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Abstract 

In Europe, the two main nuclear accident response decision support systems in use are 
ARGOS and JRODOS, both of which make use of the FDMT (Food Chain and Dose Module 
for Terrestrial pathways) model to simulate the transfer of radioactivity along terrestrial food 
chains and to predict radionuclide activity concentrations in human foodstuffs. FDMT was 
originally developed in the early 1990’s for Southern German agricultural conditions. Its 
application to other geographical settings has raised concerns regarding its fitness for purpose. 
Furthermore, the FDMT model in its original format lacks transparency, flexibility and the 
possibility to be run probabilistically. In order to improve FDMT’s fitness for purpose and 
overcome its main shortcomings it has been implemented in a new modelling platform which 
incorporates powerful numerical solvers and renders uncertainty and sensitivity analysis 
possible. The modelling structure of FDMT has been re-configured and a library 
configuration has been introduced which offers flexibility in working such that model 
components can be tested, modified or replaced easily. The new FDMT allows for the 
consideration of case/region specific issues and to make predictions which are of more 
relevance and of better use with regards to decision making and management of risk. 
Furthermore, the default databases of FDMT have been updated and wherever possible PDFs 
have been assigned. In this paper, the transition of FDMT from old to new modelling structure 
is presented along with a demonstration of developments achieved. 

Key words: Nuclear accident, human exposure, food chain, process-based modelling, decision 
support system 
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1. Introduction 
Following the Chernobyl and Fukushima accidents, the need of fit for purpose radioecological 

models to predict radionuclide activity concentrations in human foodstuffs has become widely 

acknowledged [1-4]. After an accidental release, the transport of radionuclides from the 

source and their dispersion within the environment trigger concerns related to the risk for 

humans and the environment. These concerns may result in actions to minimise the impact of 

an accident (i.e. reduce exposure, produce foodstuffs with radionuclide activity concentrations 

below intervention limits etc.). Decisions about such actions are aided by the assessment of 

the possible impact of the release on human health through estimating likely exposures. 

However, adopting an optimal radiation protection strategy requires identification of where 

resources are likely to be spent most effectively.  

Quantification of the risk associated with a release of radioactivity requires an understanding 

of the many processes involved in transport and transfer of radioactivity and the ability to 

translate that understanding into a mathematical model [5,6]. In developing models, we make 

judgements and assumptions which reflect our state of knowledge at the time [7]. Usually, 

this state changes as we get more data or insight into the problem. As our knowledge changes 

we need to revisit our models and their underlying science and assumptions to update them 

accordingly. However, development and modification of models through iteration has an 

important prerequisite: that models are set up in such a way that readily allows for such 

updating. This means that they should be flexible enough to allow for new knowledge to be 

incorporated easily and with minimal effort. Additionally, the models ideally ought to provide 

the option to incorporate variability and uncertainty, which is a necessary step in conducting 

sensitivity and uncertainty analysis [8]. The latter is important in order to evaluate the degree 

of confidence that can be placed in the risk estimates we make and to minimise the chance of 

overstating or underestimating risk [8]. 

In reality the estimation of exposures following a large-scale accidental release is complicated 

because of the interaction of many factors such as the relative contributions of dry and wet 

deposition, the time of the year, the agricultural conditions in a region affected, living habits, 

and the fraction of the diet that is produced locally. However, the ICRP [9], suggest that if no 

protective measures are taken, it is likely that, doses from ingestion of contaminated food will 

comprise the largest contribution of the projected doses over the first year after an accident. 
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Several models have been developed to simulate the transfer of radionuclides to terrestrial 

food products, such as FARMLAND [10], TRANFOOD [11] and SYMBIOSE [12]. The 

FDMT (Food Chain and Dose Module for Terrestrial pathways) is another such model [13], 

and is integrated into two main European decision support systems (ARGOS - Accident 

Reporting and Guiding Operational System [14] and JRODOS - Real-time On-line Decision 

Support System [15]), where it can be run deterministically. FDMT is based on the ECOSYS-

87 model to simulate the transfer of radioactive material in food chains, and for assessment of 

doses (individual as well as collective) to the population [16]. However, because ECOSYS-87 

was developed in the early 1990’s it did not consider the large numbers of radioecology 

studies prompted by the 1986 Chernobyl accident and subsequent compilations of model 

parameters [17]. Furthermore, the original parameter collation was mainly specific to 

Southern German agricultural conditions [18].  

One of the characteristic features of an emergency is the urgent need for making decisions 

under highly dynamic and uncertain circumstances. In general, uncertainties involved can be 

ascribed to two categories: those belonging to the ongoing emergency situation, which can be 

unique and specific, and those which have a more general nature and are not situation 

specific. The main difference between these two groups is in the amount of work we can do 

beforehand in dealing with them. Potentially, an extensive collation of data pertaining to 

models can be conducted prior to an accidental release. More data can reduce uncertainties 

associated with our lack of knowledge of underlying processes. There is also uncertainty 

related to the inherent randomness and heterogeneity of environmental processes. This is 

manifested as variability in data, which is not reducible, but can be better characterised and 

represented through further analyses [19].  

A key observation of the recent EC funded CONFIDENCE project considering uncertainties 

in modelling and decision making after nuclear accidents [20] was that uncertainty 

management for simulation models in decision support systems (such as ARGOS and 

JRODOS), was far from satisfactory [21]. One of the key problems identified was the current 

inability to incorporate process-based models (i.e. models who’s parameterisation take into 

account soil and potentially plant characteristics [2]), in the context of simulating food-chain 

transfer, to potentially reduce the uncertainties associated with the existing empirical ratio-

based transfer approaches. Raskob and Duranova [21] considered quantification and reduction 

of uncertainties to be an essential step towards improving decision making to protect affected 

populations and minimise the disruption of normal living conditions.  
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The reliability of support systems used for decision making depends on the robustness of their 

underlying sub-systems/modules; the same holds for any improvement of such systems. 

