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Abstract: The detection of building edges from very high resolution (VHR) remote sensing imagery is
essential to various geo-related applications, including surveying and mapping, urban management,
etc. Recently, the rapid development of deep convolutional neural networks (DCNNs) has achieved
remarkable progress in edge detection; however, there has always been the problem of edge thickness
due to the large receptive field of DCNNs. In this paper, we proposed a multi-scale erosion network
(ME-Net) for building edge detection to crisp the building edge through two innovative approaches:
(1) embedding an erosion module (EM) in the network to crisp the edge and (2) adding the Dice
coefficient and local cross entropy of edge neighbors into the loss function to increase its sensitivity to
the receptive field. In addition, a new metric, Ene, to measure the crispness of the predicted building
edge was proposed. The experiment results show that ME-Net not only detects the clearest and
crispest building edges, but also achieves the best OA of 98.75%, 95.00% and 95.51% on three building
edge datasets, and exceeds other edge detection networks 3.17% and 0.44% at least in strict F1-score
and Ene. In a word, the proposed ME-Net is an effective and practical approach for detecting crisp
building edges from VHR remote sensing imagery.

Keywords: building edge detection; deep convolutional neural network; erosion module; very high
resolution remote sensing imagery

1. Introduction

Buildings are one of the most significant elements in urban landscapes and are highly
dynamic [1]. Automatic extraction of buildings is a long-standing problem [2–7] in urban
scene classification, land use analysis, and automated map updating. The research related
to building extractions can be broadly categorized as “building region detection” and
“building edge detection”. Building region detection aims to extract the entire building
surface and roof, whereas the purpose of building edge detection is to extract the edges of
buildings. The former needs to determine whether each pixel of the building, including
the building surface, has architectural attributes, while the latter only requires to identify
the edge pixels of the building. In addition, the algorithm design for the two tasks are
completely different. Building region detection utilizes the spectral and texture features
of buildings primarily, whereas building edge detection predominantly uses geometric
features and mathematical morphology. Intuitively, the results from both categories can be
converted to each other, so research typically focuses on building region detection [8–12]
rather than building edge detection. This leaves the question: is building edge detection
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necessary? The answer is, of course, yes. The main reason is that the accuracy of the edge
converted from the results of building region detection is lower than direct building edge
detection, which will be demonstrated through various experiments.

Building edge detection belongs to the category of image edge detection in computer
vision, so all image edge detection algorithms can be adopted. Image edge detection
is the cornerstone of object proposal [13] and image segmentation [14]. The history of
image edge detection can be divided into two stages: prior to deep learning [15–20]
and deep learning afterwards [21–24]. Recently, deep convolutional neural networks
(DCNNs) have been used widely in scene classification [25–28], object detection [29–31]
and image recognition [32]. In particular, alongside the rapid growth of DCNNs, many
well-known DCNNs-based edge detection methods such as HED [33], RCF [34], CED [35],
BDCN [36], Dexined [37] and DRC [38] have achieved remarkable increase in accuracy
on the BSDS500 [39] benchmarks and even exceeded human performance. However, the
majority of these edge detection methods comes from the field of computer vision rather
than remote sensing image processing, and the images to be extracted are natural images
rather than remote sensing images. Therefore, it is necessary to determine whether these
edge detection methods in computer image processing can be applied for building edge
detection using remotely sensed imagery. Shao et al. [3] proposed a novel boundary-
regulated network for automatic segmentation and outline extraction using VHR aerial
images. However, this method results in the building edge serrated and the building roof
separated. Ming et al. [40] re-trained the RCF network to detect building edges on the
Massachusetts building dataset and involved a geomorphological concept to refine the
edge probability map, and the experiment showed a high F-measure. However, it only
analyzed the effect of the RCF network combined with a new post-processing refinement
method, and further research is needed.

To analyze the effect of the networks comprehensively from the field of computer
image processing on the building edge detection of remote sensing imagery, this study con-
siders several recently published state-of-the-art networks, including HED [33], RCF [34],
BDCN [36] and DRC [38], for building edge detection experiments to determine which
network performs better in remote sensing imagery. In addition, in order to ensure the relia-
bility of experimental verification, this study makes three standard remote sensing datasets
of building edges, in which all the effects of building edge detection were evaluated.

For building edge detection based on DCNNs, an inevitable problem is the thickness
of the edge. With an increase in the number of convolutional network layers, the receptive
field will increase, which will lead to similar responses of neighboring pixels and thick
edges. For remote sensing applications, a crisp building edge is essential, especially in
surveying and mapping; only a crisp edge can meet the accuracy standard. To date,
some experiments have been conducted to reduce the width of the edge from different
angles, and CED [35] adopted a top-down backward-refining pathway and designed an
edge refinement module that up-samples the feature map with sub-pixel convolution.
In addition, because a distinct characteristic of the edge map is that the vast majority of
the pixels are non-edges, LPCB [41] optimized an image-similarity-based loss function,
which refined the edge probability map by solving the class-imbalance problem. However,
the issue of coarse edges is still deeply rooted in modern convolutional neural network
architecture [42]. BDCN [36] was considered as the most outstanding network, but the
prediction edge is not clear and crisp enough. To address this problem, based on the
architecture of BDCN [36], we proposed a multi-scale erosion network (ME-Net) to predict
crisp building edges. Our network applies a core erosion module (EM) to filter the building
edge probability map with mean filtering layers so that the low probability value of
building thick edges is refined from the outermost edge pixel by pixel. We also add a new
loss function to perform weighted cross entropy in the local range of label positive samples,
focusing on punishing the error prediction of thick edges in the training process.

