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Complex population structure of the Atlantic puffin
revealed by whole genome analyses
Oliver Kersten 1✉, Bastiaan Star 1, Deborah M. Leigh 2, Tycho Anker-Nilssen 3, Hallvard Strøm4,

Jóhannis Danielsen 5, Sébastien Descamps 4, Kjell E. Erikstad6,7, Michelle G. Fitzsimmons 8,

Jérôme Fort 9, Erpur S. Hansen 10, Mike P. Harris11, Martin Irestedt 12, Oddmund Kleven 3,

Mark L. Mallory 13, Kjetill S. Jakobsen 1 & Sanne Boessenkool 1✉

The factors underlying gene flow and genomic population structure in vagile seabirds are

notoriously difficult to understand due to their complex ecology with diverse dispersal bar-

riers and extensive periods at sea. Yet, such understanding is vital for conservation man-

agement of seabirds that are globally declining at alarming rates. Here, we elucidate the

population structure of the Atlantic puffin (Fratercula arctica) by assembling its reference

genome and analyzing genome-wide resequencing data of 72 individuals from 12 colonies.

We identify four large, genetically distinct clusters, observe isolation-by-distance between

colonies within these clusters, and obtain evidence for a secondary contact zone. These

observations disagree with the current taxonomy, and show that a complex set of con-

temporary biotic factors impede gene flow over different spatial scales. Our results highlight

the power of whole genome data to reveal unexpected population structure in vagile marine

seabirds and its value for seabird taxonomy, evolution and conservation.
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Seabirds are important ecosystem indicators and drivers1–3,
and have long had an integral place in human culture and
economy4–6. Nevertheless, global seabird numbers have

deteriorated by an alarming 70% since the mid-20th century7,8.
These declines pose a serious threat to marine ecosystems, human
society, and culture7,9,10, highlighting the importance of seabird
conservation management. Within such management, the iden-
tification of distinct population units, i.e., demographically
independent populations with restricted gene flow among
them11,12, is a fundamental first step towards optimized
conservation11,13,14. Defining such units is, however, difficult for
many seabirds because of their complex ecology15. Detailed
genomic data including thousands of loci provide new possibi-
lities to assess levels of connectivity and gene flow between dis-
tinct breeding populations and, thus, help identify relevant
conservation units for seabirds15,16. Indeed, a few recent pub-
lications using reduced genomic representation approaches (e.g.,
RAD-seq) have reported fine-scale structure over various spatial
scales17–21. These studies highlight the great potential of genomic
data to disentangle barriers to gene flow that would otherwise
remain undetected, but remain nonetheless limited due to
incomplete sampling of the genome22.

The Atlantic puffin (Fratercula arctica, Linnaeus, 1789, here-
after “puffin”) is an iconic seabird species, prevalent in popular
culture23, important for tourism24,25, and inherently valuable for
the marine ecosystem1. Puffins were historically widely harvested
for their meat and down6,26,27 and exploitation remains an
important cultural tradition in Iceland and the Faroe Islands6,24.
Its breeding range stretches from the Arctic coast and islands of
European Russia, Norway, Greenland, and Canada, southward to
France and the USA28 (Fig. 1a). Puffins have been designated as
“vulnerable” to extinction globally and listed as “endangered” in
Europe29. Notably, the once world’s largest puffin colony (Røst,
Norway) has experienced complete fledging failure during nine of
the last 13 seasons and has lost nearly 80% of its breeding pairs
during the last 40 years29–31. Similarly, Icelandic and Faroese
puffins have experienced low productivity and negative popula-
tion growth since 200332.

Puffins have been broadly classified into three taxonomic
groups along a latitudinal gradient based on size, with the smallest
puffins found around France, Britain, Ireland and southern
Norway (F. a. grabae), intermediate sized puffins around Norway,
Iceland, and Canada (F. a. arctica) and the largest puffins found
in the High Arctic, e.g. Spitsbergen33, Greenland34, and north-
eastern Canada35 (F. a. naumanni)36 (Fig. 1a). Nevertheless, this
broad classification into three subspecies has been
controversial28,37,38 and the population structure of puffins
remains unresolved at all spatial scales37. This knowledge gap
obstructs efforts towards an assessment of dispersal barriers,
limits our understanding of cause-and-effect dynamics between
population trends, ecology and the marine ecosystem, and hin-
ders the development of adapted large-scale conservation actions.

Here, we present the, to the best of our knowledge, first whole-
genome analysis of structure, gene flow, and taxonomy of a
pelagic, North Atlantic seabird. We generated a de novo draft
assembly for the puffin and resequenced 72 individuals across 12
colonies representing the majority of the species’ breeding range
(Fig. 1a). Our work suggests that a complex interplay of ecological
factors contributes to the range-wide genomic population struc-
ture of this vagile seabird.

