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Abstract
Investigating resource partitioning of marine predators is essential for understanding coexistence of sympatric species and 
the functional role they play in marine ecosystems. Baleen whales are a key component of sub-Antarctic ecosystems, forag-
ing predominantly on zooplankton and small forage fish. During the twentieth century, baleen whales were unsustainably 
exploited across the Southern Ocean. Within the exclusive economic zone of South Georgia and the South Sandwich Islands 
(SGSSI EEZ) in the South Atlantic, approximately 98,000 fin whales (Balaenoptera physalus) and 16,000 sei whales (B.
borealis) were harvested. Despite both species historically occurring in high numbers and feeding in sub-polar waters, lit-
tle is known about the mechanisms of coexistence. Here, by measuring stable isotope ratios of carbon (δ13C) and nitrogen 
(δ15N) in archived baleen plates and analysing historic catch data, we investigate resource partitioning of fin and sei whale 
during the commercial whaling period. Temporal and spatial occupancy at SGSSI EEZ (inferred from whaling catches 
that occurred between 1904 and 1976), alongside historic stomach contents (from the literature), and δ13C and δ15N results 
(observed in this study), suggests that despite using a common prey resource there was limited overlap in isotopic niches 
between the two species, with sei whales using SGSSI waters later in the season and for a shorter period than fin whales. 
We hypothesise that the isotopic differences were most likely due to sei whales foraging at lower latitudes prior to arrival at 
SGSSI. Our data provide novel insight into how two sympatric whale species co-occurring at SGSSI during the commercial 
whaling period may have partitioned resources and provide a potential ecological baseline to assess changes in resource use 
in recovering whale populations.

Keywords Balaenoptera borealis · Balaenoptera physalus · Resource partitioning · Stable isotope analysis · Whaling; South 
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Introduction

Resource partitioning is a mechanism that facilitates the 
coexistence of sympatric species within an ecosystem (Levin 
2000; Roques and Chekroun 2011; Friedlaender et al. 2021). 
This mechanism, commonly referred to as the competitive 
exclusion principle, states that two species cannot occupy 
exactly the same niche and stably coexist (Hardin 1960), 
with “niche” previously defined as the ecological space 
where a species or population can persist and thus utilise 
resources and impact its environment (Polechová and Storch 
2019) (although other similar definitions exist e.g. Grinnell 
1924; Leibold 1995). Instead, to reduce competition sym-
patric species may target different prey taxa, different size 
classes of the same prey taxa, or target the same prey taxa at 
different times of day (or year), in different locations, or both 
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(spatiotemporal partitioning) (Garneau et al. 2007; Gerrish 
and Morin 2016; Fossette et al. 2017; Morera-Pujol et al. 
2018; Gulka et al. 2019; Lea et al. 2020; Teixeira et al. 2021; 
Durante et al. 2021; Friedlaender et al. 2021). For example, 
whale species foraging on Antarctic krill near the Antarc-
tic Peninsula between summer and autumn appear to dif-
ferentiate krill prey by size class with humpback, Antarctic 
minke, and fin whales targeting small (< 35 mm), interme-
diate (35–44 mm), and large (> 45 mm) krill, respectively 
(Santora et al. 2010). In contrast, bull sharks and Atlantic 
tarpon in the tropical North Atlantic target the same prey 
groups within the same region at different times of the year 
(Hammerschlag et al. 2012), whilst blue and fin whales in 
the eastern North Pacific forage on similar prey over the 
same time period at different depths (Friedlaender et al. 
2015). Ecosystem-based management can only be imple-
mented effectively once the mechanisms facilitating resource 
partitioning and coexistence of marine predators on feed-
ing grounds are known (e.g. fisheries closures coordinating 
with marine mammal occurrence and life history strategies 
to prevent accidental bycatch O’Keefe et al. 2013; Hoos 
et al. 2019)).

Understanding resource partitioning of Mysticeti (baleen 
whales) is important as they are top marine predators that 
provide essential ecosystem services, including the trans-
fer of nutrients between the many habitats and regions of 
which they occur (Roman et al. 2014; Doughty et al. 2016). 
Moreover, engulfment foraging combined with large body 
size gives baleen whales the capacity to disproportionately 
impact ecosystem functioning relative to other top marine 
predators (Doughty et al. 2016; Goldbogen et al. 2017). 
Due to their large energetic requirements, baleen whales 
are often associated with highly productive areas of the 
ocean where they can target dense aggregations of prey 
(Kelt and Van Vuren 1999; Goldbogen et al. 2017; Kahane-
Rapport et al. 2020; Cade et al. 2021a, b). These ephemeral 
prey hotspots (densely packed high-quality and often spo-
radic prey swarms) often facilitate resource competition 
by enticing multiple species and large numbers of baleen 
whales to forage in close proximity (Findlay et al. 2017; 
Cade 2021a; Rockwood et al. 2020; Cade et al. 2021b). 
However, the mechanisms driving the coexistence of mixed 
species aggregations of baleen whales are relatively under-
studied compared with other taxonomic groups, includ-
ing but not exclusive to, seabirds (Robertson et al. 2014; 
Navarro et al. 2015; Pontón-Cevallos et al. 2017; Gulka 
et al. 2019; Reisinger et al. 2020; Mills et al. 2021) and 
marine fishes (Targett 1978; Ross 1986; Fanelli et al. 2011; 
Cherel et al. 2011; Lopez-Lopez et al. 2011; Sheaves et al. 
2013; Pardo et al. 2015; Drago et al. 2017). Recent publi-
cations have demonstrated resource partitioning amongst 
baleen whales (McCarthy et al. 2021; García-Vernet et al. 
2021). Baleen whale species have been observed foraging 

in common areas at different trophic levels (Gavrilchuk 
et al. 2014; Witteveen and Wynne 2016; Herr et al. 2016), 
whilst, at one well-documented feeding site, different spe-
cies partition the same prey taxa by size class, depth, and 
distance to shore (Friedlaender et al. 2009, 2021). It is evi-
dent that whales can use a variety of mechanisms to facili-
tate sympatry; understanding these is important to identify 
foodweb dependencies and develop effective ecosystem-
based management.

