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41 ABSTRACT

42 Cropland ammonia (NH3) emission is a critical driver triggering haze pollution. Many agricultural 

43 policies were enforced in past four decades to improve nitrogen (N) use efficiency while 

44 maintaining crop yield. Inadvertant reductions of NH3 emissions, which may be induced by such 

45 policies, are not well evaluated. Here, we quantify the China’s cropland-NH3 emission change 

46 from 1980 to 2050 and its response to policy interventions, using a data-driven model and a 

47 survey-based dataset of the fertilization scheme. Cropland-NH3 emission in China doubled from 

48 1.93 to 4.02 Tg NH3-N in period 1980-1996, and then decreased to 3.50 Tg NH3-N in 2017. The 

49 prevalence of four agricultural policies may avoid ~3.0 Tg NH3-N in 2017, mainly located in 

50 highly-fertilized areas. Optimization of fertilizer management and food consumption could 

51 mitigate three quarters of NH3 emission in 2050 and lower NH3 emission intensity (emission 

52 divided by crop production) close to the European Union and the United States. Our findings 

53 provide an evidence on the decoupling of cropland-NH3 from crop production in China, and 

54 suggest the need to achieve cropland-NH3 mitigation while sustaining crop yields in other 

55 developing economies.

56 KEYWORDS

57 ammonia, emission inventory, flux upscaling, decoupling, agricultural management, policy 

58 intervention
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60 1. INTRODUCTION

61 Through its important role in the formation of particulate matter, atmospheric ammonia 

62 (NH3) affects air quality and has implications for human health (Warner et al., 2017). Excess NH3 

63 in the environment also contributes to soil acidification (Liu et al., 2019), aquatic eutrophication 

64 (Elser et al., 2009; Wang et al., 2017; Zhan et al., 2017) and climate change (Hauglustaine et al., 

65 2014). The cropping system, as a source of anthropogenic NH3 emissions considered second only 

66 to animal husbandry, contributes more than one third of atmospheric NH3 (EDGAR 2017; Paulot 

67 et al., 2014; Xu et al., 2019). Cropland NH3 is considered to consist of emissions due to the 

68 application of synthetic fertilizers, manure and crop residue. Reducing these emissions becomes 

69 urgent in a situation of increasing food demand due to population growth and a changing diet in 

70 future (Fowler et al., 2015). However, NH3 mitigation from cropping system is challenging as long 

71 as agriculture is optimized towards maximum food production.

72 Actually, high-income countries have long had NH3 mitigation while sustaining crop yield in 

73 their sights (Zhang et al., 2020). For instance, member countries of the European Union (EU) have 

74 set a target to reduce NH3 emissions through the National Emission Ceilings Directive since 2001 

75 (UNECE 1999). In parallel, activities under the UNECE Convention on Long-range 

76 Transboundary Air Pollution in the context of the Gothenburg Protocol have set similar targets, 

77 including for countries outside of the EU (UNECE 1999). To provide support to the EU member 

78 states and parties which have ratified the Gothenburg protocol in attaining these ceilings, an 

79 ‘Ammonia Guidance Document’ was developed describing detailed abatement techniques 

80 (Bittman 2017), and translated into national plans and legislation in several countries. China 

81 promoted abatement options of agricultural NH3 emissions in the updated Clean Air Action Plan 

82 in 2018 (Liu et al., 2019). Although later than the EU, the Chinese government has developed 

83 policies that arguably addressed cropland-NH3 emission mitigation before 2018. For instance, the 

84 Agricultural Cost-saving and Efficiency-increasing Program (Wu 2000), and national Soil Testing 

85 and Nutrient Recommendation Program (MARA 2015a) were promoted by the government for 

86 improving fertilizer use efficiency in 1994 and 2005, respectively. However, cropland-NH3 A
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87 reductions associated with these policies are often not well evaluated at regional scale. This further 

88 results in an incomplete understanding of the drivers and mechanisms behind changing 

89 cropland-NH3 emissions, and makes future projections and the assessment of further abatement 

90 potentials unreliable.

91 Obstacles of such evaluation lie in the missing methodological approaches to construct 

92 linkages between regional cropland-NH3 emission and agronomic measures or policies. Existing 

93 bottom-up models cannot achieve this mainly due to the incomplete model structure and coarse 

94 spatial resolution of activity data in connection with agricultural management practices. For 

95 example, process-based models e.g. DNDC (Dubache et al., 2019; Li et al., 2019), FAN (Riddick 

96 et al., 2016; Vira et al., 2019), DLEM-Bi-NH3 (Xu et al., 2019) emphasize explicit 

97 physicochemical processes of NH3 transfer across the soil-air interface, but use highly simplified 

98 representations of agricultural practices. Data-driven models, which calculate emissions as 

99 volatilization rates multiplied by the amount of N-fertilizers applied, could support the analysis of 

100 NH3 trends and patterns in response to historical agricultural management practices beyond 

101 alternative climate conditions. However, using temporally consistent activity data on fertilizer 

102 schemes may distort the dynamical evolution of cropland-NH3 emissions (Beusen et al., 2008; 

103 Bouwman et al., 2002; Bouwman et al., 1997; Riddick et al., 2016; Vira et al., 2019; Xu et al., 

104 2019).

