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The base of the Priabonian Stage is one of two stage

boundaries in the Paleogene that remains to be formal-

ized. The Alano section (NE Italy) was elected by consen-

sus as a suitable candidate for the base of the Priabonian

during the Priabonian Working Group meeting held in

Alano di Piave in June 2012. Further detailed research

on the section is now followed by a formal proposal, which

identifies the base of a prominent crystal tuff layer, the

Tiziano bed, at meter 63.57 of the Alano section, as a suit-

able candidate for the Priabonian Stage. The choice of the

Tiziano bed is appropriate from the historical point of view

and several bio-magnetostratigraphic events are available

to approximate this chronostratigraphic boundary and guar-

antee a high degree of correlatability over wide geographic

areas. Events which approximate the base of the Priabonian

Stage in the Alano section are the successive extinction of

large acarininids and Morozovelloides (planktonic fora-

minifera), the Base of common and continuous Cribrocen-

trum erbae and the Top of Chiasmolithus grandis (nannofossils),

as well as the Base of Subchron C17n.2n and the Base of

Chron C17n (magnetostratigraphy). Cyclostratigraphic

analysis of the Bartonian-Priabonian transition of the

Alano section as well as radioisotopic data of the Tiziano

tuff layer provide an absolute age (37.710 – 37.762 Ma,

respectively) of this bed and, consequently, of the base of

the Priabonian Stage. 

Introduction

According to the guidelines of the International Commission on

Stratigraphy (ICS), stages should be defined by their lower boundary,

which is identified in a specific stratigraphic layer in a reference sec-

tion, the Global Stratotype Section and Point (GSSP). This implies

that a GSSP has to be defined in a sedimentary succession where sedi-

mentation is continuous and expanded across the boundary interval

(Remane et al., 1996; Remane, 2003). The ICS revised guidelines

(Remane et al., 1996) also recommend that a section proposed as a

candidate for a GSSP has to comply with a series of requirements in

order to be suitable to give the best documentation of marker events

occurring across the boundary transition. The perfect section should
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thus meet a set of requirements regarding general geology (good

exposure over an adequate thickness, continuous sedimentation, ade-

quate sedimentation rate, absence of synsedimentary and tectonic dis-

turbances, absence of metamorphism and strong diagenetic alteration),

biostratigraphy (abundance and diversity of well-preserved fossils, absence

of vertical facies changes, favorable facies for long-range biostrati-

graphic correlation) and other non-biostratigraphic characteristics

(radioisotopic data, magnetostratigraphy, chemostratigraphy). A new

GSSP should be identified, permanently, within the section (i.e., the

golden spike) which should be freely accessible with long-lasting pro-

tection of the site.

Once a candidate section for a GSSP has been recognized, as is the

case of the Priabonian, what still remains to be done is to define the

GSSP level. The ICS guidelines recommend that “The boundary defi-

nition will normally start from the identification of a level which can

be characterised by a marker event of optimal correlation potential.

This marker event may be a magnetic reversal, some kind of geochem-

ical or isotopic signal, or the first appearance or last occurrence of a

fossil species. However, only the boundary point in the section, the

GSSP (Cowie et al., 1986) formally defines the boundary. This means

that an occurrence of the primary marker does not automatically deter-

mine the boundary. Other markers should therefore be available near

the critical level, in order to support chronostratigraphic correlation

in sections other than the GSSP” (p. 79 in Remane et al., 1996).

This clarifies that the boundary level and the primary stratigraphic

marker are different concepts; once a boundary level in the stratotype

has been formally defined and ratified it is generally identified by a

physical marker (‘golden spike’) to which all other stratigraphic sec-

tions should be correlated with whatever means are available. Golden

spikes are special locations in the global rock succession that define

the base of chronostratigraphic units (within the rock sequence) for

alignment with geochronologic units (time). Stratigraphers are mind-

ful of the fact that even the best stratigraphic marker is neither omni-

present nor perfectly synchronous so the primary marker becomes

just one of various tools that may support accurate correlation from

the GSSP to any other section of interest. The recommendation that a

GSSP should contain multiple events close to the boundary level has

been a guiding principle in our search for the best boundary level along

with other desirable characteristics, such as that the chosen level should

try to respect historical usage as far as possible and the desirability of

geological materials that can be directly dated (Remane et al., 1996).

The Priabonian Stage: historical background

The Priabonian Stage is named after the village of Priabona, which

is located in the eastern Lessini Mountains of northeastern Italy. The

stage was proposed by Munier-Chalmas and de Lapparent in deLap-

parent (1893, p. 1219) and later reiterated  by Munier-Chalmasand de

Lapparent (1894, p. 479), on the basis of documentation available

from a number of sedimentary successions of the Lessini Shelf area.

Subsequently, much effort has been made to overcome serious prob-

lems encountered in correlating middle-upper Eocene marine strati-

graphic records across Europe and the Mediterranean. Among the

different sections indicated by Munier-Chalmas and de Lapparent

(1894), the Priabona section was formally proposed by Hardenbol

(1968) as the stratotype section of the Priabonian. This proposal was

accepted at the Eocene Colloquium held in Paris in 1968, at which

time a suite of five parastratotype (= auxiliary stratotype; Cowie et al.,

1986) sections was also proposed (Cita, 1969), namely the Granella

and Ghenderle (or Val Bressana) sections in the Lessini Mountains,

the Brendola and Mossano sections in the Berici Hills, and the Possa-

gno section in the Venetian Prealps. The sections in the Lessini Moun-

tains (Priabona, Granella and Ghenderle) are located close to the

margin of a carbonate platform (the Lessini Shelf; Bosellini, 1989) con-

nected to the north with emergent land. Their content in calcareous plank-

ton is poor, which makes precise correlation difficult to establish

(Verhallen and Romein, 1983). The sections in the Berici Hills (Bren-

dola and Mossano sections) were deposited on the Lessini Shelf

although in a more distal position compared to the Lessini Mountains

sections. Despite that, calcareous plankton are also scarce in the section

(Luciani et al., 2002). The last and most promising auxiliary stratotype

section is at Possagno; this succession was deposited on the gentle

ramp between the Lessini Shelf and the Belluno Trough. Because of

its deeper depositional setting it is characterized by abundant calcareous

plankton which has allowed the construction of a consistent biochro-

nostratigraphic framework (Bolli, 1975; Agnini et al., 2006).

Traditional Paleontological Criteria for Recognizing the

Base of the Priabonian Stage

In shallow-water sections, the Base (B) of Nummulites fabianii,

which defines the Base of Shallow Benthic foraminiferal Zone SB19

(Serra-Kiel et al., 1998) has been the master paleontological criterion

for recognizing the Priabonian Stage. The Base of N. fabianii has been

recognized in the Priabona and Mossano sections (Hottinger, 1977;

Parisi et al., 1988; Bassi and Loriga Broglio, 1999; Bassi et al., 2000)

as well as in several other Tethyan shallow-water successions (e.g.,

Strougo, 1992; Serra-Kiel et al., 1998).

In deep-water sections, where calcareous plankton fauna and flora

are usually more abundant, the base of the Priabonian Stage has been

traditionally recognized either by the extinction of the muricate plank-

tonic foraminifera Morozovelloides and large acarininids, which coin-

cide with the Base of Zone E14 (Berggren and Pearson, 2005; Wade et

al., 2011), or with the Base of the nannofossil Chiasmolithus oamaruen-

sis, which defines the Base of Zone NP18 (Martini, 1971). A virtual

correspondence between the Base of N. fabianii (Base of Zone SB 19)

and the Base of C. oamaruensis (Base of Zone NP18) was for a long

time generally accepted (Serra-Kiel et al., 1998). However, data from

the northern Mediterranean area indicate that the Base of N. fabianii

there lies at a higher correlative level, namely in the upper part of

Zone NP18 or middle part of Zone E14 (Papazzoni and Sirotti, 1995).