In the Southern Hemisphere, multiple species of baleen 
whales migrate to highly productive Antarctic and sub-Ant-
arctic waters during the austral summer to feed (Mackintosh 
and Wheeler 1929; Mackintosh 1946; Nemoto 1962; Kawa-
mura 1980), facilitating the potential for resource partition-
ing. The high latitudes of the South Atlantic represent some 
of the most productive and biodiverse areas in the Southern 
Ocean (Atkinson et al. 2001; Trathan et al. 2007, 2014) and 
baleen whales form a key component of marine predator 
guilds here (Brown 1968; Headland 1992; Zerbini et al. 
2006; Kennedy et al. 2020). Marine resources around South 
Georgia and the South Sandwich Islands (SGSSI) in the 
South Atlantic are monitored and managed by the govern-
ment of SGSSI within the boundaries of the SGSSI exclu-
sive economic zone (EEZ). Since twentieth-century whaling 
ceased in 1986 (Rocha et al. 2015), there is now evidence 
of whale population size increases at SGSSI (Kennedy et al. 
2020; Jackson et al. 2020; Baines et al. 2021). Of the five 
species that currently forage at SGSSI, or were observed 
foraging at SGSSI during the twentieth-century whaling 
period (blue whale, Balaenoptera musculus, fin whale, Bal-
aenoptera physalus, humpback whale, Megaptera novae-
angliae, Antarctic minke whale, Balaenoptera bonaerensis 
and sei whale, Balaenoptera borealis), two species (fin and 
sei whale) occurred sympatrically in sub-Antarctic waters 
during the whaling period, foraging primarily on zooplank-
ton between spring and autumn (Kawamura 1980; Allison 
2016). Although present-day diets of fin and sei whales at 
SGSSI remain unknown, historic stomach contents analyses 
indicate that fin and sei whales both consumed Antarctic 
krill (Euphausia superba) within SGSSI waters during the 
commercial whaling period (Matthews 1938; Brown 1968). 
Despite sharing a common prey resource (at least during the 
twentieth century), the mechanisms facilitating the coexist-
ence of fin and sei whale consumption of Antarctic krill 
at SGSSI during the twentieth century and present day are 
unknown.

Historically, resource use has been investigated using 
stomach contents analysis; however, this approach is limited 
to a single point in time and will ultimately reflect prey avail-
ability at the time of the whale’s capture; therefore, studies 
using stomach contents may only provide partial information 
on diet (Votier et al. 2003; Bowen and Iverson 2012). In 
contrast, stable isotope ratios of carbon (δ13C) and nitrogen 
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(δ15N) provide a powerful alternative to stomach contents 
analysis, as they reflect prey consumption during the period 
of tissue synthesis. However, stable isotope analysis of ani-
mal tissues does not often provide information on specific 
prey species, although it can provide relative information on 
the resource use of marine predators within an ecosystem.

Stable isotope analysis has been widely used to study ani-
mal diets in the wild (Hobson 1999; Rubenstein and Hobson 
2004; West et al. 2006), including baleen whales (e.g. New-
some et al. 2010a; Borrell et al. 2012; Eisenmann et al. 2016; 
Valenzuela et al. 2018; Reiss et al. 2020)), with a particular 
focus on carbon and nitrogen stable isotope ratios. As energy 
flows through an ecosystem and is passed up the food chain, 
carbon isotopic values (δ13C) can be used to determine the 
source of primary production within a food web (Fry 1989). 
As these sources differ somewhat systematically between 
habitats and regions, carbon isotopic values can provide 
a proxy for: (i) latitudinal distributions, with lower δ13C 
towards the polar regions; (ii) foraging distance from shore, 
as inshore benthic food webs differ predictably in baseline 
δ13C due to their detrital origin compared with offshore 
pelagic food webs; and (iii) foraging in deeper waters, with 
higher δ13C values at increasing depth (Francois et al. 1993; 
Hobson et al. 1994; Cherel and Hobson 2007; Linnebjerg 
et al. 2013; Espinasse et al. 2019; Michel et al. 2020). Nitro-
gen isotopic values (δ15N) provide information on trophic 
positioning with higher δ15N ratios occurring predictably 
up the food web (Schoeninger and DeNiro 1984; Wada et al. 
1991; Boecklen et al. 2011; Healy et al. 2017), although the 
underlying physiological mechanisms driving this pattern 
are currently not fully understood (O’Connell 2017).

To better understand changes in species diet and resource 
use over time, historic baseline information on diet and 
resource use (often inferred from isotopic analysis) can be 
included to identify species responses to ongoing anthro-
pogenic impacts and global environmental change (Visser 
and Both 2005; McClenachan et al. 2012; Clavero 2014). 
Isotopic information is retained in tissues post-mortem, with 
patterns stable over millennia, enabling the use of historic 
specimens to infer the resource use patterns of populations 
in the past (e.g. Zenteno et al. 2015). Baleen whales have 
multiple layers of tightly packed keratinous plates (baleen) 
surrounding the inner mouth edge that grow continuously 
from the gumline and are metabolically inert once synthe-
sised (Rita et al. 2019) making baleen a good candidate tis-
sue for studying temporal changes of baleen whale resource 
use. Indeed, isotopic analysis of incremental samples along 
the growth axis of baleen plates has been used to determine 
changes in whale foraging preferences through time (Best 
and Schell 1996; Trueman et al. 2019; Reiss et al. 2020).

To better understand habitat and resource use of wild 
populations, stable isotopes are often paired with spatiotem-
poral occurrence data (e.g. Robillard et al. 2021; Leal and 

Bugoni 2021). Historic information on the distribution of 
whale species can be inferred from the timing and location 
of twentieth-century whaling catches (e.g. Clapham et al. 
2004; Reeves et al. 2004). Shore-based whaling occurred at 
the island of South Georgia (within the SGSSI management 
area) between 1904 and 1965 and pelagic boat-based whal-
ing started in the 1920s and continued until 1976 (Tønnessen 
and Johnsen 1982; Headland 1992; Allison 2016). South 
Georgia has been described as an epicentre of twentieth-cen-
tury whaling (Jackson et al. 2020), with 8.6% of the 2.1 mil-
lion whales harvested across the Southern Hemisphere taken 
from this region (Allison 2016). Whaling catch records are 
available for approximately 98,000 fin whales and 16,000 sei 
whales within the SGSSI EEZ (Allison 2016). Present-day 
population size and levels of population recovery for fin and 
sei whales are currently unknown in the South Atlantic, and 
very little ecological data from present-day populations are 
available.

Here, using temporal and spatial information on fin and 
sei whale distribution from historic whaling catches, along-
side, stable isotope analysis of incremental samples from six 
keratinous baleen plates collected from unique individuals 
and discarded during the twentieth-century whaling period, 
we investigate resource use and partitioning of fin whales 
and sei whales at SGSSI during the commercial whaling 
period. This information may help to infer the ecological 
role of fin and sei whales at SGSSI and identify evidence 
for interspecific resource partitioning.

