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Rainfall and River Flow Ensemble Verification: Phase 2 

Joint Verification Framework 

Final Report Appendix A.1 

1. Overview of Framework and metrics for verification 
The Prototype Framework for Ensemble Verification is set out in this Appendix as a set of selected 

metrics (scores and diagrams). The objective of the Framework is to give an overview of performance 

in general, first individually at each site and then over all sites, possibly split by catchment features 

(e.g. catchment size). This is where the standard ensemble verification scores are used, both in 

Numerical Weather Prediction (NWP) and Hydrological Forecasting. It is necessary to compare, 

contrast and link the different scores and obtain a ‘’joined up” overview of performance across NWP 

and Hydrological Forecasting. The aim is to produce information that is operationally useful for flood 

forecasting and warning by the FFC and SFFS. Hence the chosen scores must be directly applicable and 

interpretable in this context.  

Different scores can (and arguably should) be used for NWP and Hydrological Forecasting, provided 

there is a common comparison method. Table 1 summarises the proposed metrics to be used for 

ensemble verification as part of the Prototype Framework and detailed later in this Appendix. 

Table 1 Metrics to be used for NWP and Hydrological Forecast verification. 

Common between NWP and Hydrology NWP only 

 Continuous Rank Probability Score (CRPS) 
with decomposition 

 Brier Score (BS) with decomposition 

 Continuous Rank Probability Skill Score 
(CRPSS) 

 Brier Skill Score (BSS) with decomposition 

 Reliability Diagram 

 Relative Operating Characteristic Diagram 
and Area Under Curve Skill Score (ROCSS) 

 Relative Economic Value (REV) 

 Rank Histogram 

 Mean Error (ME, a measure of bias) of 
areal mean precipitation per member 

 Root Mean Squared Error (RMSE) of areal 
mean precipitation per member 
 

 

Some metrics applied to the precipitation verification focus on the underlying NWP model 

configuration. As both the FFC and SEPA already have detailed assessments of the G2G deterministic 

performance - in the form of a Performance Summary for each site (CEH, 2016) - these measures are 

included for precipitation only. The other metrics focus on the ensemble performance, evaluating the 

error in probability space. In particular, these assess how well the ensemble captures the spread of 

possible outcomes (as spatial rainfall or river flow), and how reliable the probabilities are. The ability 

of the ensemble to discriminate between events (defined as an upward-crossing of a rainfall or flow 

threshold over a prescribed forecast period) and non-events is also assessed, providing a measure of 

potential ensemble skill. Skill scores are calculated for a range of different thresholds and lead-times.  

A summary of the key features of the verification metrics considered in the Joint Verification 

Framework, and detailed in this Appendix, is given in Table 2 for ease of reference.  
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Table 2 Overview of verification metrics used in the Joint Verification Framework 

 Verification metric What the metric measures Units Performance indicator 
 

Good Poor 

V
er

if
ic

at
io

n
 s

co
re

 

Continuous 
Ranked Probability 
Score (CRPS) 

Difference between the 
cumulative distribution 
estimated by the ensemble 
forecast, and the step-
function cumulative density 
function of the observation 

Units of the 
observation 
and ensemble 
forecasts 

0 Large values 

Brier Score (BS) Mean square probability error Dimensionless 
 

0 Large values 

Mean error (ME) Measure of overall bias Units of 
quantity being 
assessed 

0 Large values 

V
e

ri
fi

ca
ti

o
n

 S
ki

ll 
Sc

o
re

 

Continuous 
Ranked Probability 
Skill Score (CRPSS) 

CRPS compared to the ME of 
the observations over the 
verification period 

Dimensionless 
 

1 indicate a 
perfect 
forecast 

0: same value as 
climatological 
information 
only 
 
<0: less value 
than 
climatological 
information 
only 

Brier Skill Score 
(BSS) 

BS compared to a reference 
given by the sample 
climatology 

Relative Operating 
Characteristic 
Diagram and Area 
Under Curve Skill 
Score (ROCSS) 

Area Under the ROC Curve 
(AUC) normalised with 
reference to a random 
forecast with no skill (an AUC 
equal to 0.5) 

V
er

if
ic

at
io

n
 d

ia
gr

am
 

Relative Economic 
Value (REV) 

Economic forecast value 
relative to a forecast based on 
climatological information 

Rank Histogram Reliability of the ensemble: 
that is, whether or not the 
ensemble and observations 
have been drawn from the 
same distribution. 

NA 

Flat 
diagram 

U-shaped: 
spread is too 
small  
Domed-shaped: 
spread is too 
large  
Asymmetric:  
biased 

Reliability Diagram 
or Attributes 
Diagram 

Reliability and Resolution of 
the probability forecasts  

Good 
Reliability 
and 
Resolution: 
close to 
diagonal 

No Resolution: 
horizontal line 
Under 
forecasting: 
above diagonal 
Over 
forecasting: 
below diagonal 

Relative Operating 
Characteristic 
(ROC) diagram 

Potential skill of the ensemble: 
that is, the ensemble skill if 
ensemble probabilities were 
well-calibrated 

Close to 
upper left 
corner 

On diagonal  
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2. Deterministic verification metrics applied to individual ensemble 

members 

2.1 Mean error of areal mean precipitation 
The Mean Error (ME) is the difference between the forecast mean and the mean of the observations. 

Hence, the ME is a measure of the forecast bias. Calculating the ME for individual ensemble members 

allows the distribution of the bias to be assessed. A larger spread of values would indicate a wider 

range of different precipitation accumulations across the ensemble members. 

2.2 RMSE of areal mean precipitation 
The Root Mean Squared Error (RMSE) is calculated as 

 


 
n

i

ii yyn
1

21 )ˆ(RMSE  (1) 

where iy  and iŷ  are the i th of n  observation and forecast pairs. The RMSE gives the typical 

magnitude of forecast error, with a higher weighting given to larger errors. Calculating the RMSE for 

individual ensemble members allows the variation in forecast error across the ensemble to be 

assessed. 

3. Metrics applied to the ensemble as a whole 
3.1 Brier Score and Brier Skill Score 

The Brier Skill Score provides a relative measure of the skill of a probability forecast, as assessed using 

the Brier Score (BS) and relative to the BS of a reference forecast, such as climatology. The Brier Score 

- like the Probability of Detection (POD), False Alarm Rate (F) and False Alarm Ratio (FAR) - is a 

categorical form of score based on crossing of a chosen threshold, but appropriate for use when the 

forecast being assessed is in the form of a probability. It gives the mean square probability error over 

n  forecasts. 

It is convenient to introduce some notation at this stage to allow the Brier Score to be precisely 

defined. Let iy  denote the observed value(s) of a quantity of interest (e.g. rainfall, river flow) for 

forecast i  and x  denotes a threshold value of interest for this same quantity (e.g. rainfall threshold; 

Q(2), the flow Q of return period 2 years) and used to define the categories of event-occurrence or 

non-occurrence. We define iY  as an indicator variable of the observed event, taking a value 1 if the 

event does occur and 0 if not. The forecast probability to be assessed, iŶ , is the forecast probability 

of the event occurring, taking values in the range 0 to 1.  

The Brier Score, giving the mean square probability error over n forecasts, can be defined through the 

above notation as:  

 


 
n

i

ii YYn
1

21 )ˆ(BS . (2) 

It is used to express the typical size of error in probability terms on a scale of 0 to 1, with 0 being “best” 

(a probability forecast associated with no error). 

The Brier Score can be decomposed into three terms representing the Reliability (REL), Resolution 

(RES) and Uncertainty (UNC) of the forecast (Murphy, 1973; Siegert, 2017). Suppose the n  forecast 

probabilities iŶ  take on only K  distinct probability values, that is  Ki PPY ,...,ˆ
1  for all t . Also that 
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kn  is the number of times the k th forecast probability value is issued, and ko  is the number of events 

that have occurred when issued. Then the average event frequency for the k th forecast probability 

value is kkk noY / . Given these definitions, the Brier Score has the following decomposition: 

 

UNCRESREL

YYYYnnYPnn
K

k

kk

K

k

kkk



 






 )1()()(BS
1

21

1

21

 (3) 

where the climatological event frequency 

 



n

i

iYnY
1

1 . (4) 

The first term, REL, gives a measure of the Reliability of the forecast: that is how close the forecast 

probabilities are to the true observed probabilities. Lower values of REL indicate better reliability, with 

a perfectly reliable forecast having a REL of zero. A system with perfect reliability would have kk no   

equal to kP  for all k . 