According to the internationally agreed research agenda for radioecology [22, 23], focus 

should be placed upon development of process-based transfer and exposure models, better 

parametrisation and assessment of associated parametric uncertainty in such models. 

Addressing these key research requirements should lead to the reduction in uncertainties in 

radionuclide transfer/food chain modelling. 

The present study is a direct response to these research needs and the requirement to improve 

our modelling capacity for better decision making. The main objective is to further improve 

the FDMT model and make its application more user friendly. In this paper, the approach 

taken to achieve this objective will be presented along with a demonstration of developments 

achieved. 

2. Methods 
 

Knowing that FDMT’s fitness for purpose should be improved such that better and more 

robust estimates could be made, a systematic method was needed to identify which parts of 

the model need to be modified/improved, in which order and how. In this regard, a sensible 

first step was the identification of FDMT’s limitations through a review of the reported works 

in which the FDMT model has been applied and by conducting a gap analysis.  

A literature review was conducted to make use of what had already been identified as 

limitations and  potential areas for further improvement of the FDMT model [24-28]. 

Furthermore, data were extracted from published reviews and available literature to populate 

the FDMT’s default databases.  

The gap analysis was conducted based on considerations regarding the application of FDMT 

to the Nordic conditions. The FDMT’s approaches for modelling radionuclide transport as 

well as its default food chains and parameters were then compared with the identified needs. 

Following the gap analysis and the literature review it was clear that, FDMT, in its original 

format, suffers from three types of limitations; structural, conceptual and specificity. 

Regarding the former, being originally implemented within Microsoft EXCEL™ and then 

later as an integrated module within ARGOS and RODOS, flexibility is limited to changes of 
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parameters and not the underlying models [39, 30] and there is little transparency with regards 

to the underlying calculations. Conceptual limitation refers to the science underlying the 

FDMT’s governing equations which is, as considered below, in many cases an 

oversimplification of reality and neglects important influences such as chemical forms of 

radionuclides in soils [31] as well as soil chemistry [32]. The specificity limitation arises 

because FDMT has been parametrised for conditions that are largely for Southern Europe and, 

for the example considered here, likely not relevant to other areas (including Nordic 

agricultural practices as considered in the scenario we have used to illustrate the ECOLEGO 

FDMT implementation) [33].  

 

2.1 FDMT 
The FDMT model can be used, among other things, for the prediction of radionuclide activity 

concentrations in various, mainly agricultural, food products for given inputs of radionuclides 

into terrestrial systems. The starting point for FDMT calculations is the outputs from 

atmospheric dispersion models (as also implemented within and connected to the ARGOS and 

RODOS systems). The main input quantities for subsequent calculations within FDMT are: 

• the date of the deposition (day, month) 

• the time-integrated radionuclide activity concentration in near ground air 

• the activity deposited by precipitation per unit ground area 

• the amount of precipitation (for wet deposition)  

In cases where the measured activity in air and the wet deposition are not available, the model 

provides alternative options for estimating the required inputs. 

Based on these limited input data, the transfer of radionuclides through food chains is 

quantified by modelling various processes including: the deposition and interception of 

radionuclides on vegetation/crop surfaces; the loss from vegetation/crops (via weathering); 

the change in radionuclide activity concentrations in vegetation/crops via biomass dilution; 

foliar and root uptake of radionuclides by vegetation/crops; intake of contaminated foodstuffs 

by farm animals and radionuclide-specific equilibrium transfer factors and  biological loss 

rates for these animals. 
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 After inserting the above-mentioned input values into FDMT, the next step would be 

simulation of dry and wet deposition of radionuclides. The output from these simulations 

forms the basis for most of the subsequent calculations performed within FDMT. 

Deposition and interception are key initiating and seminal processes that dictate the levels of 
radionuclides that are used in subsequent parts of the FDMT model. In order to emphasise 
their importance and their complexity, in the following, it is first shown the way these are 
modelled in FDMT and later argued why these have to be reconsidered/remodelled. 
 

2.1.1 Deposition in FDMT 
In FDMT dry and wet deposition are considered separately. The dry deposition to different 

plant species is calculated from the time-integrated air concentration using a deposition 

velocity which depends on the plant type: 

 

Di = vi ⋅Cair ,                           (1) 

 

with  

Di = dry deposition onto plant type i (Bq· m-2), 

vi = deposition velocity for plant type i (m·s-1), 

Cair = time-integrated activity concentration (for a specified radionuclide) in air (Bq·s· m-3). 

 

The deposition process has a pronounced seasonality which is location specific [24]. In the 

FDMT model, this has been taken into consideration by defining deposition velocity at the 

time of deposition (vi) as a function of the leaf area index (LAI), which is defined as the ratio 

of the (single-sided) leaf area to the soil area [24]: 

 

𝑣𝑣𝑖𝑖 = 𝑣𝑣𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚 ∙ �
𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖

𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚
� �,  (2) 

 

where  

vi, max  = the maximum deposition velocity for the given plant type i, assuming fully developed 
foliage,  

LAIi  = the leaf are index of plant i, at the time of deposition, and 
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LAIi,max = the corresponding leaf area index for the fully developed plant.  

 

 

The deposition velocity depends on the chemical form of radionuclides and size of aerosols 

[34]. However, in FDMT all aerosols are treated the same, regardless of their size; the model 

only distinguishes between elemental, organic bound and aerosol bound iodine. If the default 

values of FDMT are not changed to adequately represent aerosol size the deposition estimates 

can be wrong by several orders of magnitude [24]. 