Results
Genome assembly and population sequencing. Based on syn-
teny with the razorbill (Alca torda), a total of 13,328 puffin
scaffolds were placed into 26 pseudo-chromosomes, leaving 17.06

Mbp (1.4%) unplaced and yielding an assembly of 1.294 Gbp
(Supplementary Data 1, Table S1). This assembly contains 4,522
of the 4,915 genes (92.0%) of complete protein-coding sequences
from the avian set of the OrthoDB v9 database (Supplementary
Data 1). We also assembled the puffin mitogenome (length of
17,084 bp) with a similar arrangement of genomic elements as
other members within the Alcidae39,40 (Fig. S1, Table S2). For the
72 resequenced specimens, we analyzed a total of 5.77 billion
paired reads, obtaining an average fold-coverage of 7X (range
3.0–10) for the nuclear genome and 591X (5.3–1800) for the
mitochondrial genome per specimen (Fig. 1a, Supplementary
Data 2). One individual (IOM001) was removed from both
datasets (nuclear and mitochondrial) due to a substantially lower
number of mapped reads (endogeny) relative to all other samples
(Supplementary Data 2) resulting in a large proportion of missing
sites (Fig. S2). Additional filtering produced a final genotype
likelihood dataset of 1,093,765 polymorphic nuclear sites and 192
mitochondrial single-nucleotide polymorphisms (SNPs, Supple-
mentary Data 3) in 71 birds (36 males and 35 females).

Genomic population structure. Genomic variation across 71
puffin mitogenomes defines 66 polymorphic haplotypes that
indicate a recent global population expansion and show no sig-
nificant population structure (Fig. 1b, Figs. S3, S4, Tables S3, S4).
In contrast, we inferred four main population clusters using
principal component analysis (PCA) of the nuclear whole-
genome dataset (Fig. 1c). Puffins from Spitsbergen are most
distinct, while puffins from Bjørnøya are located between Spits-
bergen and a larger, central cluster consisting of populations from
Norway, Iceland, and the Faroe Islands (Fig. 1c, Fig. S5a). Puffins
from Canada form their own distinct cluster, as do those from the
Isle of May, southeast Scotland (Fig. 1c, Fig. S5b). Hierarchical
PCA analyses of the cluster comprising the mainland Norwegian,
Icelandic and Faroese colonies reveal further fine-scale structure
separating Norwegian (Hornøya and Røst) and Faroese/Icelandic
colonies (Fig. S5c). Model-based clustering (ngsAdmix) agrees
with the results from the PCA (Fig. 1d). The optimal model fit for
the entire dataset is either K= 2 or K= 4 (Fig. S6a), as deter-
mined by the method of Evanno et al.41. At K= 2, ngsAdmix
separates Spitsbergen from the other colonies, with Bjørnøya
being admixed (following separation along PCA 1), whereas at
K= 4, ngsAdmix reflects the structure of three additional distinct
clusters representing Spitsbergen, Canada, the Isle of May, and a
central group with more shared ancestry (Fig. 1d). The shared
ancestry of the central group remains present in hierarchical
admixture analyses excluding Spitsbergen and Bjørnøya indivi-
duals (Figs. S6b, S7). We find no fixed alleles and pairwise FST
values between colonies and genomic clusters are low (<0.01)
(Table S4), apart from any comparisons involving the Spitsbergen
population, which show substantially higher FST values
(0.03–0.08).

Phylogenetic reconstructions using individual-based Neighbor-
Joining (NJ) and maximum likelihood (ML) methods (Fig. 2a,
Fig. S8), as well as population-based analyses in Treemix (Fig. 2b),
support the distinctiveness of the Spitsbergen, Canada, and the
Isle of May puffins with each group forming monophyletic clades
with 100% bootstrap support. In contrast, Bjørnøya forms a
paraphyletic clade between Spitsbergen and northern Norway
(Fig. 2a). The population clusters identified by the PCA and
ngsAdmix at smaller spatial scales are also identified in the
topologies of the NJ and ML trees, sorting individuals
predominantly according to geographical location, although with
low bootstrap support (>80) due to large inter-individual
variability (Fig. 2a, Fig. S7). Allowing a single migration edge in
the Treemix phylogeny identifies recent gene flow from
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Fig. 1 Sampling distribution and genomic structure of 71 Atlantic puffin individuals across 12 colonies throughout the breeding range. aMap presenting
the location of the 12 sampling sites. Color shading indicates the breeding range of the species as a whole, as well as the recognized subspecies. bMitochondrial
haplotype network based on a maximum likelihood tree generated with IQTree and visualized using Fitchi. It contains 66 unique haplotypes identified by 192
mitogenome-wide SNPs. Sizes of circles are proportional to haplotype abundance. Color legend is provided in (c). Black dots represent inferred haplotypes that
were not found in the present sampling. c Principal component analysis (PCA) using genotype likelihoods at 1,093,765 polymorphic nuclear sites calculated in
ANGSD to project the 71 individuals onto PC axes 1 and 2. Each circle represents a sample and colors indicate the different colonies. The percentage indicates
the proportion of genomic variation explained by each axis. The color coding of the colonies is consistently used throughout the manuscript. d CLUMPAK-
averaged admixture plots of the best K’s using the same genotype likelihood panel as in (c). Each column represents a sample and colonies are separated by
solid white lines. Optimal K’s were determined by the method of Evanno et al.41 (see Fig. S6a) and colors indicate the ancestry fraction to the different clusters.
The dataset(s) needed to create this figure can be found at https://doi.org/10.6084/m9.figshare.14743242.v1.
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Fig. 2 Phylogenetic reconstruction of individual and colony relationships from 71 Atlantic puffin individuals sampled across 12 colonies throughout the
species’ breeding range. a An individual-based neighbor-joining tree constructed using pairwise p-distances calculated from genotype likelihoods at 1,093,765
polymorphic nuclear sites. Branch lengths and the outgroup were removed for the zoomed-in section to improve visualization. b A population-based maximum
likelihood Treemix analysis using allele frequencies at the same 1,093,765 polymorphic nuclear sites as in (a). Both trees are rooted using the razorbill as an
outgroup. The tree in (b) is visualized with and without the outgroup. Branch lengths are equivalent to a genetic drift parameter. The heatmap indicates the residual
fit of the tree displaying the standard error of the covariance between populations. In (a) and (b), the color coding of the colonies is consistent with those in Fig. 1
and node labels show bootstrap support >80. The dataset(s) needed to create this Figure can be found at https://doi.org/10.6084/m9.figshare.14743299.v1.
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Spitsbergen to Bjørnøya (likelihood= 792.106; Figs. S9, S10a).
Adding additional migration edges to the population-based ML
tree does not improve the model fit and such edges are therefore
not further interpreted (Figs. S9-S11).

