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Abstract: For the object-based classification of high resolution remote sensing images, many 
people expect that introducing deep learning methods can improve then classification 
accuracy. Unfortunately, the input shape for deep neural networks (DNNs) is usually 
rectangular, whereas the shapes of the segments output by segmentation methods are usually 
according to the corresponding ground objects; this inconsistency can lead to confusion 
among different types of heterogeneous content when a DNN processes a segment. Currently, 
most object-based methods utilizing convolutional neural networks (CNNs) adopt additional 
models to overcome the detrimental influence of such heterogeneous content; however, these 
heterogeneity suppression mechanisms introduce additional complexity into the whole 
classification process, and these methods are usually unstable and difficult to use in real 
applications. To address the above problems, this paper proposes a simplified object-based 
deep neural network (SO-DNN) for very high resolution remote sensing image classification. 
In SO-DNN, a new segment category label inference method is introduced, in which a deep 
semantic segmentation neural network (DSSNN) is used as the classification model instead of 
a traditional CNN. Since the DSSNN can obtain a category label for each pixel in the input 
image patch, different types of content are not mixed together; therefore, SO-DNN does not 
require an additional heterogeneity suppression mechanism. Moreover, SO-DNN includes a 
sample information optimization method that allows the DSSNN model to be trained using 
only pixel-based training samples. Because only a single model is used and only a pixel-based 
training set is needed, the whole classification process of SO-DNN is relatively simple and 
direct. In experiments, we use very high-resolution aerial images from Vaihingen and 
Potsdam from the ISPRS WG II/4 dataset as test data and compare SO-DNN with 6 
traditional methods: O-MLP, O+CNN, OHSF-CNN, 2-CNN, JDL and U-Net. Compared with 
the best-performing method among these traditional methods, the classification accuracy of 
SO-DNN is improved by up to 7.71% and 10.78% for single images from Vaihingen and 
Potsdam, respectively, and the average classification accuracy is improved by 2.46% and 2.91% 
for the Vaihingen and Potsdam images, respectively. SO-DNN relies on fewer models and 
easier-to-obtain samples than traditional methods, and its stable performance makes SO-DNN 



more valuable for practical applications. 
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1. Introduction 
As an increasing number of high-resolution sensors are deployed on space-borne and 

airborne platforms, large amounts of high-resolution remote sensing image data are becoming 
available, and more users are able to access finer-resolution ground information from 
high-resolution remote sensing images (Li et al., 2016; Lu et al., 2016; Han et al., 2018). 
Classification methods can be used to automatically extract land use (LU) and land cover (LC) 
information and efficiently provide critical data for urban planning, socioeconomic 
management, and various agricultural and environmental applications (Zhu et al., 2019; Li et 
al., 2020a). However, because of the complexity of the information contained in 
high-resolution remote sensing images, pixel-based shallow classification models are usually 
inefficient in obtaining acceptable classification results (Chen et al., 2012; Ma et al. 2017). In 
object-based image analysis (OBIA), image segmentation methods are adopted to partition 
images into segments, and classification models are then used to classify each segment 
(Blaschke, 2010). In OBIA, image segments serve as the base units instead of individual pixels; 
since each segment has relatively homogeneous feature values; traditional classification 
models can obtain better results than is possible with pixel-based methods (Blaschke et al., 
2014; Hossain et al., 2019; Shen et al., 2019). 

For the shallow classification models adopted in OBIA, the input is usually a statistical 
summary of all pixels in a segment. However, intra-object spectral heterogeneity and 
inter-object homogeneity both increase with increasing image resolution, and object-level 
summaries will inevitably exaggerate these characteristics, ultimately leading to 
misrepresentation or misclassification (Sridharan et al., 2013; Gao et al., 2020). To overcome 
this problem, it is necessary to introduce additional morphological, boundary, and texture 
information of the segments into the classification process (Lv et al., 2019; Tang et al., 2020). 
In recent years, deep learning technology has achieved great success in the field of computer 
vision (LeCun et al., 2015). In particular, convolutional neural networks (CNNs) can extract 
high-level features from image patches and exhibit excellent representation/classification 
capabilities for the morphological, shape, texture and context information of objects 
(Alshehhi et al., 2017; Hu et al., 2018; Medley et al.; 2019; Osuna-Coutiño et al., 2020). 
Therefore, it is necessary to apply deep learning methods in OBIA to improve the 
classification accuracy.  

For object-based classification using a CNN, it is necessary to cut the original image into 
patches based on the locations of segments and then input these rectangular image patches 
into the CNN; however, since the shapes of segments are usually not rectangular, the use of 
such image patches may introduce additional heterogeneous content into the CNN and 
decrease the segment classification accuracy. Currently, the common strategy is to introduce 
additional models to suppress the problems caused by such heterogeneous content. This 
strategy requires comprehensive consideration of the scale, the parameter relationships 
between the models, and the sample distribution; as a result, methods of this kind are 
complicated and difficult to design or use. To provide a simpler and more direct deep learning 
OBIA method, this paper proposes a simplified object-based deep neural network (SO-DNN) 



for very high resolution remote sensing image classification. SO-DNN adopts the simple 
linear iterative clustering (SLIC) algorithm to segment remote sensing images and uses a deep 
semantic segmentation neural network (DSSNN) as a segment classification model. In 
addition, a fuzzy representation and optimization algorithm (FROA) is used to establish a 
bridge from pixel-based samples to patch-based samples; by virtue of this algorithm, through 
a process of iterative sample set improvement and progressive training, the DSSNN model of 
SO-DNN can be trained using a pixel-based training set. Because the DSSNN does not 
require an additional model to suppress heterogeneity, there is no need to consider any 
interactions among multiple models in SO-DNN, thus simplifying its implementation and 
usage. In experiments, SO-DNN has been compared with six other object-based shallow and 
deep methods, and the experimental results show that it is superior in accuracy to the other 
methods and less sensitive to the input scale. In summary, our work offers the following 
contributions: 

1) The reason why the traditional structured CNNs cannot be directly used for 
object-based remote sensing classification is analyzed. 

2) A DSSNN model is used to perform object-based classification, eliminating the need 
for additional auxiliary models and simplifying the process of heterogeneity suppression. 

3) A training process based on iterative improvement is proposed, enabling the use of a 
pixel-based sample set for DSSNN model training and thus making the training set easier to 
obtain. 

4) The proposed method is simpler and easy to use, and it uses fewer models and 
achieves greater accuracy and stability than traditional object-based remote sensing 
classification methods. 

The remainder of this paper is organized as follows. Section 2 contains a review of 
related work. Section 3 analyzes the reason why a traditional CNN cannot be directly used for 
object-based segmentation. The method proposed in this paper is described in section 3. 
Section 4 presents experimental results. Conclusions are given in section 6. 

2. Related Work 
2.1 Remote sensing classification based on traditional structured CNN 

For the processing of remote sensing images using CNNs or other deep learning models, 
scene classification is the most direct application. CNNs can extract high-level features of 
remote sensing images and achieve accuracies much higher than those of traditional shallow 
models (Xia et al., 2017; Zhao et al., 2020). By modifying the structures or training 
mechanisms of traditional CNNs, more discriminative features of scenes can be discovered, 
and the accuracy can be further improved (He et al., 2019; Li et al., 2020a). CNNs can 
achieve very high accuracy in scene classification. However, scene classification cannot yield 
pixel-wise classification results and consequently is not suitable for many LU/LC 
applications. 
 With suitable adjustment of the processing mechanism, traditionally structured CNNs 
can be used to perform per-pixel feature extraction or classification for remote sensing images. 
By improving a CNN's feature representation capabilities at object boundaries, more useful 
pixel-based features can be obtained, and the classification accuracy can be improved (Kumar 
et al., 2020; You et al., 2019). Through fusion with the pixel category decisions of shallow 



models, CNNs can perform pixel-wise classification and achieve higher classification 
accuracy (Zhang et al., 2018a). However, the CNN-based per-pixel process will incur a large 
computational or I/O burden and lead to very slow speeds, even when processing small 
images; therefore, it is necessary to introduce superpixel- or object-based strategies to address 
these shortcomings (Zhang et al., 2018b). 
2.2 Deep semantic segmentation 
 DSSNNs are widely used CNN models for obtaining pixel-wise classification results. 
DSSNNs possess excellent end-to-end characteristics and exhibit high accuracy. The majority 
of DSSNN models in the field of remote sensing semantic segmentation are based on fully 
convolutional networks (FCNs), SegNet or U-Net architecture. An FCN consists of a "fully 
convolutional" structure following traditional feature extraction layers and can produce 
arbitrarily/correspondingly sized semantic segmentation output (Long et al., 2015; Xia et al., 
2019). By virtue of the introduction of decoder and encoder structures, SegNet can retain 
high-frequency details and obtain smoother object borders (Badrinarayanan et al., 2017; Jiang 
et al., 2020). With the U-Net structure, spatial information can be hierarchically introduced 
when performing pixel-wise segmentation, which allows DSSNNs to achieve better 
segmentation effects for objects with certain geometric shapes, such as buildings and roads 
(Ronneberger et al., 2015; Yang et al., 2019; Hao et al., 2020; Shao et al., 2021).  

By virtue of their excellent end-to-end characteristics and high accuracy, when the 
training data are sufficient in number and quality, DSSNNs can outperform almost all other 
strategies (including the object-based strategy discussed in this article). Unfortunately, the 
following difficulties are still encountered when applying DSSNNs for remote sensing 
classification: DSSNNs require a large number of patch-based samples for training, and 
samples of this type are usually cut from ground truth images. Obtaining ground truth-images 
requires manual image interpretation, which is expensive and time consuming. At the same 
time, due to the regional characteristics of the ground content, samples from one region 
usually cannot be reused to train models intended to be applied in other regions. This problem 
makes it uneconomical to use DSSNNs for small LU/LC applications. Thus, DSSNNs are not 
suitable for all mapping application scenarios. 