Materials and methods

Spatial and temporal co‑occurrence inferred 
from whaling catches at SGSSI

Whaling catches between 1904 and 1976 were obtained from 
the IWC catch database version 6.1 (Allison 2016) and used 
to provide information on the location of species-specific 
catches within the boundaries of the SGSSI EEZ. Spati-
otemporal correlations in the locality and timing of whaling 
catches of fin and sei whales were used to investigate inter-
specific differences in spatial and temporal use of the marine 
environment around SGSSI.

Stable isotope analyses

Baleen plates (fin whales, n = 3; Sei whales, n = 3) were 
collected by individual researchers between 1970 and 1974 
from the shorelines of Grytviken whaling station, South 
Georgia (54.3° S, 36.5° W), and samples were stored at 
room temperature prior to sampling. Plates were collected 
prior to international enforcement of regulations by the Con-
vention on International Trade in Endangered Species of 
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Wild Fauna and Flora (CITES) in 1975; no CITES permits 
are associated with these materials. Baleen was subsampled 
using a 10 mm metal revolving belt punch from the part 
closest to the gum line, subsamples cleaned using a steel 
wool pad and 100% ethanol, and DNA extracted following 
the extraction protocol by Dabney et al. (2013) in the ancient 
DNA laboratory at the University of Cambridge (Dept. of 
Archaeology). Mitochondrial control region sequences were 
amplified using PCR and sequences compared against NCBI 
reference sequences to identify species. All mitochondrial 
haplotypes were unique to each baleen plate, thereby verify-
ing that each belonged to a unique individual. PCR primers 
and amplification details are presented in supplementary 
Table S1.

Baleen growth rates were reviewed in the literature to 
ensure that, where possible, baleen samples were representa-
tive of a minimum period of one year [> 18 cm for fin whales 
(Bentaleb et al. 2011), > 16 cm for sei whales (Reiss et al. 
2020)]. Plates were sampled incrementally along the long-
est axis every 1 cm using a metal revolving belt punch with 
5 mm diameter. In total, 57 incremental samples were taken 
from sei whales (n = 3 plates, with 18, 19 and 20 increments 
per plate) and 54 from fin whales (n = 3 plates, with 15, 19 
and 20 increments per plate).

Lipids were removed by alternating 2:1 chloroform/
methanol mixture and 2:1 methanol/chloroform mixture 
whilst soaking in an ultrasonic bath, changing the solvent 
every 30 min until the solution remained clear; the num-
ber of washes varied across increments (range: 1–3). Car-
bonates were removed through demineralization in 0.5 M 
aq. hydrochloric acid and extracts rinsed using triplicate 
washes of deionised  H2O. Samples were then freeze-dried 
and weighed (mean ± SD, 0.8 ± 0.1 mg) in triplicate into 
tin capsules. Stable isotope ratios of carbon and nitrogen 
were measured using a Costech Elemental Analyser coupled 
with a Thermo Delta V Plus continuous flow stable isotope 
mass spectrometer (EA-IRMS), at the Godwin Laboratory, 
Department of Earth Sciences, University of Cambridge. 
Replicate analyses of international standards were used to 
correct for instrumental drift. Carbon and nitrogen stable 
isotope values are expressed as delta values (δ) relative to 
international standards (Vienna PeeDee Belemnite—δ13C 
and atmospheric  N2—δ15N; see (Hoefs 2018)). Repeated 
measurements of in-house standards (caffeine, nylon, ala-
nine, protein 2) were used to determine measurement preci-
sion (δ13C—0.1, δ15N—0.2).

Mass spectrometry results were retained for analysis if 
they passed the following quality control (QC) checks: (i) 
atomic carbon/nitrogen ratio (C:N hereafter) remained at 
approximately 3.4 (± 0.5) (see: O’Connell and Hedges 1999; 
O’Connell et al. 2001; Newsome et al. 2010b; Bentaleb et al. 
2011; Ryan et al. 2013), and (ii) lipids were removed suc-
cessfully (accidental retainment of lipid was assessed using 

correlation between δ13C and C:N (Post et al. 2007)). Trip-
licate repeats of incremental δ13C and δ15N were averaged 
prior to data analysis.

Data analysis

All analyses were performed using software R version 4.0 
(RStudio Team 2020), and maps created using open-source 
geospatial software, qGIS version 3.10.13 (Quantum 2017).

Spatial and temporal co‑occurrence inferred from whaling 
catches at SGSSI

Spatial patterns To enable comparison of species-specific 
distributions whilst accounting for interspecific differences 
in the relative abundance inferred from catch data, whaling 
catch densities were mapped into 72 equal sized hexagonal 
bins and percentiles calculated using the quantile function 
in R (version 4.0). Each hexagonal bin spanned two deci-
mal degrees longitude and latitude across the SGSSI EEZ, 
and catches were summed within each bin. A correlation 
coefficient of spatial association (Clifford et al. 1989; Dutil-
leul et  al. 1993) was used to infer similarities in distribu-
tion (spatial partitioning) between fin and sei whales within 
the SGSSI EEZ using the “modified.ttest” function in the 
package SpatialPack (Osorio et  al. 2014). This coefficient 
measures the amount of correlation between two spatial 
sequences (in this case, the distribution of whaling catches 
of fin and sei whales), with values close to 0 representative 
of no spatial correlation and values close to 1 representative 
of complete spatial correlation.

Temporal patterns Monthly catch rates were calculated for 
each species (total catches that occurred within the SGSSI 
EEZ between 1904 and 1976 per month) and the similarity 
in the peak timing of catches was compared using a cross-
correlation analysis. Cross-correlation measures the simi-
larity of two time series, whereby two identical (or almost 
identical time series) will display a peak at zero (Derrick 
and Thomas 2004). Cross-correlations were performed 
using the “ccf” function in the `base` stats package in R and 
a significant correlation assessed using critical values at the 
5% level (R Development Core Team 2003); a significant 
value of + 1 or higher would resemble significant lag in the 
peak timing of catches of one or two months, respectively.

To identify whether variation in whaler behaviour 
throughout the commercial whaling period [e.g. whalers for-
aging inshore or offshore; whaler preference for a particular 
species at a given time (fin whales: 1937–1965; sei whales: 
1965–1975)] may have resulted in spatiotemporal varia-
tion in the occurrence of fin and sei whales at SGSSI, catch 
data were binned into three time periods (early: 1904–1928; 
middle: 1929–1952; late: 1953–1976). We then compared 
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interspecific differences in temporal (cross-correlations) and 
spatial (modified t tests) catch patterns within and between 
each time period analysed.