The Resolution term, RES, defines the extent to which the conditional probabilities (i.e. the 

probabilities given the different forecasts) differ from the climatological average. Higher values of RES 

indicate better Resolution, with a RES of zero indicating that the model does not give an advantage 

over climatology.  

The third term in the Brier score decomposition, UNC, indicates the Uncertainty in the forecasting 

situation, based on the observations. An instance with a climatological probability of either zero or 

one will have the minimum Uncertainty (UNC=0); a climatological probability of 0.5 will have the 

highest Uncertainty. A perfect model would have a Resolution term equal to the Uncertainty term, 

and a Reliability term of zero giving a zero Brier Score. 

With BSref denoting the Brier Score for a reference forecast (for example, one based on climatological 

relative frequencies), then the Brier Skill Score (BSS) is given by 

 
refBS

BS
1BSS  . (5) 

This provides a relative measure of the skill of a probability forecast, giving the proportion 

improvement in BS of the forecast relative to the reference forecast (e.g. climatology). At best, BSS 

takes a value of 1 and values less than 0 indicate the forecast performs worse than the reference over 

the period of assessment.  

3.2 Reliability Diagram 
The Reliability Diagram allows the full distributions of probability forecasts generated from the 

ensemble and observations to be compared for a given threshold. From the Reliability Diagram, both 

the Reliability and Resolution of the probability forecasts can be assessed. The Reliability Diagram is 

created by binning forecasts based on the forecast probability (the value for each bin is plotted on the 

x-axis), and then calculating the conditional probability of the observations given this binning, )ˆ|( YYP

, plotting this on the y-axis. 

 

Perfect Reliability (REL=0) is found for forecasts which fall on the diagonal line, with REL increasing 

(indicating poorer reliability) further from the diagonal. The value of sample climatology, Y , is plotted 
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on the Reliability Diagram as a horizontal line shown in grey in Figure 1. A forecast falling on this line 

would have zero Resolution, whilst a forecast falling further towards the diagonal signifies it has 

increased Resolution. Half way between the line of sample climatology and the diagonal lies the no-

skill line (not shown): along this line the Brier Skill Score (calculated using the sample climatology as a 

reference) equals zero.  

The Reliability Diagram also indicates whether the forecasts are over- or under-confident. In the over-

confident case small probabilities are under-forecast (lie above the diagonal) and large probabilities 

are over-forecast (lie below the diagonal). In the under-confident case small probabilities are over-

forecast (lie below the diagonal) and large probabilities are under-forecast (lie above the diagonal). A 

systematic bias in forecast probabilities is seen when lines lie fully above the diagonal (under 

forecasting) or fully below the diagonal (over forecasting). These characteristics are shown 

schematically in Figure 1. 

 
Figure 1 Schematic of a Reliability Diagram showing the key methods for identifying ensemble 

forecast errors. 

3.3 Continuous Ranked Probability Score 
A continuous form of the Brier Score follows in a natural way by considering the threshold x  to be a 

continuous variable. We then have an indicator variable )(xYi  for the event xyi   occurring obtained 

from observations and )(ˆ xYi  the probability of the event as stated in the probability forecast. The 

Continuous Brier Score (Jones et al., 2003) is then defined as 

    dxxYxYn ii
21 ))(ˆ)((CBS . (6) 

For a single probability forecast, the integral expression is now commonly known as the Continuous 

Ranked Probability Score (CRPS): 

 dxxYxY ii  2))(ˆ)((CRPS , (7) 

although in practice is averaged over different forecast cases (Hersbach, 2000), and thus equivalent 

to CBS. 
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The CRPS measures the difference between the cumulative distribution estimated by the ensemble 

forecast, and the step-function cumulative density function of the observation. Hence, no thresholds 

are used to calculate the CRPS, making it a useful overview of the ensemble performance. The CRPS 

can be thought of as a continuous version of the Brier Score integrated over all possible thresholds. 

For a deterministic forecast it reduces to the mean absolute error (MAE). As with the Brier Score, it 

can be decomposed into Reliability (thus related to the Rank Histogram) and Resolution/Uncertainty 

(thus related to the average spread and outlier behaviour of the ensemble) components (Hersbach, 

2000). The CRPS has the same units as the data from which it is calculated. A dimensionless skill score 

can be formed in the usual way, using the CRPS of a reference forecast such as climatology, giving the 

Continuous Ranked Probability Skill Score (CRPSS). 

3.4 The Rank Histogram 
The Rank Histogram (Talagrand et al., 1997; Hamill, 2001) assesses the reliability of the ensemble 

through whether the ensemble and observations have been drawn from the same distribution. If this 

is the case then each ensemble member forecast is equally likely, and the observation is equally likely 

to fall between any two ensemble members.  

To create the Rank Histogram, the ensemble values are first ranked from smallest to largest for each 

observation point. This gives N+1 possible bins within which the observation may fall, for an ensemble 

of N members. The bin in which the observation falls is calculated for each observation point: the Rank 

Histogram is a histogram of the resulting bin populations. The standard interpretation of a Rank 

Histogram is as follows. 

Flat: The ensemble spread is appropriate to represent the forecast uncertainty. 

U-shaped: The ensemble spread is too small overall (the ensemble is under-spread) with 

observations frequently falling outside of the ensemble extremes. 

Dome-shaped: The ensemble spread is too large (the ensemble is over-spread) with observations 

frequently falling towards the centre of the ensemble distribution.  

Asymmetric: The ensemble is biased (high bias, slopes up to left; low bias, slopes up to right). 

Thus, the Rank Histogram provides a qualitative, visual measure of the appropriateness of the 

ensemble spread. Unlike the Reliability Diagram, the Rank Histogram does not provide an absolute 

measure of forecast Resolution (Sharpness): a random forecast, with observations drawn from the 

same distribution would give a flat Rank Histogram. In some instances the standard interpretation of 

the Rank Histogram can be misleading: for example, where conditional biases can lead to a U-shaped 

histogram (e.g. Hamill, 2001). Hence, it is important to consider the Rank Histogram in conjunction 

with other complementary verification metrics.  

3.5 The ROC Score and ROC Diagram 
The Brier Score and Reliability Diagram partition the data in terms of the forecast probability (asking, 

given a forecast probability, what is the probability that the event was observed?). It is also possible 

to partition the data according to the observed events. For deterministic forecasts, this leads to the 

definition of the Probability Of Detection, POD (also known as the Hit Rate, H), and the False Alarm 

Rate, F, based on a contingency table of a sequence of binary events shown in Table 3 

Table 3 Contingency table for binary deterministic forecasts and observations. 

 Event observed 

Event forecast Yes No 

Yes h (Hits) f (False alarms) 
No m (Misses) c (Correct rejections) 
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Using the notation of Table 3, then 

 
mh

h
H


POD  (8) 

 
cf

f
F


 . (9) 

The POD and F performance measures can be developed to also assess probabilistic forecasts of 

rainfall or river flow in ensemble form. For a given threshold (such as Q(2)), the POD and F value for 

different probabilities of exceedance ranging from 0 to 1 can be calculated and the paired values 

plotted on y- and x-axes respectively. This is called the Relative Operating Characteristics (ROC) 

Diagram (Figure 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Schematic of the Relative Operating Characteristic (ROC) Diagram. 

A perfect forecast (all events detected with no false alarms) corresponds to POD=1 and F=0. Thus 

values in the top left hand corner of the ROC Diagram are associated with highest skill, with a curve 

showing a significant bend towards this corner indicating forecast skill. The case when POD=F=1 (top 

right corner) corresponds to events always being warned for and when POD=F=0 (bottom left corner) 

no warning of an event is ever given. Above the 1:1 line are outcomes where POD>F. Note that the 

POD and F resulting from the deterministic forecast can be plotted on the same diagram as a single 

value for the chosen threshold. 

The area under the ROC curve, AUC, is ideally 1, with a random forecast lying along the 1:1 line with 

an area of 0.5, and at worst 0 when POD is always 0.  

The ROC Score is defined as the AUC normalised with reference to a reference forecast AUCref, taken 

here to be a random forecast with no skill and AUC equal to 0.5, so that 

 .1AUC2
5.01

5.0AUC

AUC1

AUCAUC
Score  ROC

ref

ref 








 . (10) 

A ROC Score of 1 indicates a perfect forecast and if above 0 the forecast has a skill better than a 

random forecast. 