The primary purpose of this study is to obtain a crisp building edge; therefore, mea-
suring the crispness or thickness of the edge is critical. To the best of our knowledge, there
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are no such metrics for such kind of measurement. Generally, the F1-score, a synthetic
measurement of precision and recall, is used to evaluate the accuracy of edge detection [40].
This paper identifies the weakness of F1-score for not being able to measure the crispness
or thickness of the edge. Then, based on the idea of non-edge energy, a new metric that
can measure the edge crispness is proposed to compare the crispness of different edge
detection algorithms. In summary, the primary contributions of our study are as follows:

1. We constructed the Jiangbei New Area building edge dataset and reconstructed two
building edge datasets based on the public Massachusetts and Inria building region
datasets; We then re-trained and evaluated the state-of-the-art DCNNs-based edge
detection networks (HED, DRC, RCF, and BDCN) on the three large building edge
datasets of very high resolution remote sensing imagery;

2. Based on the architecture of BDCN, a multi-scale erosion network (ME-Net) was
proposed to detect crisp and clear building edges by designing an erosion module
(EM) and a new loss function. Compared with the state-of-the-art networks on
each dataset, the results demonstrated the universality of the proposed network for
building edge extraction tasks;

3. We proposed a new metric of non-edge energy (Ene) to measure the non-edge noise
and thick edge, and the metric has shown reliability by exhaustive experiments and
visualization results of crisp edges.

The remainder of this paper is organized as follows. In Section 2, the dataset and
pre-processing are introduced in detail. Section 3 illustrates the architecture of the proposed
ME-Net and explains the composition and function of each module. In Section 4, the results
of the four networks and our ME-Net are compared. Discussion and conclusions regarding
our study are presented in Sections 5 and 6, respectively.

2. Dataset Construction

For training deep neural networks, it is necessary to construct building edge datasets
with quantities of labeled benchmarks. In recent years, semantic segmentation networks
have shown significant classification capabilities on different building region datasets,
including the Massachusetts dataset [9,43,44] and the Inria dataset [9,12,45,46]. The two
datasets consist of original high-resolution remote sensing images and building region
maps, and we need to convert the building region maps to building edge maps for training
building edge detection networks. In addition, Jiangbei New Area, Nanjing City, Jiangsu
Province, China, is included as the study area in this paper. We constructed the Jiangbei
New Area building edge dataset through the visual interpretation of the unmanned aerial
vehicle (UAV) aerial image.

2.1. Jiangbei New Area Building Dataset

This dataset is based on digital orthophoto imagery from aerial photography of
unmanned aerial vehicles in the Jiangbei New Area in October 2019. As shown in Figure 1,
the entire area covers 53.67 km2 with a size of 27,337 × 21,816 pixels (0.3 m ground
resolution) and contains 7602 independent buildings. The benchmarks were labeled by
manual visual interpretation and were highly accurate. The construction of this building
edge dataset is composed of the following three steps:

(1) The manually vectorized building edge maps were converted to raster binary label
images;

(2) To avoid memory overflow caused by large images, the original aerial images and
label images were cropped into patches of 256 × 256 pixels;

(3) The patches containing buildings were augmented by rotating them 90◦, 180◦, and
270◦.
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Figure 1. Our self-constructed Jiangbei New Area building edge dataset. (a) The study area of Jiangbei New Area. (b) UAV
digital orthophoto imagery. (c,d) Enlarged image samples with manual edge labels in the red boxed areas of (b).

The final number of patches in the training, validation, and test sets were 8000, 100,
and 106, respectively.

2.2. Massachusetts Building Dataset

The Massachusetts Buildings Dataset [43] is an aerial image building dataset marked
by the University of Toronto in 2013. As shown in Figure 2a, this dataset covers 364.5 km2

with 151 images of 1500 × 1500 pixels each. The ground resolution of this dataset is 1 m,
which is lower than that of the Jiangbei New Area building dataset. Therefore, we used
this dataset to compare the network performance of the processing of blurred images in
high-resolution images.

As shown in Figure 2b, the original building regions label was obtained by rasterizing
the high quality building footprints obtained from the Boston OpenStreetMap project, and
it includes two classes: building (red) and background (black). To obtain the building
edges label, we use a function of Bwperim in MATLAB, which can return a binary image
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that only contains the perimeter pixels of objects in the input image; a pixel is part of the
perimeter if it is nonzero and it is connected to at least one zero-valued pixel [47]. The
perimeter pixel of building regions label is building edge pixel, so this function can be used
to covert building regions label into building edges label, and the building edges label is
shown in Figure 2c.
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Figure 2. Samples of Massachusetts Building Dataset: (a) original image; (b) original building regions label; (c) building
edges label.

After conversion, the aerial images and building edges labels were cropped into
patches of 256 × 256 pixels. The training patches were selected without cloud obstruction
and augmented by rotating 90◦, 180◦, and 270◦. Finally, the Massachusetts building edges
dataset is divided into training, validation, and test sets with sizes of 10,500, 100, and
250 patches.

2.3. Inria Building Dataset

The Inria Aerial Image Labeling dataset was proposed in [45]. The Inria dataset covers
a large area of 810 km2 in 10 cities and contains 360 aerial orthophoto images with a spatial
resolution of 0.3 m. As shown in Figure 3a,b, each image has a size of 5000 × 5000 pixels,
and each label contains two semantic categories: building and non-building regions. The
urban landscape of this dataset is distributed from developed cities with dense populations
to mountainous towns, which is valuable for analyzing the generalization ability of different
networks.