Measuring historic resource partitioning using stable 
isotope analysis

Interspecific variation The Mann–Whitney U test (MacFar-
land and Yates 2016) was used to identify statistical differ-
ences in δ13C and δ15N values between fin and sei whales 
as inference of variation in resource use between these two 
species. A nonparametric test was used as the assumptions 
of residual normality and homogeneity of variance were 
violated (Shapiro Wilk’s and Levene’s test, respectively).

The ecological niche space of fin whale and sei whale was 
inferred from pairwise values of δ13C and δ15N from baleen 
plates under a bivariate normal distribution (ellipses of mul-
tivariate δ-space are commonly used for ecological appli-
cations (Newsome and Martinez del Rio 2007; Newsome 
et al. 2010a, b). Multivariate δ-space of fin whale and sei 
whale at SGSSI was estimated using two models: (i) using 
maximum likelihood estimates corrected for small sample 
sizes  (SEAC) and (ii) using Bayesian estimates of isotopic 
niche space  (SEAB), both calculated using the R package 
SIBER (Jackson et al. 2011). To identify isotopic evidence 
for resource partitioning, percentage overlap of niche space 
between fin whales and sei whales was measured using the 
bayesianOverlap function from the R package SIBER (Jack-
son et al. 2011). Niche size and overlap were measured twice 
for both models  (SEAC and  SEAB). First, only incorporating 
c.40% (reflecting the core trophic niche) and second using 
c.95% (reflecting the full trophic niche), following Jones 
et al. (2020). SIBER uses a Markov chain Monte Carlo 
(MCMC) model-fitting algorithm. MCMC parameters were 
as follows: 100,000 iterations, 1000 burn-in, 5% thinning 
and 3 independent chains. Coherence among chains were 
determined for each model parameter using a Gelman-Rubin 
diagnostics of < 1.1 (Gelman and Rubin 1992; Brooks and 
Gelman 1998). Species differences in  SEAB were compared 
by assessing overlap of 95% credible intervals of posterior 
distributions (95% CIs). Differences were deemed statisti-
cally significant if 95% CIs did not overlap. Graphical ellip-
ses were drawn using the plotSiberObject function in the R 
package SIBER.

As multiple measurements were made for each indi-
vidual (i.e. along the baleen), the assumption of complete 
independence of data points was violated. To overcome 
this, additional datasets were created by randomly sub-
sampling ten data points from each of the six individu-
als (n = 60) without replacement 200 times. For each 
subsampled dataset (n = 200) the Breusch–Godfrey test 
(Breusch 1978) was used to detect autocorrelation between 
the residuals (per plate) and removed if significant. For 

the remaining subsampled datasets (n = 96), the repli-
cated analyses provided similar results to the full dataset 
(assessed by comparing overlap of 95% Cis of posterior 
distributions). This suggests that pseudoreplication was 
not biasing the results (see supplementary Table S4, Fig-
ure S7). Therefore, results based on the full dataset are 
presented in subsequent sections.

Intraspecific variation Within species, similarity of δ13C 
and δ15N values from incremental baleen samples for each 
individual was assessed by comparing overlap of posterior 
distributions. Posterior distributions were calculated using 
SIBER (95% CIs), and differences were deemed significant 
if 95% CIs did not overlap.

Results

Spatial and temporal co‑occurrence inferred 
from whaling catches at SGSSI

Totals of 16,400 sei whales and 98,843 fin whales were 
caught within the boundary of the South Georgia and South 
Sandwich Islands EEZ between 1904 and 1976; location 
of EEZ is shown in Fig. 1. Fin whales were caught year-
round, predominantly between September and May with 
the highest catches totalling 19,821 (20.1% of all fin whale 
catches within the SG EEZ) and 28,045 (28.4%) in Decem-
ber and January, respectively (Fig. 2; Table S2). Sei whales 
were caught from November–May, with the highest catches 
occurring from February–March (36.4% and 38.7% of all sei 
whale catches within the SGSSI EEZ, respectively) (Fig. 2; 
Table S2).

Intraspecific spatial patterns

Within fin whales, significant differences in the spatial dis-
tribution of catches were observed between all time peri-
ods (Fig. S4, Table S4). The mean tendency of fin whale 
catches was at slightly lower latitudes during the early whal-
ing period (< 1929) relative to the mid (1930–1951) to late 
time periods (> 1952) (Fig. S4). Within sei whales, a sig-
nificant difference was observed in the spatial distribution 
of catches between the middle and late time periods (Fig. 
S4, Table S4). As all sei whale catches occurred within a 
single hexbin during the early whaling period, correlations 
between the early time period and later time periods could 
not be formally tested (Fig S4, Table S4). Sei whales were 
caught inshore at South Georgia and offshore at lower lati-
tudes within the SGSSI EEZ during the mid (1929–1952) to 
late (1953–1976) time periods (Fig. S4).
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Interspecific spatial patterns

The overall catch distributions significantly differed 
between the two species within the SGSSI EEZ (Correla-
tion coefficient close to zero, t = 0.008, F = 0.01, df = 1, 188, 
p = 0.91; Fig. 1). Fin whales were caught across the entire 
EEZ, with the highest catches recorded close to the island 
of South Georgia, where the whaling stations were estab-
lished (Fig. 1). Moderate levels of fin whale catches were 
also recorded in offshore waters surrounding the island of 
South Georgia and at a band approximately -59 degrees lati-
tude, towards the lower half of the South Sandwich Islands. 
Similarly, to fin whales, the highest numbers of sei whale 
catches were recorded close to the island of South Georgia 
(Fig. 1). However, in contrast to fin whales, sei whales were 
caught predominantly at lower latitudes with the percentile 
of catches much lower at higher latitude regions (e.g. near 
to the South Sandwich Islands).

Intraspecific temporal patterns

Within species, cross-correlations showed no signifi-
cant differences in the peak timing of fin whale catches 
over time, with the highest numbers of fin whales caught 
in January, consistent across time periods (Table S3, Fig. 
S3. A–C). Prior to 1929, there were fewer catches of fin 
whales recorded during the austral winter (June to Septem-
ber) relative to the rest of the year, and no winter catches 
after 1929 (Table S3, Fig S2). For sei whales, the highest 
numbers of catches occurred between February and April 
and peak catch times remained relatively consistent across 
time periods (Table S3, Fig. S2-S3). A significant difference 
was observed between the early whaling period (highest in 
March and April) relative to the middle and late whaling 
periods (highest in February and March) (Fig. S3.D, E, 
respectively). No sei whale catches were reported during 
winter (June to September), and relatively few sei whale 

Fig. 1  A Location of South Georgia Exclusive Economic Zone 
(EEZ), South Atlantic, in relation to the Sub-Antarctic Front (dashed 
line), Polar Front (solid line), and Southern Antarctic Circumpolar 

Current (dot-dash line). Spatial distribution of fin B and sei C whale 
catches within the South Georgia Exclusive Economic Zone between 
1904 and 1976
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catches were made between October and December, consist-
ent across time periods (Table S3, Fig S2–S3).