2.1.2 Interception in FDMT 
In FDMT, the interception of wet deposited radionuclides is expressed as function of LAI, the 

total amount of rainfall and the water storage capacity of the plants' leaves without 

considering any aerosol particle features such as size. The interception fraction, fi, for plant 

type i is quantitatively expressed as: 

 

𝑓𝑓𝑖𝑖 =  𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑆𝑆𝑖𝑖
𝑅𝑅

�1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �−𝑙𝑙𝑙𝑙2
3𝑆𝑆𝑖𝑖

 𝑅𝑅��,        (3) 

 

with 

f,i           = interception fraction for plant type i, 

Si       = retention coefficient (mm) of plant type i, 

R       = amount of rainfall (mm) of a rainfall event. 

 

If application of this equation results in an interception fraction greater than 1.0,  fi = 1.0 is 

assumed. Three groups of elements are differentiated with regards to retention coefficients: I) 

Ce, Cs, Mn, Na, Nb, Pu, Rb, Ru, Sb, Te, Zr; II) Ag, Am, Ba, Cm, Co, La, Mo, Nd, Np, Pr, 

Rh, Sr, Y and III) I, Tc.  For all other elements, as a default, it is assumed that they behave 

similarly to cesium [13]. Furthermore, the current interception model in FDMT does not 

consider the influence of particle size. Although this has been shown to have a substantial 

effect on interception [35]. 
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2.2 Adaptation of a new modelling platform 
After identifying the limitations in FDMT we need to decide how to address them in a proper 

and logical order. From the three main limitations outlined above, the one associated with the 

structure of FDMT was considered as the most fundamental shortcoming of the model. 

Dealing with this limitation required a new modelling platform, which allowed for changes to 

be performed easily and in a straight-forward manner. The desired platform had to provide 

transparency, flexibility and for the option of conducting probabilistic modelling. The latter is 

beyond the FDMT model’s currently available deterministic approach and hence a clear 

improvement could be introduced by allowing sensitivity and uncertainty analyses to be 

performed. To fulfil these requirements, we used the modelling platform ECOLEGO [36]. 

2.3 ECOLEGO 
The ECOLEGO modelling platform [36, 37] is developed for creating dynamic models and 

performing deterministic or probabilistic simulations (making use of Monte Carlo or Latin 

Hypercube sampling). The software incorporates numerical solvers for complex and dynamic 

systems, i.e. solver for ordinary differential equations including ‘stiff’ problems. 

2.4 Implementation of ECOSYS87/FDMT in ECOLEGO 
The FDMT model has been implemented using the ECOLEGO software package. The 

implementation has covered the entire suite of radionuclides and exposure pathways to 

humans that were included in the original ECOSYS-87 model although subsequent focus, in 

relation to collation of revised parameters, has been placed on the food-chain transfer 

component of the model as opposed to the (human) dose calculation module. Default 

parameters are essentially those presented in the earlier version of the model [16, 38].   

The FDMT model is a compartment model consisting of a system of Ordinary Differential 

Equations (ODE) that are solved mainly analytically, although some equations are solved 

through integration using the trapezoidal method. In ECOLEGO, the same system of ODEs 

was implemented using specialized blocks called compartments. Each ODE compartment was 

then defined by adding specialized ECOLEGO blocks representing transfers between 

compartments, sources from outside the modelled system and sinks to outside the system. The 

equations corresponding to the different blocks (compartments, transfers, sources, sinks etc.) 

were written using the library of functions available in ECOLEGO. Once the model is 

implemented, ECOLEGO then integrates the whole system of ODEs, using the numerical 

method selected by the user from those available in the software.  
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The FDMT model within ECOLEGO can be graphically viewed either as an interaction 

matrix or as a more traditional compartmental model as shown in Fig. 1. The model is 

organised into different subsystems corresponding to different types of target environment, 

such as ‘Grass Intensive’, ‘Grass Extensive’, etc. Within each sub-system the relevant blocks 

can be viewed, i.e. the user can view all ODEs and other equations used in the model. The 

user can modify and add equations without any need for programming.  

 

 

Fig. 1 The setup of FDMT as modelled in the ECOLEGO platform. 

 

3. Results and discussion 
 

The main findings of the gap analysis indicated modification of model features and parameter 

values was needed for the FDMT model to be more widely applicable. As an example, 

Nielsen and Andersson [24, 25] demonstrated the sensitivity of FDMT’s outcomes to a 

number of site-specific input parameters, such as soil type, sowing and harvesting times, 

feeding regimes for animals and human consumption habits. The same studies also showed 

that many of the FDMT/ECOSYS default parameters values need to be updated and suggested 

that several new parameters (e.g. particle size and soil characteristics) should be included. As 

an example, several important regional foodstuffs (e.g. for Nordic or Mediterranean countries) 

are not part of the default diet list of ECOSYS. For instance, reindeer and brown (or whey) 

cheese are not included in the default list of foodstuffs of FDMT. However, these are not only 

two important foodstuffs in the Norwegian diet, but both are also prone to accumulating 

radiocaesium [25, 39]. 
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It, therefore, goes without saying that any attempt to improve the fitness for purpose of FDMT 

should take place at two levels in parallel: modifying sub-model components and parameter 

updating. Regarding the former (i.e., modifying the modelling structure and underlying 

components), despite the requirement being identified in several earlier studies [24, 25, 28], 

no substantial improvements have previously been made. In contrast, the issue of parameter 

updating has received more attention (e.g. [24, 25, 28, 40]).  For instance, as an attempt to 

include the option of modelling radionuclide transfer to reindeer, Staudt [40] included 

reindeer as an animal category for boreal and alpine radioecological regions in a 

demonstration of regionalising FDMT. However, the model was re-parameterised by adopting 

the feed to animal transfer factor (d kg-1) for beef cattle. There was no evidence provided to 

support the efficacy of so doing and indeed given that the transfer factor is dependent upon 

the daily dry matter food intake rate the assumption is unlikely to be valid. Ideally, a bespoke 

model for reindeer based on, for example, the analyses conducted by Åhman [41] would be 

more appropriate or perhaps the application of a generic dietary concentration ratio rather than 

using/having to derive an animal specific transfer factor (see discussion in [17, 42]. 