105 China has transitioned from an underdeveloped country to the second largest economy 

106 globally (Zhou et al., 2020). Driven by demand and policies, the consumption of vegetables, fruits 

107 and animal productions is increasing much faster than grain (NBSC 2021). Governmental policies 

108 and subsidies are also stimulating the transition of cropping systems from resource dependence 

109 (land, fertilizers, water, labor, etc.) to technology-intensive since 1980s (Liu et al., 2016; Jiao et 

110 al., 2018). How cropland-NH3 emissions are responding to technical adoptions and policy 

111 interventions over time and space is not well known. To address these knowledge gaps, an updated 

112 data-driven model coupled with high-resolution, crop-specific fertilization schemes (rate, form, 

113 and placement) was employed to quantify the spatiotemporal pattern of cropland-NH3 emissions 

114 across China for the period 1980-2017. We focused on this period because the most rapid changes A
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115 took place and the best defined policy interventions in this period and because of data availability. 

116 NH3 emissions from the application of synthetic fertilizers, livestock manure, human excreta, and 

117 crop residues returned to croplands were considered. We then identified the driving forces behind 

118 changing NH3 emission patterns by using the Logarithmic Mean Divisia Index method (LMDI, 

119 Ang 2015; Guan et al., 2018) and assessed policy-induced NH3 reductions by translation of the 

120 policies into these drivers. Finally, we explored the NH3 abatement potential for different regions 

121 and crops by optimizing the fertilizer management and food consumption in future.

122 2. MATERIALS AND METHODS

123 2.1 Data-driven upscaling model

124 We estimated NH3 emissions separately for 8 crop types (i.e., rice, maize, wheat, vegetables, 

125 fruits, potatoes, legumes, and other upland crops). The NH3 emissions were calculated as 

126 volatilization rate (VR) multiplied by the amount of N-fertilizers applied, whereas environmental 

127 conditions and fertilization schemes are considered as correction terms for VRs. This type of 

128 function has been applied in previous bottom-up estimates (Huang et al., 2012; Misselbrook et al., 

129 2004; Zhang et al., 2011) as follows:

130 =                        (1)𝑉𝑖.𝑘 𝑉𝑅𝑖,𝑘 ×  𝑁𝑖,𝑘 × 𝑆𝑖,𝑘

131       (2)𝑉𝑅𝑖,𝑘 = 𝑉𝑅0
𝑖 × 𝑓(𝑝𝐻𝑖,𝑘) × 𝑓(𝐴𝑖,𝑘) × 𝑓(𝑢𝑖,𝑘) × 𝑓(𝑇𝑖,𝑘) × 𝑓(𝑀𝑖,𝑘)

132 where  is NH3 emission (kg) for crop i in grid k. VR, N and S represent NH3 volatilization rate 𝑉𝑖,𝑘

133 (%), total N application rate (kg N ha1) and sowing area (ha), respectively.  is averaged from 𝑉𝑅0

134 all available VR data, roughly corresponding to the baseline of VR under reference condition 

135 (chamber-based using urea applied through broadcasting with soil/ponded pH of 7 and air 

136 temperature of 20C for upland crops or of 26C for paddy rice). , , , , and 𝑓(𝑝𝐻) 𝑓(𝐴) 𝑓(𝑢) 𝑓(𝑇)

137  represent the correction coefficients that reflect the effects of soil/ponded pH, air 𝑓(𝑀)

138 temperature and wind speed (as measured 10 m above the surface) during the period of crop 

139 growth, the fertilizer type, and the method of fertilizer placement on VR, respectively. To avoid 

140 unrealistic values, the estimated  were capped at 43%, which was consistent with the upper 𝑉𝑅𝑖,𝑘A
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141 bound of the IPCC Tier 1 default value (Calvo et al., 2019). A detailed introduction and the 

142 refinement of the model can be found in Zhan et al. (2021) and supplementary information (Text 

143 S1, Figure S1 and Data S1), respectively.

144 2.2 New dataset of fertilization schemes

145 The data-driven model is forced by multiple gridded input datasets, including a dataset 

146 describing the total synthetic-N fertilizer application rate (kg N year1) developed by Shang et al 

147 (2019, see Text S2), and two new datasets associating the fractions of synthetic-N forms and 

148 placement to cropland. For N forms, we obtained the crop-specific fraction of three N fertilizers, 

149 including ammonium bicarbonate, urea, other N fertilizers at province level from the Statistics of 