Interspecific temporal patterns

Throughout the twentieth century, the peak timing of fin 
whale catches occurred earlier in the season at the SGSSI 
EEZ compared with sei whales. This was supported by 
cross-correlation functions which indicated that the peak 
timing of sei whale catches was at least one month later rela-
tive to fin whales (statistically significant lag time of one to 
two months, Fig. 2, ccf: + 0 − 0.436, + 1− 0.792, + 2 0.804).

Temporal patterns of peak catches were consistent 
within time periods, with peak fin whale catches occur-
ring earlier in the season compared with sei whales dur-
ing the early, mid and late whaling periods. (Fig. S2). 
This was supported by cross-correlation functions with a 
statistically significant lag time in peak catches between 
1 and 3  months depending on time period (Fig. S3). 
Prior to 1929, the significant lag time was two to three 
months (Fig. S2, ccf: + 2− 0.666, + 3− 0.599, p < 0.05). 
In contrast, both the middle (1929–1953) and late catch 
periods (> 1953) had significant lag times of one to two 

months (Middle ccf: + 1− 0.783, + 2− 0.846, Fig. S2; Late 
ccf: + 1− 0.683, + 2− 0.747, Fig. S2, p < 0.05).

Inference of historic resource partitioning using 
stable isotope analysis

Stable isotope ratios were successfully measured in 111 
baleen samples from sei whales (n = 3 plates, with 18, 19 and 
20 incremental samples) and fin whales (n = 3 plates, with 
15, 19 and 20 incremental samples). Within plates, no cor-
relation was observed between δ13C and C:N suggesting that 
residual lipids had been removed appropriately (Fig. S1).

Intraspecific variation

Minimum and maximum δ13C values were varied within 
fin whales (− 20.7 ‰ to − 20.2 ‰; − 23.1 ‰ to − 21.5 
‰; − 21.3 ‰ to − 17.4 ‰) and similar within sei whales 
(− 19.7 ‰ to − 16.7 ‰; − 21.1 ‰ to − 16.9 ‰; − 19.9.1 
‰ to − 14.3 ‰) (Fig. 3). Minimum and maximum δ15N 
values were similar within sei whales (7.8 ‰ to − 9.3 
‰; 7.8 ‰ to 10.0 ‰; 7.7 ‰ to 10.2‰) and within fin 
whales (6.3 ‰ to 7.1 ‰; 6.0 ‰ to 7.6 ‰; 6.5 ‰ to 7.9 ‰)

Fig. 2  A Density distributions of monthly commercial catches of sei 
whale (blue) and fin whale (orange) within the South Georgia Exclu-
sive Economic Zone between 1904 and 1976. B Cross-correlation 

functions graphically representing the monthly lag time of sei whale 
catches compared with fin whale catches. Blue dotted line represents 
the line of statistical significance at p = 0.05
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(Fig. 3). Within species, differences in δ15N values between 
individuals were minimal, with significant overlap of 95% 
CIs (Fig. 3, Table S5). In contrast, significant intra-specific 
variation of δ13C was observed between one individual and 
the other two individuals, consistent for both species (Fig. 3, 
Table S5). However, posterior distributions from SIBER 
analysis do not capture the full variation in δ13C and at least 
some incremental samples along the annual growth cycle 
overlapped in δ13C within species (Fig. 3, Fig. S5).

Interspecific variation

Sei whale baleen showed significantly higher δ13C and 
δ15N compared to fin whale baleen (δ13C: W = 263, 
p < 0.001; δ15N: W = 13, p < 0.001; Fig. 4). Across all 
incremental sei whale samples, δ15N values ranged from 

7.7‰ to 10.2‰ (mean ± SD: 9.1 ± 0.6, n = 57), and δ13C 
values ranged from − 21.1‰ to − 14.3‰ (mean ± SD: 
− 17.7 ± 1.6, n = 57). In contrast, across all incremental 
fin whale samples, δ15N values ranged from 5.9 to 7.9‰ 
(mean ± SD: 7.03 ± 0.48, n = 54), and δ13C values ranged 
from -23.1‰ to -17.4‰ (mean ± SD: − 20.7 ± 1.4, n = 54, 
Fig. 4, Table 1). 

Sei whale niche area, measured as standard ellipse area, 
was larger than fin whales (‰2 ± SD: 3.4 ± 0.3, 2.7 ± 0.2, 
respectively), consistent across 40% and 95% ellipse 
contours and across maximum likelihood (SEAc) and 
Bayesian estimates (SEAb) (Fig. 4, Table 2). No overlap 
in isotopic niches was observed at the core niche level 
(c.40%) and approximately 9% of overlap was observed 
when ellipse areas were estimated using 95% of the data 
(Table 2).

Fig. 3  A Variation in δ13C values of incremental samples from baleen 
plates of fin whale (orange) and sei whale (blue). B Variation in 
δ15N values of incremental samples from baleen plates of fin whale 
(orange) and sei whale (blue). Youngest to oldest samples are pre-
sented from left to right with samples at zero cm close to the gum-

line. Posterior distributions of stable isotope ratios C δ13C values; and 
D δ15N values of fin whale Balaenoptera physalus (orange) and sei 
whale Balaenoptera borealis (blue) baleen collected at South Geor-
gia during the early 1970s extracted from SIBER analysis. Significant 
differences were assessed by overlap of the 95% credible intervals
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Discussion

Our study is the first to show evidence of interspecific 
resource partitioning by baleen whales in the Southern 
Hemisphere during the twentieth-century whaling period 
using multiple lines of evidence and is the first study using 
isotopic data to measure resource partitioning between 
whale species on a summer feeding ground in the South 
Atlantic. Here, by comparing the spatiotemporal occur-
rence of fin and sei whales within the SGSSI EEZ during 
the twentieth century, we showed that sei whales may have 
occurred at SGSSI later in the season relative to fin whales 
and that sei whales predominantly utilised the northern 

part of the EEZ, whilst fin whales were more widely dis-
tributed. Historic baleen specimens from the sub-Antarctic 
during the commercial whaling period are rare; therefore, 
our sample sizes for isotopic analysis were small (111 
incremental samples from 6 individuals). Although con-
fidence in our isotopic results is limited by small sample 
sizes, the distinct isotopic niches of fin and sei whales 
when combined with the spatiotemporal differences from 
catch data provide novel insight into how resource par-
titioning may have facilitated the coexistence of fin and 
sei whales at SGSSI during the twentieth-century whaling 
period.