This dataset only releases the building regions labels of 180 images in the training set,
so we followed the suggestions of [9,11,45] and selected the first five original images of
each city for testing. The measure to convert this building segmentation dataset is the same
as the Massachusetts dataset, and the enlargement sample of the building edges label is
shown in Figure 3f. Notably, because the Inria dataset has sufficient training samples, data
augmentation is not performed. Eventually, 55,955 training patches and 9025 test patches
were generated in the Inria building edge dataset for the experiment preparation.
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3. Methodology

In this study, we followed the scale enhancement module (SEM) and bi-directional
cascade transmission of BDCN [36], and designed a multi-scale erosion network (ME-
Net) to extract crisp building edges by adding the erosion module to the network and
constructing a loss function for edge thinning.

3.1. Architecture Overview

ME-Net is proposed as an end-to-end network that extracts building edge pixels from
input high-resolution images. The backbone is VGG16 [48], because the fully connected
layers greatly reduced the efficiency of training and the last pooling layer produced a too
fuzzy building edge prediction map, so the three fully connected layers and the last pooling
layer of VGG16 are removed. The network architecture is illustrated in Figure 4. ME-Net
consists of five similar side layers, and each side layer includes several consecutive steps:
first, the convolution layer and the maxpooling layer for extracting image features (input:
original image; output: image feature map); second, the scale enhancement module (SEM)
for extracting multi-scale edge features with the least parameters (input: image feature
map; output: building edge feature map); third, the upsampling block for improving the
resolution of feature map (input: building edge feature map; output: building edge feature
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map); last, the erosion module (EM) for crisping the building edge pixels (input: building
edge feature map; output: building edge probability map).
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Figure 4. Overview of our proposed ME-Net architecture.

Different sizes of building edges cannot be detected at the same scale, so each side
layer of different receptive fields is used to detect edges at different scales. In addition,
after the erosion module, we follow the BDCN [36] pathway of bi-directional cascade
transmission to enrich building edge features. Each side layer propagates two outputs
from its adjacent layers and detects the building edges in an incremental manner. Finally, a
total of 10 side layer outputs and one fusion layer output are calculated loss with the label.

To remove small non-building edges, such as chimneys or windows, we have to extract
rich multi-scale edge features with the least convolution kernel parameters. Therefore,
we set a scale enhancement module (SEM) [36] at each stage, and the details of the SEM
are shown in Figure 5a, including a standard 3 × 3–32 convolution layer, three 3 × 3–32
dilated convolution [49] layers with dilations of 4, 8, and 12, respectively. As can be seen
in Figure 5b,c, with the same number of parameters, a 3 × 3 dilated convolution kernel
with dilations of 4 expands the receptive field from 3 × 3 to 9 × 9, and extracts deep edge
information at a large scale.

3.2. Erosion Module

Erosion (usually represented by 	) [50] is one of two basic operators (the other being
dilation) in mathematical morphology, and it can be used for binary or grayscale images.
The function of erosion for grayscale images may be expressed as follows:

( f	b)(x) = in f
y∈B

[ f (x + y)− b(y)] (1)

where f (x) denotes the grayscale image to be erode, b(x) denotes the grayscale structuring
element, and ”inf ” denotes the infimum.
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Following the idea of erosion, this study designed an erosion algorithm to crisp the
edge probability map. Figure 6f shows the probability map of an enlarged edge segment
with a width of nearly six pixels. It can be seen that the probability value is large in the
middle and small on both sides of the edge, and it is feasible to weaken the outermost
pixel values to refine the edges. Motivated by the mean smoothing operator, we designed
an erosion module (EM) with two stages to erode the outermost edge pixels, the details
of which are shown in Figure 6e. The EM includes three threshold filtering layers for
screening the input building edge probability map and filtering out the edge pixels with the
value less than the filter threshold (the filter threshold is set to 0.5). The EM also includes
twice repeated mean filtering, that is, for every pixel, the median of neighboring pixels in a
3 × 3 window is calculated, and a value less than the filter threshold is filtered out; this
operation is performed twice, and each output is shown in Figure 6c,d. As shown by the
red pixels in Figure 6f, the pixel value is 0.98 in the middle and 0.67 in the outermost side;
after the mean filtering of the first stage, the pixel value changes to 0.95 in the middle and
to 0.47 in the outermost side. It is clear that the center edge pixel with a large probability
value is almost unchanged, whereas the outermost edge pixel with a small probability
value is weakened.

In this study, the EM is placed at the tail end of each side layer in ME-Net. Thus, each
side layer can not only monitor the edge characteristics of different scales, but also generate
accurate and crisp building edges after fusion.

3.3. The Proposed Loss Function for Crisp Edge Detection

The loss function, also known as the cost function, aims to minimize the difference
between the prediction and ground truth. Generally, very high resolution aerial imagery
contains complex ground objects, such as buildings, roads, playgrounds, and trees. The
effective loss function can not only suppress non-building edge information interference
but also predict crisp building edges.
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Figure 6. The erosion module (EM) and an example of Jiangbei building edge dataset: (a) original image; (b) the building
edge probability map before EM; (c) the output after the first stage of EM; (d) the output after the second stage of EM;
(e) the details of EM; (f–h) enlargements of red boxed areas in (b–d).

The building edge extraction can be regarded as the binary classification of pixels, and
the most commonly used loss function is binary cross entropy (BCE). However, unlike the
issue of image classification or image segmentation, the number of edges/non-edges is
imbalanced, and the BCE loss function will lead the training model to focus on the category
with a large number of samples, whereas the model will ignore the category with a small
number of samples; thus, the generalization ability of the model on the test data will be
affected. HED [33], RCF [34] and BDCN [36] used weighted binary cross entropy instead,
which has the form:

Lweighted−BCE = −|Y−||Y| ∑
i∈Y+

·pi · log(gi)−
|Y+|
|Y| · balance ∑

i∈Y−

(1− pi) · log(1− gi) (2)

where pi and gi denote the value of the i-th pixel in the prediction result and the ground
truth label, respectively. Y+, Y−, and Y denote the edge sample set, non-edge sample set,
and total sample set in the label, respectively. Balance is the balance coefficient with a
default value of 1.1.