More recently, a number of new records have confirmed that the Base

of Zone SB19 is much higher than the calcareous plankton biohori-

zons that have been used to approximate the base of the Priabonian

(i.e., the Top of large acarininids and Morozovelloides, the Base of C.

oamaruensis, the Bc (Base of continuous and common) of C. erbae

and the Top of C. grandis; Papazzoni et al., 2014; Cotton et al., 2017;

Rodelli et al., 2018; Luciani et al., 2020). Specifically, the Base of

Zone SB19 is now thought to be close to the CNE18-19 zonal bound-

ary and lies in the lowermost part of Zone E15 (Cotton et al., 2017).

The corresponding difference in time between potential Priabonian

marker horizons is significant, potentially over two million years.
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Position of the Priabonian Stage in the Eocene Series

In their overview of the Paleogene System/Period Luterbacher et al.

(2004) still used the lower/early, middle and upper/late subdivision

for the Eocene Series/Epoch, but the most recent version of the Geo-

logical Time Scale (Vandenberghe et al., 2012) as well as the official

International Chronostratigraphic Chart edited by ICS (http://www.

stratigraphy.org/index.php/ics-chart-timescale) does not use sub-series/

sub epoch (lower/early, middle and upper/late) as formal subdivisions for

the Eocene (see Pearson et al., 2017 for a review). We thus refrain from

using these terms in a formal sense. The history of the chronostrati-

graphic subdivision of the Eocene is complicated (e.g., Berggren et al.,

1985, 1995; Luterbacher et al., 2004; Vandenberghe et al., 2012). As

argued by Berggren et al. (1995), the problem with the placement of

the base of the Priabonian has been intimately linked with the difficul-

ties in correlating the classical NW Europe sections, located in the

Paris and London basins, with those cropping out in the Veneto region

of the Mediterranean area (Munier-Chalmas and de Lapparent, 1894).

Current Practice in Recognizing the base of the Priabonian

Over the past three decades, the compilations published by Berg-

gren and co-workers (1985, 1995) have represented a fundamental

reference for the entire community of marine and continental stratig-

raphers. Berggren et al. (1985) carefully reviewed the status of the

Bartonian/Priabonian boundary, which they placed at the Base of C.

oamaruensis (calcareous nannofossil Zone NP18) founded on the best

correlation tools available at that time. According to this concept, the

base of the Priabonian correlates with the younger part of Chron C17n

(Fig. 4 in Berggren et al., 1985). Berggren et al. (1995) indicated that

the Bartonian/Priabonian boundary is correlative with the Base of C.

oamaruensis, that is the Base of Zone NP18, for which they provided

a revised estimated age of 37.0 Ma (Fig. 2 in Berggren et al., 1995).

Since 1995 a considerable amount of new research has been con-

ducted on the calcareous plankton biostratigraphy and biochronology

of the interval (Wade, 2004; Fornaciari et al., 2010; Wade et al., 2011;

2012; Agnini et al., 2011; 2014). Agnini et al. (2011) demonstrated that

the Base of C. oamaruensis (Base of Zone NP18), although poorly

reproducible (Fornaciari et al., 2010), is much closer to the successive

extinctions of large muricate planktonic foraminifera than previously

thought. Most importantly, the Top of large acarininids and Morozovelloi-

des are consistently found to occur closely spaced (+ 85 kyr and 2 kyr,

respectively) relative to the Top of C. grandis (Base of Subzone CP15a of

Okada and Bukry, 1980) and the Base of common and continuous C. erbae

(Base of Zone CNE17 of Agnini et al., 2014). All these new data are

of considerable importance to constrain the critical interval in which

the Priabonian GSSP should be defined. 

Possible Markers for Identifying the Priabonian GSSP

According to the historical overview briefly discussed above, the

base of the Priabonian in marine stratigraphic records has been identi-

fied using the following events:

1) the Base of Nummulites fabianii, by definition the Base of Zone

SB19, applied in shallow water facies (e.g., Serra-Kiel, 1998); 

2) the Top of large muricate planktonic foraminifera (large acarini-

nids and Morozovelloides), coinciding with the Base of Zone E14

(Wade et al., 2011) which is defined by the Top of Morozovelloides

crassatus.

3) the Base of Chiasmolithus oamaruensis, Base of Zone NP18, (e.g.,

Berggren et al., 1985, 1995), which is consistently found close to the

Top of C. grandis and the Base of common and continuous C. erbae.

4) The Base of Subchron C17n.1n, as proposed by Berggren et al.

(1985, 1995) and provisionally suggested for practical reasons by

Vandenberghe et al. (2012; GTS2012).

All the aforementioned events, with the exception of the Base of N.

fabianii which is now demonstrated to lie well above the current use

of Priabonian, fall relatively close one to each other. It was thus con-

cluded that the Priabonian GSSP should be defined across an interval

in which these events occur, which extends from the Base of Sub-

chron C17n.3n to the Base of Subchron C17n.1n. 

Selecting the area of the Priabonian GSSP: the Alano

section

The time frame of the Priabona section regarded as “stratotypic” by

Hardenbol (1968) is controversial because of the shallow-water trans-

gressive nature of the basal portion of the succession (Setiawan, 1983).

The base of the section appears to be younger than the base of the Pri-

abonian stage according to current practices of recognition (e.g., Seti-

awan, 1983; Brinkhuis, 1994). Specifically, the common and continuous

occurrence of Isthmolithus recurvus is widely used as an intra-Pria-

bonian biohorizon defining the Base of Zone NP19 and Subzone

CP15b (Fornaciari et al., 2010; Agnini et al., 2011). This biohorizon is

documented from the base of the Priabona section suggesting that,

at least the lower part of the ‘Priabonian’, as currently understood

(see discussion above), is missing in the Priabona section (Verhal-

len and Romein, 1983). Among the five parastratotypes proposed by

Cita (1969) for the Priabonian, the Granella, Ghenderle, Brendola

and Mossano sections are unsuitable for defining a chronostrati-

graphic unit because of the scarcity of calcareous plankton and/or

major facies changes (e.g., Luciani et al., 2002). The deep-water

Possagno section was potentially more suitable. Previous studies

performed in the 1970s have provided a solid framework based on

calcareous plankton biostratigraphy (Bolli, 1975) but unfortunately

the critical transition from the Bartonian to the Priabonian is poorly

exposed, and no compelling candidacy of the Priabonian GSSP

could be thus advanced for this section (Agnini et al., 2011). More

suitable to define the base of the Priabonian would be a section that

is stratigraphically more continuous and well exposed with marker

events that are well constrained in time and suitable for global cor-

relation. The Alano section, located ~ 50 km to the NE of the histor-

ical Priabona section, meets all the requirements for serving as suitable

Priabonian GSSP (Figs. 1-2). 

This sedimentary succession, consisting of ~ 120 m of hemipelagic

marls, is easy to access, crops out continuously, is unaffected by any

invasive structural deformation, is rich in calcareous plankton, is pro-

vided with magnetic minerals that carry a primary magnetostratigraphic

signal, and in general contains an expanded and complete record of

the critical interval for defining the GSSP of the Priabonian (Agnini et

al., 2011; Fig. 3). The integrated, highly-resolved bio-magnetostrati-

graphic framework provided for the Alano section (Agnini et al., 2011)
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Figure 1. (modified after Agnini et al., 2011). Geographic and geological context of the Alano section. (A) Paleogeographic reconstruction of
the main paleogeographic elements of the southern Alps during the Paleogene (adapted from Bosellini and Papazzoni, 2003). (B) the South-
ern Alps, a major structural subdivision of the Alpine chain, located to the south of the Periadriatic lineament; □ = Studied areas (adapted
from Doglioni and Bosellini, 1987). (C) Simplified structural sketch of the study area; □ Grey square in (A) includes the structural map pro-
vided. (D) Location map of the study area with indication of the Alano section. The easiest access to the section (dashed line) is shown.
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Figure 2. (modified after Agnini et al., 2011). Geological map of the study area. A legend with a detailed description of lithostratigraphic units
is also reported in the lower part of the figure.