1 

Probability 

Of Detection 

Always warnings  

(F = POD = 1) 

Perfect forecasts 

(F = 0, POD = 1) 

.7 Ensemble forecast for 

given probability of 

exceedance 
No skill 

.1 
.3 

.5 
D 

.7 

Deterministic 

forecast 

Never any 

warnings  

(F = POD = 0) 

.9 

D 

1 
False Alarm Rate 
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3.6 Relative Economic Value 
The economic benefits of a forecasting system depend on the cost-loss ratio of a particular user. The 

Relative Economic Value (REV) statistic (e.g. Wilks, 2001; Zhu et al., 2002) allows the economic 

forecast value to be assessed relative to a forecast based on climatological information. The REV is 

widely used in the verification of both hydrological and meteorological forecasts (e.g. Roulin, 2007; 

Magnusson et al., 2014). 

Like the ROC Diagram and score, the REV is based on a contingency table of a sequence of binary 

events. The contingency table is extended to include the associated costs C, and the total, protected, 

and unprotected losses (L, Lp and Lu respectively). A contingency table of the costs and losses is shown 

in Table 4. 

Table 4 Contingency table for the costs and losses associated with binary deterministic forecasts 
and observations. 

 Event observed 

Event forecast Yes No 

Yes C+Lu (Mitigated loss) C (Cost) 
No L=Lp+Lu (Loss) N (No cost) 

 

From Table 4, the expected expense for a given forecast system can be calculated as 

 )()( upuforec LLmfCLChE  . (11) 

The expense when only using climatological information is calculated as the minimum expense when 

protecting or not protecting against potential losses: 

 









CLmhLmhLmh

LmhCLmhC
E

pup

pu

cl )()()(

)()(
. (12) 

With a perfect forecasting system the user would only take action, and incur costs, when an event 

occurred. In this situation, the expenses would be 

 ))(( uperf LCmhE  . (13) 

Eforc, Eclim and Eperf are combined to give the REV as 

 
perfcl

forccl

EE

EE
REV




 . (14) 

Substituting Equations (11) to (13) into Equation (14) and defining the cost-loss ratio / pr C L  gives 

 

( )

(1 ( ))

( )

( )(1 )

r h f r m
r h m

r h m
REV

h m h f r m
h m r

h m r

  
   

 
     

  

. (15) 
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The REV has a maximum value of one for a perfect forecasting system, a value of zero for a forecast 

with the same value as climatological information only and is negative for forecasts which have less 

value than using only climatological information.  

4. Quantifying sampling uncertainty using the Bootstrap method  
One key question for an operational forecast verification system is “what sample size should be 

used?”. That is, “how many ensemble forecasts should be assessed to obtain meaningful 

verification?”. To help address this question, the sampling uncertainty can be estimated using the 

bootstrap method. The bootstrap method is based on the principle that sub-samples of the 

verification data relate to the verification data in the same manner that the verification data itself 

relates to a much larger sample (the underlying data distribution). By considering the distribution of 

verification statistics obtained from sub-samples of the verification data, we approximate the 

distribution of verification statistics which would be obtained by taking different samples of the 

underlying data distribution. Hence, the spread of verification statistics obtained from sub-samples of 

the verification data approximates the spread of verification statistics which would be obtained from 

samples of the underlying data distribution: the sampling uncertainty.  

To calculate the bootstrap sampling uncertainty, multiple random samples are selected from the 

verification data, and the verification statistics calculated for each sample. Samples are selected with 

replacement, as the occurrence of an event within the verification period does not preclude that event 

occurring at another time outside of the verification period. Thus, within a bootstrap sample, some of 

the verification data will be drawn multiple times, and some not at all. The distribution of verification 

statistics calculated for all bootstrap samples is used to estimate confidence intervals around 

verification statistics calculated using the full verification data. In this report the 75th, 90th and 99th 

percentiles are considered, and bootstrapping is used to estimate the uncertainties associated with 

ROC and Reliability Diagrams. For the verification of river flow forecasts, 500 bootstrap samples are 

used. It was found that this number of samples were sufficient to approximate the distribution of 

verification statistics, with similar results obtained for larger sample sizes. For the verification of daily 

precipitation accumulations 1000 bootstrap samples are used. For hourly precipitation accumulations 

further investigation suggested that 100 bootstrap samples were sufficient for the Reliability Diagrams 

and 20 for the ROC Diagrams. The median of the distribution of the bootstrap sample verification 

statistics was found to approximate well the verification statistics calculated using the full verification 

period. 

5. Calculation of verification metrics 
To enable comparison of river flow and rainfall verification metrics, it is essential that the verification 

metrics detailed in this Appendix are calculated using common code. In this study the verification 

metrics are calculated using the R package “verification” (NCAR - Research Applications Laboratory, 

2015). The functions used to calculate each verification metric, and the output variables used, are 

summarised in Table 5. Full details of the functions, and function source code, are available from 

NCAR - Research Applications Laboratory (2015). 
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Table 5 R verification package functions and output variables used for the calculation of each 
verification metric. 

Verification metric R verification package function Package output variables used 

BS brier BS: bs 
REL: bs.reliability 
RES: bs.resol 
UNCERT: bs.uncert 

BSS brier BSS: ss 

Reliability Diagram brier Forecast probability: y.i 
Observed relative frequency: prob.y 
Climatological rate: obar.i 

CRPS crpsDecomposition CRPS: CRPS 

ROC Diagram roc.plot H: plot.data[,2,] 
F: plot.data[,3,] 

ROC score roc.area ROC score: roc.area 

REV value REV: V 
r: cl 
r for maximum V: s 
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Rainfall and River Flow Ensemble Verification: Phase 2 

Events for possible case studies 
Final Report Appendix A.2 
 

Scotland 

Dates Location Comment 

3 & 4 Jan 2016 Tayside and Angus 
Flooding in Perth. High levels in 

North Muirton. 

7 & 8 Jan 2016 Aberdeenshire 

Unremarkable rainfall on 

saturated catchments. Record 

high flows on the rivers Don, 

Ythan and North Esk. FGS Red 

for Aberdeenshire. Evacuations 

took place. 

27 Jan 2016 Scottish Borders 

Severe Flood Warning issued 

for Jedburgh. Frontal rain with 

associated convection in one 

forecast run, then observed in 

radar. 

6 & 7 June 2017 
Findhorn, Lossie and Nairn 

catchments 

Hydrologically significant event. 

FGS 3x2 (low,sig). Flood 

defences at Forres and Elgin 

prevented flooding in these 

places. River Nairn came close 

to overtopping defences. 

23 to 25 Jan 2018 Scottish Borders 
Several linked events. 

Snowmelt overnight 23-24 Jan. 

8 Oct 2018 West and North-West Scotland 

FGS amber for Inverclyde & N 

Ayrshire, yellow for west 

Highlands. 

22 & 23 Oct 2018 Strathoykel (NW Highlands) 

High 6-12 hour rainfall totals – 

highest totals very localised, 

very localised impacts. 1-in-20 

year flow on River Oykel – 

peaking at 0800 on 23 Oct. 

Limited impacts. 

Wales and England 

Dates Location Comment 

8 Aug 2017 Essex, Kent, Surrey, London EFAS Flash Flood notification. 

Minor impacts from surface 
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water flooding: Essex, Kent, 

Surrey, Greater London, 

Suffolk. No fluvial impacts 

recorded. 

23 Aug 2017 Scarborough 

Convective event - no river 

impacts recorded. Flash 

flooding from surface water, 

causing travel disruptions. 

Significant impacts - North 

Yorkshire (Scarborough), minor 

for York and West. 

30 Sep 2017 Cumbria, Millom 

Narrow band of heavy rain over 

the south of Cumbria. 40-45 

mm in 1 hour and 60+ mm in 2-

2.5 hrs at Millom and Haverigg 

between 0800 and 1030 BST. A 

total of 150-200 properties 

affected by surface water 

flooding, largely in the Millom 

area and with a small number 

of flooded properties in 

Windermere and Haverigg. 