Although the weighted binary cross entropy offsets the imbalance between edges and
non-edges in edge detection [33], the “thickness” problem remains unsolved. Another
approach to solving the issue of edge thickness employs the Dice coefficient. VNet [51]
first validated the effectiveness of Dice loss, which was later widely used in medical image
segmentation. Following this idea, LPCB [41] proposed a new loss function (Ld), allowing
for the generation of crisp edges, and the training process is more stable than Dice loss. Ld
is given by the following equation:

Ld =
∑N

i p2
i + ∑N

i g2
i

2∑N
i pigi

(3)



Remote Sens. 2021, 13, 3826 10 of 24

where pi and gi denote the value of the i-th pixel in the prediction result and the ground
truth label, respectively.

The above work obtains a relatively fine edge; in fact, there is still great space for
improvement. Large receptive fields can lead to similar responses of neighboring pixels
and lead to thick edges, which means that the loss function is not sensitive enough near the
edge. Therefore, we enhance the sensitivity of the loss function near the edge by adding a
function that focuses on the loss near the edge pixel. We call it Llocal, which is the weighted
cross entropy in the eight neighborhoods of label edge pixels, focusing on suppressing the
error prediction of thick edges within the local range of positive samples in the label. Llocal
can be expressed as:

Llocal = −
|Ylocal−|
|Ylocal | ∑

i∈Y+

·pi · log(gi)−
|Y+|
|Ylocal |

· balance ∑
i∈Ylocal−

(1− pi) · log(1− gi) (4)

where Ylocal− and Ylocal denote the non-edge sample set and total sample set in the eight
neighborhoods of the edge sample in the label, respectively.

To achieve better performance, we proposed combining the three loss functions above
by setting the corresponding hyperparameter. This can not only compare the prediction and
ground truth but also minimize their distance on the datasets. As a result, we calculated
the total loss of each side layer as well as the fusion layer and applied it to the network.
The final loss function is given by:

L f inal(P, G) = ∂Lside+ f usion
weighted−BCE(P, G) + βL f usion

d (P, G) + γL f usion
local (P, G) (5)

where P and G represent the prediction map and the ground truth label, respectively, and
α, β, and γ are the hyperparameters controlling the influence of the three losses. We tuned
the parameters as α = 1, β = 10, and γ = 1 with high accuracy.

3.4. Evaluation Metrics

Normally, six metrics are used to measure the effect of edge extraction: overall accuracy
(OA), precision, recall, F1-score (F1), intersection over union (IoU), and kappa coefficients
(Kappa):

Precision =
TP

TP + FP
. (6)

Recall =
TP

TP + FN
. (7)

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
. (8)

OA =
TP + TN

TP + FP + TN + FN
. (9)

IoU =
TP

TP + FP + FN
. (10)

Kappa =
p0 − pe

1− pe
. (11)

p0 =
TP + TN

N
. (12)

pe =
(TP + FP) ∗ (FN + TP) + (TN + FN) ∗ (FP + TN)

N2 . (13)

where N, TP, FP, TN, and FN represent the total samples and the true positive, false
positive, true negative, and false negative predictions, respectively. p0 and pe represent the
consistency rate in prediction and consistency rate, respectively, in expectation.
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3.5. The Proposed Ene for Edge Crispness Measuring

Among the above metrics, the F1-score is the most important because it is the harmonic
mean of the precision and recall. In edge detection by convolutional neural networks, the
result is a probability map with values between 0 and 1; it is necessary to set a threshold
(after this, called Th) of transforming the probability map into a binary map [52–54] larger
than Th for edge pixels, and Th is typically 0.5 [44]. Based on the edge pixels and non-edge
pixels, the number of positive and negative samples may be calculated, and the F1-score
may be achieved. However, the F1-score cannot measure the quality of edge probability
map entirely. If there are two edge probability maps in which the pixels larger than the Th
are the same, and the pixels smaller than the Th are different, then, the F1-score is the same.
As shown in Figure 7b,c, the left edge probability prediction is messier and thicker than
that on the right, but they achieved the same strict F1-score of 35.40%. This means that the
F1-score can only measure the quality of the part larger than Th in the edge probability
map and cover up the thickness issue of the edge. Therefore, we need an index to measure
the quality of a part with values less than a threshold in the edge probability map.
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We propose a new indicator called non-edge energy (Ene), which can measure the
quality of a part with values less than the threshold of calculating Ene in the edge probability
map effectively, which can be expressed as:

Ene =
∑ Pi
N

/
T . (14)

where T denotes the threshold of calculating Ene (default is 0.5), Pi denotes the probability
value of the i-th pixel that is less than T, and N denotes the number of pixels with probability
values less than T.

Ene can be understood as the even energy of non-edge pixels in the edge probability
map; the smaller the value, the smaller the non-edge noise. It also can reflect the edge
quality of human vision well, that is, whether or not the edge probability map is neat.

4. Experiments and Results

We test the edge detection of the proposed ME-Net based on three datasets and
compare the results with other state-of-the-art networks using the metrics described in
Section 3.4. There are two schemes for calculating metrics: strict and relaxed [55]. Mnih
et al. [43] introduced relaxed precision and relaxed recall as practical metrics for hard-
labeling datasets. The relaxed precision is defined as the fraction of predicted building
edge pixels that are within ρ pixels of a true building edge pixel, whereas relaxed recall
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is defined as the fraction of true building edge pixels within the ρ pixels of a predicted
building edge pixel [56]. Generally, the relaxation parameter ρ was set to 3 [43,57] for all
experiments discussed in this study.

