabird

colonies using the models from the nearest model
colony. Predictions were done for each month, yield-
ing a data set of 4692 maps. For each prediction, a
bootstrap sample of 400 maps was generated. Fig. 4
shows one example of predictions and the associated
95% CI range for Atlantic puffins from Vestman-
naeyjar, Iceland, in December. Vestmannaeyjar holds
the world’s largest Atlantic puffin colony (830 000
breeding pairs; Hansen et al. 2011). The nearest
SEATRACK colony is Papey, with an ocean distance
of 395 km, and the model from Papey was accord-
ingly used to predict the distribution of birds from
Vestmannaeyjar. In December, the population was,
according to the model, widely distributed over a
large ocean area in the Northwest Atlantic (Fig. 4A)
with a maximum density of 0.6 birds km−2, and 90%
of the population was found within an area of 3.9 mil-
lion km2. The highest uncertainty in the predicted
distribution was found along the outer periphery of
the core area (Fig. 4B). Most notably, high uncer-
tainty was present south of the core area, in the Gulf
of St. Lawrence, the Grand Banks, along the Labrador
coast and across the Labrador Sea to the coast of
southwestern Greenland.

3.4.  Population management applications

3.4.1.  Seasonal distribution of Northeast Atlantic
pelagic seabirds

To address important seasonal ocean areas for
the 6 pelagic Northeast Atlantic seabird species,
we summed the predicted densities for all popula-
tions (Fig. 5). Maps of the distribution of each of
the 6 species are shown in Figs. S4−S9. The figures
also indicate which colonies were encompassed by
the estimates. Note in particular that colonies in
southern Ireland and southern UK were not re -
presented in the study design. During summer

(Fig. 5A), roughly reflecting the breed -
ing period for the species, the highest
densities of birds were estimated
close to the large colonies in Iceland,
Northern Norway, Svalbard, Scotland
and the Faroe Islands. The highest
estimated density was 12.3 birds
km−2, and 90% of the birds were
found within an area of 6.4 million
km2. In autumn (Fig. 5B), the birds
were more widely distributed. The
highest densities were found in the
Barents Sea, with a peak density of
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                                           N            Boyce index                   AUC-ROC   
                                                  Median   Min     Max   Median   Min     Max

Northern fulmar               84      0.974   0.249   1.000     0.960   0.758   0.991
Black-legged kittiwake  192     0.979   0.560   1.000     0.954   0.776   0.996
Common murre               108     0.977   0.513   1.000     0.987   0.887   0.999
Thick-billed murre           96      0.981   0.682   1.000     0.975   0.908   0.995
Little auk                           48      0.925   0.375   1.000     0.921   0.823   0.977
Atlantic puffin                 120     0.959   0.374   1.000     0.970   0.852   0.997

Table 2. Summary statistics of model performance indicators grouped by
 species. N: number of models; AUC-ROC: area under the receiver operating 

characteristic curve
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9.7 birds km−2, and 90% of the birds were found
within an area of 8.8 million km2. During winter
(Fig. 5C), the populations spread out even more, as
90% of the birds were found within an area of 9.9
million km2. During the darkest winter period,
birds migrate out of the Barents Sea, and the high-

est densities were found in the Denmark Strait,
between Iceland and Greenland, with a peak den-
sity of 6.9 birds km−2. In spring (Fig. 5D), the distri-
bution of birds became more concentrated again,
with 90% of the birds occurring within an area of
8.7 million km2. The highest densities were found
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Fig. 3. Among-colony model performance (Boyce index; blue) and the cumulative proportion of the Northeast Atlantic seabird
population covered by models (red) as a function of distance to model colonies for (A) northern fulmar, (b) black-legged kitti-
wake, (c) common murre, (d) thick-billed murre, (e) little auk and (F) Atlantic puffin. Blue points: Boyce index calculated for
pairs of model and test colonies (y-axis) and distance between model colony and test colony (x-axis). Blue lines with grey shad-
ing: linear regression of Boyce index as a function of distance. The Boyce index was logit([x + 1] / 2)-transformed to attain nor-
mality; blue lines: back-transformed predictions ±95% CI. Red lines: cumulative proportion of the Northeast Atlantic populations
covered by the model colonies for increasing distance to the model colonies. Hatched lines: distance limits set for predictions
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Fig. 4. (A) Predicted distribution and (B) 95% bootstrap CI range of Atlantic puffins from the breeding population at Vestman-
naeyjar, Iceland, in December. Population size is 830 000 breeding pairs (1.66 million individuals; Hansen et al. 2011). Colour 

scale shows the density of birds predicted by the species distribution models on a linear scale from 0−0.6 birds km−2