 

3.1 General limitations and shortcomings of FDMT 
 

3.1.1 Lack of relevance and transparency   
 

As noted above, the radioecological parameters in FDMT were originally derived for 

Southern German agricultural conditions and in many cases not relevant for other 

environments/production systems. Furthermore, the parameter values originate from before 

the wealth of radioecological studies prompted by the 1986 Chernobyl accident and also 

international initiatives to collate transfer parameter data (i.e. IAEA [43] subsequently 

superseded by IAEA [17]). Consequently,  there has been criticism that FDMT is not using 

state-of-the-art knowledge (e.g. Nilsen and Andersson [25]). In many cases, FDMT has 

default transfer parameter values that are not based directly on empirical data. For some 

animal products, Müller and Pröhl [16] describe how such values were derived; for example, 

if transfer factors were not available for sheep and goat milk a value 10-times higher than that 

for cow milk was assumed. However, there are many cases where it is not clear how the 

default parameter values have been derived when data were not available (see Brown et al. 

[44]). Hence, greater transparency is required on how these values have been derived and 
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indeed they should potentially be revisited taking into account the latest IAEA handbook [17] 

and possibly also the recent consideration given to extrapolation approaches to derive missing 

radiological data (e.g. [42, 45, 46]).  

3.1.2 Being deterministic 
The current version of FDMT in the ARGOS and JRODOS decision support systems utilises 

discrete parameter values and allows for deterministic calculations. From one perspective, this 

might not be considered a major limitation and might even be deemed an advantage for being 

straight-forward and easily implementable. However, from an alternative viewpoint, this 

might result in assigning an unwarranted certainty to the outputs as the approach does not 

allow account to be taken of uncertainty in the simulation output despite the knowledge that 

large uncertainties exist in many of the parameters used in the calculation. The importance of 

adequately characterising variability and uncertainty in exposure assessments for human 

health risk assessments has previously been highlighted [12, 47, 48].  

3.1.3 Not feasible for conducting sensitivity analysis 
Another limitation is that the existing version of the model does not permit a robust sensitivity 

analysis. It is a fact that uncertainties are an inherent part of all modelling processes. 

Identifying the uncertainties that influence model outcomes most (either qualitatively or 

quantitatively) and communicating their importance is essential for proper integration of 

information from models into the decision-making process [7]. 

Müller and Pröhl [16] do present an initial consideration of uncertainty of the default 

ECOSYS-87 parameter values (some of which were relatively site specific) and identified the 

21 most sensitive parameters from a total of more than 400 parameters. This work has 

limitations, mainly in relation to the specificity of the calculation and simplicity of 

assumptions regarding underlying statistical distributions that were made. Furthermore, it is 

self-evident that the greater number of data that are now available enable a more refined 

statistically based parameterisation. 

3.1.4 Cannot handle complex dynamic systems 
FDMT is not currently set up to allow the user to solve complex dynamic systems – 

essentially analytical solutions are provided for basic differential equations and simplifying 

assumptions are made with respect to, inputs to and losses from, various components of the 

modelled system.  
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However, if it is desirable to move towards a more process-based modelling approach or to 

consider more complex and dynamic systems, it would be a great advantage if the model was 

linked to software packages which make use of numerical solvers. 

3.1.5 Lack of flexibility 
There are components of ECOSYS-87/FDMT where there are concerns over the robustness of 

the approach (e.g. Nielsen and Andersson [26, 27]) and where external (sub) models are 

available/published that may be considered as viable alternatives. An example can be given 

by the equations used to determine the concentration of bio-available radionuclide activity in 

the root zone of soil. There are more sophisticated models available than the simplified 

approach described in FDMT where generic fixation and desorption rates are used across all 

soil types and migration/leaching rates vary between pasture and agricultural soils only 

because the depth of the rooting zone is assumed to be different. The ‘Absalom model’ [49], 

for example, allows the radiocaesium bioavailability to be determined specifically as a 

function of soil clay content, exchangeable K+ status, pH, NH4+ concentration and organic 

matter content. In the latest version of this model [50] the number of required input 

parameters has been reduced by excluding NH4+ concentration. Accounting for such soil 

parameters enables predictions to vary according to soil type.  

3.2 Testing of the new FDMT  
After implementing ECOSYS-87 into ECOLEGO, it was necessary to test that the results 

generated by ECOSYS-87 could be reproduced acceptably by the ECOLEGO 

implementation.  

Two scenarios involving dry and wet deposition were adapted from Søvik et al. [51] for this 

model-model comparison. Deposition date was selected to be 1st August and the magnitude of 

deposition was 1000 Bq m-2 for four radionuclides (Cs-134, Cs-137, Sr-90 and I-131). Table 1 

shows the input parameters considered in the two scenarios.  

Table 1 Input parameters specified in the scenarios used to test the ECOLEGO implementation of 
FDMT. 

Input parameter Dry deposition Case  Wet deposition case 
Calculated activity concentration in air (Bq 
h/m3) 

140 0.55 

Wet deposition (Bq/m2) 0 1000 
Total deposition to vegetated soil (Bq/m2) 1000 1000 

 

The original ECOSYS-87 in EXCEL™ and the new implementation in ECOLEGO were run 
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for a 5-year period, using default parameter values. The endpoints compared were predicted 

radionuclide activity concentrations in winter wheat (whole grain), leafy vegetables, milk 

(cow), beef (cow) and lamb.  