21 Oct 2017 
Storm Brian, Lancashire & W 

Yorkshire 

Missed SIG event. Flood Sirens 

in Todmorden, Hebden Bridge 

and Mytholmroyd. 4 properties 

(river), 1 industrial building 

(river), 1 pre-school (SW) and a 

bakery (SW) flooded in 

Rossendale plus 5 properties in 

Rawtenstall from river and 8 in 

Rawtenstall from surface water 

3 & 4 Nov 2017 SE England 

Rainfall false alarm? No impacts 

noted. G2G Deterministic 

supported minimal impacts. 

Some suggestion of higher 

flows from G2G ensembles. 

 

22 & 23 Nov 2017 NW England and N Wales 

Impacts on 23 recorded as SIG 

over Cumbria, Lancashire for 

rivers and also minor for 

Cumbria, Anglesey, York, and 

Lancashire. Widespread issues 

from surface water flooding. 
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27 Dec 2017 E and SE England 

No river flood impacts noted. 

Minor impacts from surface 

water flooding: Midlands, SW 

and SE England. 

2 & 3 Jan 2018 Storm Eleanor 

EFAS Flash Flood notification. 

No fluvial impacts recorded. 

Little response in G2G 

deterministic but larger 

response in G2G ensembles. 

12-14 Mar 2018 
SE and SW England and 

Derbyshire 

Widespread flooding around 

Burton, South Derbyshire. G2G 

gave poor advice on the fluvial 

flood risk in Staffs/High Peaks 

area. Unusually rapid response 

given the amount of rain, which 

lead to quite a few minor 

impacts from surface water and 

river flooding. Once the rain 

was in the gauges, G2G then 

significantly increased the 

response within the gridded 

MRDET through this area.  

2-4 Apr 2018 
SW, Central and NE England 

and Wales 

Minor river flooding impacts 

noted on 3 April: N and W 

Yorkshire and on 4 April in N 

Yorkshire, Durham and Tyne 

and Wear. Minor roads around 

Linton-on-Ouse closed due to 

flooding from small streams 

and high flows on River Ouse. 

Surface water flooding caused 

closures or partial closure of 

arterial A roads around Bishops 

Auckland (Durham) and Tyne & 

Wear area. 

18 Jul 2018 Cornwall, Coverack 

Flash Flooding in Coverack with 

danger to life, helicopter 

rescues, 50 properties flooded, 

damaged roads and 

infrastructure. 

20 Sep 2018 
Mid Wales, Sheffield, Storms 

Ali and Bronagh 

Primarily, surface water 

flooding. Transport disruption 

in Sheffield and Rotherham. 

Some road flooding in Wales 
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(Pontypridd). 

12 & 13 Oct 2018 SW Wales, Storm Callum 

Main river impacts occurred on 

13 Oct 2018 in SW Wales - 

Powys, Ceredigion and 

Carmarthenshire. Properties 

flooded by main rivers. River 

Towy in Carmarthenshire main 

focus. 

9 Nov 2018 SW England and SW Wales 

Frontal orographic + convection 

rainfall. SIG river impacts 

recorded in Pembrokeshire, 

minor in Carmarthenshire. SIG 

impacts from surface water 

flooding in Pembrokeshire, with 

minor in Devon and Cornwall. 
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Rainfall and River Flow Ensemble Verification: Phase 2 

Catchment precipitation processing 

Final Report Appendix A.3 

1 Overview 
Under Phase 2 of the “Rainfall and River Flow Ensemble Verification” project, it was decided that 

UKCEH would undertake the catchment precipitation processing for the Phase 2 Verification Period 

(1 June 2017 to 30 September 2018). The gridded precipitation time-series to be processed were the 

Best Medium Range (BMR) ensemble forecasts and gridded rainfall observations from three sources: 

raingauge, radar and merged. Specifically, the catchment values were to be extracted from daily and 

hourly precipitation accumulation grids and saved for use by the Met Office for precipitation ensemble 

verification.  

This document describes the processing methods used, and provides details of the files provided. The 

primary aim is to serve as a reference guide to the use and interpretation of the files. However, 

Sections 2 and 3 also provide background information on the available forecast and observed 

precipitation data, the domains and catchments considered, details of the re-gridding process from 

1km to 2km grid-spacing, calculation of hourly and daily precipitation accumulations and threshold-

calculations. 

2 Precipitation data for processing 

2.1 Observed precipitation data 
Four types of observed precipitation data were processed for the Phase 2 Verification Period, as 

detailed in Table 1. To allow comparisons to be made with the Phase 1 (December 2015) analyses, the 

raingauge and radar precipitation products were also processed for that period. The merged product 

was not available for use in December 2015. 

Table 1 Gridded observed precipitation products processed to obtain catchment values. 

Observed precipitation product Coverage 

hkuk_g2g Hyrad gridded raingauge-rainfall (mm/h) England & Wales 

hkscot_g2g Hyrad gridded raingauge-rainfall (mm/h) Scotland 

H19 15-min advection accumulation radar-
rainfall(mm) 

England & Wales, and Scotland to just 
north of Inverness (up to 879500N) 

H23 Merged raingauge-radar rainfall with 1h delay 
(mm) 

England & Wales, and the very south 
of Scotland (up to 700500N) 

 

These 15-minute gridded time-series data are held at UKCEH in Hyrad SIDB (Spatial Image DataBase) 

form, on the native 1 km British National Grid. 

2.2 BMR precipitation ensemble forecast data 
BMR precipitation ensemble forecasts were obtained from MASS for the period 1 June 2017 to 

3 September 2018, encompassing the year-long verification period and case-study events of interest. 

Data from all forecast-origins within this period were processed.  

The BMR data are produced on a 2 km British National Grid out to a lead-time of around 6.5 days in 

Nimrod format, with files containing both 15-minute and 1-hour precipitation accumulations. Beyond 

a lead-time of 36h, the 15-minute accumulations are created by evenly splitting the 1-hour 
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accumulations over the 15-minute periods they contain. For the rainfall processing documented here, 

only 15-minute accumulations are extracted from the Nimrod files.  

2.3 Accumulation periods 

All data to be processed are available at 15-minute intervals, either as an accumulation over 

the previous 15 minutes, or as an average rain-rate over that 15-minute period expressed in 

units of mm/h. To allow precipitation verification of 15-minute, hourly and daily 

accumulations, hourly and daily quantities were calculated by accumulating the 15-minute 

values. The accumulations were calculated as follows 

Observed data 

Hourly accumulations ending on each whole-hour 

Daily accumulations of all data in the previous 24h period ending on each whole hour 

Forecast data 

 Hourly accumulations ending whole-hour forecast lead-times (e.g. 1h, 2h, 3h …) 

 Daily accumulations ending on forecast lead-times 24h, 48h, 72h, 96h, 120h, 144h 

For the precipitation catchment processing, all 15-minute and hourly data are converted to units of 

mm/h, and daily data are converted to mm/d. 

3 Methods for precipitation processing 

3.1 Re-gridding of precipitation products 
It is recognised that the distribution of rainfall intensity will vary as a function of spatial resolution. 

Thus, to accurately assess the performance of precipitation forecasts, they should ideally be at the 

same spatial resolution as the observed data.  

Upscaling of these 1 km observation precipitation data to the 2 km resolution of the precipitation 

forecasts to support verification at this resolution has been given careful consideration, noting the 

points below.   

 G2G forecasts are driven by the BMR, which is on a 2 km grid.  

 Scientifically, downscaling the precipitation forecast to fit to the observations is not generally 

recommended, though the Met Office recognise this is precisely what is done to MOGREPS-G 

forecasts at longer lead-times. The reason for this downscaling is not for verification though, 

but to create a “seamless” forecast product to drive G2G out to ~7 days. Further downscaling 

would not be recommended. No detail is being added to the forecast whereas for the 

observation fields it is generally true that the detail and intensities increase with increasing 

horizontal resolution.  

 The hydrological requirement for precipitation forecasts, in a G2G context, is ideally for a 1 km 

product. G2G is configured at 1 km resolution through its supporting static spatial datasets on 

terrain/soil-geology/land-cover and use of dynamic observation sources of precipitation. 

Perfect foreknowledge of rainfall, assumed in forecast assessments of G2G performance to 

remove the uncertainty of precipitation forecasts, also employs a 1 km resolution observation 

source of precipitation as input. Thus, precipitation verification from a hydrological 

perspective, in this G2G modelling and forecasting context, argues for assessing the 2 km 

precipitation forecast product against an observation precipitation truth at 1 km scale. 