The training of DSSNNs strongly depends on massive quantities of patch-based samples, 
which is expensive and time consuming (Li et al., 2021). To alleviate the sample requirements, 
low-cost annotations such as points, scribbles or image-level labels can be used to improve 
the pixel-level spatial information of a sample set (Hua et al., 2021). The methods for 
generating image-level labels usually rely on weakly supervised strategies, including class 
activation maps, saliency-aided methods, object erasing techniques and region growing 
approaches to obtain pixel-level annotations (Luo et al., 2021; Zhou et al., 2016; Wang et al., 
2018; Wei et al.; 2017). Points are then assigned to objects in a consistent and predictable way 
to obtain the objects' outlines, and through point-level supervision, more annotations can be 
obtained (Bearman et al., 2016). Through semi-supervised learning, pseudo-labels can be 
generated from unlabeled images or sparse ground truth labels (Tarvainen et al., 2017; Alonso 
et al., 2017). The above methods have achieved success in the field of computer vision, but 
most of these methods are intended to find potential clues for identifying objects (foreground) 
that are distinct from the background; however, when processing large remote sensing images, 
it is not easy to define the distinction between foreground and background. In addition, 



semi-supervised or unsupervised samples can be used obtain the locations of objects, but it is 
unlikely that the accuracy of the object boundaries can be guaranteed; hence, the use of 
generated pseudo-samples may cause a DSSNN to produce more errors at boundaries. 
Therefore, the current semantic sample set improvement methods still need further 
adjustments to meet the needs of remote sensing classification. 
2.3 Object-based classification based on CNNs 

As described in section 2.2, DSSNNs are very powerful but not suitable for all 
applications, therefore, at present, strategies that are usually adopted for use with traditional 
shallow models are more practical. Specifically, pixel-based samples are manually selected 
from the image and used to train a classification model, which is then used to automatically 
classify the whole image; through this process, users can easily obtain a training set and 
results with relatively few hyperparameters to tune. The typical way to achieve this objective 
is to perform object-based classification 

When performing object-based classification of high-resolution remote sensing images, 
even beginners will intuitively expect that the use of deep learning can improve the 
classification accuracy of OBIA. However, the actual situation is more complicated than what 
may be imagined; traditional CNNs cannot be directly used for object-based classification due 
to the heterogeneity of the input content (the reason for this problem will be discussed in 
detail in section 3), and therefore most "object-based + deep learning" methods need to use a 
combination of multiple models to suppress the influence of this heterogeneity. Through 
filtration and correction using shallow models, a CNN's object-based classification 
performance at boundaries can be improved (Pan et al., 2019; Zhang et al., 2020b). By 
integrating multi-scale information or multi-scale CNNs, deep learning methods can achieve 
high accuracy in the classification of specific objects (Zhao et al.; 2017; Zhang et al., 2018b; 
Martins et al, 2020; Chen et al., 2020). Using a combination of a multilayer perceptron (MLP) 
and a CNN, the results of LU and LC classification can be iteratively improved (Zhang et al., 
2019; Zhang et al., 2020a).   

Although the above methods can achieve high object-based classification accuracy, they 
have a common problem: they require the introduction of additional models, scales and 
parameters, which greatly increases the complexity of the entire classification process. This 
makes these methods difficult for ordinary users to control and challenging to use in practical 
mapping applications. 

3. Obstacles to Object-Based CNN Classification 
 A large number of existing studies have shown that CNNs can extract high-level features 
from images and exhibit recognition capabilities that are significantly superior to those of 
shallow models; thus, intuitively, they should be able to improve the classification accuracy 
for object-based segments. However, traditionally structured CNNs cannot directly perform 
object-based segment classification. The reason is illustrated in Figure 1. 



 

 
Figure 1. The reason why a traditional CNN cannot be directly used for object-based 
segmentation. (a) Inconsistency between a single category label and the category labels of 
individual pixels. (b) Examples of classification problems when a CNN processes heterogeneous 
image patches. 
 
As shown in Figure 1(a), the input to a traditional CNN is an image patch Pclassify, and the 
output is a category label l; this structure assumes that all pixels of Pclassify belong to the same 
category. However, the actual objects on the ground are usually not distributed strictly 
consistently with a pattern of square image patches, especially at the object boundaries, and 
consequently, the categories of some pixels may be inconsistent with l. This inconsistency 
will lead to classification problems, as shown in Figure 1(b). 

As an example, we introduce a small high-resolution remote sensing image that contains 
image patches belonging to two categories: building and vegetation. Each category contains 



25 samples. Since the two categories are markedly different in "color" (band value), this 
should be a very easy classification task. We perform object-based segmentation and then use 
two methods to classify the segments: an MLP, whose input is the average band value of a 
segment and whose output is a category label, and a traditional CNN, whose input is an image 
patch and whose output is a category label. 
 It can be seen from the results in Figure 1(b) that the MLP can correctly classify the 
majority of the segments and that the shapes or borders of the buildings are close to those of 
the real objects. For the traditional CNN, the expectation that deep learning will outperform 
the shallow model is not met; in contrast, there are many errors at the building boundaries, 
and the shape of the central building is completely destroyed, affected by a "crab-shape" 
phenomenon. This problem can be explained by the heterogeneity of the image patches. The 
image patches input into a CNN can be divided into two types: 
 (1) Homogeneous image patches: As illustrated in Figure 1(b), at location A, all of the 
image content belongs to the building category; similarly, at location C, all segments belong 
to the vegetation category. In this situation, the entire content of the image patch is consistent 
with the CNN's decision; thus, the image patch can provide comprehensive information to the 
CNN in either the training or classification stage, and the CNN's recognition ability can be 
improved. 
 (2) Heterogeneous image patches: At location B, although the sample category label is 
building, most of the content in the corresponding image patch is vegetation. Similarly, we 
expect location D to be classified as vegetation, but part of the content in the image patch 
belongs to the building category, and the brightness of the building pixels is higher than that 
of the vegetation pixels; consequently, the building content of the image patch is more 
obvious, which misleads the final decision of the CNN, resulting in an obvious error in the 
building's border. Under these conditions, part of the content in the image patch is 
inconsistent with the final decision. Such inconsistency has multiple detrimental effects: in 
the training stage, it will cause confusion in the classification behavior of the CNN and reduce 
the original classification ability, while in the classification stage; more obvious objects will 
sometimes mislead the model's decisions, resulting in incorrect classification. 
 Thus, heterogeneous image patches can lead a CNN to make incorrect decisions for 
segments, especially at boundaries. Consequently, if a traditional CNN is directly used to 
classify segments, some roads and buildings with straight boundaries will be misclassified in 
the resulting classification image, and the "crab-shape" phenomenon will appear. 

For the above reasons, the existing object-based CNN methods mostly focus on 
suppressing heterogeneity: introducing a shallow model before the image patch is input into 
the CNN, filtering and replacing possible inconsistent contents, or using additional models or 
iterative processes to correct the CNN's classification results at object borders (Pan et al., 
2019; Zhang 2019). Although the existing methods can yield reasonably good results in 
experiments, they face two significant challenges: 

(1) High complexity of application: Current deep learning methods for object-based 
classification assume that it is possible to find one or more shallow models that can recognize 
heterogeneous image patches at boundaries and correct the CNN's results. However, different 
samples and different parameters will strongly affect this recognition capability. Therefore, 
methods of this type have very restrictive requirements for users; users need to understand the 



relationships among the model parameters, carefully design the sample locations accordingly 
(either too many or too few boundary samples will result in unacceptable performance), and 
perform many trial-and-error experiments. This makes it very difficult for ordinary users to 
use such methods. 

(2) The scale dilemma: High-resolution remote sensing images often have highly 
similar band values among different categories. Therefore, the shape and neighborhood 
information of objects within a broad range is needed to improve the classification ability. 
Unfortunately, the use of larger image patches will also lead to greater content heterogeneity, 
making it increasingly difficult to identify and process this heterogeneity; therefore, the scale 
of the image patches that can be processed using the existing methods is usually limited. At 
the same time, due to the introduction of multiple convolutional and pooling layers, deep 
neural networks (DNNs) usually exhibit good scale/size adaptability; according to the results 
of previous research in the computer vision field, a DNN can correctly recognize objects even 
when they exhibit variations in size or distance, within a certain range. Thus, it should be the 
case that deep learning methods are somewhat related to but not highly sensitive to the image 
scale; however, the results of papers on object-based remote sensing classification using 
CNNs always show that the input image patch scale/size is closely related to accuracy, with 
variations in scale leading to enormous accuracy differences. These problems are all caused 
by the "imperfect" capabilities of the additional models introduced to deal with content 
heterogeneity. 

The above two problems make the existing object-based CNN classification methods 
difficult to use in practical applications. Therefore, there is a need to propose a more robust 
and simpler method that uses as few models and parameters as possible to achieve 
object-based classification and attempt to simplify the experimental process to allow deep 
learning technology to reach its full potential in object-based classification. 

4. Methodology 
4.1 Overall idea of the proposed method 
4.1.1 A deep classification method that does not require heterogeneity suppression 

As seen from the analysis in section 2, a traditional CNN attempts to assign a single label 
to all pixels in a single input image patch, which will inevitably lead to problems in the 
training and classification stages when performing object-based remote sensing classification. 
It would be extremely difficult to obtain a "perfect" model that is simultaneously powerful 
enough to correctly process complex heterogeneous content and simple enough to not add 
additional complexity to the entire classification process; therefore, our paper does not 
attempt to propose such a "perfect" auxiliary model. 
 Instead, DSSNNs offer us new inspiration. Given an input image patch, a DSSNN 
assigns each pixel its own category label, meaning that the inference results for different types 
of content will not be mixed with each other. Because of this characteristic, no additional 
models are required to solve the problem of heterogeneous content when using a DSSNN. 
Our concept for object-based classification based on a DSSNN is illustrated in Figure 2. 