Fig. 5. Summed distribution of 6 Northeast Atlantic pelagic seabird species in (A) summer (May−July) breeding period, (B) au-
tumn (August−October) migration period; (C) winter (November−January) wintering period and (D) spring (February−April)
migration period. Black circles: colonies included in the density estimates; white circles: Northeast Atlantic colonies not
 included. The maps represent 23.5 million adult pelagic seabirds breeding in the Northeast Atlantic (86.6% of a total of 27.2
million birds). Colour scale shows the density of birds predicted by the species distribution models on a linear scale from 

0−12 birds km−2. The distribution of each species is shown in Figs. S4−S9
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in the Denmark Strait and the southern Barents
Sea, with a peak density of 9.9 birds km−2. Com-
pared to the breeding period, the pelagic seabirds
of the Northeast Atlantic are more widely distrib-
uted during winter, i.e. they occur at lower den -
sities over wider ocean areas. In this period, the
pelagic seabirds are distributed across the ice-free
part of the North Atlantic, from 50° N up to 75° N
in the Barents Sea (Fig. 5C). Irrespective of season,
the 3 areas holding the highest densities of birds
were the Barents Sea, the Denmark Strait and the
southern Norwegian Sea (i.e. the ocean areas
around the Faroe Islands, Shetland and Orkney
Islands).

3.4.2.  Important ocean areas for Norwegian black-
legged kittiwake populations

In the second example, we used the data set to
identify important nonbreeding habitats for black-
legged kittiwakes from the Norwegian mainland.
Fig. 6 shows the estimated distribution with associ-
ated bootstrap CI range in 3 months (March, Septem-
ber and December). In March (Fig. 6A), before
breeding, a large part of the population is concen-
trated in the southern Barents Sea. In September
(Fig. 6B), the north-western Barents Sea is an impor-
tant area. During winter, the kittiwake population
migrates out of the Barents Sea and spreads out over

268

Fig. 6. Distribution of the Norwe-
gian mainland populations of black-
legged kittiwake in (A) March, (B)
September and (C) December.
Black circles: colonies included in
the density estimates. Left panels:
the density estimates; right panels:
associated ranges in 95% bootstrap
CIs. Maps represent 369 000 adult
black-legged kittiwakes breeding
on the Norwegian mainland (99.9%
of a total population of 369 200
birds). Colour scale shows the den-
sity of birds predicted by the species
distribution models on a linear
scale. Note that the scales differ be-

tween (A), (B) and (C)
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a large area in the Northwest Atlantic and the North
Sea (Fig. 6C). The highest uncertainties in the esti-
mates (Fig. 6, right panel) were found in the marginal
areas of the habitat, e.g. along the coast of eastern
Greenland in March and September and in the North
Sea in December.

3.5.  Spatial management  applications

The data set can be used to identify the populations
present within a given area and hence the popula-
tions im pacted by a spatially restricted disturbance
(e.g. accidental oil spill) or  spatial management
measures (e.g. MPA). In the following example, we
used the data set to assess the populations of North-
east Atlantic pelagic seabirds that could be impacted
by the recently proposed MPA in the mid-Atlantic
(NACE). The estimated number of birds (including
bootstrap estimates) present within the NACE area

were extracted for each colony and month. Four of
the species in the data set (black-legged kittiwake,
Atlantic puffin, northern fulmar and thick-billed
murre) included colonies with more than 1% of the
population within the NACE area in any month dur-
ing the year (Fig. 7). In Fig. 8, we show detailed
results including CI bands for 3 colonies with rela-
tively high presence within the NACE area.