Genetic diversity, heterozygosity, and inbreeding. Tajima’s D
does not significantly deviate from neutral expectation per colony
(Table S3). Nucleotide diversity (π) of puffins is significantly dif-
ferent between colonies, with the Spitsbergen population having
significantly lower nucleotide diversity than the global median
(Wilcoxon Rank Sum test, U= 4824, nSPI= 25, nGlobal= 300, P=
0.017, Table S3). Colonies also differ significantly in levels of
heterozygosity (Kruskal–Wallis test, n= 12, P= 1 × 10−6; Fig. 3a)
and inbreeding (Kruskal–Wallis test, n= 12, P= 1 × 10−7,
Fig. 3b), whereby individual inbreeding (FRoH) was approximated
based on runs of homozygosity (RoH)42. Again, the Spitsbergen
colony has significantly lower levels of heterozygosity
(0.00220–0.00223) and significantly higher levels of FRoH values
(0.161–0.172), compared to the Faroese and Icelandic colonies
(Dunn test with Holm correction, P < 0.05, n1= 6, n2= 6). The
Faroese and Icelandic colonies contain the highest levels of het-
erozygosity and lowest FRoH values (Figs. 3a, b, Fig. S12) overall.
The remaining colonies display intermediate levels (Fig. 3a, b),
although heterozygosity is significantly lower (Fig. 3a, Fig. S12)
and inbreeding is significantly higher (Fig. 3b, Fig. S12) on
Gull Island and Bjørnøya compared to the Icelandic and
Faroese colonies (Dunn test with Holm correction, P < 0.05,
n1= 6, n2= 6). Moreover, Spitsbergen harbors the most (an
average of 718 per individual) and longest RoHs with eight
being ≥2.3Mbp long (4.21 ± 3.02% of respective chromosome),
whereas none of the RoHs in the remaining colonies are >2.15
Mbp long (Fig. 3c). The only exception is a 9.65Mbp long RoH on
pseudo-chromosome 7 (18% of chromosome length) in an Isle of
May individual (Fig. 3c).

Patterns of gene flow and isolation-by-distance (IBD). We
investigated patterns of gene flow and IBD between the colonies
using two-dimensional estimated effective migration surface
(EEMS) analyses43. Levels of gene flow between the Icelandic and
Faroese colonies and within the Canadian group is high (3–10×
higher than the global average), while intermediate between the
Norwegian mainland colonies (around the global average). In
contrast, the Spitsbergen colony is split from the remaining
colonies by migration rates up to 100× lower than the global
average (Fig. 4a, Fig. S13), while additional regions of low gene
flow (2–3× lower than the global average) separate the Isle of
May, Canadian, and Bjørnøya colonies from the rest (Fig. 4a,
Fig. S13). Geographic distance between all puffin colonies is a
poor predictor of pairwise genetic distance, driven by high Slat-
kin’s linearized FST values between Spitsbergen and the other
colonies (Tables S5, S6, Fig. S14). Nevertheless, the geographic
distance among a subset of puffin colonies is significantly asso-
ciated with genetic distance as shown by Mantel tests, linear
regression model analyses, and distance-based Redundancy
Analysis (dbRDA) models (Fig. 4b, Fig. S14, Tables S5, S6).
Specifically, by progressively removing the more distant colonies
(Spitsbergen, Isle of May, Bjørnøya, Canada), which are char-
acterized by high Slatkin’s linearized FST values at relatively small
geographic distances (Fig. S14), the fit of a linear IBD model is
significantly improved and the proportion of variance of genetic
dissimilarity explained by geographic distance is more than
doubled (Spitsbergen removed: 37.58%; Spitsbergen/Isle of May/
Bjørnøya/Gannet Isl. removed: 84.98%) (Fig. 4b, Fig. S14,
Table S5). Similarly, the proportion of explained genetic variance
by spatial features estimated in global dbRDA models is more

than tripled (All colonies= 18.76%, Spitsbergen/Isle of May/
Bjørnøya removed= 59.87%) (Table S5). In all optimized dbRDA
models, geographic variables (IBD) contribute significantly to the
genetic divergence, while the contribution of the mean sea surface
temperature (isolation-by-environment, IBE) is minimal. IBE is
only once significantly contributing to the observed genetic var-
iance (when Spitsbergen was removed), yet accounts for less than
half of the observed genetic variance (11.37%) compared to the
geographic distance (28.66%) (Table S6).