 

 
Figure 2. The concept of the proposed method. (a) Classification of a segment using a DSSNN. (b) 
The problem of how to train the DSSNN. 

 
As shown in Figure 2(a), for a segment Sclassify with its center point at location, based on 
location, we cut an image patch Pclassify from the remote sensing image. Pclassify can be 
classified by a DSSNN model M to obtain a pixel-wise semantic segmentation result Presult. 
Unlike in Figure 1(a), each pixel has a corresponding category label in Presult, so Presult does 
not have the inconsistency problem described in section 2. This allows us to directly handle 
content heterogeneity without introducing additional auxiliary models; thus, the complexity 
issues associated with such models also do not arise. 
 In contrast to the relatively strict requirements for semantic segmentation tasks, we do 
not require Presult to be a "perfect" segmentation result. Based on the pixel locations in Sclassify, 
we can obtain a mask patch Pmask that divides the image patch into two parts: the part inside 
Sclassify (consisting of the pixels located inside Sclassify) and the part outside Sclassify (consisting of 
the pixels located outside Sclassify). Then, using Pmask, the pixels in Presult can be further divided 
into three groups: 

(1) Irrelevant pixels: Pixels that are outside Sclassify, meaning that their category labels are 
unrelated to the category of Sclassify . 

(2) Pixels with the incorrect category label: Pixels that are inside Sclassify, but their 
category labels are incorrect. 



(3) Pixels with the correct category label: Pixels that are inside Sclassify and their category 
labels are correct. 
The category label of Sclassify can be determined from the dominant label among the pixels that 
are inside Sclassify. If the number of pixels in group (3) is greater than that in group (2), then the 
correct category label will be obtained for Sclassify. This reduces the requirements for Presult and 
the DSSNN model M, as we do not need M's output to be correct for every pixel; as long as 
mostly correct results can be obtained for the central area of the image patch, this will be 
sufficient to obtain the correct category label for Sclassify. 
4.1.2 Overall process of the proposed method 
 According to the analysis in the above section, as long as we can obtain a suitable 
DSSNN model M, we can perform a new deep learning task for the object-based classification 
of remote sensing images that does not require a heterogeneity suppression mechanism. 
However, to obtain M, we must confront the following challenges: 
 (1) No training set of ground truth image patches: Training a DSSNN model requires 
samples with the structure shown in Figure 2(b): an input image patch and a corresponding 
segmentation result patch. To obtain such patches, both the remote sensing image and the 
corresponding manually interpreted ground truth image are needed. However, for the 
object-based classification task, only pixel-based samples are available, which cannot be used 
to directly train a DSSNN. 
 (2) Samples contain relatively limited information: Pixel-based samples cannot be 
directly converted into patch-based samples. Even if we assign the corresponding category 
label to each segment that contains a pixel sample, the categories of most areas of the image 
patches will still be unknown, and since all pixels in an image patch contribute to the final 
decision of the DSSNN, this unknown information may have a detrimental influence on the 
DSSNN's output. 
 However, even if no real patch-based training samples are available, according to the 
previous description of the process of object-based classification using a DSSNN, we do not 
necessarily require a high-precision DSSNN model that can correctly classify all pixels; we 
need only to obtain a model that is sufficiently close to the correct model to meet the 
requirements of the process illustrated in Figure 2(a). 
 These non-strict requirements for M make it possible for us to train a DSSNN model 
using pixel-based samples. Based on the above objectives, we propose our SO-DNN method 
for high-resolution remote sensing image classification; the overall process of SO-DNN is 
illustrated in Figure 3: 



 
Figure 3. Overall process of SO-DNN. 
 
As shown in Figure 3, the SO-DNN method involves three steps: 
 (1) Image preprocessing and initial patch-based sample set construction: The input 
to this step consists of a remote sensing image Iimage and a pixel-based training sample set Tpixel 
(we have no ground truth image). First, Iimage is segmented to obtain the segmentation result 
image Iseg; then, based on the locations of the samples in Tpixel, Iimage is cut into image patches 
to construct the initial patch-based sample set T1

patch. 
For SO-DNN, we require that the image be over-segmented: ideally, there should be as 

few segments that cross the boundaries of different objects as possible, and each segment 
should unambiguously belong to a single object. Based on this standard, we adopt SLIC as an 
object-based segmentation algorithm that performs quickly and efficiently at object 
boundaries (Achanta et al., 2012). 
 (2) Iterative sample set improvement and progressive DSSNN model training: The 
DSSNN model M is established and trained using T1

patch. Through an iterative improvement 
mechanism, M is used to improve the category information of the patch-based sample set, and 
the improved sample set is used to further train M. With this mechanism, the ability of M to 
determine the categories of objects is gradually enhanced. 
 (3) Segment classification: For each segment in Iseg, a corresponding image patch is cut 
from the image and classified using M. Based on the dominant category label in each segment, 
the category label of the segment is determined and written into the result image Iresult. 

For the above three steps, the input consists of a remote sensing image and pixel-based 



training samples, and the final output consists of the classification results. This is consistent 
with the requirements of traditional shallow remote sensing classification methods. Moreover, 
only one classification model M is created in this process, and there is no need for any 
additional auxiliary correction process or the manual interpretation a ground truth image. This 
is consistent with the design target of a simple, direct and low-cost deep learning method for 
remote sensing image classification. 
4.2 Image preprocessing and initial patch-based sample set construction 

For SO-DNN, the input consists of a remote sensing image Iimage and a pixel-based 
training sample set Tpixel. Iimage contains Nband bands. The pixel-based training set is expressed 
as Tpixel ={t1, t2, …, tNpixel}, where Npixel is the number of training samples and Ncategory is the 
number of categories; for a sample ti ={locationi, labeli, vi}, locationi is the sample’s location 
in Iimage, the value of labeli ranges from 1 to NCategory depending on the category of the sample, 
and vi is a vector consisting of the band values of the pixel. 

First, SLIC is applied as an object-based segmentation algorithm to obtain the 
segmentation result image Iseg (Achanta et al., 2012). Iseg is a single-band image of the same 
size as Iimage; each pixel in Iseg has a segment ID value that indicates the segment to which the 
corresponding pixel in Iimage belongs. For either a pixel or a segment, we introduce a category 
representation vector d={d1, d2, …, dNcategory} to describe its category information. There are 
two possible cases for the vector d: 

(1) The category label is known: There exists at least one training sample t located in 
segment S, therefore, the representation of S or the pixels in S can be determined based on t. 
In this case, the di in d can be represented as shown in formula 1: 

 𝑑𝑑𝑖𝑖 = �1    𝑡𝑡. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑖𝑖
0   𝑡𝑡. 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ≠ 𝑖𝑖          (1) 

Formula 1 specifies a crisp representation. The values in d are either 0 or 1, where 0 means 
that the segment does not belong to the corresponding category and 1 means that it does 
belong to the corresponding category. 
 (2) The category label is unknown: There are no training samples located in S, and the 
category of S or the pixels in S is unknown. In this case, the di in d can be represented as 
shown in formula 2: 
 di=0             (2) 
In formula 2, all values in d are 0, which means that the corresponding category is unknown. 
 Based on formulas 1 and 2, we can represent the category information of each segment 
and create an initial patch-based sample set. The process is described in Algorithm 1. 
 
Algorithm 1: Initial patch-based sample set construction (IPSSC) 
Input: Iimage, Iseg, Tpixel, W 
Output: T1

patch 
Begin 

T1
patch= ø; 

 foreach pixel-based sample ti in Tpixel: 
  l1= the center point of the segment that contains ti; 

SubIy=create a patch with a size of W×W and a number of bands equal to Ncategory; 
SubIx=cut a W×W image patch from Iimage, centered at l1; 



  SubI2=cut a W×W image patch from Iseg, centered at l1; 
  foreach segment s in SubI2: 
   if there exists at least one sample located in s: 
    d=category vector represented as shown in formula 1; 
   else: 
    d= category vector represented as shown in formula 2; 
   ls= the locations of the pixels in s. 
   SubIy [ls]= d; 

T1
patch←[SubIx, SubIy]; 

 return T1
patch; 

End 
 
Based on each sample in Tpixel, the IPSSC algorithm creates a group of patch-based samples 
and constructs an initial patch-based sample set T1

patch. In each sample in T1
patch, SubIx is a 

remote sensing image patch with a size of W×W, and SubIy is the patch-based label 
corresponding to SubIx. Although SubIy contains less category information because only a 
small proportion of the segments have labels, T1

patch is consistent with the input/output form 
of a DSSNN and can be used for preliminary DSSNN training. 
4.3 Iterative sample set improvement and progressive DSSNN model training 
4.3.1 Structure of the deep network model for SO-DNN 

In the SO-DNN method, the structure of the DNN M is derived from the standard U-Net 
model (a typical DSSNN model). The structure of M is shown in Figure 4. 

 
Figure 4. Structure of the DNN model for SO-DNN. 

 
As shown in Figure 4, the model M has two components: an encoder and a decoder. The 
encoder component extracts spatial features from the input image patch in a hierarchical 
manner, while the decoder obtains the semantic segmentation result for the image patch. The 
layers in the encoder and decoder that correspond to the same scale group are directly 
connected to transfer spatial location information. The details of the layers in M are listed in 
Table 1. 