Fig. 4  A δ15N values and B δ13C values of fin whale (orange circles) 
and sei whale (blue triangles) baleen collected from ex-whaling sites 
at South Georgia during the early 1970s. C Bivariate stable isotope 
ratios (δ13C and δ15N) of incremental baleen samples from fin whale 
(orange circles) and sei whale (blue triangles) collected at South 

Georgia during the early 1970s. Bivariate ellipse areas representing 
40% (inner contour) and 95% (outer contour) of the data are shown. 
D Posterior distributions and 95% credible intervals (thin black line) 
of fin whale (orange) and sei whale (blue) Bayesian standard ellipse 
areas from SIBER analysis (SEAb)
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Interspecific resource partitioning in baleen whales

Here, whaling catch data demonstrated that fin whales were 
caught year-round at SGSSI, with highest catches during 
December and January. Comparatively, sei whales were 
only caught between January and May with highest catches 
between February and April. This pattern was consistent 
across time periods (early, middle, late), with the majority 
of fin whale catches earlier in the season compared with 
sei whales. Additionally, sei whales were predominantly 
caught in the northern part of the EEZ, whereas fin whales 
were caught throughout the region. Both species co-occurred 
in the late summer and early autumn during the twentieth 
century within the SGSSI EEZ, which may have increased 
competition.

Although no study has examined the contemporary spa-
tiotemporal occurrence of fin and sei whales at SGSSI, both 
species co-occur on feeding grounds in other parts of the 
globe (Flinn et al. 2002; Frans and Augé 2016; Silva et al. 
2019; Buchan et al. 2021; García-Vernet et al. 2021). For 

example, off the coast of the Falkland Islands in the west-
ern South Atlantic, fin and sei whales were both histori-
cally observed by local inhabitants predominantly between 
January and June (Frans and Augé 2016). The Falkland 
Islands are known feeding grounds for sei whales (Segre 
et al. 2021); however, limited information is available for 
fin whales in this region and sightings are rare (GBIF 2021). 
In the North Pacific, fin and sei whales are observed dur-
ing summer off the coast of British Columbia; however, 
sei whales are observed further offshore, likely associated 
with the abundance and distribution of copepods, whilst fin 
whales are associated with the availability of euphausiids 
(Flinn et al. 2002). In the North Atlantic, fin and sei whales 
co-occur on winter feeding grounds in the Azores (Silva 
et al. 2019) and similarly to our study, using isotopic niches 
Silva et al. (2019) showed that present-day populations of 
fin and sei whales partition resources in the North Atlantic. 
These examples demonstrate that fin and sei whales co-occur 
on feeding grounds across the globe.

Despite the seasonal co-occurrence of fin and sei whales 
at SGSSI, no overlap of the ‘core’ niche (c.40%) and only 
partial overlap of the entire niche (c.95%) was observed 
between the fin and sei whales using stable isotope anal-
ysis in our study, suggesting that these sympatric species 
may have partitioned resources on South Atlantic feeding 
grounds. Resource partitioning has been observed for other 
sympatric baleen whale species across the globe, includ-
ing other whale feeding ground sites in the Southern Ocean 
(Friedlaender et al. 2009; Ryan et al. 2013; Sasaki et al. 
2013; Gavrilchuk et al. 2014; Witteveen and Wynne 2016; 
Herr et al. 2016; Seyboth et al. 2018; Silva et al. 2019; Mil-
mann et al. 2020; Mansouri et al. 2021). For example, Sey-
both et al. (2018) found evidence for resource partitioning 
among fin, humpback, and minke whales on a summer polar 
feeding ground at the western Antarctic Peninsula (~ 15 
degrees further South relative to South Georgia). To date, 
very few isotope studies have included sei whales (Sasaki 

Table 1  Mean (± SD) stable isotope values (δ13C, δ15N) of baleen plates sampled from individual fin whale, Balaenoptera physalus, and sei 
whale, Balaenoptera borealis in the 1970s at South Georgia, South Atlantic

Baleen plates are currently stored at the British Antarctic Survey biological specimen store (BAS) and from one private collection (Bob Head-
land, BH). n–the number of incremental samples taken per plate

Species Specimen ID n (cm) Collection Collection Year δ13C ‰ (± SD) δ15N ‰ (± SD)

Sei BB1 20 BAS 1970 − 16.1 (1.1) 9.4 (0.7)
BB2 18 BAS 1970 − 18.9 (0.9) 9.1 (0.5)
BB3 19 BAS 1972 − 18.3 (0.9) 8.6 (0.4)

Mean 57 − 17.7 (1.6) 9.1 (0.6)
Fin BP1 15 BAS 1970 − 19.1 (1.3) 7.4 (0.5)

BP2 19 Private collection—BH 1974 − 20.5 (0.1) 6.7 (0.3)
BP3 20 Private collection—BH 1974 − 22.1 (0.3) 7.0 (0.5)

Mean 54 − 20.7 (1.4) 7.0 (0.5)

Table 2  Interspecific niche attributes estimated using SIBER (Jack-
son et al. 2011)

Maximum likelihood estimates of bivariate ellipses of isotopic niche 
area (δ13C, δ15N) corrected for small sample sizes  (SEAc). Mode and 
95% credible intervals of Bayesian estimates of the isotopic niche 
area  (SEAb). Percentage overlap of bivariate isotopic niche areas 
 (SEAb) using the core niche (c.40%) and the full niche (c.95%)

Niche attribute: Species:

Sei mean (SD)* Fin mean (SD)*

SEAc (‰2)* 2.5 2.0
SEAb (‰2) 2.5 (1.9–3.2) 1.9 (1.5–2.5)
Core niche overlap (%) (40% 

contour)
0.0 (0.0–0.0) 0.0 (0.0–0.0)

Full niche overlap (%) (95% 
contour)

9.2 (0.8–19.1) 9.4 (0.8–18.5)
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et al. 2013; Silva et al. 2019) with no multispecies studies 
published from the Southern Hemisphere.