150 Cost and Income of Chinese Farm Produce for the period 1980 - 2017 (NDRCC 2003; 2020). The 

151 placement of synthetic-N fertilizer largely depends on topographic condition, planting density, 

152 root depth and crop’s economic value (Xi et al., 2013). Consequently, we assumed that all N 

153 fertilizers for rice paddies are applied on surface soil as mechanized incorporation is difficult 

154 (Zhang et al., 2016); and all N fertilizers for vegetables and fruits are incorporated manually due to 

155 their higher economic return and planting density. For field crops such as wheat, maize, potatoes 

156 and legumes, machines were typically employed to incorporate basal fertilizers into soil. We 

157 therefore assumed that the incorporation proportions of basal N fertilizer could be calculated as a 

158 function of the sowing area fertilized by machine divided by total sowing area (data for both from 

159 CAAMM 2020) at province level. The criterion and methodology to determine the incorporation 

160 proportions are reported in Text S3, Table S1 and Figure S2. 

161 Annual N in livestock manure, human excreta, and crop residues (kg N year1) returned to 

162 croplands were estimated by a Eubolism model at county-scale (Shang et al., 2019). The N amount 

163 in organic fertilizers calculated based on county-scale activity data, such as the numbers of 

164 livestock by animal, rural population, and yields by crop type from 1980 to 2017 (Shang et al., 

165 2019). In China, farmers usually broadcast the organic fertilizers on soil surface and incorporate 

166 them in a short time accompanying with plough or rotary tillage (Beusen et al., 2008; Femke et al., 

167 2019; Xi et al., 2013). Provincial tillage proportion, i.e. sowing areas of tillage (CAAMM 2020) A
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168 divided by the total (NDRCC 2020), were therefore taken as the incorporation proportion of 

169 organic fertilizer following Zhan et al., (2021, details see Text S3 and Figure S3). All the dataset 

170 by crop and fertilizer were then disaggregated into grid maps at 1-km spatial resolution within 

171 each of the administrative units following the crop-specific Land-Use/cover Dataset produced for 

172 China by Liu et al. (2014). This dataset were developed based on Landsat TM\ETM+ images and 

173 field investigations at 10-year intervals from the 1980 to 2017.

174 2.3 Driving forces behind changing NH3 emissions 

175 To attribute changes in NH3 emission trends over time to different driving factors, we first 

176 applied the Logarithmic Mean Divisia Index (LMDI, Ang 2015; Guan et al., 2018) to evaluate the 

177 four main driving factors, i.e. sowing area, cropping structure, N application rate and NH3-VRs for 

178 the period 1980-2017 (Text S4). Next, we analyzed the relative contributions of five secondary 

179 driving factors to the trends of cropland’s-NH3 VRs during 1980-2017 using our data-driven 

180 model (Text S5 and Table S2). The five factors include air temperature, wind speed, fertilizer 

181 forms, incorporation proportion of synthetic-N fertilizer and organic fertilizer.

182 Fertilization technologies and crop structure in China have experienced substantial transitions 

183 during the period from 1980 to 2017. This transition was driven at least by policy interventions. 

184 Since the mid-1990s, the Chinese government implemented four policies, i.e. ACE, VTB, EUP 

185 and STNR program (Table 1) to develop deep fertilization, adjust cropping structure, optimize 

186 fertilizer forms and reduce N application rate, respectively. Here, we translated the effects of these 

187 four policies directly on the related driving parameters, and then estimated the potential NH3 

188 emissions by assuming these policies had not been implemented. The main principle was fixed the 

189 four drivers at the level just before the year that policy was implemented, when we estimate the 

190 NH3 emission afterwards. Our data-driven model was employed to calculate the contribution for 

191 each policy. Detail descriptions of above scenarios can be found in Table 1, Text S6 and Table S3.

192 2.4 Future projections

193 To explore the future NH3 abatement potential of croplands, we performed four scenario A
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194 projections in ten-year intervals from 2020 to 2050. In the business-as-usual (BAU) scenario 

195 (Table 2), we only consider current (the year 2017) policies and national plans without any further 

196 intervention. However, the crop production will increase in line with projected increases of 

197 population and gross domestic product (GDP) as projected by Zhang et al (2020). Meanwhile, 

198 climate factors, i.e. air temperature and wind speed, changed following a conservative RCP2.6 

199 (stringent mitigation scenario, predicts the global mean temperature increases of up to 2 °C by 

200 2100) future climate change scenario (PICIR 2021). Scenarios OFM and OFC predict the 

201 projections based on the same assumptions as BAU, but optimize fertilizer management (OFM) 

202 and food consumption (OFC), respectively (Table 2). For scenario OFM, N fertilizer rate was set 

203 according to the “N Surplus Benchmarks in China” following Zhang et al. (2019). Meanwhile, the 

204 incorporation proportion of synthetic-N fertilizers will achieve 80% for three staple food (i.e. 