Table 1. Details of the layers in M 
Layer type Layer details 

Convolution+ReLU 
2D convolutional layer, kernel size=3×3 and padding="same", 
activation function is the rectified linear unit (ReLU) 



MaxPooling 
2D maximum pooling layer, pooling size=2×2; through this 
layer, the feature map size will be halved 

UpSampling 
2D upsampling layer, size=(2, 2); through this layer, the feature 
map size will be doubled 

Convolution+Softmax 
2D convolutional layer, kernel size=1×1, number of output 
features=Ncategory, activation function is softmax 

 
Based on pairs consisting of a MaxPooling layer (which reduces the feature map size) and an 
UpSampling layer (which increases the feature map size), all layers in M form groups with 
the following characteristics: 

(1) VGG16-structured encoder: By default, as shown in Figure 4, the encoder contains 
5 groups of layers with the same structure as that of the encoder in the VGG16 network model. 
This allows us to load the network with pretrained VGG16 weights, which can significantly 
improve the recognition ability of the encoder when there are few input image patches 
available. 
 (2) Relationship between group number and input image patch size: When the 
default 5 groups of layers are adopted in the encoder, since it contains 5 MaxPooling layers, 
the input patch size must be an integral multiple of 32 (32=25): 32, 64, 128 or 256. For an 
input size of less than 32, layer groups can be deleted from the encoder and decoder of M in 
pairs to achieve an input size of 8 (by deleting two groups) or 16 (by deleting one group). The 
model M is trained on Ti

patch, and it takes an image patch as input and outputs pixel-level 
semantic segmentation results. 
4.3.2 Progressive improvement process 
 In the initial stage of SO-DNN training, we have only T1

patch, generated by the IPSSC 
algorithm, as training data; we cannot expect the model M trained only on T1

patch to have very 
good classification ability. Accordingly, SO-DNN faces several problems, as shown in Figure 
5. 

 
Figure 5. Limited category information in T1

patch and sample optimization. 
 

As shown in Figure 5, a training sample ti consists of image patches SubIx and SubIy; based on 
the segment labels in Iseg, the pixels in SubIx and SubIy can be grouped into segments. In SubIy, 
the segments may have two types of labels: the category of a segment may be known (for 



segments that contain pixel-based samples), or the category may be unknown. Based on the 
IPSSC algorithm, there will be a segment Scenter located in the center of the patch, and the 
location and size of Scenter determine the position of SubIx and SubIy in the whole remote 
sensing image. As mentioned in section 2.2, the model M needs to focus on Scenter and attempt 
to classify it correctly. At this point, although Scenter already has a category label, ti is far from 
being a good-quality training sample; in particular, the relationships between Scenter and the 
surrounding segments exhibit obvious conflicts. For example, in Figure 5, there are two 
segments, SA and SB. Clearly, SA belongs to the tree category, and SB belongs to the building 
category. The contents of SB and Scenter are very similar, but their label vectors are different, 
and the contents of SA and SB are very different, but their label vectors are the same; this 
conflict will have a detrimental impact on the training of M. 

Although M cannot perform the classification task well when trained only on T1
patch, M 

can at least be used to obtain a representation of the categorical nature of each segment. For a 
segment S, a fuzzy representation of its categorical nature can be expressed as the mean of the 
output of M: 

( ) (softmax layer output of  for all pixels in )fuzzyvector S mean M S=     (3) 

Meanwhile, the difference between two fuzzy representations can be represented as follows: 

 1 2 1 2( , ) 2 ( , )diff v v l norm v v=             (4) 

If diff is large, this means that the two segments corresponding to v1 and v2 are unlikely to 
belong to the same category; otherwise, they may belong to the same category. We can 
introduce a category threshold value а to judge whether diff is large or small. Accordingly, we 
present Algorithm 2 to optimize the content of SubIy. 
 
Algorithm 2: Fuzzy representation and optimization algorithm (FROA) 
Input: SubIx, SubIy, M, а 
Output: Optimized SubIy 
Begin 
 SubIPredict=softmax layer output of M for SubIx; 
 SubIseg= SubIx's corresponding segment IDs; 
 Scenter-predict = the center segment in SubIPredict; 
 vcenter= fuzzyvector(Scenter-predict); 
 d1=category vector of Scenter represented as shown in formula 1; 
 d2=category vector represented as shown in formula 2 (all zero); 
 foreach segment S in SubIseg: 
  if S contains a pixel-based sample in Tpixel: 
   continue; 
  Spredict= segment in SubIPredict 
  vpredict= fuzzyvector (Spredict); 
  difference=diff(vpredict, vcenter); 
  if difference<а: 
   SubIy[locations of the pixels in S]=d1; 
  else: 



`   SubIy[locations of the pixels in S]=d2; 
 return SubIy; 

End 
 
For an image patch sample, FROA calculates the difference between each segment and Scenter 
and uses a category threshold value а to judge this difference; when the difference is less than 
a, the corresponding segment is marked with the same category information as Scenter, whereas 
otherwise, formula 2 is used to mark it. The value of FROA is that it alleviates obvious 
conflicts between Scenter and surrounding segments, thereby improving the inference ability of 
M for Scenter. 
 Because T1

patch is created directly from pixel-based samples, we also cannot expect M 
trained on T1

patch to have perfect representation capabilities, consequently, it is difficult to 
optimize the samples and M in just one step. Instead, we use an iterative approach, as shown 
in Figure 6. 

 
Figure 6. Progressive improvement process of the IISM algorithm. 
 
As shown in Figure 6, using FROA as a bridge, we can execute an iterative and progressive 
improvement process: FROA is used to improve the training samples, and the improved 
samples are then used to retrain M, yielding an improved M that further enhances FROA's 
ability. The corresponding process is described in Algorithm 3. 
 
Algorithm 3: Iterative sample set improvement and progressive DSSNN model training 
(IISM) 
Input: T1

patch, M, Niteration 
Output: Optimized model M 
Begin 
 M0=M; 
 for i in range(1, Niteration): 

Mi=use the training set Ti
patch to train model Mi-1; 

Ti+1
patch= ø; 

  foreach [SubIx, SubIy] in Ti
patch 

   SubIy= FROA(SubIx, SubIy, Mi, а); 
   Ti+1

patch←[SubIx, SubIy]; 
 M=MNiteration; 
End 



 
The IISM algorithm executes an iterative improvement process, using FROA to improve the 
category information in the patch-based sample set and further using the improved sample set 
to retrain M. In this way, the ability of M's to make decisions on the categories of objects is 
gradually enhanced. 
4.4 Segment classification 
 The IISM algorithm introduced in section 3.3 solves a key problem—how to obtain the 
model M. With M, based on the idea presented in section 3.1.1 and Figure 2(a), we can 
proceed to classify the whole remote sensing image. For a segment Sclassify in Iseg, based on the 
locations of the pixels in Sclassify, we can obtain a mask patch Pmask and apply Algorithm 4 to 
classify the remote sensing image. 
 
Algorithm 4: Segment classification algorithm (SCA) 
Input: Iimage, Iseg, M, W 
Output: Result image Iresult 
Begin 
 Iresult= empty classification result image; 
 foreach segment Sclassify in Iseg 

  Pclassify= cut a patch from Iimage with the location and width W of Sclassify; 
  Pmask = cut a patch from Iseg with the location and width W of Sclassify; 
  Presult= predict Pclassify with model M; 
  ls1= locations of the pixels in Pmask for which the segment ID is equal to the segment 
ID of Sclassify; 
  focusedpixels= Presult[ls1]; 
  l= dominant category label in focusedpixels; 
  ls2= locations of the pixels in Iseg for which the segment ID is equal to the segment 
ID of Sclassify; 
  Iresult[ls2]=l; 
 return Iresult; 
End 
 
With SCA, on the one hand, any heterogeneous content that may exist is effectively insulated 
during the classification process, and the category labels of these contents (regardless of their 
correctness) will not influence the final decision; on the other hand, the requirements for M 
are reduced. The model M does not need to produce perfect pixel-wise results; it needs only to 
correctly classify the majority of the pixels inside Sclassify, which is a training goal that is easier 
to achieve. In this way, the category labels are written into Iresult, and the whole classification 
process is completed. 

5. Experiments and Results 
5.1 Implementation of SO-DNN and methods for comparison 
 We adopted Python 3.7 to implement the SO-DNN method. For the deep learning; we 
adopted the Keras package with the TensorFlow backend; for image manipulation and access, 
we adopted the scikit-image package. All experiments were performed on a computer with an 



Intel Core i7-10700F CPU, a GeForce RTX 1070 8 GB GPU and 32 GB of memory. 
We considered 7 representative methods for comparison in the experiments: 
(1) Object-based MLP (O-MLP): An MLP is a typical shallow classification model that 

takes the average band value of all pixels in a segment as input and outputs the category label 
of the segment. The MLP model contains three layers: an input layer, a middle layer and an 
output layer. The input layer contains 128 neurons and uses the ReLU activation function, the 
middle layer consists of 32 neurons and uses the ReLU activation function, and the output 
layer has a number of neurons equal to the number of classification categories and adopts the 
softmax activation function. 

(2) Object-based + CNN (O+CNN): A traditionally structured CNN is used to classify 
the segments' corresponding image patches and obtain their category labels. The CNN model 
consists of three components: a feature extraction component, a Flatten component and an 
MLP component. The feature extraction component contains multiple groups of layers, each 
with the following structure: 2 Convolution layers (kernel size=3×3, padding="same" and 
activation function="ReLU") and 1 MaxPooling layer (pooling size=2×2). The number of 
groups= floor(log2(size of input image patch/4); the maximum number of groups is 5, and the 
minimum number is 1. The Flatten component uses a Flatten layer to convert feature maps 
into vectors. The MLP component makes decisions based on the Flatten output, and its 
structure is the same as that of the MLP described in (1). 

(3) Object-based and heterogeneous segment filter CNN (OHSF-CNN): OHSF-CNN is a 
typical method in which an additional model is used to preprocess inconsistent contents in 
image patches (Pan et al., 2019). OHSF-CNN consists of two models: a filter and a CNN. The 
filter uses a fuzzy neighborhood method with the neighbor threshold parameter equal to 
(number of samples)/10; for the CNN of OHSF-CNN, the same model described in (2) is 
adopted. 