Admixture on Bjørnøya. We specifically tested for patterns
of admixture in Bjørnøya. Significantly negative f3 statistics
(Z score <−3) are found for all unique combinations of the
phylogeny (Spitsbergen, X; Bjørnøya) (Table S7), indicating an
admixed colony on Bjørnøya caused by gene flow between
Spitsbergen and the remaining colonies. Similarly, significantly
positive D-statistics (Z score > 3) caused by an excess of ABBA
sites reveal excessive allele sharing between Spitsbergen and
Bjørnøya (Fig. S15a). The close association and gene flow from
Spitsbergen to Bjørnøya is further confirmed by D-statistics not
being significantly different from 0 for the (((Bjørnøya, Spits-
bergen), H3), Razorbill) topology (Fig. S15b).

Genetic differentiation. We assessed genome-wide patterns of
genetic differentiation by calculating pairwise FST between the
four genomic clusters in 50 kb sliding windows. These analyses
show that the differentiation between the clusters is driven by
increased FST in windows across the entire genome, including the
presence of several smaller regions with elevated FST (Fig. S16).
Several of these elevated FST regions are present in all pairwise
comparisons (Fig. S16), whereas others are specific for certain
comparisons, and may be indicative of local adaptation (Fig. S16).

Discussion
Barriers to gene flow leading to population structure are notor-
iously difficult to identify and remain largely unknown for most
seabirds15,44. Using whole-genome analyses, we here provide
insights into the genetic structure of the Atlantic puffin. First,
we identify four main puffin population clusters consisting of
(1) Spitsbergen (High Arctic), (2) Canada, (3) Isle of May, and
(4) multiple colonies in Iceland, the Faroe Islands, and Norway.
Second, we find that within such clusters, genetic differentiation is
driven by IBD. Finally, we find evidence for secondary contact
between two clusters. These observations show that a complex set
of drivers impacts gene flow over different spatial scales
(100–1000s of km) between these clusters and the colonies within.
In particular, the interplay between overwintering grounds, phi-
lopatry, natal dispersal, geographic distance, and potentially
ocean regimes appears to explain the genomic differentiation
between puffin colonies45.

Mature puffins rarely, if ever, change their colonies, resulting in
very high colony fidelity once they start breeding28. Immatures,
however, have been observed to visit other nearby colonies during
the summer and may breed in non-natal colonies28,46. Never-
theless, data on natal philopatry remain scarce, but existing evi-
dence shows rates vary greatly (38–92%) between colonies28,46. If
either breeding or natal philopatry alone drive the puffin popu-
lation structure, each colony should constitute its own distinct
genomic entity and substantial genomic differentiation across the
puffin’s entire breeding range would be observed. Yet, philopatry
alone cannot explain the presence of the four large-scale popu-
lation clusters we observe here. Additional factors must therefore
promote the distinctiveness of the four clusters. For instance, the
Isle of May birds have a largely separate overwintering distribu-
tion mainly in the North Sea (Fig. S17)28,38,47. Such potential
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Fig. 3 Genome-wide heterozygosity, inbreeding, and Runs-of-Homozygosity (RoH) compared between 12 Atlantic puffin colonies across the species’
breeding range. a Estimates of individual genome-wide heterozygosity based on the per-sample one-dimensional Site Frequency Spectrum calculated in
ANGSD. b Individual inbreeding coefficients, FRoH, defined as the fraction of the individual genomes falling into RoHs of a minimum length of 150 kb. RoHs
were declared as all regions with at least two subsequent 100 kb windows harboring a heterozygosity below 1.435663 × 10−3. c RoH length distribution
across the 12 colonies only including RoHs longer than 500 kb. A single 9.65Mbp long RoH on pseudo-chromosome 7 in an Isle of May individual required
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create this figure can be found at https://doi.org/10.6084/m9.figshare.14743323.
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geographical separation during the winter season might limit the
likelihood of immatures intermixing between the Isle of May and
other colonies. Similarly, distinct overwintering distributions have
been found to lead to increased genetic diversification in other
philopatric seabird species15,44,45, such as the thick-billed murre
(Uria lomvia)21 and black‐browed albatross (Thalassarche
melanophris)48. The presence of a Canadian cluster can also be
largely explained by their winter distribution around
Newfoundland47,49. There is, however, some fragmentary overlap
in the overwintering distribution of the Canadian and Icelandic
colonies off southwestern Greenland47,49, suggesting that barriers
to dispersal of immatures and gene flow in the western Atlantic
may be further enforced by the large geographic distance. In
contrast, the winter distribution from the colonies in Iceland,
Norway, and the Faroe Islands overlaps off the coast of southern
Greenland (Fig. S17)47. This shared overwintering area, combined
with the tendency to return to the natal colony and immature
visits to nearby (up to 100 s km) colonies during the summer,
appears to drive a pattern of IBD among colonies (Fig. 3b).
Indeed, IBD has previously been recognized as an important
driver of genomic structure in seabirds, for instance in the little
auk (Alle alle)50 and band-rumped storm-petrel (Oceanodroma
castro)51. While these illustrated mechanisms provide reasonable
explanations for the observed dispersal barriers and population
structure based on our current knowledge, validation requires
additional evidence, specifically on the winter distribution of
immature puffins and natal dispersal rates across colonies cov-
ering the entirety of the puffin’s breeding range.