4.  DISCUSSION

In this study, we developed a unique spatial data
set of the predicted monthly distribution of 6 pelagic
seabird species, covering 23.5 million adult birds,
constituting 87% of their combined breeding popula-
tions in the Northeast Atlantic. The data set was
based on year-round tracking data of adult seabirds
from a network of seabird colonies, data describing
the physical environment and data on population
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Fig. 7. Importance of the proposed marine protected area ‘NACE’ (light blue line) for Northeast Atlantic populations of (A)
black-legged kittiwake, (B) Atlantic puffin, (C) northern fulmar and (D) thick-billed murre. Circles are seabird colonies with
size representing colony size and colour representing the maximum annual proportion of the adult population found within
the NACE area. Colour scale shows the total density of birds (number km−2) predicted by the species distribution models on a
linear scale for the month with the highest density of birds within the NACE area. The month with maximum number of birds
within NACE were (A) December (black-legged kittiwake), (B) February (Atlantic puffin), (C) November (northern fulmar) 

and (D) October (thick-billed murre)
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sizes from Ireland, the UK, Faroe Islands, Iceland,
Norway and Russia. The resulting data set consisted
of 4692 colony-specific rasters with a 0.25° × 0.25°
pixel resolution giving the predicted number of birds
per grid cell across the entire North Atlantic and
associated uncertainty. The monthly temporal reso-
lution, combined with colony-level predictions, make
this data set a very powerful yet highly flexible tool

for use in a range of applications, from purely ecolog-
ical/theoretical to more applied studies.

We demonstrated how the data set can be used in 2
very concrete management applications. First, in
population management applications, the data set
allows the identification of the seasonal habitats of a
user-specified population. This information is espe-
cially relevant in assessments of critical habitats and
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Fig. 8. Estimated proportion (±95% CI) of colony-specific populations within the proposed marine protected area (NACE) in
the North Atlantic for (A) Atlantic puffins from Vestmannaeyjar, south Iceland (pop. size: 830 000 pairs), (B) black-legged kitti-
wakes from an unnamed colony at Nordaustlandet, Svalbard (pop. size: 4400 pairs) and (C) northern fulmars from the Faroe 

Islands (pop. size: 600 000 pairs). Confidence bands are calculated from cluster bootstrap samples
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potential threats to endangered populations. Within
the limits of the spatial extent of the colonies cov-
ered, the populations can be defined and aggregated
on an optional level from the individual colony to
marine ecosystems or administrative boundaries, and
the bootstrap samples can be used to calculate CIs for
the estimated spatial distribution. As an example, we
summed the densities across all species and colonies
in the data set to identify important seasonal ocean
areas for Northeast Atlantic pelagic seabirds (Fig. 5).
The Barents Sea, Denmark Strait and southern Nor-
wegian Sea stand out as ocean areas with high den-
sities of pelagic seabirds. In a second example, we
identified the seasonal habitats of the Norwegian
population of the black-legged kittiwake, which is
listed as endangered on the Norwegian Red List
(Henriksen & Hillmo 2015). Capelin Mallotus villosus
is an important prey species for kittiwakes in the area
(Reiertsen et al. 2014), and before the start of breed-
ing season, high densities of kittiwakes were found
in the southwestern Barents Sea coinciding with the
capelin spawning migration (Fauchald & Erikstad
2002). Similarly, during autumn, kittiwakes were
found in the north-western part of the Barents Sea,
coinciding with the capelin feeding migration (Fau -
chald et al. 2006). During winter, the kittiwakes
spread out in a large area in the Northwest Atlantic,
possibly foraging on zooplankton prey (Frederiksen
et al. 2012, Reiertsen et al. 2014).