(4) Integration of two CNN models (2-CNN): This model uses two CNNs with different 
input sizes and can effectively solve the problem that a CNN tends to misclassify objects with 
certain specific shapes (Zhang et al., 2018b). 2-CNN consists of two models: a 
large-input-window CNN (LIW-CNN) and a small-input-window CNN (SIW-CNN). The 
LIW-CNN's input segments' corresponding image patch, with the input scale being equal to 
the size of an image patch; the LIW-CNN adopts the same structure described in (2). The 
SIW-CNN's input consists of smaller patches surrounding an ordinary image patch; the 
SIW-CNN's input scale can be selected in the range from 4 to (LIW-CNN's scale)/2, and the 
corresponding result with the best accuracy is selected as the final output result of the model. 
The SIW-CNN also adopts the same structure described in (2). 

(5) Joint deep learning model (JDL): JDL is a typical method in which an additional 
model and iterative process are adopted to correct the final output (Zhang et al.., 2019). JDL 
uses an MLP and a CNN as classification models; the structure of the MLP is the same as that 
of the MLP described in (1), and for the CNN, the same model described in (2) is adopted. 
JDL simulates the iterative Markov updating process by alternately taking the MLP and CNN 
results as the input to the model, and the number of iterations is set to 10. 

(6) Object-based + U-Net (U-Net): A U-Net is adopted as the classification model 
(described in section 4.3.1). Only the initial patch-based sample set T1

patch generated by the 
IPSSC algorithm is used to train the model, and SCA is used as the classification algorithm. 



(7) SO-DNN: SO-DNN is the method proposed in this paper, with the category threshold 
value set to а=0.5 and the number of iterations of the IISM algorithm set to Niteration=3. 

For methods (2) to (7) above, models with scales of 8, 16, 32, 64, 96 and 128 are adopted, 
and the scale that offers the highest accuracy is selected to obtain the final output. 
5.2 Segmentation and experimental data 

We selected two images from the semantic labeling contest dataset of the International 
Society for Photogrammetry and Remote Sensing (ISPRS) WG II/4(Rottensteiner et al., 2012). 
The experimental data can be seen in Figure 7. 

 

Figure 7. Experimental data. (a) test image and corresponding ground truth image from Vaihingen. 
(b) test image and corresponding ground truth image from Potsdam 
 
As seen in Figure 7(a) and (b), test image 1 is from Vaihingen, and test image 2 is from Potsdam. 
The ground truth images contain 6 categories: low vegetation (LV), trees (T), buildings (B), 
impervious surfaces (IS), cars (C), and clutter/background (CB) (test image 1 does not contain 
clutter/background). We performed experiments with the following settings: 
 (1) Parameters of SLIC. 

For test image 1, the segment number parameter of the SLIC algorithm was set to 20,000, 
and the compactness parameter was specified as 10; for test image 2, the number of segments 
was set to 25,000, and the compactness parameter was again specified as 10. 
 (2) Evaluation based on the ground truth image.  

To evaluate the classification methods, we used the ground truth image as the test data, 
and all pixels in the result image that are not consistent with the corresponding pixels in the 
ground truth image are counted as incorrect pixels. The ground truth image can provide a 
pixel-level perspective when evaluating the accuracy of classification methods. 
 (3) Training sample set. 

For each experimental image, we manually selected 200 pixels from each category to 
form the pixel-based sample set Tpixel. Therefore, the sample set for test image 1 consisted of 
5×200=1,000 samples, and the sample set for test image 2 consisted of 6×200=1,200 samples. 
 (4) Test set and accuracy assessment. 

To focus on the comparison of segment classification capability and further place strict 
criteria on the evaluation of the pixel-wise accuracy, we used the whole ground truth image as 
the test data for each test image. The overall accuracy (OA) of the results was calculated as 
follows: 
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where Nimage is the total number of pixels in the ground truth image and Ncorrect is the number 
of correctly classified pixels. For per-category evaluation, the accuracy for a particular 
category was calculated as follows: 

-
i

-

correct i

image i

NAccuracy
N

=             (6) 

where Nimage-i is the number of pixels of category i in the ground truth image and Ncorrect-i is the 
number of correctly classified pixels of category i. 
5.3 Iterative process and output of SO-DNN 
5.3.1 Sample generation results in each iteration 
 To obtain the patch-based samples to train the DSSNN, SO-DNN adopts an iterative 
sample generation and training mechanism (the IPSSC and IISM algorithms). Examples of 
the generated samples for the two test images are shown in Figure 8. 
 



 

Figure 8. Details of the sample generation process. (a) generation process for test image 1. (b) 
generation process for test image 2. 

 
As seen in Figure 8(a) and (b), SO-DNN took 3 iterations to generate the final patch-based 
training samples for both test images. All generated patches contain two types of content: (1) 
segments with known category labels, corresponding to six categories, which are used to 
drive the DSSNN to recognize these categories in image patches, and (2) segments with 
unknown category labels, marked in dark gray in the image patches, which are mainly used to 
assist the DSSNN in distinguishing between segments to be recognized and heterogeneous 
contents. 

Throughout the 3 iterations, the category information for the contents of the generated 
patches gradually improved. For each image patch, there is a center segment that corresponds 



to a specific category. In the 1st iteration, the category labels were derived only from the input 
pixel-based samples; we can see that for each image patch, only the center segment and 
segments containing pixel samples had category labels, and the other parts of the image patch 
were all assigned unknown labels. In the 2nd iteration, more areas similar to or consistent with 
the content of the center segment were marked as the same category; these areas were similar 
in size to the actual objects, but there were certain deviations in the boundary details. In the 
3rd iteration, the boundary of the area consistent with the center segment was further refined, 
and its content approached that of the real ground truth image patch. 
5.3.2 Classification results in each iteration 

After each iteration i of sample generation in the IISM algorithm, we trained a model Mi 
and used SCA to classify the remote sensing image. The results are shown in Figure 9. 

 

Figure 9. Classification results of SO-DNN in 3 iterations. 
 
Figure 9 shows the classification results from all 3 iterations. For the test images, it can be 
seen that in the 1st iteration, although most objects were correctly classified, there was still 
obvious error blocks at the object boundaries, indicating that the classification ability of the 
DSSNN was not sufficient in this iteration. In the 2nd iteration, the classification results were 
significantly improved, especially at the object boundaries; in the 3rd iteration, the boundaries 
of the objects were further refined, some smaller objects could also be recognized, and better 
classification results were obtained. Three iterations of SO-DNN are executed by default, but 
more iteration can also be performed. The classification accuracy after 5 iterations is shown in 
Table 2. 

Table 2. Classification accuracy after 5 iterations  

Test image 
OA in each of 5 iterations (%) 

1 2 3 4 5 



 
 
 
 
 
It can be seen from Table 2 that initially, as the iterations progressed, the performance on both 
test images gradually improved. After the third iteration, the SO-DNN method had achieved 
classification accuracies of OA=88.14% and 87.03% for test images 1 and 2 respectively. As 
the number of iterations continued to increase, however, the classification accuracy on the two 
images did not increase accordingly; for test image 1, the accuracy in iterations 4 to 5 
remained unchanged, indicating that the classification model M and the samples were in a 
stable state, whereas for test image 2, the accuracy showed a slight decrease in iteration 4 and 
then remained unchanged. After 5 iterations, even if 6 or more iterations are performed, since 
the SO-DNN model is in a relatively stable state, the classification accuracy will always 
remain unchanged. These findings show that although the gradual improvement of the 
generated samples through the iterative process of SO-DNN improves the classification 
ability of the DSSNN, this improvement is concentrated in the first few iterations, and many 
iterations are not necessary. 
5.3.3 Analysis of the iterative process of SO-DNN 
 As discussed in section 3, the category information (generated by the IPSSC algorithm) 
contained in the pixel-based samples is far less than that contained in the ground truth image, 
and using only this information to train the DSSNN will not be sufficient to endow the model 
M with the necessary classification capabilities. 

As seen in Figure 9, the classification results obtained by our method in iteration 1 with 
model M1 exhibit obvious errors at the boundaries, which shows that the model trained at this 
time does not perform sufficiently well in correctly recognizing segments. Nevertheless, we 
can observe that the model M1 has some basic representation capabilities and will assign 
similar category labels to similar segments (regardless of whether these category labels are 
correct); this allows us to use M1 in FROA to improve the contents of the training image 
patches and generate improved samples in iteration 2. 

In iteration 2, we can see that in the generated training patches, segments consistent with 
the center segment are recognized by M and marked with consistent category labels, 
supporting higher recognition ability for heterogeneous content. The value of these samples 
can be seen from Figure 9: the boundaries of objects are clearly refined, and this refinement 
proves that the recognition and discrimination capabilities of M2 are improved. The 
improvement of M2 in iteration 2 is further manifested in the samples generated in iteration 3; 
the label information of these samples is closer to that of the ground-truth patches, and this 
improvement in the generated samples further improves the capabilities of the final model M3, 
allowing the final classification results to reach a high accuracy. 

In iterations 4 to 5, however, the accuracy does not continue to improve. This is mainly 
due to two reasons: 1) In our experiment, the model M is a DSSNN model that contains more 
than 23 million trainable weight parameters. This massive number of weights can easily 
"remember" (or be fit to) all of the details of the samples when the number of samples is small, 
consequently, the output of M becomes more prone to be simply a repeat of the output of the 

1 79.41 84.26 88.14 88.14 88.14 
2 75.59 83.69 87.03 86.81 86.81 



previous iteration, causing the output of FROA to remain almost unchanged; As a result, the 
SO-DNN output converges and remains stable in more iterations. 2) The higher the 
classification accuracy is, the more difficult it is to improve. For these two reasons, it is not 
very valuable to perform too many iterations of the SO-DNN method, which is why we 
perform only three iterations by default. 