4.1. Training Details

We implemented all the networks using PyTorch1.4.0 and Pytorchvision0.5.0, with
CUDA 9.2. All the experiments were conducted on an NVIDIA Quadro P4000 GPU with
16 GB of memory. We set iterations equal to the number of training data and adopt the
SGD optimizer to train our network. The initial learning rate, momentum, weight decay,
batch size, epoch of four datasets, training time of four datasets, step size of decreasing
learning rate, and model parameters are listed in Table 1. Notably, although the training
iterations may be slightly different from the published setting of the paper, we ensure
that the loss does not decreases and the network converges, so this does not affect the
comparison between the performance of networks.

Table 1. Hyperparameters and time of training DCNNs-based edge detection models on Jiangbei, Massachusetts, Inria and
BSDS500 1 datasets.

Model HED RCF BDCN DRC ME-Net

Learning rate 1e-6 1e-6 1e-6 1e-3 1e-6
Momentum 0.9 0.9 0.9 0.9 0.9

Weight decay 0.002 0.002 0.002 0.002 0.002
Batch size 10 10 1 1 1

Epoch 30, 30,
10, 10

30, 30,
10, 10

30, 30,
10, 10

8, 8,
4,8

30, 30,
10, -

Step size (proportion) 1/3 1/3 1/4 1/4 1/4
Parameter 14,716,171 14,803,781 16,302,712 32,336,202 16,302,925

Training Time (h) 5.5, 7.5,
10.8, 9.8

39.0, 16.5,
28.3, 31.8

61.0, 29.6,
51.0, 57.0

26.6, 18.4,
63.7, 97.6

43.5, 31.1,
42.5, -

1 The results on BSDS500 dataset will be shown in Section 5.1.

4.2. Comparison Experiments

In this study, we need to set three kinds of thresholds for training the ME-Net and
calculating the evaluation metrics: the first is the filter threshold in the erosion module
in Section 3.2, the second is the threshold of transforming the building edge probability
map into a building edge binary map in Section 3.5, the third is the threshold of calculating
Ene metric in Section 3.5. Considering the efficiency of training and the uniformity of
calculating metrics, all the thresholds are set to 0.5.

In order to compare our proposed ME-Net with the state-of-the-art edge detection
networks comprehensively, we show the comparison results of evaluation metrics and
building edge probability maps on the Jiangbei New Area dataset in Section 4.2.1, Mas-
sachusetts Dataset in Section 4.2.2, and Inria Dataset in Section 4.2.3.

4.2.1. Results on Jiangbei New Area Dataset

We trained HED, RCF, BDCN, DRC, and ME-Net and evaluated the metrics on the
Jiangbei New Area dataset. Table 2 lists the strict and relaxed quantitative evaluation
metrics of the different models on the test set. The strict OA of all networks remained
above 87%, and our ME-Net exceeded 97%. Evidently, ME-Net is superior to HED, DRC,
RCF, and BDCN in all seven metrics, except for the recall index. This can be explained by
the prediction of the crispest building edge, where the edges become thinner, the number
of false positive samples decreases obviously, but the number of false negative samples
increases at the same time, leading to a lower recall index. However, ME-Net achieves the
best balance between precision and recall, as can be seen from the highest F1-score. The Ene
is lower than 4% in the predictions of RCF and BDCN, and ME-Net achieves the minimum
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value of 1.98%, which means that our proposed network has the best constraint ability
on non-edge noise and thick edges. Moreover, compared with the results of BDCN, our
ME-Net improved by 1.55%, 7.05%, 9.94%, and 11.88% in relaxed OA, F1, Kappa, and IoU,
respectively.

Table 2. Evaluation results on the test set of Jiangbei New Area dataset. Each cell has the value with strict and relaxed
metrics and the best values are masked as bold (the lowest Ene indicates the clearest and crispest result).

Model Scheme OA (%) F1 (%) Precision (%) Recall (%) Kappa (%) IoU (%) Ene (%)

HED strict
relaxed

87.99,
90.28

17.08,
41.82

9.38,
26.78

95.31,
95.40

15.08,
38.63

9.34,
26.66 18.74

DRC strict
relaxed

91.56,
92.91

17.11,
36.90

9.80,
24.98

67.06,
70.54

15.18,
35.88

9.35,
23.84 10.80

RCF strict
relaxed

93.99,
96.25

29.07,
64.38

17.17,
48.71

94.84,
94.92

27.48,
63.36

17.01,
48.26 3.84

BDCN strict
relaxed

95.07,
97.20

33.42,
69.84

20.26,
55.11

95.21,
95.30

31.96,
69.25

20.06,
54.55 2.42

ME-Net strict
relaxed

97.34,
98.75

44.58,
76.89

30.54,
70.73

82.50,
84.21

43.51,
79.19

28.68,
66.43 1.98

Figure 8 shows three different cases of building edge probability maps in the test
dataset. The odd rows are test images and results with size of 1280 × 1280 pixels, and
the even rows are patches of 256 × 256 pixels in the selected areas by red boxes. The first
case compared the detection of large building edges from a school. HED and DRC could
not distinguish the building edge from the noisy edge. BDCN and ME-Net extracted a
clearer edge but missed a small part of it. The second case was used to show the edge
detection of small and dense residential buildings, compared with other networks, ME-Net
had the least false predictions. The last case was an edge detection of large office buildings.
RCF and BDCN performed better than HED and RCF with fewer negative roof edges, and
only ME-Net could predict all building edges, which almost matches the label. In short,
our ME-Net has the best performance with the most regular building edge shape and the
crispest edge.