 

The outputs from the ECOLEGO and EXCEL™ implementations of ECOSYS-87 were 

compared for both wet (assuming 3 mm of rainfall) and dry depositions and showed good 

agreement. In most cases, the values corresponded exactly or were within a few percent of 

one another (at very worst the deviation was not greater than ~7 %). Hence, we could 

conclude that ECOSYS-87 has been implemented correctly into ECOLEGO. Fig. 2, shows the 

outputs from both ECOSYS-87 in EXCEL™ and ECOLEGO for Cs-137 and the wet 

deposition scenario as an example. 

 

 

 

Fig. 2 Concentration of Cs-137 in foodstuffs obtained with ECOLEGO and ECOSYS-87 for the wet deposition 
scenario. 

 

3.3 Updating databases and collation of underlying statistical datasets  
In parallel with the ECOLEGO implementation, FDMT’s default databases have been 

repopulated using data extracted from recently published reviews and available literature. The 

selection of parameters to collate was dictated by the scenarios outlined above. The collation 

of underlying statistical data was restricted to the four radionuclides considered in the 

scenarios, although the coverage was extended to all crop and animal derived food product 

types. The goal was to cover as many parameters as practicable but certain constraints were 

introduced by the consideration that underpinning data were sometimes unavailable or the set-

up of the model limited the statistical treatment of a given parameter. To explain this last 
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point, it should be noted that some of the time-dependent parameters, such as Leaf Area Index 

(LAI) and translocation factors, in the ECOLEGO version of FDMT are included as ‘look-up’ 

tables for which only single data values are provided for each discrete time-point. It was, 

therefore, impracticable to assign distributions to these parameters. This issue could be 

improved and might be considered in the next phase of this work. 

 

As noted elsewhere [12, 52], it was considered that transfer factors result from the 

multiplication of a large number of unknown positive parameters and that their PDFs might 

be suitably characterised by log-normal distributions. It was, therefore, considered appropriate 

to allocate log-normal distributions to the default transfer factors collated in the present 

analysis. In other cases, the coverage of the data was simply not comprehensive enough to 

allow a detailed PDF to be characterised. In such cases, uniform distributions were typically 

employed allocating equal probability to the sampling of all quantities within the range 

defined by minimum and maximum values. In several additional cases where a range of 

values and best estimate value were available, the selection of triangular distributions was 

considered appropriate. The configuration of the default databases for this work on FDMT-

ECOLEGO has drawn heavily on recent collations of radioecological parameter (most notable 

with regards to soil to plant transfer factor, and feed transfer coefficients for animal products) 

by the IAEA [17, 34]. Detailed descriptions on our data collation (giving information on their 

provenance and derivation) can be found in Brown et al. [44]. 

Table 2 shows old and new values for the soil to plant transfer factors along with the assigned 

distributions for the two crops used in abovementioned scenarios. Complete tables of transfer 

factor values for caesium, strontium and iodine for all crop types considered by FDMT can be 

found in the Appendix.  

Table 2 Soil to plant transfer factor (TF, unitless) (new values from IAEA [34]). 

 Plant New default (old default) Distribution* 
 Arithmetic 

mean 
STD 

Caesium Leafy_vegetables 6.0E-3 (2.0E-2) 1.7E-2 2.1E-2 
 Winter_wheat 2.6E-2 (2.0E-2) 6.7E-2 1.3E-1 
     
Strontium Leafy_vegetables 7.6E-02 (4.0E-1) 1.9E-1 1.8E-1 
 Winter_wheat 9.7E-02 (2.0E-1) 1.6E-1 1.7E-1 
     
Iodine Leafy_vegetables 6.5E-04 (1.0E-1) 1.6E-3 2.9E-3 
 Winter_wheat 5.5E-04 (1.0E-1) 1.2E-4 2.5E-3 
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*Assumed to be untruncated log-normal distribution 

We have focussed on these three elements and their radioisotopes as these will likely present 

the main causes of concern with respect to food chain transfer following an accidental release 

from a nuclear facility.  The geometric means from the abovementioned  data compilations 

are used as the new default parameter values for deterministic runs, as these values provide 

the best indication of central tendency for log-normally distributed data, whilst the arithmetic 

mean and associated pdf, from the same compilations, are used for probabilistic modelling.   

 

3.4  Probabilistic model runs  
Following the implementation of FDMT into ECOLEGO and assignment of distributions to 

various model parameters by updating its default databases, FDMT could be run 

probabilistically. 

To demonstrate this new functionality, the new FDMT was applied to the scenarios described 

above (i.e. those used for the model testing considering wet and dry deposition cases). Using a 

Monte Carlo sampling method, 500 iterations were made for each run. The choice of 500 

iterations was based on practical considerations, as a higher number of iterations required 

considerably longer simulation time. For each iteration, ECOLEGO takes a random sample 

from the PDF of each varied model parameter and performs a simulation for the set of 

parameters corresponding to this iteration. As a result, a set of model endpoint values is 

obtained for each iteration. The values obtained from all iterations, in this case 500, are then 

used to obtain different statistics of the model endpoints, such as the mean value, the median, 

the 5th and 95th percentiles.  

The resulting simulations are for: cow milk, beef and lamb; dry and wet depositions; and Sr-

90, I-131 and Cs-137. Deposition occured on1st August, i.e. at Julian day = 213. For each run 

mean, 5th and 95th percentiles were obtained over a period of 5 years. The outputs from two 

such probabilistic runs are shown in Figs. 4 and 5 for activity concentration of Cs-137 in cow 

milk and meat.  
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Fig. 4 Probabilistic simulation of activity concentration of Cs-137 in milk (cow) for the dry deposition 

scenario. In addition to 5th percentile, mean and 95th percentile, the output from deterministic run 

(based on using default new best estimate value) is also shown.  