The results in Figures 8 and 9 demonstrate that the iterative process of SO-DNN can 
gradually improve the information contained in the generated patch-based samples and the 
performance of the DSSNN model M. Although only a pixel-based sample set is initially 
available, through continuous iteration, better segment classification results can ultimately be 
obtained. 
5.4 Comparison of methods 
5.4.1 Comparison of classification results 

For all of the compared deep learning methods, input scales of 8, 16, 32, 64, 96 and 128 
were tested, and we selected the results with the highest accuracy as the final classification 
results. For test image 1, the selected scales for the various methods were as follows: 16×16 
for O+CNN, 32×32 for OHSF-CNN and 2-CNN, 64×64 for JDL, and 96×96 for U-Net and 
SO-DNN. For test image 2, the selected scales were as follows: 64×64 for O+CNN, 32×32 for 
OHSF-CNN and 2-CNN, 64×64 for JDL, and 96×96 for U-Net and SO-DNN. The 
classification results are shown in Figure 10. 



 
Figure 10. Comparison of the classification results of all the methods. (a) classification 
results for test image 1. (b) classification results for test image 2. 
 
It can be seen from Figure 10 that for test image 1, the O-MLP result images contain obvious 
mistakes, with ground objects exhibiting obvious fragmentation. Due to the diversity of the 



colors of cars and the lack of morphological information, many impervious surfaces and 
buildings are misclassified as cars. For O+CNN, because a relatively small input scale was 
selected for test image 1, the CNN does not effectively solve the problem of fragmentation. 
For test image 2, 64×64 was selected as the input scale for O+CNN, and consequently, the 
continuity of the results is better than that of the O-MLP; however, the expansion and 
deformation of some objects seriously affect its accuracy. By comparison, we can see from 
the result images for OHSF-CNN, 2-CNN, JDL, U-Net and SO-DNN, that a larger input scale 
can lead to better continuity; in particular, the SO-DNN results are closest to the ground truth. 

For each test image, we also selected 3 representative locations to present more detailed 
comparisons of all methods, as shown in Figure 11. 

 
Figure 11. Detailed comparisons of all methods. (a) 3 representative locations in test image 1. (b) 
3 representative locations in test image 2. 

 
As seen from Figure 11(a), at location 1, although the color of the buildings is different from 
that of the surrounding objects, the building boundaries in the O+CNN results are not even as 
good as those in the O-MLP results; in the results of OHSF-CNN, 2-CNN, and JDL, shadow 
and roads are confused with buildings, which shows that these methods still have 
shortcomings in solving the problem of heterogeneity. At location 2, the color of the buildings 
is very similar to that of the low vegetation. To recognize these buildings, their shapes must 
be considered on a larger scale; consequently, we can observe that JDL, U-Net and SO-DNN, 
which can use larger-scale inputs, obtain better results. At location 3, a large number of cars 
of different colors affect the recognition of roads and buildings. At location, the classification 



results of O-MLP are poor, O+CNN, OHSF-CNN, and 2-CNN show an insufficient ability to 
handle heterogeneity, leading to fragmentation of the results, whereas JDL, U-Net and 
SO-DNN can achieve a better balance between boundary classification and heterogeneity 
segmentation. From Figure 11(b), it can be seen that at location 1, U-Net and SO-DNN 
perform better than the other methods in recognizing trees and low vegetation. At locations 2 
and 3, since the buildings are similar in color to some of the cars, the O-MLP recognition 
results show close to complete failure, while the deep learning methods can correctly 
recognize the buildings and SO-DNN achieves the best recognition results. For all of the 
above locations in Figure 11(a) and (b), SO-DNN performs more stably and correctly than the 
other six methods. 
5.4.2 Analysis of classification results 

When classifying high-resolution remote sensing images, it is clearly infeasible to 
perform classification based only on the segments' color (band) values; such a shallow 
classification model—O-MLP—cannot obtain good classification results. Therefore, it is 
necessary to introduce deep learning models to extract higher-level features from the 
segments to determine their category labels. 

The typical dilemma when using a traditional CNN model to classify segments is as 
follows: on the one hand, it is necessary to adopt a larger input scale to obtain morphological 
and structural information about ground objects; on the other hand, adopting a larger scale 
directly increases the probability of heterogeneity, which will introduce new detrimental 
effects on the CNN model's inference results. Because O+CNN has no mechanism for 
addressing heterogeneity, its scale selection exhibits large fluctuations, and the results are not 
good; in some cases, it performs even worse than O-MLP. Both OHSF-CNN and 2-CNN rely 
on a shallow model or small-scale CNN for heterogeneity processing. Although they perform 
better than O-MLP and O+CNN, it can be seen from the results that their ability to handle 
heterogeneity is not strong. They reach their maximum classification accuracy at an input 
scale of 32×32, which directly leads to unsatisfactory performance at some locations. The 
iterative heterogeneity processing mechanism introduced in JDL seeks to gradually solve the 
problems introduced by heterogeneity; this iterative approach is superior to single-shot 
processing, and consequently, this method can yield better results than OHSF-CNN or 
2-CNN. 

In the U-Net model introduced in this paper, each pixel of an input image patch can be 
assigned its own category label, which naturally endows the model with the ability to separate 
heterogeneous content; therefore, the U-Net method does not need to rely on additional 
models for heterogeneity processing and can consequently handle much larger scales than the 
other methods. Although the U-Net does not include FROA or the IISM algorithm and uses 
only the most primitive pixel sample information, the quality of its results is close to that of 
JDL, thus providing evidence that the approach proposed in section 3.1 is feasible in practice. 

On the basis of U-Net, SO-DNN further includes FROA and the IISM algorithm to 
gradually refine the information contained in the training samples such that the segmentation 
accuracy of the DSSNN model is also gradually enhanced; this allows SO-DNN to achieve a 
better balance between acquiring information at a larger scale and coping with heterogeneity, 
and consequently, it achieves the best results among the seven methods. 
5.4.3 Comparison of classification accuracy and input scale 



The classification accuracy of the seven methods is shown in Table 3. 
Table 3. Classification accuracy comparison of the seven methods 

Test 
image Method 

Best 
scale 

OA 
(%) 

Accuracy on each category (%) 
LV T B IS C CB 

1 

O-MLP / 65.47  51.68  81.92  63.07  58.53  70.23  / 
O+CNN 16 71.46  60.34  86.36  72.56  62.67  74.89  / 

OHSF-CNN 32 80.20  73.38  83.32  83.07  79.05  82.90  / 
2-CNN 32 74.72  73.51  84.62  72.16  67.74  74.81  / 

JDL 64 82.20  77.97  84.22  86.39  79.99  85.60  / 
U-Net 96 79.41  77.62  83.19  87.65  71.87  87.56  / 

SO-DNN 96 88.14  85.69  90.66  91.65  85.16  86.50  / 

2 

O-MLP / 51.14  40.10  69.06  34.91  71.27  36.32  63.87  
O+CNN 64 58.67  53.54  62.58  79.06  42.99  93.78  71.21  

OHSF-CNN 32 79.77  74.11  81.53  88.94  80.48  93.89  84.15  
2-CNN 32 75.28  70.84  76.13  86.22  71.00  94.70  81.58  

JDL 64 80.16  73.58  79.61  88.84  83.34  95.75  85.38  
U-Net 96 75.59  68.04  88.05  88.77  70.31  94.10  84.25  

SO-DNN 96 87.03  86.26  94.81  90.52  85.07  95.47  83.72  
 
It can be seen from Table 3 that because O-MLP cannot adapt to high-resolution image data, 
its classification accuracy is very low; for test images 1 and 2, its accuracy is only 65.47% 
and 51.14%, respectively. For O+CNN, when 16×16 is selected as the input scale for test 
image 1, the accuracy is only 71.46%; when 64×64 is selected as the input scale for test image 
2, the accuracy is only 58.67%. OHSF-CNN and 2-CNN are more accurate than O+CNN due 
to their mechanisms for processing heterogeneous content. JDL is superior in scale selection 
and accuracy. U-Net can tolerate an even larger scale while achieving classification accuracy 
close to that of JDL. Finally, SO-DNN achieves the highest classification accuracy: 88.14% 
on test image 1 and 87.03% on test image 2. 

The input scale is a key factor in determining whether a deep learning method can 
recognize objects. The accuracy of each method for input scales of 8, 16, 32, 64, 96 and 128 
is shown in Table 4. 

Table 4. Accuracy of each method for input scales of 8, 16, 32, 64, 96 and 128 
Test 

image Method 
Accuracy at each scale (%) 

8 16 32 64 96 128 

1 

O+CNN 65.18  71.46  68.38  70.09  67.40  62.63  
OHSF-CNN 66.23  73.43  80.20  79.08  72.93  72.09  
2-CNN 65.27  72.12  74.72  72.65  67.38  66.32  
JDL 67.28  73.54  79.42  82.20  80.36  75.21  
U-Net 65.39  72.97  77.50  77.52  79.41  78.93  
SO-DNN 65.70  73.81  82.58  87.79  88.14  86.79  

2 

O+CNN 51.07  52.22  57.00  58.67  56.82  50.49  
OHSF-CNN 51.49  77.19  79.77  74.09  69.19  64.23  
2-CNN 51.81  73.25  75.28  72.08  74.54  62.01  
JDL 57.49  77.74  79.66  80.16  79.89  77.12  
U-Net 52.09  72.39  75.09  74.82  75.59  75.21  
SO-DNN 52.51  75.13  82.07  86.49  87.03  84.44  

 
Corresponding to Table 4, a comparison between accuracy and scale is shown for each 
method in Figure 12. 



 

Figure 12. Comparison between accuracy and scale for each method. (a) comparison on test 
image 1. (b) comparison on test image 2. 
 