Figure 3. (modified after Agnini et al., 2011). Close-up of the critical interval for defining the base of the Priabonian. Bio-magnetostratigraphic
events considered as useful for approximating the Bartonian/Priabonian boundary, that is the base of the Tiziano bed (picture up left in the
figure), are plotted against magnetostratigraphy and lithology. Age estimations for the Tiziano bed as well as for biomagnetostratigraphic
events are calculated using different time scales (CK95, Cande and Kent 1995; PÄ06, Pälike et al., 2006; W14, Westerhold et al., 2014) and
are reported on the right side. Br-Base rare; Bc-Base common and continuous; T-Top. The light blue shaded band identifies the Bartonian-
Priabonian transition, the critical interval where the Priabonian GSSP should be defined.  = Subchron C17n.1n base; ● = Base Globigeri-
natheka semiinvoluta;  = Top Chiasmolithus grandis; V = Tiziano bed;  □ = Base common and continous Cribrocentrum erbae; �= Base
rare (Br) Chiasmolithus oamaruensis; �= Top Morozovelloides; △ = Top large acarininids; □ = Subchron C17n.3n base.
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can be used as a starting reference record to strengthen the traceability

potential of some of the marker events outside the local depositional

basin.

To investigate the wider correlation potential, calcareous plankton

data available for the Alano section (Figs. 4-5) were compared with

data acquired at ODP Site 1052 (western North Atlantic; Fig. 6). This

exercise showed that the successive extinction of large acarininids and

Morozovelloides occurred consistently in the middle part of Chron

C17n.3n (Wade, 2004; Agnini et al., 2011). Wade et al. (2012) empha-

sized the desirable features of these closely spaced and easily recog-

nized extinction events for global correlation in low and mid latitudes,

providing corroborating evidence for their robustness and synchrony

across the Atlantic Ocean. 

The same approach was performed for calcareous nannoplankton

and permits constraint of the relative timing among some calcareous

nannofossil biohorizons and their relationship with planktonic fora-

miniferal bioevents (Fig. 3). The Base of C. oamaruensis, one of the

traditional events used to approximate the base of the Priabonian, occurs

at the Base of Subchron C17n.2n, but its reproducibility is generally

considered very poor (Fornaciari et al., 2010; Agnini et al., 2011).

Nevertheless, the highly resolved biostratigraphic dataset available

for the studied section pointed out two further biohorizons: the Base

of common and continuous C. erbae, marking the Base of Zone CNE17

(Fig. 4; Agnini et al., 2014) and the Top of C. grandis, defining the

Base of Subzone CP15b (Okada and Bukry, 1980). These two closely

spaced biohorizons are consistently found within Subchron C17n.2n

in the proximity to the Base of C. oamaruensis (Fornaciari et al., 2010;

Agnini et al., 2011, 2014).

In summary, calcareous plankton (i.e., planktonic foraminifera and

calcareous nannofossils) provide an excellent series of biohorizons

Figure 4. (modified after Agnini et al. 2011). Quantitative distribution patterns of selected calcareous nannofossils and resulting biostrati-
graphic classification of the Alano section according to the zonal schemes of Martini (NP; 1971), Okada and Bukry (CP; 1980) and Agnini et
al., (CN; 2014). Planktonic foraminiferal biozonations are after Berggren et al. (P zones; 1995) and Berggren and Pearson (2005) or Wade et
al., 2011 (E zones). The positions of the crucial biohorizons in the Bartonian-Priabonian transition is reported in Table 1. Br-Base rare; B-
Base; Bc-Base common and continuous; Tc-Top common; T-Top. The shaded orange band indicates the MECO, the shaded yellow band
marks the post-MECO interval and the light blue shaded band identifies the Bartonian-Priabonian transition, the critical interval where the
Priabonian GSSP should be defined.
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with a high reproducibility and good correlation potentials through

the candidate interval for the GSSP. They are closely spaced, with the

Top of large acarininids and Morozovelloides preceding the Base of

common and continuous C. erbae and the Top of C. grandis by ~ 230 kyr,

if a floating chronology based on cycle counting is adopted (Fig. 3;

Galeotti et al., 2019).

The good magnetostratigraphy available at Alano (Agnini et al.,

2011) as well as the astrochronology based on cycle counting of δ13C

and wt.% CaCO3 records and U-Pb radio-isotopic dating (Galeotti et

al., 2019), represent important additional datasets that improve the

correlation potential of the Priabonian GSSP. In conclusion, recent

research has confirmed that the Alano section is an appropriate sec-

tion for defining the Priabonian GSSP, i.e., for the Bartonian/Pria-

bonian boundary.

Summary on Background Studies on the Alano
Section

The entire Alano section has been described and studied in detail by

Agnini et al. (2011) and Fornaciari et al. (2010). Cyclostratigraphic

study and radioisotopic analyses have recently been performed in the

Alano section (Galeotti et al., 2019), and a correlation between the bathyal

Alano and Varignano sections (Belluno and Lombardian basins, respec-

tively) has been attempted (Luciani et al., 2020). In addition, the basal

portion of this sedimentary sequence has been the object of recent studies

(Spofforth et al., 2010; Luciani et al., 2010; Toffanin et al., 2011; Boscolo-

Galazzo et al., 2013, 2016) revealing the occurrence of a detailed record of

the Middle Eocene Climatic Optimum (MECO; Bohaty and Zachos,

2003; Bohaty et al., 2009).

Figure 5. (modified after Agnini et al. 2011). Planktonic foraminiferal data and resulting biostratigraphic classification of the Alano section
according to the zonal schemes of Berggren et al. (1995), Berggren and Pearson (2005) or Wade et al., (2011). Calcareous nannofossil biozo-
nations are after Martini (NP; 1971), Okada and Bukry (CP; 1980) and Agnini et al., (CN; 2014). The relative abundance of each taxon is
reported in terms of percentage with respect to the entire assemblage. The shaded orange band indicates the MECO, the shaded yellow band
marks the post-MECO interval and the light blue shaded band identifies the Bartonian-Priabonian transition, the critical interval where the
Priabonian GSSP should be defined.
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Geological Setting

The Alano section at Alano di Piave is located in the Italian

Southern Alps (NE Italy; Fig. 1), a major structural element of the

Alpine chain, interpreted as a south verging fold-and-thrust belt

(Doglioni and Bosellini, 1987) resulting from the polyphase defor-

mation of the southern margin of the Mesozoic Tethyan ocean (Ber-

noulli, 1972). In particular, the Alano section crops out in the Venetian

Southern Alps (Fig. 1), and its constituent sediments deposited in

the Belluno Basin, a paleogeographic domain resulting from the

drowning of Triassic-Lower Jurassic shallow-water carbonate plat-

forms (Winterer and Bosellini, 1981). Deep-water facies persisted in

the south-western sector of the Belluno Basin, surrounded by shal-

lower areas to the west (the Lessini Shelf; Bosellini, 1989) and east

(the Friuli Platform; Fig. 1), until the late Eocene (Cita, 1975; Trev-

isani, 1997). The Alano section is located ~ 8 km NNE from the

well-known Priabonian beds of the Possagno section (Bolli, 1975).

More details on the geological context and evolution of the study

area are given in Agnini et al. (2011).