Based on these points, it was decided to process the observed precipitation data both at their native 

1 km resolution, and also when up-scaled to a 2 km resolution. The up-scaled version will be used for 
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the precipitation processing only, with the native 1 km resolution observed precipitation data 

(raingauge, radar, merged) used as input to G2G for maintaining the initial conditions, as was done in 

Phase 1 to reflect operational use. 

To up-scale the observed precipitation data to the 2 km grid of the BMR ensemble, the average was 

taken over the four 1 km grid-cells falling within each 2 km grid-cell. As the raingauge-rainfall data only 

covers 1 km grid-cells falling over land, there are instances where a 2 km grid-cell contains 1 km grid-

cells with missing data (“sea-cells”). In this case, the average is taken over land-cells only.  

Re-gridding examples are given below in the upper row of Figure 1. To enable the 2 km resolution data 

to be applied to the 1 km G2G catchment boundaries, the up-scaled data were re-projected back onto 

the 1 km grid. This is shown in the bottom row of Figure 1, with an example G2G catchment 

(IWS.Freshw; Western Yar at Freshwater on the Isle of Wight) shown in pink in the right-hand plot. 

 

Figure 1 Examples of the different resolution grids used to process catchment observed 
precipitation. The native 1 km resolution grid is shown first (top left) followed by the same 
data averaged onto a 2 km resolution grid (top right). These data are then projected back 
on to the native 1 km grid (bottom left) to allow the 1 km G2G catchment boundaries to be 
used (e.g. IWS.Freshw shown in pink in bottom right). 

3.2 Catchment boundaries 
Data were processed for all G2G catchments, and also selected PDM catchments provided by the EA, 

SEPA and NRW. For each precipitation product processed, all catchments falling within its product 

domain were used. These catchments for the observed precipitation products are shown in Figure 2.  
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Figure 2 Catchments for which data were processed for each of the observed precipitation products. 
G2G catchments are shown in black, and PDM catchments in gold for Scotland, in orange for 
Wales and in red for England.  

The G2G catchment boundaries are produced on a 1 km grid, so match the native-resolution observed 

precipitation data exactly. To apply the 1 km G2G catchment boundaries to the 2 km gridded BMR 

ensemble forecast data, the BMR data are first projected onto a 1 km grid, with the value of each 2 km 

grid-cell being assigned to the four 1 km grid-cells covered by it.  

The PDM catchment boundaries are true catchment boundaries, and not digitised onto a 1 km grid. 

When calculating catchment-average rainfall operationally for input to the PDM models (using the 

Hyrad CatAvg tool) a weighted approach is used, with grid-cells straddling the catchment boundary 

contributing to the catchment-average with a weighting given by the fraction of that grid-cell falling 
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within the catchment. For consistency with this operational method, the grid-cell weightings were 

extracted from CatAvg for all the PDM catchments considered, and used to create a weighted 

catchment-average rainfall. However, for the other rainfall statistics to be computed (including rainfall 

percentiles, and the number of cells exceeding a given rainfall threshold, see sections 3.3 and 3.4) a 

weighted approach is not practical. Thus, for these quantities, a 1 km grid-cell is considered to be 

“within” a PDM catchment boundary if the mid-point of that grid-cell is within the catchment 

boundary. For consistency, and to allow the effect of these different methods to be investigated, the 

catchment-mean was also calculated with the “mid-point” method. Of course, these differences will 

have most affect for small catchments. Figure 3 shows an example for a large catchment (Alt at Kirkby, 

694744, left) and the smallest catchment considered (Earby Beck at Earby Youth Hostel, L1546, right). 

It can be seen that for Earby, 5 grid-cells contributed to the “mid-point method” mean, whereas 11 

grid-cells contribute to the weighted mean (6 with weightings greater than 0.2).  

 

Figure 3 Example PDM catchment grid-cell weightings extracted from CatAvg: Alt at Kirkby (694744) 
left and Earby Beck at Earby Youth Hostel (L1546) right.  

3.3 Within-catchment precipitation distribution 
Within-catchment precipitation distribution properties were calculated separately for each catchment 

from all grid-cells each contain, for each precipitation accumulation grid (15-minute, hourly and daily). 

The following distribution properties were calculated 

 Weighted mean 

 Mean 

 Percentiles: 50, 75, 90, 95, 99 

An example is shown in Figure 4 for the Eden at Sheepmount (G2G ID 765512) during Storm Desmond 

(5 December 2015). Examples are shown for the raingauge-rainfall and for the BMR ensemble member 

00 forecast origin 01:00 4 December 2015 for 15-minute, hourly and daily precipitation accumulations. 

The within-catchment distribution data will be used by the Met Office for plotting time-series of 

catchment precipitation, and calculating the non-threshold-based scores (CRPS, Rank Histogram). 
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Figure 4 Example of in-catchment distribution properties for the Eden at Sheepmount (G2G ID 
765512) for raingauge-rainfall data for 5 December 2015 (left) and for the BMR ensemble 
member 00 forecast origin 01:00 4 December 2015. Results are shown for 15-minute (top), 
hourly (middle), and daily (bottom) precipitation accumulations.  

 

3.4 Precipitation threshold calculations 
To focus on potentially flood-producing rain, it is necessary to choose appropriate precipitation 

thresholds. For the catchment-processing, two methods of calculating thresholds are considered: 

firstly, fixed precipitation values commonly used in precipitation verification and, secondly, 

catchment-specific thresholds based on the climatological distribution of precipitation for that 

catchment.  

3.4.1 Fixed catchment-precipitation thresholds 

Fixed-value thresholds were applied to all catchments considered. For 15-minute and hourly 

accumulation data, thresholds of 0.1, 1 and 4 mm/h were used, and for daily accumulations thresholds 

of 0.1, 1, 4 and 8 mm/d were used. 

3.4.2 Climatological catchment-precipitation thresholds 

Considering the climatological distribution of precipitation for each catchment provides guidance on 

the variability of precipitation across the UK, and enables a threshold to be calculated that selects the 

“extreme” precipitation values for that catchment, noting that what is extreme for a low-rainfall 

catchment may be normal for a wetter catchment.  

To create climatological catchment-precipitation thresholds 10 historical years of raingauge-rainfall 

data from 2007 to 2016 were used. To facilitate this task computationally, each date in the 10-year 

historical period was separately processed, and the distribution of precipitation values for all grid-cells 

falling within each catchment saved as a histogram. This was done separately for 15-minute, hourly 
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(ending on the whole hour) and 24h (ending at 00:00) precipitation accumulations. The histogram bins 

used were as follows. 

15-minute and hourly data: -0.5 to 0.5, 0.5 to 1.5, 1.5 to 2.5,… 49.5 to 50.5 (mm/h) 

Daily data: -1 to 1, 1 to 3, 3 to 5 … 199 to 201 (mm/d) 

Thus, the sub-daily histograms have a bin-size of 1 mm/h, centred on each whole number of mm/h, 

whilst the daily histograms have a bin-size of 2mm/d, centred on each even number of mm/d.   

To produce the full climatological precipitation distribution for each catchment, the histogram values 

from each historical year were summed for a given day-in-year. These files are saved in .csv format 

and are available for the five catchment-sets (G2G catchments in England & Wales and Scotland, and 

PDM catchments in England, Wales and Scotland) considered (Section 3.2)  

From the saved within-catchment precipitation distributions, the precipitation values corresponding 

to the 90, 95 and 99th percentiles were extracted, and saved for future use. To increase the sample-

size, and to investigate the overall precipitation distribution for each catchment, data were pooled 

over a number of days: firstly over all days-in-the-year to give an annual overview, and secondly over 

the 91 days centred upon each day in the year to give a seasonal overview (varying by date-in-year). 

Both these methods have advantages: it can be argued that flood-events are dependent on a specific 

amount of precipitation, not on the time of year when this occurs; however, it can also be argued that 

differences in the precipitation characteristics at different times of year could be important, 

suggesting a seasonally-varying approach. To keep both options open for future investigation, both 

methods are used for the catchment-precipitation processing.  

Overall, a noticeable variation is seen from west to east across the domain, as shown in Figure 5 for 

an example of the daily precipitation accumulations at the 99th percentile threshold for G2G England 

and Wales catchments. Precipitation thresholds for spring are generally lower than for other seasons 

across all parts of the domain, whereas thresholds in autumn and winter are higher for northern 

England and Wales.  