4.2.2. Results on Massachusetts Dataset

In the Massachusetts building edge dataset, we evaluated 250 test images with a size
of 256 × 256 pixels. Table 3 lists the strict and relaxed quantitative evaluation metrics
of different models on the test set. Compared with Table 2, all the metrics of the five
networks decreased significantly because of the lower resolution in this dataset. Note
that our proposed ME-Net (95.00%) outperformed the HED (82.24%), DRC (80.99%), RCF
(87.39%), and BDCN (89.72%) in terms of relaxed OA, with a minimum increase of 5.28%.
Compared with the other four networks, despite having the lowest recall, our proposed
ME-Net with strict F1-score, precision, kappa, and IoU increased by 7.52%, 7.75%, 8.87%,
and 4.88% on average, respectively. Although our network is slightly inferior to BDCN
in terms of relaxed F1-score, we predict clearer and more acceptable building edges with
nearly half the Ene than BDCN.
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Table 3. Evaluation results on Massachusetts test set. Each cell has the value with strict and relaxed metrics and the best
values are masked as bold for columns 3–8. The last column is Ene, and the lowest value indicates the clearest and crispest
result.

Model Scheme OA (%) F1 (%) Precision (%) Recall (%) Kappa (%) IoU (%) Ene (%)

HED strict
relaxed

74.61,
82.24

19.31,
53.07

10.87,
38.17

86.19,
87.03

13.92,
45.95

10.69,
37.52 37.90

DRC strict
relaxed

74.18,
80.99

17.28,
47.78

9.74,
34.35

76.52,
78.45

11.76,
41.16

9.46,
33.35 24.56

RCF strict
relaxed

79.66,
87.39

23.48,
61.59

13.54,
47.05

88.54,
89.17

18.50,
56.68

13.30,
46.24 19.38

BDCN strict
relaxed

82.24,
89.72

25.82,
65.32

15.14,
51.77

87.69,
88.48

21.08,
61.82

14.83,
50.69 11.94

ME-Net strict
relaxed

90.99,
95.00

28.99,
62.69

20.07,
63.81

52.19,
61.61

25.18,
67.35

16.95,
53.91 5.78



Remote Sens. 2021, 13, 3826 15 of 24

Similar to Figures 8 and 9 presents some building edge probability map samples
of Massachusetts test images. The odd rows are the original test images with a size of
1500 × 1500 pixels, and the even rows are selected as the most common building complex
of 256 × 256 pixels in the red boxed areas above. As shown in the first two rows, when
detecting building edges near the lake, HED and DRC misclassified the edges of non-
buildings and created many noisy results. BDCN delivered a more effective and tidy
prediction than RCF, and our ME-Net detected the most accurate and crisp building
edge. For large-sized buildings in the 3rd and 4th rows, all networks misjudged the
small block on the roof except ME-Net, and BDCN and ME-Net predicted more true
positives for the relatively complete boundary prediction. The 5th and 6th rows are densely
distributed small-sized buildings, although ME-Net did not achieve a one-pixel-width
building edge, we predicted the clearest result for the lowest probability values of non-
buildings. Compared with the state-of-the-art DCNNs-based edge detection networks, we
predicted the best results in distinct buildings of the Massachusetts dataset.
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4.2.3. Results on Inria Dataset

In the Inria dataset, we evaluated 9025 test images with a size of 256 × 256 pixels.
Table 4 lists the strict and relaxed quantitative evaluation metrics of different models on
the test set. The Inria dataset covers the largest areas and most complicated types of cities,
resulting in the lowest label quality and accuracy. Nevertheless, ME-Net achieves the best
results with a relaxed OA of 95.51% and F1-score of 45.52%, which are observably higher
than the four comparable networks. In addition, our network achieves the highest Kappa
and IoU for the entire test set, meaning that our prediction results overlap the most with
the real ground truth. Moreover, it was observed that ME-Net outperformed HED, DRC,
RCF, and BDCN by 21.78%, 15.92%, 15.88%, and 12.52%, respectively. Similar conclusions
can be drawn that the comprehensive ability of ME-Net in this dataset is the best.

Table 4. Evaluation results on the test set of Inria dataset. Each cell has the value with strict and relaxed metrics and the
best values are masked as bold (the lowest Ene indicates the clearest and crispest result).

Model Scheme OA (%) F1 (%) Precision (%) Recall (%) Kappa (%) IoU (%) Ene (%)

HED strict
relaxed

81.29,
82.64

5.63,
17.42

2.96,
10.15

57.05,
61.35

3.84,
14.52

2.89,
9.93 25.10

DRC strict
relaxed

89.86,
90.89

7.99,
22.77

4.38,
14.67

45.02,
50.84

6.32,
21.82

4.16,
13.92 19.24

RCF strict
relaxed

89.61,
91.57

13.34,
38.51

7.26,
25.10

81.81,
82.70

11.76,
36.67

7.15,
24.70 19.20

BDCN strict
relaxed

88.55,
90.61

12.84,
37.49

6.94,
23.91

86.25,
86.85

11.23,
35.09

6.86,
23.64 15.84

ME-Net strict
relaxed

94.00,
95.51

17.49,
45.52

10.11,
34.03

65.01,
68.75

16.07,
46.91

9.58,
32.27 3.32

Considering the similarity of urban settlements, we show the building edge probability
map of the representative test images from three cities in Figure 10. The odd rows are
the original test images with a size of 5000 × 5000 pixels in Austin, Kitsap, and Tyrol,
and the even rows are samples of 256 × 256 pixels in the red boxed areas of interest. The
buildings in Austin are compact and orderly. Over such a wide area of edge detection, HED
produces many false positive predictions that lead to messy results, DRC cannot predict
the complete building contours, and ME-Net distinguishes the adjacent buildings most
effectively. Kitsap has sparse buildings because it covers a large area of forests, and the
irregular building edge extracted by RCF and BDCN is fuzzy, whereas ME-Net can better
judge non-building edges and provide clearer edge detection. For buildings of plain areas
in Tyrol, the accuracy of label is controversial due to fact that all the networks missed a
small indistinguishable building. Besides this, RCF and BDCN misclassified some shadow
and ground boundaries as building edges, and our ME-Net detected the cleanest and
crispest building edges in different types of cities and towns.