It can be seen from Figure 12 that when the input scale is 8×8, none of the methods can take 
sufficient advantage of the capabilities of deep learning, so their accuracy is close to that of 
O-MLP. Because the size of the input segments is larger than the input convolution scale, the 
innovative processes in SO-DNN are ineffective, so U-Net and SO-DNN achieve the same 
accuracy at an input scale of 8×8. As the scale increases, the increase in accuracy for O+CNN 
is unstable, with the accuracy at 128×128 being even lower than that at 8×8. Because of the 
heterogeneity processing methods adopted in OHSF-CNN and 2-CNN, their accuracy shows 
an initial increase at small input scales; their best accuracy is reached at 32×32, and the 
accuracy subsequently decreases with any further increase in the input scale. JDL reaches its 
best accuracy at an input scale 64×64, making it superior to OHSF-CNN and 2-CNN. U-Net 
and SO-DNN reach their highest classification accuracy at 96×96 and show generally similar 
trends; at input scales of 64, 96 and 128, these two methods show no significant changes in 
classification accuracy, indicating that they are more adaptable to different scales. 
 
5.4.4 Analysis of classification accuracy and input scale 
 In the process of remote sensing image classification using a traditional CNN, the use of 
a larger input scale can allow the model to extract higher-level features from a wider range of 
shapes, textures and neighborhoods; however, it will also lead to the introduction of higher 
heterogeneity, which will hinder training and classification. 
 For O+CNN, because it does not address heterogeneity, its accuracy fluctuates greatly. 
On the test images, there is no consistent pattern between scale and accuracy; at 128×128, due 
to the introduction of too many surrounding objects, the accuracy is lower than it is at 8×8. 
 Because of the heterogeneity processing methods adopted in OHSF-CNN and 2-CNN, 
their accuracy initially increases with an increasing input scale. However, their heterogeneity 
processing ability relies on another classifier, which introduces the additional difficulty of 
requiring collaboration between different models. When the input scale is larger than 32×32, 
the accuracy of both methods declines rapidly, indicating that when the heterogeneity exceeds 
a certain range, such a mechanism that relies on other classification models will fail; 
consequently, their improvement in accuracy is very limited. 
 JDL similarly uses an MLP for heterogeneity processing and additionally introduces an 
iterative mechanism to improve the heterogeneity processing capabilities; therefore, the scale 
at which JDL reaches its maximum accuracy is larger than that of OHSF-CNN and 2-CNN, 



and its classification accuracy is also significantly better than that of O+CNN, OHSF-CNN 
and 2-CNN. However, as the scale increases to 128×128, its accuracy inevitably decreases 
significantly. 

U-Net and SO-DNN use a different mechanism: they use the "semantic segmentation" 
network architecture of U-Net to naturally separate pixels into different categories, and 
consequently they do not need additional models to handle heterogeneity. This strategy 
simplifies the entire training and classification process, and the highest accuracy of these 
models is not reached until an input scale of 96×96; furthermore, at large scales (64, 96 and 
128), the accuracy of these two methods does not strongly vary, indicating that this strategy is 
more suitable for large-scale input. U-Net still achieves high accuracy even when the 
segmentation information in the training data is insufficient, indicating that adopting DSSNS 
for object-based classification is indeed feasible. Furthermore, FROA and the IISM algorithm 
are additionally introduced in SO-DNN to optimize the segmentation information contained 
in the training data. This allows SO-DNN to achieve higher and more stable classification 
accuracy. 
 
5.4.5 Comparison of classification accuracy for noisy or incomplete samples 
 To test the adaptability of the methods to noisy or incomplete samples, we further added 
incorrect category labels into the training sample set. From the original training sample set, 
we selected 5%, 10% and 15% of the samples in each category and changed their category 
labels to other random labels. The original overall classification accuracy (OA) and the 
decrease in accuracy (DA) compared with the original training sample set are listed in Table 
5. 

Table 5. Comparison of OA and DA for noisy or incomplete samples 

 
Table 5 shows that the accuracy of all methods decreases with the addition of noise. At the 5% 
noise level, although SO-DNN can still achieve the highest classification accuracy, its 
decrease in accuracy is the largest. The decreases in accuracy of O+CNN, OHSF-CNN and 
2-CNN are all smaller than those of SO-DNN. Among the algorithms, O-MLP and O+CNN 
show the smallest decrease in accuracy. At 15% noise level, for test image 1, the accuracy of 
SO-DNN is lower than that of JDL, indicating that the optimization process of FROA has an 

Test 
image Method Noise=5%  Noise=10% Noise=15% 

OA(%) DC(%) OA(%) DC(%) OA(%) DC(%) 

1 

O-MLP 65.73  -0.26  64.11  1.36  61.02  4.45  
O+CNN 71.02  0.44  69.41  2.05  66.96  4.50  
OHSF-CNN 79.37  0.83  77.09  3.11  73.85  6.35  
2-CNN 74.21  0.51  71.60  3.12  67.84  6.88  
JDL 81.48  0.72  80.21  1.99  77.63  4.57  
U-Net 78.88  0.53  76.93  2.48  74.29  5.12  
SO-DNN 86.38  1.76  83.34  4.80  77.54  10.60  

2 

O-MLP 51.01  0.13  49.39  1.75  46.92  4.22  
O+CNN 58.25  0.42  56.66  2.01  51.90  6.77  
OHSF-CNN 79.11  0.66  76.24  3.53  73.27  6.50  
2-CNN 74.53  0.75  71.82  3.46  67.67  7.61  
JDL 79.22  0.94  76.92  3.24  73.14  7.02  
U-Net 74.74  0.85  71.93  3.66  68.23  7.36  
SO-DNN 85.05  1.98  81.64  5.39  75.45  11.58  



adverse effect in this case. 
 With the addition of noise, the classification accuracy of all models will inevitably 
decrease. O-MLP, O+CNN and U-Net each use a single classification model, and these single 
classification models themselves have the ability to tolerate errors from the perspective of the 
entire sample set; since O-MLP's classification accuracy itself is very low (a large number of 
categories are confused), at the 5% noise level, the classification accuracy even appears to 
increase (the samples causing confusion have changed in proportion). OHSF-CNN, 2-CNN 
and JDL all use multiple models, and the integration of more model decisions helps correct 
the errors in a single model. 

Unfortunately, SO-DNN achieves poorer results in this respect. The reason is that the 
intention of FROA in SO-DNN is to expand the available information based on the known 
samples in an image patch. This makes FROA better able to adapt to the local characteristics 
of objects; however, when an incorrectly labeled sample is input into FROA, the starting point 
of the method is incorrect, and this error will be further propagated in subsequent iterations, 
introducing more errors into the subsequent U-Net training stage. In future research, we will 
focus on mitigating this problem by finding a better balance between adaptation to local and 
global characteristics to improve the noise adaptability of SO-DNN. 
 
5.5 Impact of the segment number and compactness parameters of SLIC on 
SO-DNN 

The segment number and compactness parameters of SLIC can greatly influence the 
segmentation results. To test the impact of these two parameters on SO-DNN, we set the 
segment number parameter to values of {5000, 10000, 15000, 20000, 25000, 30000, 35000}, 
and the compactness parameter to values of {1, 5, 10, 50, 100}. The influence of these 
parameters on the segmentation results is shown in Figure 13. 

 
Figure 13. Influence of different SLIC parameter values on the segmentation results. 
 
As shown in Figure 13, we first set compactness=10 and varied the number of segments, 
leading to different degrees of separation. With segment number=5000, some cross-boundary 



segments appeared, and part of the image was under-segmented; with segment 
number=35000, the segments were markedly smaller, and the image was over-segmented. 
Then, we set the number of segments to 20000 and varied the compactness. With 
compactness=1, the shape of each segment had a higher degree of freedom, with some 
segments being strip-shaped or concave; with compactness=100, the shape of each segment 
was close to square and this shape was more likely to be inconsistent with the corresponding 
object boundary. 
 For test images 1 and 2, the relationship between accuracy of the SO-DNN results and 
the SLIC parameter values is shown in Table 6. 

Table 6. Relationship between SO-DNN accuracy and SLIC parameters 

Test 
image 

Segment 
number 

parameter 

OA for different compactness parameters (%) 

1 5 10 50 100 

1 

5,000 69.85 82.53 80.37 76.67 75.37 
10,000 73.25 84.11 83.45 79.45 79.05 
15,000 71.33 85.40 86.25 81.72 80.21 
20,000 72.13 87.42 88.14 85.33 82.51 
25,000 70.23 87.67 87.31 86.26 83.47 
30,000 71.56 85.23 86.62 86.15 83.34 
35,000 68.24 81.05 83.32 82.01 81.30 

2 

5,000 66.33 80.71 80.94 74.94 73.23 
10,000 70.78 82.79 82.43 78.56 77.67 
15,000 71.23 83.35 84.33 81.89 81.32 
20,000 72.67 86.48 86.10 84.32 83.59 
25,000 73.22 86.32 87.03 85.75 85.01 
30,000 72.34 86.05 86.56 85.38 84.75 
35,000 70.45 85.21 86.31 84.22 84.13 

 
Table 6 shows that both the number of segments and the compactness exert an influence on 
the SO-DNN results: 
 (1) Segment number parameter 

According to the overall trend observed in Table 6, the classification accuracy is the 
lowest when the segment number parameter is set to 5000. As number of segments increases, 
the classification accuracy initially improves; however, an excessively large segment number 
parameter will reduce the classification accuracy. For test image 1, the accuracy of SO-DNN 
begins to decrease when the segment number parameter is greater than 20000, and for test 
image 2, this decrease begins to be seen when the segment number parameter is greater than 
25000. 

(2) Compactness parameter 
The lowest accuracies for test images 1 and 2 appear in the column corresponding to 

compactness=1. With an increase in the compactness parameter, the accuracy initially shows 
significant improvement; when the compactness parameter is set to 5 or 10, the corresponding 
accuracy values are higher than in other columns, and the classification accuracy then 
decreases when the compactness parameter is further increased to 100. 