Figure 6. (modified after Agnini et al. 2011). Calcareous plankton correlation between the Alano section and ODP Site 1052 (western North
Atlantic; Pälike et al., 2001) and resulting interpretation of the magnetostratigraphy of the Alano section. The geomagnetic polarity time scale
of Ogg (2012; GTS12) is plotted on the left side. The light blue shaded band identifies the Bartonian-Priabonian transition, the critical inter-
val where the Priabonian GSSP should be defined.
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The Stratigraphic Succession

The Alano section mainly consists of greyish hemipelagic marls

intercalated with a number of millimeter to centimeter thick sandy-

silty layers, which are particularly useful as marker beds along the

section (Figs. 7, 8). The general bedding strike is 130-140°N and the

dip is ~20–25° S. Apart from being tilted, the section is unaffected by

significant structural deformation. The sandy layers can be easily traced

Figure 7. (modified after Agnini et al. 2011). Lithologic column of the Alano section. The main crystal tuff/bioclastic beds are positioned in
the log and named after famous Venetian artists. CaCO3 content throughout the section is presented in the central part of the figure (black
line; Spofforth et al., 2010; red line; Galeotti et al., 2019). The total carbonate content allows the subdivision of the section into four litho-
zones reported on right side. The shaded orange band indicates the MECO, the shaded yellow band marks the post-MECO interval and the
light blue shaded band identifies the Bartonian-Priabonian transition, the critical interval where the Priabonian GSSP should be defined.
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laterally and no faults (even with small displacement) are visible in

the section. The sediments cropping out in the Alano section have not

been deeply buried as testified by the good preservation of microfos-

sils and the scarce maturity of the organic matter (Spofforth et al.,

2010). The Alano section is continuously exposed along the banks of

the Calcino Creek for at least 500 meters (Figs. 2, 8). Above the

investigated section, there are an additional fifteen meters of continu-

ously outcropping marls followed downstream by spotted outcrops. In

the lower part of the section, from ~ 17 m level to ~ 25 m level, the

grey marls facies is interrupted by a distinctive ~ 8 m-thick package of

laminated dark to black organic-rich clayey marls (ORG1 and ORG2),

which is interpreted as the ‘post-MECO interval’ (Luciani et al., 2010).

Among the sandy-silty layers, eight are more than 6 cm thick, and six

of these are crystal tuff layers that have been named, from the bottom

to the top, after famous Venetian painters: Mantegna, Giorgione, Tiziano,

Tiepolo, Tintoretto and Canaletto (Figs. 7, 8). The other two layers are

Figure 8. Alano section (modified after Agnini et al., 2011). (A) View of the lower part of the Alano section (lithozone A). (B) Detail of litho-
zone A with indication of the crystal tuff layer Giorgione. (C) Basal portion of the sapropelic interval, the lithological expression in the study
area of the post-MECO (lithozone B). (D) The upper part of the sapropelic interval with indication of the prominent bioclastic layer Palladio
(lithozones B and C). (E) Close-up view of the critical interval showing the prominent crystal tuff layer Tiziano (basal lithozone D). (F) Upper
part of the sampled section with indication of the crystal tuff layer Canaletto (lithozone D).
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biocalcarenite-rudite beds that have been named Palladio and Canova

after famous Venetian artists (Figs. 7, 8). Field observations and a

CaCO3 record permit the subdivision of the section into four litho-

zones: A, B, C and D (Agnini et al., 2011; Fig. 7). The Tiziano crystal

tuff layer, here proposed as the GSSP of the Priabonian, occurs in the

lower portion of lithozone D (which extends from 59.95 m to the top

of the section; Fig. 7). Because none of the existing local lithostrati-

graphic units (Cita, 1975) can be properly applied to the succession

cropping out at Alano, Agnini et al. (2011) provisionally introduced

the informal term Marna scagliosa di Alano for the grey marls crop-

ping out in the Alano section (Fig. 2).

Depositional Environment and Correlation Between

Deep- and Shallow-water Settings

The grey marls of the Alano section were deposited in a low energy,

Figure 9. (modified after Agnini et al., 2011). The P/(P + B) (%) (= planktonic to planktonic and benthic ratio) and stratigraphic distribution
of selected small benthic foraminifera plotted against lithology and calcareous plankton biostratigraphy (P - Berggren et al. 1995; E - Berg-
gren and Pearson (2005) or Wade et al. (2011); NP - Martini, 1971; CP - Okada and Bukry, 1980; CN - Agnini et al., 2014). Benthic foramin-
ifera biozonation (Berggren and Miller, 1989), bathymetric zonation (Grünig and Herb, 1980) and inferred paleodepth of the Alano section
are reported on the right side. The shaded orange band indicates the MECO, the shaded yellow band marks the post-MECO interval and the
light blue shaded band identifies the Bartonian-Priabonian transition, the critical interval where the Priabonian GSSP should be defined.
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open marine slope-basin setting. Paleobathymetric estimates point to

a middle bathyal depositional depth (600–1000 m) for the lower two

thirds of the section, and to upper-middle bathyal depths (~ 600 m) for

the remaining third of the studied section (Fig. 9; Agnini et al., 2011).

This interpretation is supported by the Planktonic/Benthic foramin-

iferal ratio and by the changes observed in the benthic foraminiferal

paleobathymetric indexes (Fig. 9; Agnini et al., 2011). Benthic fora-

miniferal assemblages (Boscolo-Galazzo et al., 2013) indicate well

oxygenated bottom waters throughout the entire section, except for

the 8 m-thick package of organic-rich sediments (17-25 m level), the

‘post-MECO’ interval, where hypoxic conditions prevailed, as also

indicated by geochemical proxies (Spofforth et al., 2010). The abun-

dant occurrence of bolivinids is typical of bathyal hemipelagic sedi-

ments in this area of the Tethys and has been related to the proximity

Figure 10. (modified after Luciani et al., 2020). Correlation of main and secondary calcareous plankton events and layers with volcanoclastic
material (dashed line) recorded in the Varignano (Trento) and Alano (Belluno) sections. The light blue shaded band identifies the Bartonian-
Priabonian transition, the critical interval where the Priabonian GSSP should be defined. Dashed lines refer to tentative correlations.
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of land (Boscolo-Galazzo et al., 2013). As expected in deep-water

sediments like those of the Alano section, macrofossils are sporadic.

At Alano, larger foraminifera occur only as re-sedimented grains in

distinct beds well below the critical interval, hampering a direct cor-

relation between calcareous plankton and larger foraminiferal zona-

tions. However important supporting information is provided by the

Varignano section (Trento Province, Italy), located ~80 km to the west

of Alano, which preserves several coarse bioclastic levels rich in

larger foraminifera intercalated within the bathyal marls of the Barto-

nian-Priabonian transition (Papazzoni et al., 2014; Luciani et al., 2020).

The Varignano section contains a crystal tuff layer that is equivalent to

the Tiziano bed as demonstrated by bio-magnetostratigraphical and

petrographical-mineralogical data (Fig. 10; Luciani et al., 2020).

Primary and secondary calcareous plankton bioevents across the

critical interval are recorded in the same order and stratigraphic posi-

tion as observed at Alano (Fig. 10). In the succession, the direct cor-

relation between calcareous plankton and larger foraminiferal zones

clearly demonstrates that the Base of Zone SB19 is positioned signifi-

cantly higher that the Bartonian-Priabonian transition as found in

other recent studies (Papazzoni et al., 2014; Cotton et al., 2017; Rodelli

et al., 2018; Luciani et al., 2020). Instead, this interval as identified by

the calcareous plankton events discussed above correlates with the

middle part of Zone SB18, the base of which is marked by the Base of

the distinctive genus Pellatispira (Papazzoni et al., 2014). 