To further explore the improvements in our network compared to other networks,
several representative samples from the Inria dataset were selected for additional com-
parison. Actually, the lineness of edge pixels detected by DCNNs-based edge detection
networks can be further crisped, and at present, the non-maximum suppression (NMS)
method is the most primary post-process method. Figure 11 shows the detailed edge infor-
mation generated by different networks after the post-processing of NMS. Considering the
inaccuracy of the edge labels, an error of one pixel was allowed. First, for the small-sized
buildings and large buildings presented in the first and second samples in Austin, HED
and DRC incorrectly predicted many boundaries of roads, trees, and cars as building edges.
Compared with RCF and BDCN, ME-Net predicted more true positives (green pixels) and
true negatives (background pixels) and detected more complete building edges. Second, for
the dense and regular buildings of the third sample in Vienna, ME-Net predicted the fewest
false positives (red pixels) and false negatives (blue pixels). The last scene is an entire
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negative sample containing no buildings in Chicago. Obviously, our ME-Net predicted
the most accurate results with few building edges, whereas the other HED, DRC, RCF,
and BDCN had more or less false positive predictions. In general, the progression from
left to right in each row suggests that our proposed ME-Net performs better than other
state-of-the-art DCNNs-based edge detection networks.
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sized buildings and large buildings presented in the first and second samples in Austin, 
HED and DRC incorrectly predicted many boundaries of roads, trees, and cars as building 
edges. Compared with RCF and BDCN, ME-Net predicted more true positives (green pix-
els) and true negatives (background pixels) and detected more complete building edges. 
Second, for the dense and regular buildings of the third sample in Vienna, ME-Net pre-
dicted the fewest false positives (red pixels) and false negatives (blue pixels). The last 
scene is an entire negative sample containing no buildings in Chicago. Obviously, our 

Figure 10. Examples of building edge probability maps produced by five models on the Inria dataset. The first two, 3rd
and 4th, and 5th and 6th rows are the original test images and selected areas by red boxes in Austin, Kitsap and Tyrol,
respectively. Columns 1–7 are the images, ground truth labels and prediction results from HED, DRC, RCF, BDCN, and
ME-Net.
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predictions, respectively.

5. Discussion
5.1. Reliability Verification of Codes

We compared three datasets between our proposed network and the published net-
works of HED [33], RCF [34], BDCN [36] and DRC [38]; however, before making this
comparison, it is necessary to ensure that the implementation of these networks is correct.
Although the source code of these networks has been published, there are still missing of
many details in the implementation and training process of the network, including the
setting of hyperparameter of initial learning rate, momentum, weight decay, batch size,
and iterations. To demonstrate the correctness and reliability of the networks used in this
study, we reproduced the source code and training process of these networks based on
Pytorch and evaluated their edge detection effect on the BSDS500 dataset [39], and the
results are shown in Figure 12, revealing that the edge prediction results of all networks
are very close those of the label.

Table 5 shows evaluation metrics of our reproduced results and official reported results
on the BSDS500 test set. Due to the variability of the training process in convolutional
neural network, the final evaluation metrics is affected by the number of iterations, the
GPU computing power and the different platforms of Pytorch or Caffe. Considering these
factors, the ODS-F and OIS-F of our reproduced results are slightly lower than official
reported results, but the gap does not exceed 0.02, which illustrated that our reproduced
HED, DRC, RCF, and BDCN can be applied to remote sensing building edge datasets.
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Table 5. Evaluation metrics of our reproduced results and official reported results on the BSDS500 test set.

Model ODS-F (Ours) ODS-F (Report) OIS-F (Ours) OIS-F (Report)

HED 0.787 0.790 0.804 0.808
DRC 0.789 0.802 0.806 0.818
RCF 0.792 0.806 0.807 0.823

BDCN 0.806 0.806 0.822 0.826

5.2. Comparative Analysis with Segmentation Methods

As mentioned in the introduction, building region extraction cannot replace edge
extraction for two reasons: one is the outline extraction by segmentation networks is often
bent and broken [3]; the other is the accuracy of edge converted from building region
results normally is lower than that of direct building edge detection.

Kang et al. conducted related experiments using JointNet [44], FastFCN [58],
DeepLabv3+ [59] and EU-Net [9], and reported the evaluation results of building mask
extraction and indirect building contour detection on the Massachusetts and Inria datasets.
Table 6 shows the results of different semantic segmentation networks and our proposed
edge detection network on the Massachusetts dataset. It is clear that our proposed ME-
Net is superior to the other methods based on F1-score and IoU, proving that ME-Net
outperforms the semantic segmentation model in extracting the building edges on the
Massachusetts dataset.

Table 6. Building edge detection results on the Massachusetts test set in terms of F1-score and IoU, the best values are
masked as bold.

Model JointNet (%) FastFCN (%) DeepLabv3+ (%) EU-Net (%) Our ME-Net (%)

F1-score 27.31 13.73 21.92 28.83 28.99
IoU 15.82 7.37 12.31 16.84 16.95

Similar to Table 6, we show a statistical comparison of the Inria dataset in Table 7. The
results show that our proposed ME-Net achieves a higher IoU than those of FastFCN and
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DeepLabv3+ at 3.36% and 1.57%, respectively, but lags behind the result from EU-Net by a
margin of 1.82%. It is acceptable that ME-Net did not achieve thinning of all edges to one
pixel width; thus, it needs to be improved in future work with the Inria dataset.