High Arctic puffins from Spitsbergen are genetically the most
divergent group within our dataset harboring the highest genome-
wide differentiation. They are also characterized by significantly
lower levels of genetic diversity, greater inbreeding coefficients,
and longer and more abundant RoHs compared to other colonies.
These observations may either result from a historical bottleneck
followed by isolation (e.g., founder effect), local adaptation to their
extreme environment, or generally lower effective population
sizes. Population abundance estimates of <10,000 breeding pairs
on Spitsbergen compared to 500,000 in the West Atlantic, two
million on Iceland and more than two million in the boreal East
Atlantic potentially indicate a lower effective population size28.
The High Arctic puffins exclusively inhabit harsh, cold-current
environments year-round, as they likely stay in an area bounded
by the East Greenland ice edge, a latitudinal border at 70° N, and
the front between the Barents and Greenland Sea during winter
(Fig. S17). They are also substantially larger than birds from lower
latitudes28,33,34, following Bergmann’s52 or James’s53 rule, as has
been observed in other seabirds54,55. This matches the clinal size
variation of puffins that closely tracks sea temperatures in their
breeding areas56. Despite these distinctions, we find that the
relatively small population of puffins on Bjørnøya (<1000 pairs28),
midway between Spitsbergen and mainland Norway, represents an
area of secondary contact between the puffins from the High
Arctic and other puffin colonies. Based on D- and the f3-statistics,
the most likely southern sources are Iceland, the Faroe Islands,
Norway, or a combination thereof. Thus, the barriers to gene flow
that keep the Spitsbergen colonies distinct do not prevent the
formation of a hybrid colony where individuals from the High
Arctic and the cluster composed of mainland Norwegian, Ice-
landic and Faroese colonies meet.

The distinct population structure in the nuclear data is not
observed in the mitochondrial genomes, which reveal an abun-
dance of rare alleles and lack of significant population differ-
entiation. The mitogenomic variation suggests that puffins
experienced a recent population expansion, possibly out of a
refugium after the Last Glacial Maximum. Indeed, it has been
shown that mitogenomic variation in seabirds is dominated by

historical factors rather than representing contemporary gene
flow44, and a lack of mitogenomic population structure has been
observed in many marine birds with high philopatry50,57,58. In
contrast to the mitogenomes, the structure in the nuclear data
therefore likely originated after the last glacial period and reflects
the influence of relatively recent barriers to gene flow in a context
of historical demography15,44. Such results are relevant for
understanding the “seabird paradox”, which contrasts the life-
history traits of high philopatry and restricted dispersal in
otherwise highly mobile species59.

Our results have major implications for the conservation
management of the Atlantic puffin. The genetic structure we
identify in puffins disagrees with the suggestion of three sub-
species (F. a. naumanni, F. a. arctica, F. a. grabae)36. Although
the genetically distinct Spitsbergen cluster coincides with the
classification of morphologically large puffins in the High Arctic
(F. a. naumanni)28, we observe gene flow from Spitsbergen into
Bjørnøya, which has been considered F. a. arctica28. Furthermore,
the geographic divide between F. a. grabae and F. a. arctica lies
farther south than previously thought, with the Faroese puffins
being genetically closer to F. a. arctica than to F. a. grabae.
Nonetheless, F. a. grabae is currently represented by a single
colony (Isle of May) in our study and the geographical extent of
this genomic cluster needs to be refined by additional sampling,
particularly in the western UK, Ireland, and France. Finally,
puffins from the Western Atlantic region (e.g., colonies in
Canada) form their own distinct genetic cluster that is not
recognized within the current classification. Our results do not
only warrant a revision of Salomonsen’s taxonomic classification
of three subspecies36, but also highlight the need to acknowledge
the four identified clusters as distinct units within the conserva-
tion management of puffins11,13,14. Although puffin colonies
within clusters are not genetically distinct entities, ecological
independence illustrated by contrasting population dynamics
across relatively small spatial scales (e.g., western Norway31)
suggests that higher resolution local management units based on
ecological differences should be considered. Nonetheless, the
genetically distinct clusters at the outer edges of the puffin’s
distribution with putative local adaptations that will not be easily
replenished indicate that conservation of these distinct clusters
must be a first priority. Finally, our sampling does not cover
several outskirts of the puffin’s distribution, such as the U.S.,
northern Canada, Greenland, Ireland, western UK, France or
Russia, and we may therefore still underestimate the true biolo-
gical and genetic complexity of this species.

In conclusion, our study shows that a complex interplay of
barriers to gene flow drives a previously unrecognized population
diversification in the iconic Atlantic puffin. So far, much of sea-
bird population genetics research has been based on mitochon-
drial and microsatellite data15,44, which have limited power to
characterize contemporary factors that determine population
structure and gene flow20,60. High-resolution nuclear data are
therefore essential to help define evolutionary significant popu-
lation units, disentangle convoluted ecological relationships, and
are particularly important for seabird conservation, which aims to
preserve genetic diversity considering profound global population
declines7,8, and the threat of global warming, which negatively
impacts ecosystems worldwide61.

Methods
Ethical statement. Feather and blood samples of puffins included in this study
were collected and handled under the following permits.