In addition to population management applica-
tions, tracking data are increasingly used in spatial
management applications (Lascelles et al. 2012,
2016). To this end, tracking data is typically used to
assign biodiversity hotspots by identifying areas with
a high occurrence of tracked birds (Le Corre et al.
2012, Montevecchi et al. 2012, Augé et al. 2018,
Reisinger et al. 2018, Yurkowski et al. 2019, Carneiro
et al. 2020, Cleasby et al. 2020, Hindell et al. 2020,
Requena et al. 2020). This approach is, of course,
sensitive to the species and populations represented
by the tracking data, and in lieu of a valid link
between populations and tracks, it is often assumed
that a large number of tracked individuals, colonies
and species will mitigate sampling biases. The data
set developed in this study addresses this problem by
specifically linking the habitat models to the popula-
tions they represent. Thus, the estimated number of
birds within a specific area is corrected for popula-
tion size. The data set can identify the origin of the
birds in any given pixel, and importantly, clearly
defines which populations are actually covered by
the analysis. The data set can accordingly be used in
assessments of MPAs, impact assessments related to

fisheries and offshore industrial development and
risk assessments related to e.g. accidental oil spills.
In the analysis of the proposed MPA in the North
Atlantic (NACE) (Figs. 7 & 8), we could identify the
species, colonies and seasons that would be affected
by the proposed MPA. Importantly, the data set also
identifies the populations not covered by the assess-
ment. Clearly, the assessment is only valid for the
part of the Northeast Atlantic populations of the 6
species covered by the current design. Regarding
NACE, the assessment presented here is particularly
limited as it does not cover seabirds from e.g. Green-
land, North America, southern Ireland, southern UK
and some colonies in eastern Iceland, as well as other
species such as sooty shearwaters Ardenna grisea
migrating from the South Atlantic (Hedd et al. 2012).
This data gap illustrates the importance of validating
the representativity of the tracking data with inde-
pendent survey data and expert knowledge in appli-
cations related to marine spatial planning. Neverthe-
less, the present analysis demonstrates the importance
of the NACE area for several important Northeast
Atlantic populations of black-legged kittiwake,
Atlantic puffin and northern fulmar.

With the increased use of tracking data to map mo-
bile marine predators, the main mapping method has
changed from an area-centred approach, where at-
sea surveys were used to map the distribution in a
given area, to a population-centred approach, where
maps are based on the tracks of individuals from a
population. As a consequence of this shift, the main
sources of errors and bias have also changed. While
at-sea surveys are prone to observer and detection
bias and spurious relationships due to spatial autocor-
relation along the transect lines (Redfern et al. 2006,
Fauchald 2009), estimates of spatial patterns based on
individual tracking data are susceptible to spurious
relationships resulting from serial autocorrelation in
individual space use (Fauchald & Tveraa 2006, Aarts
et al. 2008). Accordingly, it is essential to provide ro-
bust model validations and estimates of the uncer-
tainty around the model predictions. In the present
study, cross-validation was used to address the valid-
ity and transferability of the models, and a cluster
bootstrap procedure was used to construct CIs around
the predictions. Positions provided by GLS have rela-
tively low precision, and the errors depend on a vari-
ety of factors such as season, geographic location,
species, weather and individual behaviour (Phillips et
al. 2004, Lisovski et al. 2020). Accordingly, SDMs
based on GLS can provide robust estimates of the
coarse-scale (i.e. 100s of km) migration and distribu-
tion patterns (Phillips et al. 2004) but are less able to
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discriminate fine-scale (i.e. 10s of km) habitat selection
related to predictable environmental features such as
e.g. frontal areas, seamounts or glacier fronts. Clearly,
this limitation is also present in the data set developed
here. Thus, the densities provided by the data set rep-
resent average densities over relatively large scales
and do not account for the fine-scale clusters often ob-
served in the distribution of seabirds at sea (Fauchald
2009). Finally, distribution models based on tracking
data are highly susceptible to biases in the sample of
tracked individuals (Aarts et al. 2008, Carneiro et al.
2020). The tracking data from the SEATRACK data
set was limited to breeding individuals, excluding ju-
veniles which constitute a large and important part of
the population and potentially could have a different
spatial distribution than adults (Carneiro et al. 2020).
This limitation means that the data sets presented
here are only valid for the adult, breeding component
of the populations.