Sei whales have been observed foraging at lower latitudes 
elsewhere in the South Atlantic, including coastal Africa 
(Best 1967; Best and Gambell 1968; Best and Lockyer 
2002). In our study, all three sei whales had much higher 
δ13C across the majority of their incremental samples com-
pared with fin whales, consistent with foraging at lower lati-
tudes across the year (as lower δ13C values occur nearer the 
poles, see Cherel and Hobson 2007; Magozzi et al. 2017; 
Espinasse et al. 2019). Moreover, the distribution of whal-
ing catches circumpolar suggest sei whales foraged across 
a lower latitudinal range relative to fin whales in the South-
ern Hemisphere, with fin whales reported at both sub-polar 
and polar latitudes, and adult sei whales only occasionally 
reported at polar latitudes (Mizroch et al. 1984; Mizroch 
and Rice 1984; Horwood 1987; Kasamatsu 1996, 2000). 
This pattern was reflected by the catch data presented in our 
study with sei whales occurring predominantly within the 
northern part of the SGSSI EEZ, whilst fin whales occurred 
throughout; therefore, the higher δ13C across the majority 
of sei whale samples may have been due to relatively lower 
latitude foraging by sei whales in sub-polar habitats.

It is important to note that our results were based on 111 
incremental baleen samples from only six individuals (3 
fin, 3 sei), and therefore, further samples would be required 
to interpret the observed patterns in a population context. 
Nevertheless, historic whale specimens from the Southern 
Ocean are rare and dietary information for fin and sei whales 
is currently extremely limited at SGSSI; therefore, our study 
provides novel information on historical foraging strategies 
in these two species for an understudied part of the South-
ern Ocean, known to represent vital whale feeding habitat 
(Atkinson et al. 2001; Jackson et al. 2020). Further isotopic 
information on fin and sei whales in the Southern Ocean will 
help to determine whether these two sympatric species still 
co-occur and partition resources at SGSSI and how they may 
partition resources with other Balaenoptera whale species.

Foraging ecology of krill predators at South Georgia

South Georgia is well known for its iconic marine mega-
fauna associated with high levels of primary productivity 
and dense aggregations of zooplankton. Many penguin, fish, 
seal, and seabird colonies inhabit the region with somewhat 
overlapping diets, many of which forage on Antarctic krill 
(Bearhop et al. 2006; Phillips et al. 2011; Waluda et al. 2017; 
Horswill et al. 2018; Jones et al. 2020; Mills et al. 2020, 
2021; Hollyman et al. 2021). Direct information on fin and 
sei whale diet is limited to studies that reported stomach 
contents during the commercial whaling period. These 
studies suggest fin whales fed predominantly on euphausiid 
krill across the Southern Ocean (Mackintosh and Wheeler 
1929; Mackintosh 1942; Nemoto and Nasu 1958; Nemoto 
1959; Kawamura 1980), whilst sei whales had a broader 
diet, including copepods, amphipods, and decapods (Nemoto 
1959; Nemoto 1962; Klumov 1963; Brown 1968; Nemoto 
1970; Kawamura 1974; Budylenko 1978). At South Georgia, 
fin whales and sei whales foraged on euphausiids (krill) with 
some evidence of sei whales supplementing the diet with 
amphipods at low and high latitudes during the twentieth 
century (Matthews 1938; Brown 1968).

Predators that forage on similar food items at the same 
time of year are likely to display similar stable isotope ratios 
(δ13C, δ15N, see Lepoint and Das 2011). In our study, sta-
ble isotope ratios of fin whale baleen (means ± SDs: δ13C, 
− 20.7 ± 1.4 ‰, δ15N, 7.0 ± 0.5 ‰) were similar to vari-
ous present-day krill predators at South Georgia, including 
southern right whales (− 21.0 ± 0.4 ‰, 8.2 ± 0.8 ‰), male 
Antarctic fur seals (− 21.7 ± 1.2 ‰, δ15N, 9.0 ± 1.0 ‰), gen-
too penguins (− 18.9 ± 0.3 ‰, 8.6 ± 0.3 ‰) and macaroni 
penguins (− 20.0 ± 0.6 ‰, 8.9 ± 0.4 ‰), whilst sei whale 
values were similar albeit slightly higher (δ13C, − 17.7 ± 1.6 
‰, δ15N, 9.1 ± 0.6 ‰) (Table 3). Although historic and 
present-day isotopic data are not directly comparable due to 
temporal and spatial changes in isotopic baselines (Keeling 
1979; Misarti et al. 2009, 2017; Baker et al. 2010; Eide et al. 

Table 3  Stable isotope values of marine predators at South Georgia

a sample sizes includes repeat sequential sampling from 3 individuals
b means and stdevs include repeat samples from Antarctic male fur seal individuals

Species δ13C values δ15N values Sample size Period of study Tissue Source

Fin whale − 20.7 ± 1.4 ‰ 7.0 ± 0.5 ‰ 54a Early 1970s Baleen This study
Sei whale − 17.7 ± 1.6 ‰ 9.1 ± 0.6 ‰ 57a Early 1970s Baleen This study
Male Antarctic fur seals − 21.7 ± 1.2 ‰ 9.0 ± 1.0 ‰ 20b 2016/17 Whiskers Jones et al. 2020
Gentoo penguins (female) − 18.9 ± 0.3 ‰ 8.6 ± 0.3 ‰ 9 2002 Blood Bearhop et al. 2006
Gentoo penguins (male) − 18.8 ± 0.4 ‰ 9.1 ± 0.2 ‰ 6 2002 Blood Bearhop et al. 2006
Macaroni penguins (female) − 19.5 ± 1.0 ‰ 8.9 ± 0.4 ‰ 8 2002 Blood Bearhop et al. 2006
Macaroni penguins (male) − 20.0 ± 0.6 ‰ 9.3 ± 0.4 ‰ 8 2002 Blood Bearhop et al. 2006
Southern right whale − 21.0 ± 0.4 ‰ 8.2 ± 0.8 ‰ 2 2018 Skin Jackson et al. 2020
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2017), the similarity in isotopes between twenty-first cen-
tury krill predators and twentieth-century whales (Table 3), 
alongside the historic diet data (Matthews 1938; Brown 
1968), provide some indication that fin and sei whales may 
have consumed krill at South Georgia during the twentieth 
century. Additionally, although the lowest paired values of 
sei whale δ13C and δ15C values are similar to krill predators 
at South Georgia (Table 3), many of the higher sei whale 
δ13C values (total range − 21.1‰ to − 14.3‰) fall out-
side the observed range measured for other predators. This 
information, combined with the short occupancy time of sei 
whales at South Georgia inferred from catch data, could sug-
gest that sei whales were feeding on alternative prey sources 
at lower latitudes when not on the South Georgia feeding 
grounds. This hypothesis is supported by observations of 
sei whales foraging on low-trophic zooplankton at lower 
latitudes during winter (Best and Gambell 1968; Horwood 
1987; Prieto et al. 2012; Silva et al. 2019). Further research 
on sei whale diet throughout their foraging range is required 
to understand whether sei whales are supplementing higher 
trophic prey at SGSSI, or whilst at lower latitudes (prior to 
arrival on the feeding grounds).