Calcareous Nannofossil Biostratigraphy

Calcareous nannofossil assemblages are rich, well preserved, and

diverse throughout the section (Plate I; Fornaciari et al., 2010; Agnini

et al., 2011; Toffanin et al., 2011). The assemblages are dominated by

placoliths, among which Cribrocentrum, Cyclicargolithus and Dictyo-

coccites are prominent (together up to ~70 of the total assemblage). Chi-

asmolithus is very rare at Alano as is normally reported for low to

middle latitude areas (Perch Nielsen, 1985; Wei and Wise, 1989); this

is problematic because some biohorizons used in Martini’s (1971) and

Okada and Bukry’s (1980) zonations, are based on Chiasmolithus spe-

cies (Top of C. solitus – Base of Zone NP17 and Subzone CP14b; Base

of C. oamaruensis – Base of Zone NP18, Top of C. grandis – Base of

Subzone CP15a). The subdivision of NP and CP zonations is both dif-

ficult to apply and generally results in poor global correlations. Recently,

a new calcareous nannofossil Paleogene biozonation has been pub-

lished for low to middle latitudes (Agnini et al., 2014). This biostrati-

graphic scheme avoids the use of biohorizons based on Chiasmolithus

species in favor of more reliable events (e.g., Base of common and

continuous (Bc) of Dictyococcites bisectus, Top of Sphenolithus obtu-

sus, Base of common and continuous and Top of common and contin-

uous (Tc) C. erbae). With reference to this biozonation, the Alano

section spans from Zone CNE14 to Zone CNE18 (Fig. 4). If the clas-

sical calcareous nannofossil zonation of Martini (1971) is followed,

the Alano section covers the interval from Zone NP16 to undifferenti-

ated Zone NP19-20 (Fig. 7). Finally, if the zonal scheme of Okada and

Bukry (1980) is applied, the section extends from Subzone CP14a to

Subzone CP15b (Fig.4). Agnini et al. (2011) demonstrated that the

Tiziano Bed (63.57 m level) is 0.72 meters above the Base of uneven

and rare (Br) C. oamaruensis (62.85 m level), which marks the NP17/

NP18 boundary, and 2.90 meters below the Top of C. grandis, which

defines the Subzone CP14b/ Subzone CP15a boundary. Because of

the general scarcity of these taxa, these biohorizons must be used with

caution for accurate correlations. The Base of common and continu-

ous C. erbae (62.96 m level), as defined in Agnini et al. (2014), is

recorded 0.61 meters below the base of the Tiziano bed, and represents

the most reliable calcareous nannofossil biohorizon for approximat-

ing the base of the Priabonian (Fornaciari et al., 2010; Agnini et al., 2011).

A more global perspective of calcareous nannofossil biohorizons across

the Bartonian-Priabonian transition as well as their degree of reliability

and correlatability are presented in Figure 6, where the Alano section

and the reference ODP Site 1052 are compared (Agnini et al., 2011). 

Planktonic Foraminiferal Biostratigraphy

Planktonic foraminifera are continuously present, abundant and diverse

throughout the Alano section, except for some levels of the organic

rich package (from 17 m level to 25 m level), the ‘post-MECO’ inter-

val (Figs. 5, 8; see Plate II for iconographic material). The preserva-

tion varies from moderate to good and foraminiferal assemblages are

generally recognizable although commonly recrystallized, cemented

and infilled. The assemblage composition is distinctive of subtropi-

cal-temperate latitudes and changes in the relative abundance of taxa

are observed throughout the section. Subbotinids and globigeri-

nathekids are among the more frequent and common groups. 

Large acarininids are abundant in the lower part of the section and

include Acarinina with well-developed muricae and test size > 125 μm

(A. bullbrooki, A. mcgowrani, A. praetopilensis, A. primitiva, A. rohri,

A. topilensis). This group decreases at the ORG1 and ORG2 intervals

(Spofforth et al., 2010) corresponding to the ‘post-MECO’ as defined

by Luciani et al. (2010). The hantkeninids display a sporadic distribu-

tion and, where present, constitute a minor component of the assem-

blage. With reference to the standard zonation of Berggren et al. (1995),

the Alano section extends from Zone P12 to Zone P15. In terms of the

tropical to subtropical zonation of Berggren and Pearson (2005) and

the subsequent revision by Wade et al. (2011), the section extends

from undifferentiated Zone E10-11 to Zone E14. At Alano, the identi-

fication of the Top of Orbulinoides beckmanni (19.5 m level; Fig. 5),

marking the E12/E13 and P13/P14 boundaries, is difficult to recog-

nize because of the scarcity of this taxon and the moderate preserva-

tion of the foraminiferal assemblages in the ‘post-MECO’ interval.

The E10 and E11 zones (Berggren and Pearson, 2005; Wade et al.,

2011; Payros et al., 2015) have been merged because at Alano the

highest consistent occurrence of Guembelitrioides nuttalli, which marks

the Base of Zone E11, is recorded at 57.52 m level, well above the

Top of O. beckmanni. The extinction level of large acarininids occurs

at 57.32 m level and is immediately followed (57.52 m level; Fig. 5)

by the disappearance of Morozovelloides (i.e., Morozovelloides cras-

satus and Morozovelloides coronatus). These biohorizons underlie the

Tiziano bed by 6.25 and 6.05 meters respectively, which is equivalent

to 170-173 kyr in our floating chronology (Fig. 3). To test the reliabil-

ity and reproducibility of the Top of large acarininids and Morozovel-

loides, we compared the Alano section with the reference ODP Site

1052 (Fig. 6; Wade, 2004; Agnini et al., 2011). This pair of closely

spaced bioevents is very solid and provides a good correlation tool to

approximate the base of the Priabonian (Wade et al., 2012). 
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Figure 11. (modified after Agnini et al., 2011). Stratigraphic synthesis of the Alano section with (A) lithology, (B) stratigraphic position of
samples for paleomagnetic analysis, (C) natural remanent magnetization (NRM) intensity, (D) mean angular deviation (MAD) of the charac-
teristic magnetic component, and (E) virtual geomagnetic pole (VGP) latitude used for polarity interpretation (F); black is normal polarity;
white reverse polarity; (G) GPTS (Ogg, 2012; GST12). The shaded orange band indicates the MECO, the shaded yellow band marks the post-
MECO interval and the light blue shaded band identifies the Bartonian-Priabonian transition, the critical interval where the Priabonian
GSSP should be defined.
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Magnetostratigraphy

The Alano section has a good magnetostratigraphic record, which

permits a straightforward correlation to the geomagnetic polarity time

scale of Ogg (2012; GTS12 Fig. 11). An overall sequence of 13 polar-

ity magnetozones has been established starting from the base up to the

top of the section (Agnini et al., 2011). The basal part of the section

correlates with the upper part of Chron C18r, while the single sample

with reverse polarity at the top of the section correlates with the Base

of Chron C16r (Fig. 11). Though the base of the Priabonian has often

been approximated by the Base of Subchron C17n.1n (see discussion

in Vandenberghe et al., 2012), the polarity reversal with the higher

correlation potential in the proximity of the Tiziano bed is the Base of

Chron C17n (or Subchron C17n.3n) at 52.62 m level. It is worth not-

ing that the polarity reversal closest to the Tiziano bed is the Base of

Subchron C17n.2n (62.48 m level). The latter is defined by a single

reversed datapoint. However, assuming the median points of related

uncertainty intervals as base and top of this Subchron, its cyclochro-

nological duration is consistent with the adopted timescales (Galeotti

et al., 2019).

Stable isotopes (bulk δ13C and δ18O) and the Middle Eocene

Climatic Optimum

Carbon and oxygen stable isotopes (δ13C and δ18O) analyses were

performed on bulk rock from the entire section with an average sam-

ple spacing of ~ 20 cm (Fig. 12; Spofforth et al., 2010). The δ13C and

δ18O profiles show a gradual decrease of ~ 0.5 ‰ up section. No sig-

Figure 12. (modified after Spofforth et al., 2010). Bulk carbonate stable isotopes δ13C, δ18O, and percentage CaCO3 over the entire Alano sec-
tion. The shaded orange band indicates the MECO, the shaded yellow band marks the post-MECO interval and the light blue shaded band
identifies the Bartonian-Priabonian transition, the critical interval where the Priabonian GSSP should be defined.
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nificant variations occur at the Bartonian-Priabonian transition except

for a slight gradual increase in δ13C values starting in the middle part

of Subchron C17n.3n (+ 0.6 ‰) and culminating in the lower part of

Subchron C17n.2n (+ 1.1 ‰). By contrast, the lower part of the sec-

tion, from ~ 13 m level to 25 m level, is characterized by major and

distinct shifts in both δ13C and δ18O records. A coupled negative

excursion of δ13C and δ18O is documented from the 13 m level to 17 m

level, which is interpreted as the Middle Eocene Climatic Optimum

(MECO), being constrained within the upper part of Chron C18r and

the basal-most part of Subchron C18n.2n (Bohaty et al., 2009; Spof-

forth et al., 2010). Interestingly, after the climax of the event (~ 40.1

Ma; Bohaty et al., 2009), from ~ 17 m level to ~ 25 m level, the δ18O

record gradually recovers while the δ13C and CaCO3 profiles are more

complex. Two positive excursions in δ13C of ~ 1.25 ‰ associated with

low carbonate content are interrupted by a rapid and transient return

to climax conditions (0.3‰) and an increase in carbonate content

(Spofforth et al., 2010). This interval is named ‘post-MECO’ after Luciani

et al. (2010) and is lithologically characterized by two sediment pack-

ages (ORG1 and ORG2 in Figs. 8, 12) with an elevated organic carbon

content (up to 3%). The response of benthic and planktonic foramin-

ifera, and calcareous nannoplankton to the MECO and ‘post-MECO’

is the focus of a number of papers (Luciani et al., 2010; Toffanin et al.,

2011; Boscolo-Galazzo et al., 2013; 2016). 