205 wheat, maize and rice) according to the National Agriculture Mechanization Extension Plan 

206 (Zhang et al., 2020). For scenario OFC, the crop production will decrease by optimizing human 

207 diet structure following Zhang et al. (2020) and cut 50% of food loss and waste to achieve the 

208 Global Sustainable Development Goals (Clark et al., 2020; FAO 2020; Li et al., 2021). To achieve 

209 the most ambitious mitigation target, the ALL scenario was propose to combine all the mitigation 

210 options identified in OFM and OFC scenarios. Detail descriptions of above scenarios see Table 2, 

211 Text S7, and Table S4-S6. It should be noted that for the intermediate year of scenario OFM, OFC 

212 and ALL, we assume linear adoption from 2017 until the adoption year (2050), at which point the 

213 technologies are entirely adopted (Clark et al., 2020).

214 3. RESULTS

215 3.1 Decoupling of NH3 emission and crop production

216 China’s cropland-NH3 emission was 1.93 Tg NH3-N in 1980, and almost doubled to 3.50 Tg 

217 NH3-N in 2017 (Figure 1). China accounted for about one third of the global cropland-NH3 

218 emissions, and was equivalent to the triple of the entire cropland-NH3 emissions of EU and USA 

219 combined (Zhan et al., 2021). The emissions were mainly contributed by paddy rice (26-39%), A
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220 maize (25-38%) and wheat (13-24%), followed by vegetables (1.1-7.9%) and fruits (0.8-4.8%) 

221 (Figure 1). However, total cropland-NH3 emission increase was not linear, instead a rapid increase 

222 by 128.7 Gg NH3-N yr2 from 1980 to 1996 (P0.05, period P1) and a slight descent of -7.3 Gg 

223 NH3-N yr2 after 1997 (P0.1, period P2, Figure 1). Spatial analyses further confirmed that the 

224 shift from rapid increase to stagnation or slight decrease of cropland-NH3 emission in P1 and P2, 

225 respectively, affected sowing areas that together account for 47.6 % of cropland-NH3 emission 

226 (Figure 2a and 2b). The regions where NH3 emission decreased are distributed in the North China 

227 Plain, the lower Yangtze River Basin and the Sichuan Basin during P2 (Figure 2b).

228 Our estimate of NH3 emission from cropland was about one third lower than values derived 

229 from previous bottom-up models (EDGAR 2017; Fu et al., 2020; Kang et al., 2016; Ma 2020; Xu 

230 et al., 2016; Zhang et al., 2017) (Figure S4). The differences between our estimate and other 

231 inventories can be primarily attributed to the updates of crop- and fertilizer-specific fertilization 

232 schemes based on sub-national data and the VRs upscaled from globally distributed 499 field 

233 observations. Scenario tests showed that the updates of N input data and VRs could explain 66% ~ 

234 100% (for different years) of such discrepancies (Figure S5 and Table S8). The decreased NH3 

235 emission from cropland at the late stage of P2 (2006-2017) is inconsistent with some earlier 

236 estimates (Figure S4), but could explain the observed decreasing trend of atmospheric NHx 

237 depositions (Yu et al., 2019), while NH3 emissions from livestock and industrial sectors remain 

238 stable or increase (EDGAR 2017; Fu et al., 2020; Kang et al., 2016; Ma 2020; Zhang et al., 2017; 

239 Meng et al., 2017, Figure S6).

240 The concept of decoupling here has been used to describe the relationship between 

241 environmental pressure and production growth (Bennetzen et al., 2016). The decreasing emission 

242 intensity, which defined as the cropland-NH3 emission divided by total crop production, could 

243 indicate the decoupling of NH3 emission from crop production. Since 1995, the decelerating and 

244 declining NH3 emissions has sustained an increasing crop production, suggesting a decoupling of 

245 NH3 emissions from crop production at the national level (Figure 1). In 2017, three-fourth of 

246 provinces, which supply 96% of total crop yield (in kilocalories), have achieved the decoupling of 

247 NH3 emissions with crop production. These provinces showed a clear northwestward trends A
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248 (Figure 2c). Eastern coastal provinces (e.g., Zhejiang, Fujiang and Guangdong) decoupled NH3 

249 emission from crop production before 1995; while the major crop-production provinces in east and 

250 central China decoupled in mid-1990s (Figure 2c). Provinces of coupled NH3 emissions and crop 

251 production are mainly located in two regions. The first one comprises some rich municipalities in 

252 eastern coastal parts, such as Beijing, Tianjin, and Shanghai, where sowing areas were diminished 

253 due to their economic development. The second one covers most parts of the less-developed 

254 provinces in western China, which account for only 4.0% of national sowing areas (Figure 2c). 