A smaller segment number parameter tends to lead to a larger segment size, which 
significantly reduces the processing complexity of FROA but also causes under-segmentation 
in some areas, leading to the emergence of a large number of cross-boundary segments. 
Regardless of which category label SO-DNN assigns to such cross-boundary segments, some 



of the pixels in them will inevitably be classified incorrectly. In contrast, a larger segment 
number parameter tends to result in over-segmentation, which reduces the number of 
cross-boundary segments and thus can significantly reduce the errors associated with the 
segments themselves; however, a segment size that is too small will also cause the basic 
processing units in SO-DNN to become too fragmented, making FROA difficult to control 
and compromising its inference performance. 

The compactness parameter determines the shapes of the segments. A lower compactness 
will make the segments fit more closely to the object boundaries, thereby making the 
boundaries more accurate. However, a low compactness will also make the segments more 
prone to be strip-shaped or concave, in which case the center point of a segment may not lie 
inside the segment this will lead to an irregular distribution of the labeled pixels in T1

patch, 
which will not be concentrated in the center of the image patch, directly affecting the results 
of the 1st iteration of SO-DNN. Consequently, the accuracy achieved with compactness=1 is 
lower than with other values of this parameter. On the other hand, a higher compactness will 
make the shapes of the segments more consistent and convex, making it easier for SO-DNN 
to concentrate the known samples in the center of the image patch during the training process; 
however, excessively compact segment shapes will destroy the boundaries of the ground 
objects and directly reduce the classification quality. 

From the data in Table 6, it can be seen that SO-DNN is most successful with a 
compactness parameter of 5 or 10; in this situation, the locations of the labeled pixels tend to 
be concentrated in the center of each image patch, consistent with the expectations of SCA 
and the concept introduced in Figure 2(a). Regarding the segment number parameter, 
SO-DNN needs moderate over-segmentation to prevent an excessive negative influence of 
cross-boundary segments on the classification accuracy. 

 
5.6 Experiments on larger datasets 

To more extensively evaluate the classification ability of the methods, we selected 20 test 
images from the Vaihingen and Potsdam of the ISPRS dataset. Detailed information on these 
images is listed in Table 7. 

Table 7. Twenty test images from the Vaihingen and Potsdam datasets 
Dataset Image Filename Size 

Vaihingen 

1 top_mosaic_09cm_area1.tif 1919×2569 
2 top_mosaic_09cm_area2.tif 2428×2767 
3 top_mosaic_09cm_area3.tif 2006×3007 
4 top_mosaic_09cm_area4.tif 1887×2557 
5 top_mosaic_09cm_area5.tif 1887×2557 
6 top_mosaic_09cm_area6.tif 1887×2557 
7 top_mosaic_09cm_area7.tif 1887×2557 
8 top_mosaic_09cm_area8.tif 1887×2557 
9 top_mosaic_09cm_area10.tif 1887×2557 

10 top_mosaic_09cm_area12.tif 1922×2575 

Potsdam 

1 top_potsdam_2_11_label.tif 6000×6000 
2 top_potsdam_2_12_label.tif 6000×6000 
3 top_potsdam_3_10_label.tif 6000×6000 
4 top_potsdam_3_11_label.tif 6000×6000 
5 top_potsdam_3_12_label.tif 6000×6000 
6 top_potsdam_4_10_label.tif 6000×6000 



7 top_potsdam_4_11_label.tif 6000×6000 
8 top_potsdam_4_12_label.tif 6000×6000 
9 top_potsdam_5_10_label.tif 6000×6000 

10 top_potsdam_5_11_label.tif 6000×6000 
 
The file names listed in Table 7 are not consecutive; the main reasons are that some images in 
the original datasets do not have corresponding ground truth images and the two images used 
in the previous section are excluded. Notably, although most Vaihingen images do not contain 
clutter/background, "top_mosaic_09cm_area2.tif" does have a small area of 
clutter/background; therefore, to maintain consistency in the comparisons on images from 
Vaihingen, this area of this image was excluded in evaluation. For SLIC, the compactness 
parameter was set to 10; to achieve moderate oversegmentation, the segment number 
parameter was set to 20,000 for the Vaihingen images and to 25,000 for the Potsdam images. 
For each category in each image, 200 pixels were manually selected as training samples. The 
classification accuracy of all methods is shown in Table 8. 

Table 8. Classification accuracy of all methods on the 20 test images. 

Dataset Image 
OA (%) 

O-MLP O+CNN OHSF- 
CNN 2-CNN JDL U-Net SO-DNN 

Vaihingen 

1 67.75 72.65 80.03 74.01 80.25 78.24 84.21 
2 69.38 73.67 79.86 75.61 83.56 82.98 85.47 
3 68.17 75.52 83.2 78.62 85.84 77.57 86.77 
4 67.06 69.41 75.62 74.96 78.01 73.62 79.56 
5 64.77 70.82 73.39 72.35 78.12 76.37 80.44 
6 64.05 71.92 80.72 76.90 87.13 80.97 89.24 
7 68.46 73.10 78.17 75.74 80.50 79.79 88.21 
8 66.84 71.12 79.67 73.81 85.28 77.89 89.31 
9 65.89 76.01 78.81 78.37 85.93 81.90 87.39 

10 64.38 72.15 80.83 78.03 87.97 80.32 86.64 
Average 66.68 72.64 79.03 75.84 83.26 78.97 85.72 

Potsdam 

1 55.89 64.15 79.44 72.03 80.03 75.66 82.51 
2 50.78 67.79 76.77 75.8 80.69 79.21 81.77 
3 54.55 62.49 78.86 74.82 81.03 73.69 80.44 
4 53.45 64.51 83.42 73.20 80.87 74.87 83.37 
5 52.88 63.98 81.22 76.94 81.44 75.98 84.31 
6 54.11 62.22 77.62 74.42 83.06 78.39 82.25 
7 51.65 57.79 79.94 74.79 78.20 75.32 88.98 
8 52.03 63.64 82.87 74.93 82.57 75.94 86.72 
9 50.34 63.91 78.91 73.34 83.19 74.96 87.81 

10 54.71 60.44 79.72 75.64 82.26 75.69 84.19 
Average 53.04 63.09 79.88 74.59 81.33 75.97 84.24 

 
It can be seen from Table 8 that O-MLP achieves the lowest accuracy on all images, 
indicating this object-based + shallow model cannot adapt to the classification task on these 
two datasets. O+CNN achieves a classification accuracy that is higher than that of O-MLP but 
still low. The results obtained by OHSF-CNN, 2-CNN and JDL are better than those of 
O-MLP and O+CNN, indicating that the use of heterogeneity suppression strategies can 
improve the classification accuracy. U-Net also shows improvement over O+CNN; for images 
2 and 7 of Vaihingen and image 2 of Potsdam, the accuracy of U-Net is close to is close to 



that of JDL. SO-DNN achieves the highest average classification accuracies of 85.72% for 
Vaihingen and 84.24% for Potsdam, 2.46% and 2.91% higher than those of JDL, respectively. 
Except for image 10 of Vaihingen and images 3 and 6 of Potsdam, SO-DNN achieves the 
highest classification accuracies on single images among all the methods; compared with JDL, 
SO-DNN achieves maximum accuracy improvements of 7.71% for image 7 of Vaihingen and 
10.78% for image 7 of Potsdam. The above results show that compared to the other evaluated 
methods, SO-DNN can better adapt to classification tasks for very high-resolution remote 
sensing images and can achieve higher classification accuracy more stably. 
 

6. Conclusion 
 Methods that rely on additional network structures or combinations of multiple models 
essentially increase the overall number of trainable parameters in a classification system. 
Although these methods show improved adaptability and classification accuracy for certain 
datasets, this strategy inevitably increases the complexity of the entire classification process. 
For object-based classification based on CNNs, because suppression of the heterogeneous 
content in the input image patches is needed, many existing methods require multiple models 
to closely cooperate with each other, which not only increases the difficulty of using these 
methods but also leads to greater instability. 

This paper proposes a simplified object-based DNN classification method (SO-DNN) for 
very high resolution remote sensing images. This method is "simplified" from three 
perspectives: 
 (1) Simplified model 

The entire classification process of SO-DNN requires the use of only one DSSNN model 
and does not require cooperation among multiple models. SO-DNN uses a DSSNN model for 
object-based classification. Since a DSSNN can directly obtain pixel-wise classification 
results, SO-DNN does not require multiple models for heterogeneity suppression. When using 
SO-DNN, there is no need to understand the meaning of the parameters of multiple models or 
the relationship among them, thereby reducing the knowledge requirements for users. 

(2) Simplified sample collection and training 
On the one hand, SO-DNN uses SCA to reduce the accuracy requirements of the DSSNN, 

allowing an "imperfect" DSSNN model to be used for object-based classification; on the other 
hand, FROA and the IISM algorithm are proposed to establish a bridge from pixel-based 
samples to patch-based samples and realize progressive DSSNN training starting from 
pixel-based samples. This makes the samples needed for SO-DNN easier to obtain, especially 
for applications in which only a small number of images need to be processed. 

(3) Simplified usage 
 The process of using SO-DNN is almost the same as that of a traditional shallow method: 
select pixel-based samples from an image, train a model and then classify the entire image. 
This process is simpler than those of the existing object-based + CNN methods, allowing 
ordinary users to easily obtain a training set and results. 

The simplification of the model and the heterogeneity processing mechanism allows 
SO-DNN to use larger input image patches; this, in turn, allows SO-DNN to determine the 
label of each segment based on contextual information drawn from a larger area. 



Experimental results show that compared with other deep and shallow methods, SO-DNN can 
achieve higher classification accuracy and more acceptable results. Moreover, SO-DNN has 
fewer parameters and is less sensitive to the input scale, which reduces the difficulty of use 
and the burden of gaining trial-and-error experience. By virtue of the above advantages, it is 
expected that SO-DNN can be widely used in practical applications. 
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