To give an overview of the gradual variation of the seasonal (91 day) precipitation thresholds over the 

year, Figure 6 shows the rainfall values corresponding to the seasonally-varying 99th and 95th 

percentile thresholds, with one line drawn per catchment. As there is a larger range of daily 

precipitation values, covering a larger range of bins in the daily histogram, this plot appears smoother 

than those for the hourly and 15-minute accumulations. In this example, as is often seen, the hourly 

and 15-minute precipitation accumulation thresholds are often zero for the majority of sites when the 

95th and 90th percentiles are considered. This suggests that these percentiles may be too low to be 

useful for evaluating the 15-minute and hourly precipitation accumulations.  
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Figure 5 Example maps showing the difference in the 99th percentile daily accumulation 
precipitation-threshold values (mm/day) between different seasons. The threshold for the 
season indicated by the row is subtracted from that for the season indicated by the column.  

 

Figure 6 Example for G2G England and Wales catchments showing how seasonal catchment 
precipitation-thresholds vary with time of year from January to December. Results are 
shown for the 99th percentile threshold (top) and 95th percentile threshold (bottom) for daily 
(left), hourly (centre) and 15-minute (right) precipitation accumulations. Thin grey lines are 
shown for each catchment individually, with black lines indicating the median, quartiles, 
and 10th and 90th percentiles across all catchment values.  
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3.5 Precipitation threshold exceedance 
In the catchment precipitation processing, the number of grid-cells in each catchment exceeding (≥) 

the precipitation threshold were calculated separately and saved for each catchment: for each 

forecast lead-time, accumulation period and ensemble member, and for each observation time. 

Saving the number of grid-cells gives flexibility for future work to look into the effects of using “time-

window threshold exceedance”, or requiring a different number of grid-cells in a catchment to exceed 

a threshold to count as an “event”. In particular, these data will be used by the Met Office to calculate 

threshold-based scores, combining over the forecast assessment periods selected (Day 1, Days 2-3, 

Days 4-6). This aligns with the treatment of forecast assessment periods for the G2G river flow 

verification. For each catchment (and ensemble member and lead-time/time-of-day) the total number 

of grid-cells which exceed the precipitation-accumulation exceedance-threshold will be saved. This is 

consistent with Met Office code and will provide the flexibility for testing different data-quality cut-

offs (especially relevant for radar rainfall data) to define whether an “event” has occurred. Generally, 

a single grid-cell exceedance is unlikely to be considered as a good enough “event definition”. 

All of the selected precipitation-thresholds will be applied to each grid-cell in the catchment to create 

a catchment-grid of binary values: assigning 1 if the threshold is exceeded (≥), 0 otherwise. The output 

for each catchment and threshold will be the sum of 1-values in that catchment. An illustration of the 

method for deriving ensemble-based exceedance probabilities of catchment rainfall in a time-window 

is shown in Figure 7. This considers deriving the time-window probability from daily forecasts for Days 

4, 5 and 6 (the rows). For simplicity, the ensemble is assumed to have five members (the columns). At 

least two grid-cells must exceed (≥) the threshold to avoid spurious exceedances. Beyond that, the 

time-window exceedance works on the principle that an event for the time-window occurs when there 

are any exceedances within it. 

 

Figure 7 Schematic illustrating the difference between an accumulation-period and time-window 
probability using daily accumulations for a theoretical catchment (blue) where yellow points 
marked “Y” exceed a particular precipitation threshold, and other points marked X don’t.  
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4 File structures 
This section provides a brief overview of the file-structures used in the precipitation processing, and 

a guide to the contents of the output files.  

4.1 Input files 

4.1.1 Catchment shapefiles 

There are five catchment shapefiles. 

fullcats_g2g_ffc_v1_7_loc.shp G2G 1km grid catchments for England & Wales 
fullcats_g2g_sepa_v1_6_3_loc.shp G2G 1km grid catchments for Scotland  
HyradCatchment.shp PDM catchments for England 
sepa.shp PDM catchments for Scotland 
Wales_PDM_Catchment_Boundaries.shp PDM catchments for Wales 

 

4.1.2 Catchment look-up tables 

There are 20 catchment look-up tables, one per data type per catchment shapefile. The catchment 

look-up tables provide a table of catchments with associated grid-cell locations (relative to the grid of 

a specific precipitation product) whose central-point lies within that catchment. This table then 

provides a fast and computationally efficient method of selecting an individual catchment from the 

full gridded data array: around 100 times faster than using the original shapefiles to select grid-cells. 

One catchment-lookup table is provided for each combination of shapefiles and the observed 

precipitation products. The file labelling is as follows. 

Shapefiles_product.nc, with  

Shapefiles 

fullcats_1km_grid G2G 1km grid catchments for England & Wales 
fullcats_1km_grid_sepa G2G 1km grid catchments for Scotland  
fullcats_pdm_grid_E PDM catchments for England 
fullcats_pdm_grid_S PDM catchments for Scotland 
fullcats_pdm_grid_S PDM catchments for Wales 

 
Products 

hkuk_g2g Raingauge-rainfall for England & Wales 
hkscot_g2g Raingauge-rainfall for Scotland  
H19 15-minute advection accumulation radar rainfall 
H23 Merged raingauge-radar rainfall with 1h delay 

 

Within each .nc catchment look-up file, there is an array for each catchment, labelled by the ID from 

the original shapefile with dimensions [grid , number of grid-cells in catchment] where grid is the y 

and x coordinates of the grid-cell (relative to the bottom left pixel of the observed precipitation grid). 

4.1.3 Catchment look-up tables with weightings 

There are 15 catchment look-up tables with weightings, one per data type. Separate files are 

employed to contain the grid-cells used to obtain the weighted-means for each PDM catchment. The 

structure is similar to the grid-cell-centre based catchment look-up tables (Section 4.1.2), but with the 

prefix “weighted”, that is weightedShapefiles_product.nc. The dimensions of the arrays saved in this 

file are now [weighted grid, number of non-zero weighted grid-cells in the observed precipitation grid], 
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where weighted grid is the y-coordinate, x-coordinate, and weighting of each grid-cell. Note that these 

values are saved as floats so the coordinates need to be converted to integers before using to access 

elements in the gridded precipitation arrays. 

4.1.4 File containing information for ALL catchments for a given product 

To simplify bulk-processing, look-up tables were also produced with one file per gridded precipitation 

type containing all catchments (i.e. both PDM and G2G) falling within the domain of that data. To 

ensure unique catchment IDs, the IDs taken from the shapefiles are appended as follows. 

_PDM_E PDM England 
_PDM_W PDM Wales 
_PDM_S PDM Scotland 
_G2G_FFC G2G England & Wales 
_G2G_SEPA G2G Scotland 

 

Note that when combining the weighted files, only the PDM catchments are used.  

For the BMR ensemble precipitation grids, only catchment look-up files containing all the catchments 

are produced, with filenames fullcats_all_bmr_XX and weightedfullcats_all_bmr_XX. Unlike the all 

catchment-files for the observed precipitation grids which are a simple combination of the individual 

catchment-type files, the BMR look-up tables are calculated by converting the catchment look-up 

tables for the hkuk_g2g and hkscot_g2g products to the BMR grid. This method was needed due to 

the prohibitive size of the BMR grid for processing the individual catchment shapefiles. It is important 

to note that, like the BMR data obtained from the Nimrod files, the origin of these BMR grids is in the 

top left-hand corner, differing from the bottom left-hand corner used for the observed precipitation 

grids.  

4.1.5 Files containing the catchment-specific seasonal and annual thresholds 

Files containing the catchment-specific thresholds are saved in .csv format. The files are organised into 

folders identifying the catchment-set used for their creation as follows. 

summary_values_E_PDM PDM England  
summary_values_W_PDM PDM Wales  
summary_values_S_PDM PDM Scotland  
Summary_values_E_G2G  G2G England & Wales  
Summary_values_S_G2G G2G Scotland  

 

The files are named as follows.  

Seasonally varying 91days_centred_MMDD_catchment_thresh_accum.csv 

Annual Full_year_catchment_thresh_accum.csv 

Where accum is the precipitation accumulation (daily, hourly, quart) and MMDD is the day and month 

upon which the 91day window for threshold-calculation is centred. Each file contains three columns 

containing the precipitation threshold values corresponding to the 90th, 95th and 99th percentile of the 

climatological precipitation distribution for that catchment and time-period. These are in units of 

mm/h for 15-minute and hourly accumulations, and mm/day for daily accumulations. There is a 

separate row in the file for each catchment in the catchment-set being considered.  
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4.2 Output files 

The format of the output files is described briefly below. Any missing data values are indicated by 

the “NaN” value. 