255 3.2 Drivers of China's cropland-NH3 emission trends

256 Changes in N application rates were the dominant driver of the NH3 emission trends for the 

257 past four decades (Figure 3a). This factor alone led to the increasing NH3 emission by 34% at the 

258 end of Period P1 (1980-1996), then its contribution decreased from 83% in 2003 to 60% in 2017 

259 (Figure 3a). To feed the growing population, China’s government introduced the Household 

260 Responsibility System to stimulate farmers’ enthusiasm to farm since 1980 (Jiao et al., 2018). 

261 Economic benefits of crop yield growth incentivized synthetic fertilizer applications, that is, N 

262 application rate increased from 121 kg N ha1 in 1980 to 219 kg ha1 in 2007 (Figure 4e). 

263 However, N application rate started to decline continuously at an average of 0.82 kg ha1 yr2 after 

264 2007 (Figure 4e). This notable decline appears to be mainly associated with the intervention of 

265 STNR Program, which launched in 2005 to match the supply of nutrients with demand during 

266 field application. By the year 2013, the implementation area of the STNR program was increased 

267 six-fold (Figure 4e). Due to the timing of introduction of STNR, there appears to be an association 

268 between the decrease N application rate and NH3 reductions in time, which suggests that the 

269 measures of STNR have played a role. The NH3 reduction which promoted by STNR probably 

270 reached 1.8 Tg NH3-N in 2017 based on our scenario estimates (Table S3), especially for North 

271 China Plain and Sichuan Basin (Figure 4a and 5d).

272 As the second most important driver, NH3-VR increased cropland-NH3 emission by 14% by 

273 the end of period P1 (1980-1996), but decreased largely after 1994 (Figure 3a). After 2010, the 

274 NH3-VR even exerted as a negligible factor (5%, Figure 3a). By further decomposing the effect of A
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275 NH3-VR into climate and fertilizer scheme drivers, we find that climate change and the increasing 

276 shares of ABC and urea contributed largely (38% and 73%) to promote NH3-VR in P1 (Figure 

277 3b). And the pronounced decreases of NH3-VRs were almost entirely related to the increasing 

278 proportion of deep fertilization by machine and diminished ratio of ammonium bicarbonate after 

279 1994 (Figure 3b). Such technology innovations seem to be supported by the ACE program and 

280 EUP guideline (Table 1) started in mid-1990s. To increase fertilizer efficiency, Chinese 

281 government implemented the ACE Program to promote deep fertilization in 1994. For field crops 

282 (i.e. wheat, maize, potatoes and legumes), almost one third of sowing area was deep-fertilized 

283 using machines in 2017 (Figure 4b). At the same time, most medium- and small- size 

284 manufacturers in China had upgraded their production devices towards high concentration 

285 nitrogen fertilizer (i.e. urea, with 46% N content) to replace ammonium bicarbonate (only 17% N 

286 content but 1.47 - 2.29 fold VR compared to urea, Figure S1). The consumption of urea has 

287 increased 1.5 times between 1996 and 2017, while the ammonium bicarbonate decreased by 

288 almost 69% in the same period (Figure 4d). These two policy interventions triggered innovations 

289 on fertilization method and fertilizer types. According to our estimates, the subsequent reduction 

290 of NH3 emissions may have amounted to 0.23 (ACE) and 0.95 (EUP) Tg NH3-N in 2017, 

291 especially for agricultural intensive regions (Figure 4e, 5a and 5c).

292 Another 23% increase in NH3 emissions was driven by arable land expansion, but was 

293 partially offset by crop mix adjustment (Figure 3a). For example, in order to meet increased 

294 consumption of cash crops, Chinese government launched the VTB Program (Table 1) in 1988. 

295 Driven by this program, the sowing areas of vegetables and fruits increased by 185% and 79% 

296 during 1990 to 2003, respectively. Meanwhile, the areas sown with wheat and paddy rice declined 

297 by 29% and 20% at the same period (Figure 4c). This structural transition in cropping patterns that 

298 occurred in P1 resulted in decreasing NH3 emissions. The reason is that vegetables and fruits have 

299 lower VRs (about 78%) than that of staple crops due to their widespread deep placement (Figure 

300 S7). This transition probably resulted in NH3 emission reductions of 0.12-0.27 Tg NH3-N yr1 by 

301 around 2000, but did not play a critical role after the mid-2000s due to the government’s guideline 

302 to prevent the further decrease on sowing area of cereal crops (Figure 4c). Additionally, the effect A
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303 of shift in crop mix compensated for each other across different regions (Figure 5b). For example, 

304 the increase in cash crop cultivation drove emission down in south China but up in North China 

305 Plain due to the area expansion of maize (Figure 5b). 

306 Throughout the time period considered, policies appear to accelerate technical improvement 

307 and NH3 emission reductions in cropland. Since 1995, policy interventions seemed play key roles 

308 to promote the decoupling of NH3 emission from crop production for the provinces in east and 

309 central China (Figure 2c). Without these policies, cropland-NH3 emissions in China would remain 

310 coupled with crop production by the end of 2020s (Figure S8). The most effective technologies to 

311 achieve the decoupling of NH3 emission from crop production were N application rate reduction 

312 and a wider application of urea, supported by the national STNR and EUP program, respectively 

313 (Figure 4a).