Intra‑individual variation and evidence of winter 
foraging in fin and sei whales

South Georgia and the South Sandwich Islands are thought 
to represent a long-term (historical and contemporary) 
feeding ground for both species; however, there is limited 
information on the precise migratory routes and wintering 
locations for South Atlantic fin and sei whales populations 
that forage at SGSSI (Mackintosh 1942; Mikhalev 2020). 
There is some evidence to suggest that the Brazilian coast 
(Andriolo et al. 2010; Weir et al. 2020) and southwest coast 
of Africa represent wintering grounds for sei whales (Best 
1967; Best and Gambell 1968; Best and Lockyer 2002; Best 
and Folkens 2007); and our stable isotope patterns also sup-
port the hypothesis that sei whales at South Georgia may 
have been feeding at low latitudes in winter (demonstrated 
by the higher δ13C values, Fig. 3). Fin whales have also 
been observed off the South African coast during the austral 
winter (Best 1967; Best and Folkens 2007; Shabangu et al. 
2019). Historically, fin whales have been thought to fast dur-
ing winter on migration (Mackintosh and Wheeler 1929; 
Best and Folkens 2007). In our study, patterns of δ13C values 
from one out of three fin whale plates and all three sei whale 
plates are consistent with winter foraging at lower latitudes, 
demonstrated by δ13C values above − 20‰, followed by 
a dramatic reduction in δ13C between 5 and 10 cm associ-
ated with a temporary shift towards polar feeding (Fig. 3). 
Indeed, acoustic detections suggest fin whales may season-
ally forage on temperate krill species such as Nematosce-
lis megalops at lower latitudes in the productive Benguela 

ecosystem (Shabangu et al. 2019). The other two fin whale 
plates in our study show consistent δ13C values throughout 
the year (Fig. 3), suggesting they either maintain polar for-
aging year-round, or fast when migrating to lower latitudes. 
Similar patterns of intra-specific variation have been previ-
ously observed in the Southern Hemisphere for humpback 
whales (Eisenmann et al. 2016) and southern right whales 
(Rowntree et al. 2008), where some individuals fast and oth-
ers forage at low latitudes. Further research is needed to 
establish migratory connectivity between SGSSI and lower 
latitude wintering grounds for fin and sei whales, and to 
better understand the occurrence of foraging on wintering 
grounds for both species.

Possible biases of whaling catch data

In this study, we observed many catches of fin and sei whales 
nearshore to the island of South Georgia during the early 
whaling period (< 1929). It is possible that these nearshore 
catches represent the plentiful whale numbers that occurred 
nearshore during this time, or, they may also reflect whalers 
recording catches at the time of landing, rather than at sea 
during incidence of capture (Tønnessen and Johnsen 1982). 
As whaling was predominantly close to the shoreline during 
the early whaling period (until steam-powered catcher vessel 
improved in the 1920s) and reporting generally improved 
throughout the twentieth-century (Tønnessen and Johnsen 
1982), it is likely to be a combination of these scenarios. 
Despite these known biases, we did not exclude this early 
whaling period from the results for several reasons. First, 
the initial whaling period at South Georgia was close to 
shore and is documented as plentiful with approximately 
100,000 baleen whales caught close to South Georgia prior 
to 1929 including large numbers of fin and sei whales (Alli-
son 2016). Second, prior to the 1920s, whalers were not 
using steam-powered capture vessels, and therefore, whaling 
further offshore in sub-Antarctic waters was unlikely dur-
ing the initial period. Third, although some variation was 
observed in spatial distribution of fin and sei whales across 
time, fin whales were caught throughout the EEZ even dur-
ing the early period, and sei whales were consistently caught 
at higher densities in the northern range of the EEZ (Fig. 
S4). Moreover, whaler preference for specific species shifted 
throughout the commercial whaling period in the following 
order: (1st) humpback, (2nd) blue, (3rd) fin, (4th) sei, (5th) 
minke. Fin whales were the main target between 1937 and 
1965, whereas sei whales were the dominant target between 
1965 and 1975 (once fin whale abundance had significantly 
diminished, Tønnessen and Johnsen (1982), pp.164–165). 
Fin whales were caught throughout the EEZ despite being 
targeted prior to sei whales, suggesting whaling was already 
occurring across the entire EEZ before the majority of sei 
whaling occurred; therefore, we assume here that later 
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catches were not strongly biased by whaler presence and that 
the whaling catches reported across the EEZ in summary 
provide a good indication of feeding ground distribution of 
sei and fin whales at SGSSI during the twentieth century.

Conclusion

Fin and sei whales co-occurred at South Georgia and the 
South Sandwich Islands (SGSSI) during the twentieth-cen-
tury whaling period predominantly during late summer and 
early autumn. Here, we have provided the first isotopic infor-
mation for fin and sei whales in this region and by combin-
ing isotopic evidence with spatiotemporal information from 
whaling catch data we show evidence of potential resource 
partitioning during the commercial whaling period, an era 
when whale numbers were much higher (Rocha et al. 2015) 
and competition for resources potentially heightened. Tem-
poral and spatial variation in whaling catches suggests spa-
tiotemporal differences in habitat use of fin and sei whales 
at SGSSI with the highest numbers of sei whales occur-
ring later in the season and utilising the northern part of the 
exclusive economic zone compared with fin whales, with 
both species found nearshore and offshore. Although sample 
sizes were small, stable isotope analysis of baleen plates sug-
gest limited interspecific overlap in isotopic niches indicative 
of resource partitioning. Sequential δ13C values of baleen 
plates provide evidence of individuals from both species 
foraging at lower latitudes prior to arrival at SGSSI during 
the twentieth-century whaling period. Further dietary and 
isotopic information (e.g. from baleen of deceased strand-
ings or live skin biopsies) in present-day fin and sei whale 
populations are needed to understand the various roles these 
whales play in the SGSSI ecosystem, including any overlap 
that may occur with neighbouring marine predators, and 
commercial fisheries.
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