Orbital tuning and radioisotopic dating (206Pb-238U)

Galeotti et al. (2019) complemented the already existing data (cal-

careous plankton biostratigraphy, magnetostratigraphy, carbon and

oxygen isotope, CaCO3 content) with a cyclochronology based on car-

bon isotope and wt.% CaCO3 records and 206Pb/238U dating of zircons

from four volcanic tuffs throughout the interval spanning the Barto-

nian-Priabonian transition. Although small systematic discrepancies

exist between orbital and radioisotopic age estimates of the Tiziano bed,

the duration of intervals bracketing consecutive crystal tuff layers are

in good overall agreement (Table 1). The age model obtained allows

calculation of the duration of individual magnetochrons and calibrat-

ing biostratigraphic and non- biostratigraphic events at the Bartonian-

Priabonian transition. This approach thus provides two very close inde-

pendent numerical ages for the Tiziano bed, specifically 37.762 ±

0.077 Ma from the zircon 206Pb/238U dating and 37.710 ± 0.01 Ma from

astrochronology, that represent an additional but strongly suggested

(by ICS) requirement when a GSSP is defined.

Selecting the Boundary Level at Alano

The historical review and discussion above indicates that the opti-

mal interval for defining the base of the Priabonian and placing the

“golden spike” lies between the Base of Subchron C17n.3n and the

Base of Subchron C17n.1n according to correlatability and historical

appropriateness criteria (Fig. 3).

The most widespread practice in proposing GSSPs has been and

still is to locate the “golden spike” exactly in the lithologic level where

a specific, arguably widely correlatable, biostratigraphic or magneto-

stratigraphic event occurs (Remane et al., 1996). Within this practice,

there would be at least three viable options at Alano for defining the

base of the Priabonian:

1. the Top of large acarininids and Morozovelloides (Base of Zone

E14). As discussed above, these two closely spaced biohorizons rep-

resent very reliable events with a high correlation potential in the marine

domain. These taxa are very distinctive and easy to recognize even in

thin section, and are precisely calibrated (Wade et al., 2011; 2012).

2. the Base of C. oamaruensis (Base of Zone NP18). This biohori-

zon has been used for the past three decades to recognize the base of

the Priabonian by some workers but, unfortunately, it is not a reliable

biostratigraphic datum. However, if we still want to place the base of

the Priabonian as close as possible to the Base of C. oamaruensis using

calcareous nannofossils, the Base of common and continuous C. erbae

(Base of Zone CNE17) and the Top of C. grandis (Base of Subzone

CP15a) might be used to approximate this biohorizon;

Table 1. Absolute and relative (to the Tiziano bed) position (m) and chronology of events at the Bartonian - Priabonian transition.

Event/Marker Position
(m)

Position 
relative to 
Tiziano 
bed (m)

Notation 
relative to 
Chron Top

Galeotti et al. (2019) CK95 PÄ06 W14

Age 
(U-Pb 
dating)
(Ma)

Age (astro-
chronol-

ogy) (Ma)

Time rela-
tive to the 
Tiziano 

bed (kyr)*

Age
(Ma)

Time rela-
tive to the 
Tiziano bed 

(kyr)**

Age
(Ma)

Time rela-
tive to the 

Tiziano bed 
(kyr)**

Age
(Ma)

Time rela-
tive to the 
Tiziano bed

(kyr)**

Subchron C17n.1n base 74.28 10.71 C17n.1n 1.00 37.402 37.380 340 37.473 341 37.520 352 37.385 361

B G. semiinvoluta 68.37 4.8 C17n.2n 0.25 37.600 37.578 142 37.665 149 37.719 153 37.593 153

T C. grandis 66.47 2.9 C17n.2n 0.49 37.664 37.657 63 37.724 90 37.780 92 37.654 92

TIZIANO BED 63.57 0 C17n.2n 0.86 37.762 37.710 0 37.814 0 37.872 0 37.746 0

Bc C. erbae 62.96 -0.61 C17n.2n 0.94 37.782 37.740 -20 37.833 -19 37.892 -20 37.766 -20

Br C. oamaruensis 62.85 -0.72 C17n.2n 0.95 37.786 37.742 -22 37.837 -23 37.895 -23 37.769 -23

Subchron C17n.2n base 62.48 -0.48 C17n.2n 1.00 37.798 37.772 -30 37.848 -34 37.907 -35 37.781 -35

T M. crassatus 57.52 -6.05 C17n.3n 0.39 37.890 -170 37.996 -182 38.036 -164 37.946 -200

T large acarininids 57.32 -6.25 C17n.3n 0.42 37.893 -173 38.001 -187 38.040 -168 37.951 -205

Subchron C17n.3n base 52.62 -10.95 C17n.3n 1.00 38.090 -290 38.113 -299 38.158 -286 38.081 -335

*Time (kyr) relative to the Tiziano bed
**Time (kyr) relative to the Tiziano bed assuming constant linear sedimentation rates within Chrons
CK95 - Cande & Kent (1995); PÄ06 - Pälike et al. (2006); W14 - Westerhold et al. (2014)
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3. the Base of Chron C17n (Base of Subchron C17n.3n). This mag-

netic polarity event as part of a rapid series of magnetic reversals

embedded in Chron 17 would allow correlations between expanded

marine and continental sections well outside the proposed GSSP. 

There is a significant practical problem with all these bio- and mag-

netostratigraphic events, namely that the Alano section is rapidly

eroding which means (for posterity) that any GSSP marker will have

to be accurately relocated as the section erodes. We are also mindful

of the comment of Berggren et al. (1985) that: “...proper stratigraphic

procedure requires that paleontologic criteria, although definitive for

regional correlation (i.e. recognition) beyond the stratotype region,

should not be part of the definition itself... (Hedberg, 1976)”. 

After much discussion of the relative merits of the various strati-

graphic levels that might best serve as the boundary, we propose to

define the Priabonian GSSP at a lithologic level (tuff layer Tiziano

bed) that is easily recognizable in the field and around which the above

set of events occurs. This rather unconventional choice of defining the

base of a chronostratigraphic unit (Priabonian in this case) at a litho-

logic level that does not directly coincide with a biostratigraphic and/

or magnetostratigraphic event has the clear advantage of making the

GSSP easily recognizable in the field as the Tiziano bed stands out clearly

relative to the surrounding featureless and rapidly eroding marls.

The high number of closely spaced events that accompany the Tiziano

Bed guarantees a high degree of correlatability of the Priabonian

GSSP well outside the Alano section where it is formally defined. 

Within this conceptual frame, we propose to the ICS that the base

of the Priabonian is to be defined at the base of a prominent crystal

tuff layer named the ‘Tiziano bed’, positioned at 63.57 m level in the

Alano section. This is proposed as the primary marker horizon in the

sense of Remane et al. (1996) and although we are aware that in and

of itself it has limited and only local correlation potential, it is sur-

rounded by a set of biostratigraphic and non-biostratigraphic events

that permit easy correlation out of the GSSP section. Moreover it has

the rare advantage of being amenable to direct and precise age-dating

by radioisotopic methods (i.e., 206Pb/238U zircon dates) which can then

be compared with advantage to ages derived from interpolation between

magnetic reversal datums on magnetochronologic timescales and

astronomical dating using orbital cyclicity expressed in the sedimen-

tary facies at Alano (Galeotti et al., 2019). 