314 3.3 Targeted mitigation opportunities by 2050

315 Despite the fact that China has decoupled its NH3 emissions from crop production at the 

316 national level, its emissions intensity in 2017 (1.37 g NH3-N kcal yr1) was still  3 times more 

317 than the EU and the USA in 2000 (Zhan et al., 2021). We therefore explored the NH3 mitigation 

318 potential for the next 30 years (2020-2050) by implementing strategies including optimization of 

319 fertilizer management and demand-side measures for diets.

320 China’s crop demand is projected to increase by 140% by 2050 considering both economic 

321 development and population growth. This would require an additional sowing area of 35.4 Mha, 

322 with the total NH3 emissions achieving 4.9 Tg NH3-N by 2050 if maintaining the 2017 

323 management practice under increasing temperature conditions (BAU, Figure 6a). Under BAU, 

324 cropland emissions of NH3 in 2030 (4.15 Tg NH3-N) would exceed the peak level in 1996 (4.02 

325 Tg NH3-N) and steadily increase until 2050 (Figure 6a). NH3 abatement through optimizing diet 

326 composition and cutting food losses and waste (OFC) could reduce NH3 emission by 18.4% in 

327 2050 compared with BAU (Figure 6a). When conducting optimal fertilizer management (OFM), N 

328 fertilizer consumption would reduce by 50.5%, inducing a subsequent NH3 reduction of 67.4% 

329 compared with BAU in 2050 (Figure 6a). To achieve the most ambitious mitigation target, the A
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330 ALL scenario combined all the mitigation options identified in OFW and OFC. The estimated NH3 

331 emissions of the ALL scenario are 1.28 Tg NH3-N in 2050 (73.6% reduction relative to BAU, 

332 Figure 6a). Under scenario ALL, China would show a quite low cropland-NH3 emission intensity 

333 (0.43 g NH3-N kcal1 yr1) in 2050, which is closer to that of the USA (0.42 g NH3-N kcal1 yr1) 

334 and the EU (0.39 g NH3-N kcal1 yr1). 

335 Spatially explicit information of NH3 mitigation potential could help us to identify specific 

336 crops and hotspot areas, which may be attractive ‘mitigation targets’. We ranked gridded 

337 mitigation potentials from largest to smallest, and then added the value to the sum of its 

338 predecessors, resulting in cumulative mitigation potential up to a given point of sowing area. 

339 Figure 6b and 6c shows the uneven distribution of NH3 mitigation potentials across Chinese 

340 croplands. A half of the NH3 emission reduction could be achieved on 24% of sowing area for 

341 maize, 30% for wheat, 19% for rice, and 26% for all crops together (Figure 6b). Total mitigation 

342 potentials were concentrated in Huaihe (Yellow River) Basin, which contributed about half of the 

343 total. This result implies the importance of this region on crop production and highlights the 

344 benefit of focusing on a small area that could deliver large NH3 mitigation.

345 4. DISCUSSION & CONCLUSIONS

346 Our study provides evidence in the decoupling of NH3 emission from crop production since 

347 1995 at the national level. Four critical policies (Table 1) since mid-1990s contributed to a 

348 decoupling and probably cut nearly half of the cropland-NH3 emission in 2017. Of all, national 

349 STNR Program and EUP guide appear to be the most effective policies. Still, increasing 

350 population, GDP and climate warming indicate a 140% increase in crop NH3 emissions in 2050 

351 when compared with 2017. Our result reveals both the achievements in alleviating cropland-NH3 

352 emission in past few decades and future challenges in re-increasing NH3 emission of China. 

353 Fertilizer-induced increase in NH3 emissions are universal worldwide after the invention of 

354 the Haber-Bosch process. To mitigate the negative effects, some directive, policy and mitigating 

355 options were implemented in high-income countries at the beginning of 21st century (Bittman 

356 2017; UNECE 1999). Though the lack of the comprehensive assessment of these policies on NH3 A
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357 mitigation, we can see a declining cropland-NH3 emission trend (at 0.6 Gg N year1) in Europe 

358 and a stagnation in cropland-NH3 emissions from North America since the 1980s (Xu et al., 2019). 

359 As the largest emitter of cropland-NH3 emissions in the world (Zhan et al., 2021), China has also 

360 implemented action plans to improve N use efficiency and reduce environmental pollution since 

361 1990s (Jiao et al., 2018). Our results provide evidence that cropland-NH3 emissions have been 

362 increasingly mitigated in China while not compromising crop production.