1. Gåsøyane, Røst, Hornøya, Bjørnøya (Norway)—FOTS ID #15602 and
#15603 from the Norwegian Food Safety Authority for SEATRACK and
SEAPOP; Permit 2018/607 from Miljødirektoratet (Norwegian Environ-
ment Agency), dated 4 May 2018.
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2. Gannet and Gull Island (Canada)—Canadian Wildlife Service Migratory
Bird Banding Permit 10559 G, approved Animal Use Protocol (AUP) by
Eastern Wildlife Animal Care Committee (17GR01, 18GR01), Newfound-
land and Labrador Wilderness and Ecological Reserves Permit—Scientific
Research (DOC/2017/02003), Canadian Wildlife Service Scientific Permit
ST2785 (to M.L.M.), Canadian Wildlife Service Banding Permit 10694, and
Acadia University Animal Care Committee Permits ACC 02-15 and 06-15
(to M.L.M.).

3. Isle of May (Scotland)—Scottish Natural Heritage licence 2014/MON/RP/
156 and Ringing Permit A400 (to MPH).

4. Vestmannaeyjar, Papey, Breiðafjörður, Grímsey (Iceland)—Icelandic puffins
were legally hunted during the hunting period of 1 July–15 August.

5. Faroe—Feathers came from predated birds collected in the field after the
predator was finished with them.

Draft reference genome assembly. A de novo Atlantic puffin draft genome was
generated from the blood of a female Atlantic puffin. Read data were sequenced on
three Illumina HiSeqX lanes using the 10x Genomics Chromium technology and
assembled with the Supernova assembler (v2.1.1)62 after subsampling to 0.8 billion
and 1 billion reads to maximize performance and remain within the computational
capacity of the assembler. We refined the two assemblies through several steps,
including merging of ‘haplotigs’, removal of contaminant sequences, misassembly
correction, re-scaffolding using mapping coverage and linkage information, and
gap filling (Supplementary Data 1a). The most complete and continuous 800M
and 1000M assemblies together with the 3rd best assembly overall were selected for
a second round of refinement (Supplementary Data 1b) resulting in a total of 72
draft assemblies. Of these, we kept the four most complete and continuous
assemblies for additional gap filling and polishing, after which the most complete
draft genome was selected for downstream analyses (Supplementary Data 1c). The
puffin mitogenome was confidently identified by blasting (blastn) all scaffolds
shorter than 25 kb against a custom-built database of 135 published mitogenomes
of the order ‘Charadriiformes’ and annotated with the MITOS web server63

(Fig. S1). The remaining nuclear scaffolds were ordered and concatenated into
“pseudo-chromosomes” by mapping them to the razorbill genome (Alca torda—
NCBI: bAlcTor1 primary, GCA_008658365.1) and applying 200 N’s as padding
between each scaffold. We combined unmapped scaffolds into an “unplaced”
pseudo-chromosome. We assessed the order and placement of scaffolds by
investigating synteny in coverage and length between the puffin and razorbill
chromosomes (Table S1). Details on the draft reference genome assembly and
refinement can be found in the Supplementary File.

DNA extraction and sequencing. Samples from a total of 72 puffins collected
across 12 breeding colonies (Fig. 1a) were made available for the present study by
SEAPOP (http://www.seapop.no/en), SEATRACK (http://www.seapop.no/en/
seatrack) and ARCTOX (http://www.arctox.cnrs.fr/en/home—Canadian colonies).
These samples had been collected between 2012 and 2018 and consisted of blood
preserved in EtOH or lysis buffer, or feathers (Supplementary Data 2). We extracted
DNA using the DNeasy Blood & Tissue kit (Qiagen) following the manufacturer’s
protocol for animal blood or the nail/hair/feathers protocol applying several mod-
ifications for improved lysis and DNA yield. Individuals that had no sexing data
associated with them were sexed using PCR amplification of specific allosome loci
and visualization via gel electrophoresis. Genomic libraries were built by the Nor-
wegian Sequencing Centre and sequenced on an Illumina HiSeq4000. We processed
sequencing reads in PALEOMIX v1.2.1464 and split the resulting bam files into
nuclear and mitochondrial bam files. Additional details on the DNA extraction,
sexing, sequencing and mapping are listed in the Supplementary File.

Mitogenome analyses. Genotypes across the mitochondrial genome were jointly
called with GATK v4.1.465 by using the HaplotypeCaller, CombineGVCFs, and
GenotypeGVCFs tool. We filtered genotypes according to GATKs Best Practices66

and set genotypes with a read depth <3 or a quality <15 as missing. Indels and non-
biallelic SNPs were removed and only SNPs present in all individuals were kept for
subsequent analyses. The SNP dataset was annotated (Supplementary Data 3) with
snpEff67 utilizing the annotation of the newly assembled mitogenome of the
Atlantic puffin and converted into a mitogenome sequence alignment. To serve as
an outgroup, we appended four other species of the family Alcidae, i.e., the
Razorbill (Alca torda, NCBI: CM018102.1), the Crested Auklet (Aethia cristatella,
NCBI: NC_045517.1), the Ancient Murrelet (Synthliboramphus antiquus, NCBI:
NC_007978.1) and the Japanese Murrelet (Synthliboramphus wumizusume, NCBI:
NC_029328.1), to the alignment. To construct a maximum-likelihood phylogenetic
tree, we split the alignment into seven partitions, i.e., one partition for a con-
catenated alignment of each of the three codon positions of the protein-coding
genes, one partition for the concatenated alignment of the rRNA regions, one
partition for the concatenated alignment of the tRNAs, one partition for the
alignment of the control region, and one partition for the concatenated alignment
of the “intergenic” regions. The best-fitting evolutionary model for each partition
was found by ModelFinder68 and the tree was built with IQTree v1.6.1269 using
1000 ultrafast bootstrap replicates. We used the resulting tree to draw a haplotype
genealogy graph with Fitchi70. Using Arlequin v.3.571, we calculated haplotype (h),