 

 

 

Fig. 5 Probabilistic simulation of activity concentration of Cs-137 in beef (cow) for the dry deposition 

scenario. In addition to 5th percentile, mean and 95th percentile, the output from deterministic run 

(based on using default best estimate value) is also shown.   
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As shown in Figs. 4 and 5, for the case of cow milk and beef, the deterministic predictions are 

comparatively low and close to 5th percentile values. Furthermore, the span between 5th and 

95th percentiles is relatively narrow; the ratio of the 95th to 5th percentile falls generally around 

10 and up to two-orders of magnitude at the most. Should the span between 5th and 95th 

percentiles have been much larger, e.g. the 95th to 5th percentile ratio reaching many orders of 

magnitude, problems may arise in specifying anything concrete when making a prognosis; at 

the low end of the prediction impacts might be negligible whereas at the high end, impacts 

may be dramatic. However, these kinds of considerations require extra information which is 

only possible to obtain by running the model probabilistically. Figs. 6 and 7 are shown here to 

illustrate the point that a probabilistically enabled FDMT is capable of producing results 

which are more detailed and informative as opposed to information obtained when running 

the model deterministically 

 

 

 

 

 

 

 

Fig. 6 PDF and statistics for activity concentration of Cs-137 in cow milk for dry deposition scenario 

at day 220 (7 days after initial deposition). The vertical line indicates the value obtained upon running 

FDMT deterministically.  

 

 

 

 

 

 

Fig. 7 PDF and statistics for activity concentration of Cs-137 in beef (cow) for dry deposition scenario 

at day 239 (26 days after initial deposition). The vertical line indicates the value obtained upon 

running FDMT deterministically.  
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The obtained confidence intervals illustrate the amount of uncertainty involved in each time 

step and provide useful information relevant in the process of making decisions. For example, 

regulatory standards can be compared with lower and upper confidence limits (such as 5th and 

95th percentiles) to decide whether a standard will be violated or not. Regarding how to make 

use of the information obtained from a quantitative uncertainty analysis in decision making 

Hammond et al. [8] provide the following guidance: “if a 5% lower confidence limit is above 

a regulatory standard of concern, then it is likely that the standard will be violated. If the 95% 

upper confidence limit is below the standard, it is likely that the standard will not be violated. 

If the 95% upper confidence limit is above the standard, but the 50th percentile is below the 

standard, further study should be recommended on those parameters that dominate the overall 

uncertainty. However, if the 50th percentile is above the standard, further study may still be 

recommended, but under some circumstances one may opt to proceed with regulatory action 

depending on the cost-effectiveness of measures for risk reduction.”. 

In the present work, we have focused on model parameter uncertainties and the estimated 

endpoint uncertainties do not reflect the overall uncertainties associated with estimated 

concentrations, but only uncertainties related to the limited number of parameters that have 

been considered in these runs. Furthermore, in addition to parameter uncertainties there are 

other sources / types of uncertainties which could contribute to the total uncertainties 

associated with a model’s output. These can be related to the conceptual and mathematical 

model, scenario and input data used to make the assessment [53]. It is important to have these 

considerations in mind when analysing estimated uncertainties of outputs of probabilistic 

runs. 

3.5 Sensitivity analysis 
 

Sensitivity analysis assesses how sensitive the model output is to changes in model inputs/ 

parameters [54]. It can be used to determine, for instance: 

a. the parameters that contribute most to the output variability;  

b. the model parameters (or parts of the model itself) that are insignificant;  

c. if and which (groups of) parameters interact with each other.  

The last point is related to correlation which might exist between various parameters and is often 

ignored, mostly due to computational challenges. Addressing the interaction between parameters 

requires computation of higher order sensitivity indices and in ECOLEGO there exists 
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functionality for such considerations. Nonetheless, it was considered premature in this study to 

apply this option without a more detailed knowledge about the relationships between FDMT 

model parameters. The issue of correlation between input parameters and how this may affect 

model outputs has been considered elsewhere [55, 56]. 

 

The sensitivity analysis in this work was done for the case study described above for the wet 

deposition scenario and considers the same endpoints of radionuclide activity concentrations 

(90Sr, 131I and 137Cs) in winter wheat (whole grain), Leafy vegetables, Cow milk, Cow meat 

and Lamb meat. The simulation period was extended to explore the influence of some 

parameters which are expected to play a role only after a prolonged period. Various time 

points were selected, namely : 1 day, 1 week, 2 weeks, 1 month, 2 months, 1 year, 10 years, 

25 years,  to account for the dynamics of the system and also to reflect the fact that the 

sensitivity of the model output to any given parameter might have a time dimension. The 

approach taken was as follows:  

 

1. Probabilistic simulations – 50001 iterations by Monte Carlo sampling (random 

sampling) from the probability distributions assigned to several model parameters.  
 

2. The probabilistic results were used for calculating different correlation and regression 

coefficients for the untransformed and ranked variables (this means that model inputs 

and outputs are ranked).  
 

3. An algorithm named EASI (Effective Algorithm for Computing Global Sensitivity 

Indices) was applied [57]. This variance decomposition method is model independent. 

The calculated sensitivity index for each uncertain parameter represents the first order 

contribution of this parameter to the variance of the output.   
 

                                                            
1 The choice of iteration numbers is somewhat arbitrary, the number of iterations for sensitivity analysis 
selected as being a factor of 10 higher than probabilistic runs. The common factor in both cases was 
that enough iterations were selected to ensure that the statistical information being generated could be 
deemed reliable. 



21 
 

In principle, for this study the EASI method alone was sufficient for ranking the model 

parameters by sensitivity, however, this method does not show if the parameter has a positive 

or negative effect on the output. On the other hand, although the Spearman Rank Correlation 

Coefficients (SRCC) do not give a quantitative measure of the contribution of the parameters 

to the variance of the outputs, they show the direction of the effect of the parameters on the 

output of interest. The outcomes from both analyses have therefore been used in tandem 

(Figs. 8 and 9).    