363 Challenges of NH3 abatement are universal across the rapidly developing countries of the 

364 world. Developing countries which fall into two groups need to pay more attention to NH3 

365 mitigation while improving crop yield. The first category includes Pakistan and India (Shahzad et 

366 al., 2019), which sustain the crop yields largely by relying on high N application rate (Zhan et al., 

367 2021). The second category mainly includes countries in sub-Saharan Africa, where agricultural 

368 production needs to improve urgently to keep pace with the rapid population growth (Hong et al., 

369 2021). All the situations portend an intensive application of N-fertilizer to the cropland in these 

370 countries, a situation similar to that of China. China’s experience could provide a guide and a 

371 paradigm shift for above-mentioned countries, on managing N cycles under the balance of 

372 agricultural development and controlling NH3 pollution. However, not all the measures can be 

373 applied well for other regions, some techniques are restricted in applicability by their effectiveness 

374 or practical limitation. These limitations may be of very different nature, caused by local climate, 

375 soil conditions (pH, slope), farm size, financial and technical issues. Therefore, implementation of 

376 NH3 abatement measures should follow their applicability and be adjusted to local conditions 

377 (Zhang et al., 2020).

378 Even if our results show that the cropland-NH3 emission can be effectively managed by 

379 related policies across China (Figure 4), further work needs to be done to determine the reliability 

380 of our estimates. In this study, we translated the effects of four policies on the related key driving 

381 parameters directly. Physical and socio-economic barriers, farmers’ adaptive behavior from policy 

382 enactment to implementation need to be considered through specific approaches, such as 

383 econometric models (Huang et al., 2016; Wang et al., 2015) and socioeconomic studies (Scrieciu 

384 2011). Therefore, our estimates may provide the most optimistic NH3 reductions of these policies. A
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385 Another limitation is that our model does not take irrigation practices into account (Sommer et al., 

386 2004) , which may lead to the overestimation of NH3 VRs and emissions. Besides, we assumed the 

387 consistent fertilizer placement for rice, vegetables, fruits and other crops according to the universal 

388 practice in China. This may distort the spatiotemporal trend of NH3-VRs for above crops. For 

389 example, few farmers also deployed manual deep fertilization or side-deep fertilizer machinery in 

390 paddy fields, which largely reduced the NH3-VRs of rice when compared with broadcasting 

391 application.

392 Future growth in population and incomes is likely to further boost food demand and hinder 

393 previous efforts to suppress the increasing cropland-NH3 emissions (Figure 6a). The Chinese 

394 government has strictly limited the input of synthetic fertilizer as well as setting ambitious goals to 

395 improve crop NUE (Liu et al., 2016). China also launched the “Strategy of taking potato as the 

396 fourth staple food” in 2015 (MARA 2015b). This policy showed a large potential to reduce NH3 

397 emissions because potatoes, which generally grow in cold regions, exhibit lower VRs (8.8%) than 

398 rice (19.1%), maize (20.7%) and wheat (11.5%) (Figure S7). However, barriers exist to promote 

399 further technologies to mitigate crop-NH3 emission in China. First, adjustment of fertilizer types 

400 (e.g. replacing urea by nitrate N-fertilizer) and deep placement often result in pollution swapping 

401 between environmental media. For example, fertilizer incorporation can reduce NH3 emissions, 

402 but may lead to increased nitrate leaching, especially in wet climates (Zhan et al., 2021). Second, 

403 given that poor smallholder farmers still dominate China’s agricultural production, the transition 

404 to large-scale and mechanized fertilization in China is restricted by inherent social barriers and 

405 weak technical foundation, which takes time and effort to overcome (Zhang et al., 2020).

406 Future reductions in consumption of NH3-intensive fertilizers, machines and services need to 

407 be further supported by research, policies and financial incentives for all the major NH3 emitters of 

408 the world. Promoting balanced diets and reducing food waste to mitigate NH3 emissions may be 

409 critical for the developed countries and rapid growing economies. Adopting regionally 

410 specific-approaches is another efficient pathway to achieve NH3 mitigation particularly across the 

411 emission hotspots. Our spatially explicit cropland-NH3 emission data could be used to support and 

412 guide the development of such interventions, which may include inter-provincial cooperation, A
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413 national or international food trade (Shan et al., 2021). The ambitious goal should be designed in 

414 segments, and cost-benefit analysis could be helped to provide guidance for emerging policy 

415 priorities in reducing NH3 pollution (Zhang et al., 2020). Meanwhile, China plays an important 

416 role in the South-South co-operation via South-South trade and the Belt and Road Initiative, 

417 especially in the technology extension of crop planting and machine application (Shan et al., 

418 2021). The experience and status quo of NH3 emissions and policy induced abatement in China 

419 may have implications for other developing economies to achieve cropland’s NH3 mitigation 

420 while sustaining crop yields. 