nucleotide diversity (π), and Tajima’s D72 for each colony, for each genomic cluster
defined by the nuclear analysis, and globally. In addition, an Ewens–Watterson
test73, Chakraborty’s test of population amalgamation74, and Fu’s Fs test75 were
conducted for each of those groups. To further identify population differentiation,
the proportion of sequence variation (ΦST) was estimated for all pairs of popula-
tions and genomic clusters. Hierarchical AMOVA tests subsequently determined
the significance of a priori subdivisions into colonies and genomic clusters. Cal-
culation of ΦST and AMOVA tests were also conducted in Arlequin. Additional
details on the mitochondrial analyses are given in the Supplementary File.

Nuclear genome clustering and phylogenetic analyses. The majority of popu-
lation genomic analyses were based on nuclear genotype likelihoods as imple-
mented in ANGSD v.0.93176. After assessing the quality of the mapped sequencing
data in an ANGSD pre-run, we removed an individual from the Isle of May from
the dataset. Genotype likelihoods for nuclear SNPs covered in all individuals were
calculated and filtered in ANGSD. Accounting for linkage disequilibrium, we
further pruned the dataset by only selecting the most central site within blocks of
linked sites (R2 > 0.2) as in Orlando and Librado77. Subsequently, all variants
located on the Z-pseudo-chromosome and “unplaced scaffolds” were excluded
from the analyses yielding a final genotype likelihood panel consisting of
1,093,765 sites. We investigated genomic population structure with a PCA of the
genotype likelihood panel using PCAngsd v0.98278. Individual ancestry propor-
tions were estimated using a maximum likelihood (ML) approach implemented in
ngsAdmix v3279, with the number of ancestral populations (K) set from 1 to 10 and
conducting 50 replicate runs for each K. The runs were clustered after similarity for
each K and ancestry proportions were averaged within the major cluster using
Clumpak80 with default settings. Additional “hierarchical” PCA and admixture
analyses were conducted for genomic sub-cluster(s) using identical methods.

After adding the razorbill genome as an outgroup to the genotype likelihood panel
by mapping unpublished, raw 10x Genomics sequencing data used for the assembly of
the embargoed razorbill genome to the puffin draft assembly, we built a neighbor-
joining (NJ) tree based on pairwise genetic distance matrices (p-distance) and a
sample-based ML phylogenetic tree in FastMe v2.1.581 and Treemix v1.1382,
respectively. For both trees, 100 bootstrap replicates were generated. To infer patterns
of population splitting and mixing, we produced population-based ML trees including
up to ten migration edges. The optimal number of migrations was selected using a
quantitative approach by evaluating the distribution of explained variance, the log
likelihoods, the covariance with an increase in migration edges, and by applying the
method of Evanno41 and several different linear threshold models. The topology for
m0 and mBEST was evaluated by generating 100 bootstrap replicates. Additional details
on the cluster and phylogenetic analyses are given in the Supplementary File.

Genetic diversity, heterozygosity, and inbreeding. We calculated a set of neu-
trality tests and population statistics in ANGSD using colony-based one-dimensional
(1D) folded site frequency spectra (SFS). For each population, genomic cluster, and
globally, Tajima’s D and nucleotide diversity (π) were computed utilizing the per-site
θ estimates. Individual genome-wide heterozygosity was calculated in ANGSD using
individual, folded, 1D SFS. We calculated heterozygosity by dividing the number of
polymorphic sites by the number of total sites present in the SFS.

The proportion of RoH within each puffin genome was computed by
calculating local estimates of heterozygosity in 100 kb sliding windows (50 kb slide)
following the approach in Sánchez-Barreiro et al.42. We defined the 10% quantile of
the average local heterozygosity across all samples as the cutoff for a “low
heterozygosity region” (Fig. S18). RoHs were declared as all regions with at least
two subsequent windows of low heterozygosity (below cutoff) and their final length
was calculated as described in Sánchez-Barreiro et al.42. We calculated an
individual inbreeding coefficient based on the RoH, FRoH, as in Sánchez-Barreiro
et al.42 by computing the fraction of the entire genome falling into RoHs, with the
entire genome being the total length of windows scanned. Additional details on
these analyses can be found in the Supplementary File.

Patterns of gene flow and admixture. Assessing potential patterns of IBD within
the breeding range of the puffin, the program EEMS43 was used to model the
association between genetic and geographic data by visualizing the existing
population structure and highlighting regions of higher-than-average and lower-
than-average historic gene flow. We calculated a pairwise genetic distance matrix in
ANGSD by sampling the consensus base (-doIBS 2 -makeMatrix 1) at the sites
included in the genotype likelihood set (see Nuclear cluster and phylogenetic
analyses) for each sample. The matrix was fed into 10 independent runs of EEMS,
each consisting of one MCMC chain of six million iterations with a two million
iteration burn-in, 9999 thinning iterations, and 1000 underlying demes.