 

 

 

 

Fig. 8 Sensitivity indices (as calculated by EASI method) as function of time for Cs-137 concentrations in leafy 

vegetables. 

 

The results from the analysis intuitively make sense. In the initial period of the simulation, up 

to the first month or so, the retention coefficient and (loss from vegetation) weathering rate 

constitute those parameters which predominate in terms of their contribution to the variance 

observed in Cs-137 activity concentrations in leafy vegetables. In later stages of the 

simulation, 10 to 25 years, the uncertainties associated with processes influencing the 

behaviour of Cs-137 in soil start to have a major influence upon the variance observed in the 

model output. 
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Fig. 9 Cs-137 leafy vegetables: Spearman rank correlation coefficients between parameters and 

output, for various time points. Note that the order of parameters on the vertical axis changes between 

the first and second plots. 
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The information provided from the Spearman rank correlation coefficients illustrate that, 

whereas the retention coefficient has a positive correlation with the assessment endpoint, the 

correlation with weathering rate is an inverse one (i.e.  an increase in weathering rate will lead 

to a decrease in the simulated levels of Cs-137 in leafy vegetables). From a period of 2 

months and extending in time up to the end of the simulation at 25 years, the soil to plant 

transfer factor (i.e. concentration ratio, Fv,) becomes an important factor.  

 

To avoid over-interpretation of the results from the sensitivity analysis conducted in this 

study, the following should be noted. In particular, we lack insight into the model sensitivity 

to those parameters which have been defined by look-up tables, as noted earlier in the text. Of 

course, a sensitivity analysis could be conducted to consider the influence of these parameters 

without using look-up tables, but this was considered beyond the scope of our demonstration and 

has in any case been looked at elsewhere [58].  In this particular instance, we strongly suspect 

that LAI for leafy vegetables would have been defined as sensitive, at least in the initial phase 

post deposition, had there been a means of characterising variability in this parameter. 

Furthermore, the timing of events such as the start of the harvesting period and the time 

interval between the deposition event and the harvest are likely to confound any extrapolation 

of these findings to a generic situation. Although this can be partly accounted for by 

considering numerous scenarios/cases, the regional aspects of farming practices relevant for 

model parameterisation are still likely to exert a great, and currently largely unquantifiable, 

influence on (some of the conclusions that might be drawn from) the sensitivity analyses. 

4. Concluding remarks 
Improving decision support systems used to manage risks in an emergency situation through 

quantification and reduction of uncertainties in underlying models has been identified as 

being important but has not yet satisfactory addressed [21].  To address this and in order to 

make FDMT fit for purpose, the model has been implemented into the flexible ECOLEGO 

modelling platform. This transformation has yielded new functionality and a great degree of 

freedom with regards to developmental work needed to improve the model further and to 

make it more user friendly. 

The focus of this work has been to demonstrate what could be improved within the FDMT 

implementation in the ARGOS and RODOS decision support systems and to create a platform 
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to identify future model development needs. However, there is no foreseeable hindrance to 

including the revised model/implementation into the decision support systems.   

FDMT can now be run probabilistically and the new platform allows for a sensitivity analysis 

to be conducted. By including the uncertainties of the underlying parameters through 

assignment of PDFs we can now acquire insight regrading uncertainties in predictions and 

also evaluate the relative importance of various parameters as a function of time for selected 

endpoints through making use of the sensitivity analysis functionality.  

There is a clear requirement for further testing of the probabilistic model outputs. There are 

suitable datasets that have been collated following the Chernobyl accident (for example 

BIOMOVS datasets [59]) and these could provide a good start for model testing. An initial 

check may be to see whether the empirical data measurements fall within given percentiles 

(e.g. 5th and 95th) of the model outputs. 

 

In addition to having the possibility of employing numerical solvers to more challenging 

model configurations, implementation of FDMT within the ECOLEGO modelling platform 

opens up the potential for investigation of various model components either in isolation or in 

combinations which reflect more specific settings. In other words, the new model offers 

flexibility in working with the model components such that these can be tested, modified or 

replaced. The latter option has encouraged, following the implementation and testing 

described in this paper, the introduction of a library structure. To achieve this, the overall 

model has been first disaggregated into its components/sub-models, such that each unit can be 

treated standalone and be applied independently. The advantage of organizing the model in 

this way is that the user can select specifically any component they are interested in for any 

given model run without invoking the entire FDMT model. This in turn, allows for getting 

better insight into underlying operations and increases the traceability and transparency.   

Deposition and interception models in FDMT should be revised in order to take into account 
important factors such as chemical form of radionuclides as well as surface characteristics of 
vegetation.  This requires moving from the possibility to just change/revise parameters to the 
consideration of new models which are more complex in terms of considering underlying 
mechanisms and processes to a greater extent. For example, there are other models that can be 
used to consider dry and wet deposition to those used as default in FDMT (e.g. [59, 60]) and 
future plans involve exploring the efficacy of using such alternative models. 
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The new design paves the way towards a more process-based modelling [32] approach and 

allows for evaluation of different models of varying complexities. This possibility provides a 

platform for considering case/region specific issues and to make predictions which are of 

more relevance and of better use with regards to decision making and management of risk.  