421 SUPPORTING INFORMATION

422 Extended explanation of cropland-NH3 VR model, datasets, scenario simulation, comparison with 

423 previous estimates, and associated supplementary Tables and Figures are all available free of 

424 charge at http://pubs.acs.org.
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TABLE 1 Policies on fertilization and crop structure issued by the Chinese Government since mid-1990s

Policy name Acronym Starting year

Related parameter 

driving

NH3 emissions

Description

Agricultural Cost-saving 

and Efficiency-increasing 

Program

ACE 1994

Incorporation 

proportion of 

synthetic-N fertilizer

Implement deep fertilization machine to increase fertilizer use 

efficiency and save agricultural cost for field crops (Wu 

2000)

Vegetable Basket Program VTB
Phase I: 1988 

Phase II: 1995 
Crop structure

Encourage the growth of cash crops, especially vegetables 

and fruits, around cities to meet increased consumption 

requirements (Bai et al., 2018)

Encouragement of urea 

production guideline
EUP 1996 Fertilizer form

Encourage medium- and small- size manufacturers upgraded 

production devices towards high concentration N fertilizer 

(i.e. urea, with 46% N content) to replace ammonium 

bicarbonate (17% N content) (Li 2009)

National Soil Testing and 

Nutrient Recommendation 

Program

STNR 2005 N application rate
Optimize nutrient management through soil testing (MARA 

2015a)
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621 TABLE 2 Cropland-NH3 mitigation pathways in future

Key indicators in 2050

Scenario Acronym Main consequence Sowing area (108 

ha)

N fertilizer rate (kg 

N ha-1)

N fertilizer input (Tg 

N yr-1)

Business as usual BAU
Increased sowing area and N fertilizer input;

Increased NH3 loss in cropland
2.0 213.5 42.7

Optimized fertilizer 

management
OFM

Reduced use of chemical fertilizer;

Reduced NH3 loss in cropland;

Improved N use efficiency

2.0 105.5 21.1

Optimized food 

consumption
OFC

Reduced food loss and waste;

Reduced net land requirement and N fertilizer 

input for crop production

1.8 203.9 36.7

Combined all the 

mitigation measures
ALL

Combined consequence of scenarios OFM and 

OFC
1.8 100 18
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623 FIGURE 1 The interannual variabilities of cropland-NH3 emissions, crop production and 

624 NH3 emission intensity in China. The national mean emission intensity was defined as the 

625 cropland-NH3 emission divided by total crop production (in kilocalories, Table S7) at national 

626 scale.

627

628 FIGURE 2 Spatial pattern of China’s cropland-NH3 emission trends and the breakpoint at 

629 province scale. Panels a and b represent the spatial pattern of cropland-NH3 emission trends in P1 

630 (1980-1996) and P2 (1997-2017) respectively. Panel c represents the year began to decouple its 

631 NH3 emission from crop production, that is, the year which emission intensity turned to significant 

632 decrease (P0.05) at province scale. Piecewise linear regression was applied to detect the 

633 provincial breakpoint following Zhou et al. (2020, see Text S8).

634

635 FIGURE 3 Contributions of driving factors to China's cropland-NH3 emission and 

636 NH3-VRs. Panels a represents four main driving factors’ contributions to cropland-NH3 emission. 

637 Panels b represents five secondary driving factors’ contributions to NH3-VRs.

638

639 FIGURE 4 Changes of N application rate, forms, placement, crop structure and their 

640 potential effects on cropland-NH3 emission from 1980 to 2017. (a) ACE, VTB, EUP and STNR 

641 Program represent Agricultural Cost-saving and Efficiency-increasing Program, Vegetable Basket 

642 Program (Phase II), Encouragement of urea production guideline, National Soil Testing and 

643 Nutrient Recommendation Program, respectively. Detailed descriptions of above four policies can 

644 be found in Table 1. (b) Share of basal fertilizer incorporated by machine for four field crops, i.e. 

645 wheat, maize, potatoes and legumes. (c) Sowing areas of rice, wheat, and vegetables & fruits in 

646 China. (d) Consumption of two forms of alkaline fertilizer, i.e. urea and ammonium bicarbonate 

647 (ABC). (e) N application rate (line), and implemention area of the STNR program at national scale 

648 (column). After 2013, implemention area of the STNR program is not publicly available.

649

650 FIGURE 5 Cropland-NH3 mitigation induced by policies implement in 2017. Detail A
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651 descriptions of four policies can be found in Table 1. Values denote the probable NH3 reductions 

652 induced by each policy at national scale.

653

654 FIGURE 6 Mitigation potentials of China’s cropland-NH3. (a) Future NH3 emissions under 

655 four scenarios; (b) China’s cropland-NH3 mitigation potentials by crop under scenario ALL; (c) 

656 Spatial pattern of China’s cumulative NH3 abatement potentials under scenario ALL.
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