Supplementing the results of the EEMS analysis, we conducted a traditional IBD
analysis by determining geographical and genetic distances between the 12 colonies
and assessing the significance of the correlation between the two distance matrices
with a Mantel test83 and a multiple regression on distance matrix (MRM)84

analysis. FST was used as a proxy for genetic distance and computed for each
population pair in ANGSD by applying two-dimensional (2D), folded SFS. We
converted pairwise FST values to Slatkin’s linearized FST85. Least Cost Path
distances (paths over water only) between colony coordinates (latitude/longitude)

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02415-4 ARTICLE

COMMUNICATIONS BIOLOGY |           (2021) 4:922 | https://doi.org/10.1038/s42003-021-02415-4 | www.nature.com/commsbio 9

http://www.seapop.no/en
http://www.seapop.no/en/seatrack
http://www.seapop.no/en/seatrack
http://www.arctox.cnrs.fr/en/home
www.nature.com/commsbio
www.nature.com/commsbio


were calculated using the R package marmap86 and used as geographic distances.
We performed the Mantel test (999 permutations) and MRM analysis with the R
package ecodist87. All analyses for IBD were re-run on subsets of colonies by
progressively removing the colony from the geographic and genetic distance
matrices, whose removal led to the highest increase in the proportion of variance in
genetic distance explained by geographic distance in the resulting regression model
(Spitsbergen, Isle of May, Bjørnøya and Gannet Isl.).

A distance-based Redundancy Analysis (dbRDA)88 was conducted to
corroborate the results of the MRM analyses and Mantel tests and to estimate the
relative contribution of IBD and IBE to the observed Atlantic puffin population
structure. The dbRDA was run between the genetic distance matrix versus
geographic and environmental parameters88. A global dbRDA was performed with
all geographic and environmental variables, and for statistically significant global
dbRDA models, the most significant variables (geographic or environmental) were
selected via a stepwise regression89. Those served as input for a reduced dbRDA to
calculate the marginal effect of each variable and for a partial dbRDA with variance
partitioning to estimate the separate effects of IBD and IBE. Similar to the MRM
analyses and Mantel tests, these analyses were repeated on subsets of colonies by
progressively removing the colony from the geographic, environmental, and
genetic distance matrices, whose removal led to the highest increase in variance
explained in the resulting global dbRDA model. Methods and R code for the
dbRDA were found at https://github.com/laurabenestan/db-RDA-and-db-MEM 90.

Additional assessments of gene flow and admixture were conducted by calculating
f3-statistics and multi-population D-statistics (aka ABBA BABA test)91. We calculated
f3-statistics in Treemix for each unique combination of ((A,B),C)) of the 12 puffin
populations. D-statistics were calculated in ANGSD (-doAbbababa2) for each
combination of ((A,B),C),Outgroup) using the 12 puffin colonies. The outgroup was
generated in ANGSD using the 10xGenomics sequencing data of the razorbill mapped
to the puffin reference genome (see Nuclear cluster and phylogenetic analyses).

Evaluating genome-wide patterns of genetic differentiation, pairwise FST values
between the Norway/Iceland/Faroe cluster and the Spitsbergen, Isle of May, Canada
colonies (three comparisons) were calculated in sliding windows of 50 kb with 12.5
kb steps across the 25 pseudo-chromsomes by applying 2D, folded SFS. The window
size of 50 kb was chosen for sliding window analyses because LD decays to ca. 10%
(R < 0.025) within this distance (Fig. S19). Additional details on the IBD, admixture,
and sliding-window analyses are given in the Supplementary File.

Statistics and reproducibility. The research sample included 72 adult Atlantic
puffins (Fratercula arctica) across 12 colonies located in Svalbard, northern
mainland Norway, Iceland, the Faroe Islands, Scotland, and Canada. The sample
included six individuals per colony (12 colonies), including an equal sex ratio (3
males and 3 females per colony). All statistical tests were conducted using publicly
available programs and packages as described in the methodological sections above.
Reproducibility can be accomplished by following the sample collection and
laboratory methods outlined above and by following the author’s GitHub (https://
github.com/OKersten/PuffPopGen) using the specified parameters mentioned in in
the code and methodological sections above.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Raw read data analyzed in the current study have been deposited in the European
Nucleotide Archive (ENA, www.ebi.ac.uk/ena) under study accession number
PRJEB40631 (see Supplementary Data 2 for individual sample accession numbers).
Nuclear and mitochondrial scaffolds (GCA_905066775.1, CAJHIB010000001-
CAJHIB010013329), as well as pseudo-chromosomes (GCA_905066775.2,
CAJHIB020000001-CAJHIB020000027), have been uploaded to ENA (Project
PRJEB40926, Sample SAMEA7482542).

Code availability
Full code used for the population genomic analyses is available on the first author’s
GitHub (https://github.com/OKersten/PuffPopGen) and on Zenodo under the https://
doi.org/10.5281/zenodo.489957492. This includes versions of any software used, if
relevant, and any specific variables or parameters used to generate, test, and process the
dataset of this study.
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