The Proposed GSSP of the Priabonian

The main motivation in proposing the base of the Tiziano bed in the

Alano section as the base of the Priabonian Stage is that this level is

surrounded by a key set of events that have good correlation potential

and allow the recognition of the Priabonian Stage out of the section in

which it is formally defined. The definition we propose here is histori-

cally appropriate and respectful of most of the commonly accepted

paleontological events that have, historically, been used to approxi-

mate this boundary because:

1. It is in the same region as the historically important Priabona sec-

tion that gives the stage its name, and in its auxiliary sections; the pro-

posed GSSP lies stratigraphically below the base of the Priabona section

and so incorporates it;

2. the double extinction of large acarininids and Morozovelloides,

which have previously been considered to be within the Bartonian,

would remain in the Bartonian;

3. The common and continuous presence of I. recurvus, which has

widely been considered an intra-Priabonian calcareous nannofossil

biohorizon, would remain in the Priabonian;

4. The Base of N. fabianii, which is considered an unquestionable

Priabonian benthic larger foraminiferal biohorizon, would remain in

the Priabonian. However, a limitation of the proposed definition con-

cerns the stratigraphic range of several benthic larger foraminiferal

taxa across the Bartonian-Priabonian transition and, specifically, there

are some larger benthic foraminifera taxa traditionally considered to

be Bartonian which could now lie in the Priabonian (e.g. Nummulites

biedai and N. maximus). 

Last but not least, as strongly suggested by the ICS revised guide-

lines, the Alano section meets a set of non-biostratigraphic requirements

such as a solid magnetostratigraphic record, a firm astrochronological

tuning based on cycle counting of δ13C and wt.% CaCO3 records, com-

plete carbon and oxygen isotope profiles, and a precise U-Pb radio-

isotopic dating of the Tiziano Bed, the crystal tuff layer chosen to define

the base of the Priabonian. It is also easily accessible and the GSSP

will remain obvious despite being in a relatively rapidly eroding section.

The proposed GSSP of the Priabonian

Name of the boundary: Base of the Priabonian.

Rank of the Boundary: Stage/Age.

Position of the unit: Upper part of the Eocene Series, between the

Bartonian (below) and the Rupelian (above) stages.

Type locality of the Global Stratotype Section and Point: Alano

section at Alano di Piave, southern part of the Belluno Province, Veneto

region, northeastern Italy, Europe.

Geographic location: The Alano section crops out for ~ 500 meters

along the banks of the Calcino Creek, between the small villages of

Colmirano and Campo, ~ 1 km NE of Alano di Piave village. In corre-

spondence to the section, the Calcino Creek has deeply eroded the

Quaternary deposits exposing the marly substratum in banks of 2 up

to 6 meters high, along which the succession is cropping out continu-

ously. Latitude: 45°54'51.10"N; Longitude: 11°55'4.87"E (WGS84;

Fig. 1).

Map: The area is included on the “Carta Topografica d’Italia” at

1:25:000, Tavoletta Cavaso del Tomba, F° 37, I S.E. A detailed geo-

logic map of the Alano area is reported in Agnini et al. (2011; Fig. 2).

Accessibility: Alano di Piave village is easily reached by the regional

roadway SR 348 and provincial roadway SP10. The easiest way to

access the section is to pass the small Colmirano village and reach the

soccer field indicated in Fig. 1. Departing from the parking area of the

soccer field there is an easy walk of some 300-400 m in a plain grass

field that leads you to the base of the section (Fig. 1).

Conservation: Since the end of 2013, the Alano section has been

included in the Italian geosite inventory by the Institute for Environ-

mental Protection and Research, ISPRA (Istituto Superiore per la Pro-

tezione e la Ricerca Ambientale) (http://sgi1.isprambiente.it/geositiweb/

Default.aspx) 

GSSP definition: The base of the Tiziano bed, a prominent crystal

tuff layer positioned at 63.57 m level in the Alano di Piave section, is
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the GSSP of the base of the Priabonian Stage. An age of 37.762 ±

0.077 Ma (2σ analytical and systematic uncertainty) Ma has been

assigned to this level based on U-Pb radioisotopic data complemented by

an age of 37.710 ± 0.01 Ma based on counting astronomical cycles in

the carbon isotope record (Galeotti et al., 2019). The Tiziano bed is ~ 6

meters above the Top of large acarininids (57.32 m level) and Moro-

zovelloides (57.52 m level) and close to the Base of common and con-

tinuous C. erbae (62.96 m level or -0.61 m from the Tiziano bed) and

Top of C. grandis (66.47 m level or + 0.49 m from the Tiziano bed)

(Fornaciari et al., 2010; Agnini et al., 2011). The Base of Subchron

C17n.3n (52.62 m level) is positioned ~ 11 m below the base of Tiziano

bed, whereas the closest polarity inversion, i.e. the Base of Subchron

C17n.2n (62.48 m level or -1.09 m from the Tiziano bed), is just below

the base the crystal tuff layer (Fig. 3; Table 1).

Identification in the field: The base of the 14-16 cm-thick green to

grey tuff layer named the Tiziano bed. Identification in the field and

resampling of the section are facilitated by the presence of multiple

sandy-silty layers that represent useful marker beds along the section.

A metal tag will be applied at the base of the boundary level.

Completeness of the section: The Alano section contains excellent

and continuous faunal/floral and magnetic polarity records across the

Bartonian to Priabonian transition. All the reference biostratigraphic and

magnetostratigraphic events are present. If hiatuses occur, their dura-

tions are below the resolution provided by bio-magnetostratigraphic

datums. An average sediment accumulation rate of ~ 2.4 cm/kyr (not

corrected for compaction) was estimated assuming constant sediment

accumulation rates between magnetochron boundaries (Agnini et al.,

2011).

Global correlation: The global correlation of the Priabonian GSSP

is assured by different events, applicable in marine and continental

stratigraphic records over large areas and depositional settings. The

Base of Subchron C17n.3n (52.62 m level) is located 10.95 m below

the proposed GSSP and serves as a good approximation of the base of

the Priabonian in continental and marine settings. The floating chronology

available for the Alano section indicates that this event precedes the

Priabonian GSSP by 290 kyr (Fig. 3; Galeotti et al., 2019). Though the

Base of Chron C17n has surely the highest correlation potential among

the polarity reversals across the critical interval, the closest magneto-

stratigraphic boundary is the Base of Subchron C17n.2n (62.48 m level),

which is positioned 1.09 m below the Tiziano Bed preceding the base

of the Priabonian by 30 kyr (Fig. 3; Galeotti et al., 2019). Based on

precession cycle counting the base of the Tiziano bed lies at ~12% of

Subchron C17n.2n.

In Fig. 3 (and Table 1) the age of the Tiziano bed, that is the base of

the Priabonian, is compared with biochronologic data based on calcar-

eous plankton, the most powerful correlation tool available in Cenozoic

marine sediments. The extinction of the large acarininids and Moro-

zovelloides approximates the base of the Priabonian within 170-173

kyr (Fig. 3; Galeotti et al., 2019). The Base of calcareous nannofossil

C. oamaruensis should be used with extreme caution because this

taxon is exceedingly rare at low to middle latitudes (Fornaciari et al.,

2010). However, two highly reliable calcareous nannofossil biohori-

zons, the Base of common and continuous C. erbae (62.92 m level;

-20 kyr) and the T of C. grandis (66.47 m level; +22 kyr) are recorded

close to the Tiziano bed (Fig. 3; Table 1). These biohorizons were tested

outside the GSSP section to evaluate their reproducibility. The same

ranking and spacing was observed when several on-land and oceanic

successions were compared (Fornaciari et al., 2010; Agnini et al., 2011).

The proposed definition of the GSSP of the Priabonian will serve to

overcome the present state of uncertainty in recognizing the Barto-

nian/Priabonian boundary.