Equally important as a representative sampling of
individuals (Carneiro et al. 2020) is the design with re-
spect to the sampling of breeding colonies. Be cause
different colonies might use different habitats, a study
based on individuals from colonies that represent only
a small portion of the population could give biased re-
sults. It is therefore essential to link the tracking data
to the population that the data represent. In the pres-
ent study, we used the network of SEATRACK colonies
to assess the representativity of the tracking data. The
analyses showed that birds from colonies close to
each other (<500 km) tended to use the same habitats,
while for distant colonies (>1000 km), the nonbreeding
habitats were  population- specific, and in many cases,
non-overlapping. This result is corroborated by sev-
eral North Atlantic multi-colony tracking studies
demonstrating colony-specific and partly non-over-
lapping winter habitats for black-legged kittiwakes
(Frederiksen et al. 2012), common murres (Merkel et
al. 2021a), thick-billed murres (Frederiksen et al.
2016, Merkel et al. 2021a), little auks (Fort et al. 2013)
and Atlantic puffins (Fayet et al. 2017). The result has
2 important ramifications. First, it meant that we could
use simple distance rules to link populations to track-
ing data and thus map population-specific distribu-
tions of birds. Second, and more broadly, the result
has implications for the definition and use of predator
hotspots in marine spatial management (Block et al.
2011, Lascelles et al. 2012). Predator hotspots, de fined
as areas where high abundances of species overlap in
space and time (Davoren 2007), rely on the premise
that spatial differences in biological production are
reflected in the distribution of predators, and that
high-productive areas, or hotspots, will attract preda-

tors from many populations and species. This bottom-
up mechanism might, however, be weakened by
predator−prey interactions (Fauchald 2009) as well as
competition (Wakefield et al. 2013). When habitats
are colony-specific, such as in our case, identification
of hotspots based on individuals from a few locations
could be problematic because important areas not
covered by the sample will go undetected. The fine-
meshed network of sampled col o nies in the  SEAT RACK
design allowed us to model a large portion of 6
pelagic seabird species from the Northeast At lantic.
Indeed, the pooled seabird distribution suggested
that some areas (i.e. the Barents Sea, Denmark Strait
and the southern Norwegian Sea) in general held
higher concentrations of pelagic seabirds (Fig. 5).
However, the analyses also showed that the birds
spread out over large ocean areas after breeding, and
by mid-winter the birds were widely distributed in the
ice-free part of the North Atlantic, north of 50° N. Ap-
parently, because different species and populations
use different ocean areas, the hot spot approach
should be used cautiously with respect to the pelagic
seabirds in the Northeast At lantic, as it could lead to
overlooking vast regions with relatively lower densi-
ties that nonetheless represent large portion of the
breeding populations.

Globally, seabird populations are in decline and
threatened by a multitude of anthropogenic stressors
(Dias et al. 2019). Threats in the marine environment
include bycatch in fisheries, declining food availabil-
ity due to overfishing and climate change, direct
competition with fisheries, chronic and accidental oil
pollution, littering and habitat loss to expanding mar-
ine industries and shipping (Dias et al. 2019). The
increasing number of tracking studies, including the
present one, provide new tools for identifying impor-
tant seabird habitats and potential threats in the mar-
ine environment (Lascelles et al. 2012, Harrison et al.
2018, Hays et al. 2019). Importantly, this knowledge
can be used to inform ecosystem-based marine spa-
tial planning to alleviate the cumulative anthropo -
genic impacts on seabirds (Lascelles et al. 2012, Hays
et al. 2019). To reduce the risk of information bias, the
present study highlights the importance of large-scale
coordinated efforts, like the SEATRACK initiative, to
secure representative sampling and development of
common data products. Moreover, as marine ecosys-
tems are changing due to climate warming and ocean
acidification, seabirds habitat and migration patterns
will also change. To understand these changes and
the impacts on seabirds, it is vital that such initiatives
have a long-term perspective and that study design
and data products are updated regularly.
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Data availability. The data sets developed in the present
study and R-code to extract the data are available from the
first author. Please visit the SEATRACK website (https://
seapop. no/en/seatrack/) for more information.
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