Observed precipitation files 

Output files for the catchment precipitation processing of the observed precipitation products are 

saved in directory structures for a given year YYYY, month MM and day-in-month DD 

Native 1 km resolution data:  output_data_obs/full_1km_res/YYYY/MM/DD 

1 km grid data averaged to 2 km resolution: 2km_res_1km_grid/full_1km_res/YYYY/MM/DD 

Within these directories, there is one file per precipitation type per accumulation period 

sidb_YYYYMMDD_Product_accum_catchment_precip_stats.nc 

For accum daily, hourly and quart and Products 

hkuk_g2g Hyrad raingauge-
rainfall 

hyradk_nxm_raingauge_surface_15_min_1km_grid_hkukg2g 
 

hkscot_g2g Hyrad raingauge-
rainfall 

hyradk_nxm_raingauge_surface_15_min_1km_grid_hkscotg2g 
 

H19 15-minute advection 
accumulation radar  

_u1024_ng_radar_15min_advect_accum_1km_ukpprain_  

H23 Merged raingauge-
radar with 1h delay  

nimrod_ng_radar_merged_accum_composite_24hrdelay_1km
_UK_cutout_775X640_eng_Observation  

A summary of the file contents is given in Table 2. 

 

Table 2 Summary of the file contents of the output from catchment precipitation processing of the 
observed precipitation products.  

Coordinates 

sites List of catchments used for the catchment-statistics in this file. 
Matches those in the all_catchments look-up tables (Section 4.1.4) 

times_accum End-time of the accumulations (accum) used 
precip_thresh Fixed-value precipitation thresholds used (in Precip_units, below) 
season_thresh_perc Percentile thresholds used to calculate the seasonally varying 

catchment-specific precipitation thresholds 
year_thresh_perc Percentile thresholds used to calculate the annual catchment-specific 

thresholds 
grid_properties Saved properties of the 1 km BNG grid used 
  

Data variables (per catchment in sites) 

mean Within-catchment distribution mean (Section 3.3) 
weighted mean Within-catchment distribution weighted mean (Section 3.3) 
perc_50 Within-catchment distribution 50th percentile (Section 3.3) 
perc_75 Within-catchment distribution 75th percentile (Section 3.3) 
perc_90 Within-catchment distribution 90th percentile (Section 3.3) 
perc_95 Within-catchment distribution 95th percentile (Section 3.3) 
perc_99 Within-catchment distribution 99th percentile (Section 3.3) 
fixed_th_exceed Number of grid-cells exceeding precip_thresh (Section 3.4.1)  
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site_th_season_exceed Number of grid-cells exceeding season_thresh_perc (Section 3.4.2) 
site_th_year_exceed Number of grid-cells exceeding year_thresh_perc (Section 3.4.2) 
grid_info Grid properties listed in grid_properties 
  

Attributes 

Data_grid The grid used (1km_BMG or1km_BNG_averaged_onto_2km_BNG_ 
then_projected_back_to_1km_BNG) 

Type The precipitation type for this file (see Products above) 
Accum_label When times_accum refer to (e.g. end of accumulation period) 
Precip_units Units of precipitation  (mm/h or mm/d) 
thresh_perc_units Units of the percentile thresholds (percentile) 
leadtime_units Units of the lead-time variable (minutes) 
th_exceed_units Number of 1 km BNG grid-cells in catchment greater than or equal to 

thresh 
catchment_grid 1km_BNG_G2G 
Date_created YYYY-MM-DD 
Creator UKCEH for Ensemble Verification Project 
Accumulation Accumulation period used (quart, hourly, daily) 
percentile_interpolation Interpolation used when calculating percentiles of in-catchment 

distribution (nearest) 
site_thresh_version Version of the catchment-specific climatological precipitation 

thresholds, e.g. v1_0_20200619_hkuk_2007_2016 
 

BMR ensemble precipitation forecast files 

Output files in NetCDF format were produced for each BMR forecast-origin time in the period 

1 June 2017 to 30 September 2018. All files available from the MASS archive were processed. A 

summary of these is available in the .csv file all_processed_BMR_20170601_20180930.csv. For all but 

one BMR forecast-origin time in the period considered, data from all ensemble members (e.g. 

members 00 to 23) were available. The exception is the BMR forecast for 1400 7 July 2017, where 

members 01, 10, 13 and 22 are missing from the MASS archive.  

BMR output files for the catchment precipitation processing of the observed precipitation products 

are saved in directory structures for a given year YYYY, month MM and day-in-month DD 

output_data/YYYY/MM/DD 

 

Within these directories there is one file per ensemble member XX per accumulation period and per 

forecast-origin at hour hh and minute mm 

YYYYMMDDhhmm_u1096_ng_bmrXX_precip_2km_accum_catchment_precip_stats.nc 

A summary of the file contents is given in Table 3. 
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Table 3 Summary of the file contents of the output for catchment precipitation processing of the 
BMR ensemble precipitation forecasts.  

Coordinates 

sites List of catchments used for the catchment-statistics in this file. 
Matches those in the all_catchments look-up tables (Section 4.1.4) 

leadtimes Intended to be: all forecast lead-times in the forecast (minutes) 
Actually: the whole hour of all forecast lead-times (minutes) 
Correct if re-run. In meantime use VT-DT (see below) 

leadtimes_accum Forecast lead-times at the end of each accumulation period 
considered (for quart these are again the whole hour-part of the 
lead-time only) 

precip_thresh Fixed-value precipitation thresholds used (in Precip_units, below) 
season_thresh_perc Percentile thresholds used to calculate the seasonally varying 

catchment-specific precipitation thresholds 
year_thresh_perc Percentile thresholds used to calculate the annual catchment-specific 

precipitation thresholds 
gen_ints_entries Positions of general integer header from the Nimrod file 
gen_real_entries Positions of general real header from the Nimrod file 
spec_real_entries Positions of specific integer header from the Nimrod file 
char_entries Positions of character header from the Nimrod file 
spec_int_entries Positions of specific integer header from the Nimrod file 
  

Data variables from nimrod file header 

DT Data time (origin) of the forecast 
VT Validity time of the forecast 
nimrod_gen_int general integer header from the Nimrod file 
nimrod_gen_real general real header from the Nimrod file 
nimrod_spec_real specific integer header from the Nimrod file 
nimrod_char character header from the Nimrod file 
nimrod_spec_int specific integer header from the Nimrod file 
  

Data variables (per catchment in sites) 

mean Within-catchment distribution mean (Section 3.3) 
weighted mean Within-catchment distribution weighted mean (Section 3.3) 
perc_50 Within-catchment distribution 50th percentile (Section 3.3) 
perc_75 Within-catchment distribution 75th percentile (Section 3.3) 
perc_90 Within-catchment distribution 90th percentile (Section 3.3) 
perc_95 Within-catchment distribution 95th percentile (Section 3.3) 
perc_99 Within-catchment distribution 99th percentile (Section 3.3) 
fixed_th_exceed Number of grid-cells exceeding precip_thresh (Section 3.4.1)  
site_th_season_exceed Number of grid-cells exceeding season_thresh_perc (Section 3.4.2) 
site_th_year_exceed Number of grid-cells exceeding year_thresh_perc (Section 3.4.2) 
grid_info Grid properties listed in grid_properties 
  

Attributes 
Type Identifying part of Nimrod file used e.g. 