Previous votes: During the Priabonian Working Group meeting

held in 2012 in Alano (Italy), the Alano section was elected as a suit-

able candidate for the Priabonian GSSP with an unanimous decision

adopted by the Priabonian Working Group, which also voted in favor

of the Tiziano bed, as the formal definition of the Priabonian GSSP

(see Appendices 1,2 for details).

The International Subcommision on Paleogene Stratigraphy (ISPS)

and the International Commission on Stratigraphy (ICS) approved the

Priabonian GSSP proposal on August 28th 2019 and January 17th 2020,

respectively. The IUGS Executive unanimously ratified the Eocene

Priabonian Stage GSSP on February 17th 2020.
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Appendices

Appendix 1. Composition of the Alano Working Group

Name e-mail Affiliation Expertise

1 Agnini Claudia claudia.agnini@unipd.it University of Padova (Italy) calcareous nannofossils

2 Alegret Laia laia@unizar.es Zaragoza University (Spain) small benthic foraminifera

3 Arenillas Ignacio ias@unizar.es Zaragoza University (Spain) planktonic foraminifera

4 Backman Jan backman@geo.su.se Stockholm University (Sweden) calcareous nannofossils

5 Balini Marco marco.balini@unimi.it University of Milan (Italy) biostratigraphy

6 Fornaciari Eliana eliana.fornaciari@unipd.it University of Padova (Italy) calcareous nannofossils

7 Galeotti Simone simone.galeotti@uniurb.it University of Urbino "Carlo Bo" (Italy) cyclostratigraphy

8 Giusberti Luca luca.giusberti@unipd.it University of Padova (Italy) Small benthic foraminifera

9 Grandesso Paolo paolo.grandesso@libero.it University of Padova (Italy) stratigraphy

10 Lanci Luca luca.lanci@uniurb.it University of Urbino "Carlo Bo" (Italy) magnetostratigraphy

11 Luciani Valeria valeria.luciani@unife.it Ferrara University (Italy) planktonic foraminifera

12 Mietto Paolo paolo.mietto@unipd.it University of Padova (Italy) stratigraphy

13 Molina Eustoquio† emolina@unizar.es Zaragoza University (Spain) planktonic foraminifera

14 Monechi Simonetta simonetta.monechi@unifi.it Univerisity of Florence (Italy) calcareous nannofossils

15 Muttoni Giovanni giovanni.muttoni1@unimi.it University of Milan (Italy) magnetostratigraphy

16 Pälike Heiko hpaelike@marum.de Bremen University (Germany) cyclostratigraphy

17 Pampaloni Maria Letizia marialetizia.pampaloni@isprambiente.it ISPRA Roma (Italy) biostratigraphy

18 Papazzoni Cesare A. cesareandrea.papazzoni@unimore.it University of Modena and Reggio Emilia (Italy) larger benthic foraminifera

19 Pearson Paul PearsonP@cardiff.ac.uk Cardiff University (United Kingdom) planktonic foraminifera

20 Pichezzi Rita rita.pichezzi@isprambiente.it ISPRA Roma (Italy) biostratigraphy

21 Pignatti Johannes johannes.pignatti@uniroma1.it University of Rome "La Sapienza" (Italy) larger benthic foraminifera

22 Premoli Silva Isabella isabella.premoli@unimi.it University of Milan (Italy) planktonic foraminifera

23 Raffi Isabella raffi@unich.it "Gabriele d'Annunzio" University of 
Chieti-Pescara (Italy)

calcareous nannofossils

24 Rio Domenico domenico.rio@unipd.it University of Padova (Italy) calcareous nannofossils

25 Rook Lorenzo lorenzo.rook@unifi.it Univerisity of Florence (Italy) vertebrate paleontology

26 Stefani Cristina cristina.stefani@unipd.it University of Padova (Italy) sedimentology

27 Wade Bridget b.wade@ucl.ac.uk University College London (United Kingdom) planktonic foraminifera

Appendix 2. Results of the ballots* of the working group

1) Is the Alano section the best candidate for defining the Priabonian 
GSSP? Alano meeting (June 9-10, 2012). Please corfirm your vote.

Alano voting 
members ABSENT TOTAL 

voters
IN 

FAVOR AGAINST NULL ABSTAIN

27 3 24 23 0 0 1

voter percentage (%) 88.9

results (%) 95.8 0.0 0.0 4.2

2) Is the Tiziano bed the best definition for the Priabonian GSSP? 
Alano meeting (June 9-10, 2012). Please corfirm your vote. 

27 3 24 19 4 0 1

voter percentage (%) 88.9

results (%) 79.2 16.7 0.0 4.2

3) Is the Alano section the best candidate for defining the Pria-
bonian GSSP? Present ballot (to vote by July 10, 2015)

Alano voting 
members

NOT 
VOTING

 TOTAL 
voters

IN 
FAVOR AGAINST NULL ABSTAIN

27 2 25 25 0 0 0

voter percentage (%) 92.6

results (%) 100.0 0.0 0.0 0.0

4) Is the Tiziano bed the best definition for the Priabonian GSSP? 
Present ballot (to vote by July 10, 2015)

27 2 25 20 4 0 1

voter percentage (%) 92.6

results (%) 80.0 16.0 0.0 4.0

*The ballot was repeated in 2015 to give all the members of the working group the chance to vote, in fact in 2012 not all the members were present in
Alano di Piave during the meeting.
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Plates

Plate I. (after Agnini et al., 2011). Microphotographs of selected calcareous nannofossil taxa from the Bartonian-Priabonian Alano section
(northern Italy). 1, 2 — Isthmolithus recurvus. Sample COL 4645c (1. parallel light; 2. crossed nicols). 3 — Chiasmolithus oamaurensis.
Sample COL 5225c. Crossed nicols. 4 — Chiasmolithus grandis. Sample COL 40a. Crossed nicols. 5, 6 — Cribrocentrum erbae (5. sample
COL 3521c, crossed nicols; 6. sample 171B-1052B-10H-2w, 130 cm, crossed nicols). 7 — Cribrocentrum reticulatum. Sample COL 10b.
Crossed nicols. 8 — Chiasmolithus solitus. Sample COL 40a. Crossed nicols. 9–11 — Sphenolithus obtusus. Sample COL 1285b (9. crossed
nicols 0°; 10. crossed nicols 45°; 11. crossed nicols 20°). 12 — Reticulofenestra umbilicus. Sample COL 40a. Crossed nicols. 13 — Dictyococ-
cites bisectus. Sample COL 40a. Crossed nicols. 14 — Dictyococcites hesslandii. Sample COL 40a. Crossed nicols. 15, 16 — Sphenolithus
furcatolithoides. Sample COL 0 (15. crossed nicols 0°; 16. crossed nicols 45°).
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Plate II. (after Agnini et al., 2011)1–23: Planktonic foraminiferal scanning electron micrograph (SEM) images of selected zonal markers
from the Bartonian-Priabonian Alano section (northern Italy). large acarininids: 1, 2 —Acarinina topilensis. Sample COL 345 b (1. ventral
view; 2. spiral view). 3, 4 — Acarinina rohri (3. sample COL 40a, spiral view; 4. sample COL 600a, spiral view). Small acarininids: 5, 6 —
Acarinina medizzai. Sample COL 2799c (5. ventral view; 6. spiral view). 7, 8 — Acarinina echinata. Sample COL 4845c (7. ventral view; 8.
ventral view). 9 — Morozovelloides coronatus. Sample COL 2496c, ventral view. 10 — Morozovelloides crassatus. Sample COL 732c, ventral
view. 11–15 — Turborotalia cocoaensis (11, 12, 13 — sample COL 520a [horizon of lowest occurrence of the species], profi le; 14. sample
COL 600 a, ventral view; 15 — sample COL 1285b, profile). 16, 17 — Globigerinatheka semiinvoluta. Sample COL 4605c. 18, 19 — Orbuli-
noides beckmanni. Sample COL 440a. 20–23 — Guembelitroides nuttalli (20. sample COL 240a, spiral side; 21. sample COL 3701c, spiral
side; 22. sample COL 492c, ventral side; 23 — sample COL 3281c, lateral side). Scale bar = 100 μm.