Currently process based models would have applicability in making long term predictions of 

soil-plant transfer after a deposition event (see [2,6,32]) in order to better identify areas where 

resources need to be focused and countermeasures potentially applied. However, they could 

also be developed to better define processes identified as being important through sensitivity 

analyses (e.g. to better model radionuclide concentrations following direct deposition on 

crops.However, even though the new design of FDMT provides novel opportunities, the 

extent to which we are able to take advantage of these is limited for the moment. For instance, 

FDMT can now be run probabilistically or a sensitivity analysis can be conducted, but lack of 

relevant statistical data, which is necessary to characterise uncertainties related to some model 

parameters, limits the use of these new features. To overcome these shortcomings some 

progress has been made, but there is a need to expand the statistical data collation to 

parameters not originally covered (i.e., non-radioecological, agricultural parameters) and to 

consolidate the information for those parameters that have been considered. 
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Soil to plant transfer factors (TF , unitless) for caesium, strontium and iodine (new values from IAEA  

[29]). 

Element Plant New default (old default) Distribution* 
Mean STD 

Cs 

Beet_leaves 5.6E-3 (3.0E-2) 1.1E-2 1.9E-2 
Leafy_vegetables 6.0E-3 (2.0E-2) 1.7E-2 2.1E-2 
Maize 1.8E-2 (2.0E-2) 3.0E-2 2.8E-2 
Beet 6.7E-3 (1.0E-2) 1.2E-2 1.8E-2 
Corncobs 6.3E-3 (1.0E-2) 1.1E-2 1.1E-2 
Fruit 8.7E-4 (2.0E-2) 2.3E-3 3.3E-3 
Oats 2.5E-2 (2.0E-2) 6.6E-2 1.3E-1 
Potatoes 1.2E-2 (1.0E-2) 2.1E-2 2.5E-2 
Rye 2.5E-2 (2.0E-2) 6.6E-2 1.3E-1 
Spring_barley 2.5E-2 (2.0E-2) 6.6E-2 1.3E-1 
Spring_wheat 2.6E-2 (2.0E-2) 6.7E-2 1.3E-1 
Winter_barley 2.5E-2 (2.0E-2) 6.6E-2 1.3E-1 
Winter_wheat 2.6E-2 (2.0E-2) 6.7E-2 1.3E-1 
Berries 1.5E-3 (2.0E-2) 2.9E-3 3.3E-3 
Fruit_vegetables 1.1E-3 (1.0E-2) 3.5E-3 7.5E-3 
Root_vegetables 6.7E-3 (1.0E-2) 1.2E-2 1.8E-2 
Grass (Intensive) 5.5E-2 (5.0E-2) 1.2E-1 1.8E-1 
Grass (Extensive) 1.7E-1 (1.0E0) 2.4E-2 2.6E-2 

 

Sr 

Beet_leaves 1.2E-1 (8.0E-1) 2.4E-1 2.2E-1 
Leafy_vegetables 7.6E-2 (4.0E-1) 1.9E-1 1.8E-1 
Maize 1.8E-1 (3.0E-1) 2.5E-1 1.9E-1 
Beet 1.2E-1 (4.0E-1) 2.4E-1 2.2E-1 
Corn_cobs 6.1E-2 (2.0E-1) 1.1E-1 1.2E-2 
Fruit 2.6E-3 (1.0E-1) 3.8E-3 2.9E-3 
Oats 9.6E-2 (2.0E-1) 1.6E-1 1.7E-1 
Potatoes 3.4E-2 (5.0E-2) 5.0E-2 4.6E-2 
Rye 9.6E-2 (2.0E-1) 1.6E-1 1.7E-1 
Spring_barley 9.6E-2 (2.0E-1) 1.6E-1 1.7E-1 
Spring_wheat 9.7E-2 (2.0E-1) 1.6E-1 1.7E-1 
Winter_barley 9.6E-2 (2.0E-1) 1.6E-1 1.7E-1 
Winter_wheat 9.7E-2 (2.0E-1) 1.6E-1 1.7E-1 
Berries 3.3E-2 (1.0E-1) 5.5E-2 6.9E-2 
Fruit_vegetables 1.8E-2 (2.0E-1) 4.9E-2 9.0E-2 
Root_vegetables 1.2E-1 (3.0E-1) 2.4E-1 2.2E-1 
Grass (Intensive) 2.9E-1 (5.0E-1) 3.74E-1 2.6E-1 
Grass (Extensive) 2.9E-1 (1.0E0) 3.74E-1 2.6E-1 

 

I 

Beet_leaves 1.2E-3 (1.0E-1) 2.1E-3 1.9E-3 
Leafy_vegetables 6.5E-4 (1.0E-1) 1.6E-3 2.9E-3 
Maize 1.3E-2 (1.0E-1) 2.8E-2** 4.5E-2** 
Beet 1.2E-3 (1.0E-1) 2.1E-3 19E-3 
Corn_cobs 1.2E-4 (1.0E-1) 2.7E-4 5.3E-4 
Fruit 9.5E-4 (1.0E-1) 1.8E-3 1.8E-3 
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Oats 5.5E-4 (1.0E-1) 1.3E-4 2.4E-3 
Potatoes 2.1E-2 (1.0E-1)***   
Rye 5.5E-4 (1.0E-1) 1.2E-4 2.4E-3 
Spring_barley 5.5E-4 (1.0E-1) 1.2E-4 2.4E-3 
Spring_wheat 5.5E-4 (1.0E-1) 1.2E-4 2.5E-3 
Winter_barley 5.5E-4 (1.0E-1) 1.2E-4 2.4E-3 
Winter_wheat 5.5E-4 (1.0E-1) 1.2E-4 2.5E-3 
Berries 1.5E-2 (1.0E-1)***   
Fruit_vegetables 5.0E-3 (1.0E-1)***   
Root_vegetables 1.2E-3 (1.0E-1) 2.1E-3 1.9E-3 
Grass (Intensive) 8.1E-4 (1.0E-1) 9.9E-2 3.1E-2 
Grass (Extensive) 8.1E-4 (1.0E-1) 9.9E-2 3.1E-2 

*Untruncated Lognormal distribution; **for cereal stem and shoots; ***No distribution, based on one value. 
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