Table 7. Building edge detection results on the Inria test set in terms of F1-score and IoU, the best
values are masked as bold.

Model FastFCN (%) DeepLabv3+ (%) EU-Net (%) Our ME-Net (%)

F1-score 11.18 14.84 20.47 17.49
IoU 5.92 8.01 11.40 9.58

5.3. Ablation Analysis and Cross-Dataset Evaluation

We designed the erosion module (EM) and the local loss function in our ME-Net.
In order to demonstrate the performance and impact of each proposed component, we
conducted the ablation analysis of ME-Net against multiple resolution datasets, and the
relaxed quantitative evaluation results are shown in Table 8. On the Massachusetts dataset,
although the F1-score of ME-Net is lower than that of ME-Net (remove EM), the ME-Net
surpasses the ME-Net (remove EM) 5.13% and 2.86% in terms of relaxed OA and IoU
metrics. Meanwhile, on the Jiangbei New Area dataset and Inria dataset, the complete
ME-Net achieved the best results in all the three metrics, the ME-Net (remove EM) achieved
the second, and the ME-Net (remove EM and local loss) achieved the third, proving that
the EM and the local loss are very important for improving the performance of ME-Net.

Table 8. Ablation analysis evaluation results of ME-Net, the best values of each dataset are masked as bold.

Dataset Model OA (%) F1-Score (%) IoU (%)

Jiangbei New Area
ME-Net (remove EM and local loss) 97.20 69.84 54.55

ME-Net (remove EM) 97.37 70.98 55.91

ME-Net 98.75 76.89 66.43

Massachusetts

ME-Net (remove EM and local loss) 89.72 65.32 50.69

ME-Net (remove EM) 89.87 65.63 51.05

ME-Net 95.00 62.69 53.91

Inria

ME-Net (remove EM and local loss) 90.61 37.49 23.64

ME-Net (remove EM) 91.14 38.64 24.59

ME-Net 95.51 45.52 32.27

In the deep learning, a common problem is the transferability of models. In order
to clearly describe the transferability of ME-Net, we also conducted the experiment of
cross-dataset evaluation. We trained and tested ME-Net with different datasets, and
the relaxed quantitative evaluation results are shown in Table 9. Obviously, whatever the
training datasets, ME-Net achieved the highest relaxed OA on the testing dataset of Jiangbei
New Area. In addition, when we trained ME-Net on the Jiangbei New Area dataset and
Massachusetts dataset, the relaxed F1-score and IoU of cross-dataset evaluation are greatly
inferior to that of training and testing with the same dataset; however, when we trained
on the Inria dataset, and test on the three different datasets, the changes of relaxed OA,
F1-score, and IoU are lower than 3.84%, 5.07%, and 1.75%, proving that ME-Net achieved
the best stability when training on the large-area Inria dataset.
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Table 9. Cross-dataset evaluation results of ME-Net, the best values of each training dataset are masked as bold.

Training Dataset Testing Dataset OA (%) F1-score (%) IoU (%)

Jiangbei New Area
Jiangbei New Area 98.75 76.89 66.43

Massachusetts 95.53 20.16 17.87

Inria 98.03 29.43 23.31

Massachusetts

Jiangbei New Area 98.06 28.21 23.32

Massachusetts 95.00 62.69 53.91

Inria 97.46 25.13 19.09

Inria

Jiangbei New Area 95.95 43.20 31.29

Massachusetts 92.11 40.45 33.04

Inria 95.51 45.52 32.27

6. Conclusions

In this study, we systematically analyzed the effects of state-of-the-art DCNNs-based
edge detection networks (HED, RCF, BDCN, and DRC) on large-scale VHR remote sensing
building edge datasets. We found that although these networks have achieved remarkable
performance in natural image edge detection, there is still the problem of edge thickness
when they are applied to building edge detection from VHR remote sensing images, but
BDCN achieved the highest accuracy. Based on the architecture of BDCN, we proposed a
novel multi-scale erosion network (ME-Net) to detect crisp building edges. The ME-Net
refines the edge through two mechanisms: one is an embedded erosion module to erode
the pixels at the outermost edge, and the other is through constructing a multi-objective
loss function, including global cross entropy, Dice coefficient, and edge local cross entropy,
to increase the sensitivity of the loss function at the building edge pixels. In order to fully
verify and compare the effectiveness of the edge detection networks, this study constructs
three large-area building edge datasets, including the Jiangbei New Area building edge
dataset, Massachusetts, and Inria datasets, and our proposed ME-Net achieves the best
edge detection performance on the three datasets. Moreover, we proposed a new metric,
Ene, to measure the non-edge noise and crispness of building edges, which represents the
energy of non-edge information in the edge prediction probability map and can reveal
the neat and tidy degree of the edge probability map. In order to make it more visible for
users to see the lines as they zoom in the image, we have made a video as a Supplemental
Materials for overlaying the lineness of building edge pixels on the original image at a
higher resolution.

Although our work enhances the crispness of building edge detection, the edge width
still does not reach the industry standard required by surveying and mapping applications.
The primary reason is that the network based on DCNNs normally has large receptive
fields, owing to the multiple convolution and pooling operations, leading to the close loss
responses of the pixels near the edge. One possible way to resolve this problem in the
future is to construct a network with sufficient depth and a small receptive field, or design
a building edge vectorization algorithm to post-process the lineness of the edge pixels.

Supplementary Materials: The following is available online at https://github.com/WenXiang0731/
remote_sensing-MENet, Video S1: The lineness of building edge pixels on the image.
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