YYYYMMDDhhmm_u1096_ng_bmrXX_precip_2km 
Accum_label When leadtimes_accum refer to (e.g. end of accumulation period) 
Precip_units Units of precipitation (mm/h or mm/d) 
thresh_perc_units Units of the percentile thresholds (percentile) 
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leadtime_units Units of the lead-time variable (minutes) 
th_exceed_units Number of 1 km BNG grid-cells in catchment greater than or equal to 

thresh 
catchment_grid 1km_BNG_G2G 
Date_created YYYY-MM-DD 
Creator UKCEH for Ensemble Verification Project 
Accumulation Accumulation period used (quart, hourly, daily) 
percentile_interpolation Interpolation used when calculating percentiles of in-catchment 

precipitation distribution (nearest) 
site_thresh_version Version of the catchment-specific climatological precipitation 

thresholds, e.g. v1_0_20200619_hkuk_2007_2016 
member Ensemble member is XX in 

201712250100_u1096_ng_bmrXX_precip_2km 
(extract only XX for future versions) 
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Rainfall and River Flow Ensemble Verification: Phase 2 
Definition of Time-Window Probabilities (TWPs) 

Final Report Appendix A.4 

In Phase 1 of the project a model-oriented verification approach was followed in which the 

precipitation ensemble forecast is evaluated sequentially from start to finish, with each forecast 

accumulation period (15-min, hourly, and daily) precisely matched to the observed period in 

space and time. Moreover, the catchment-mean precipitation value was derived and used to 

reflect ensemble performance. This is a perfectly valid thing to do and demonstrated the skill 

of the precipitation ensemble as used as input to G2G.  

As summarised in Appendix B.4 it was found that the 15-min precipitation verification analyses 

are very similar to the hourly, with the daily giving the best overall steer for heavy rainfall given 

the relatively modest extremes over the UK at the hourly time-scale, where many places have 

99th percentiles less than 4 mm/h (see Appendix A.5). This sequential way of assessing the 

weather model ensemble precipitation means timing errors can dominate the verification 

analyses, even fairly early on in the forecast, leading to poor scores even when percentile 

thresholds were used to capture the most extreme rain at any given time. Unfortunately, these 

percentile thresholds were not very extreme on many occasions, though probably more so 

given the wet nature of the Phase 1 study period. Fixed precipitation thresholds applied 

everywhere can be highly unsatisfactory because the thresholds would need to be kept very 

low to ensure all catchments are sampled. Pushing the thresholds too high everywhere 

reduces the number of contributing catchments to the extent that the sample size is unsuitable 

for computing robust verification statistics.  

When it comes to assessing the risk of potential flood-producing rainfall, from the user 

perspective it is more common to “scan” a particular-time window for possible events. This 

heuristic process can be replicated by computing using Time-Window Probabilities (TWPs), 

and is closer to the way a hydrometeorologist would look at a precipitation forecast, especially 

at longer lead-times where the objective is to look for exceedance events that can pose a flood 

risk or threat. Therefore, under Phase 2, the conventional “model-based” precipitation 

verification has been computed alongside the much more user-focused TWP verification.  

Another enhancement under Phase 2 concerns the precipitation thresholds that have been 

used. Long-term climatological precipitation distributions have been computed at the 

catchment-scale (see Appendix A.3). From these, three specific percentiles were examined in 

more detail: 90th, 95th and 99th. These are plotted as precipitation percentile maps for England 

& Wales in Appendix Y. These maps are a useful resource in their own right, giving a 

comprehensive view of what can be considered extreme precipitation for the UK climate. In 

many instances the 90th percentile is close to zero, especially for the east and south-east parts 

of England and even the 99th percentile values derived from hourly precipitation accumulations 

are less than 5 mm/h: hardly flood-producing rain but nevertheless rare. From a catchment-

based verification perspective, with interest in capturing the performance of the forecast for 

potential flood-producing rainfall, there is a clear mismatch between the magnitude of the 

exceedance events of interest and the sample size needed to compile robust verification 

statistics. Under Phase 2, the focus has been on the 95th percentile as the 90th is too dry and 

the 99th provides inadequate samples, even for a 12-month period.  

In the first instance the following schematic (Figure 1) depicts the concept of the Time-Window 

Probability in terms of sequential “scanning”.  
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Figure 1 Schematic of the concept of Time-Window Probability 

Days 4-6 consists of either three non-overlapping 24h accumulations or 72 hourly 

accumulations of precipitation. In a sequential “Phase 1” sense, each of these precipitation 

accumulations is verified separately and analyses are aggregated (averaged) to compute daily 

or hourly average analyses for the Days 4-6 range. Another point to note is that TWPs are 

probabilities, i.e. they can only be computed with a precipitation threshold and the ensemble 

precipitation forecast has to exceed that threshold in order to produce a probability. So, for 

constructing a TWP a precipitation threshold is applied to each of the 72 hour or 3-day 

accumulations and if any of the 72 hour or 3-day accumulations exceed the threshold, they 

would contribute to a probability which represents the entire Days 4-6 period, with a few 

additional caveats.  

The spatial view of the TWP derivation is illustrated below. One might well want to ask: “when 

would I be sure that an event (threshold exceedance) has or will occur within a catchment?” 

The answer matters because it is related to the ability to verify and our belief that something 

happened, i.e. “when do I think I know I have detected an event?” In the schematic below 

(Figure 2) the precipitation ensemble forecast consists of 5 members.  

 

Figure 2 Schematic illustrating the difference between a conventional (accumulation-period) and 

Time-Window Probability using daily accumulations for a theoretical catchment (blue) 

where yellow points marked “Y” exceed a particular precipitation threshold, and other 

points marked X don’t. 

The X’s indicate the weather model grid-cells that are identified as falling within the catchment 

in blue. The yellow squares indicate where the forecast values for the grid-cells exceed a 

specified rainfall threshold. But is it enough if one grid-cell in the catchment exceeds the rainfall 

threshold to be counted? Put differently, if in a gridded raingauge or radar rainfall field only 

one grid-cell in the catchment exceeded the threshold, would you consider that to indicate an 

event has occurred? Given observation uncertainty, the answer should be “no”, especially for 
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radar rainfall data, where spurious single grid-cell values might still be fairly common, despite 

rigorous quality control. As it is advisable to apply the same rules to both forecast and 

observation fields, a criterion has been adopted that at least two grid-cells must exceed the 

precipitation threshold within a catchment for the ensemble member to be included in a 

probability calculation. 

By working across a row, a conventional probability is derived where each of the ensemble 

members is considered giving a probability for a given day. In this instance a D4 (Day 4) daily 

probability of exceeding the threshold results in a probability of 3/5 or 60%. Whereas D5 yields 

a probability of 1/5 or 20% etc. For deriving TWPs, the first step in the process is to scan 

across the time-slices denoted by the columns. i.e. for ensemble member 1 (in the first 

column), do any of the grid-cells in the catchment daily totals exceed the threshold? In this 

instance the answer is no. The process is repeated, e.g. for the second column, two of the 

three members have grid-cells in the catchment that exceed the threshold and so the 

ensemble member count that exceeds the threshold for the time-window is incremented. In 

the end the TWP probability for the Days 4-6 window is the sum of those shown along the 

bottom of the schematic (Figure 2), 3/5 or 60%.  

TWPs will: 

 tend to be higher than ordinary or conventional probabilities, which is beneficial when 

searching for higher threshold events 

 allow for the use of somewhat higher thresholds because they are based on individual 

grid-cell values 

 use all the grid points in the catchment to check for exceedance and are not derived based 

on the catchment mean or even the median. Computing the mean or median removes the 

peaks from the within-catchment distribution and, especially for situations where the 

catchment is not covered by extensive heavy rain, anything more localised (e.g. isolated 

showers or thunderstorms) may be misrepresented or not be detected at all when the 

catchment mean or median is used. 

 provide a truer reflection of localised rainfall impact in probability space.  

Furthermore, TWPs: 

 are a form of post-processing in which the time-dimension is collapsed 

 cannot account for inherent forecast intensity biases, as is the case for conventional 

probabilities 

 may not be reliable: calibrating the probabilities may still be necessary. 

It is worth bearing in mind that the conventional probabilities computed in Phase 1 (and in 

Phase 2) were/are calculated based on the catchment mean. These are also available in 

Phase 2 for comparison, but note they are very different by construction. 

This is clearly manifested in Figures 3 and 4 which show the distribution of probabilities for the 

0.5 and 8 mm/d thresholds using catchment means to compute conventional probabilities of 

exceedance and TWPs which are based on considering all the individual grid-cells in a 

catchment. Note the x-axis represents the sequence of probability bins between 0 (left) and 1 

(right) used to create Reliability Diagrams. The probability distribution is shifted to the right, 

i.e. TWPs are generally going to be larger than the conventional kind. This effect is more 

pronounced for higher precipitation thresholds where the catchment means are likely to be 

much lower than individual grid-cell values, skewing the distribution further. 
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0.5 mm/d Day 1  Day 2-3 Day 4-6 

Non-TWP 

   
TWP 

   
 

Figure 3 Comparison of forecast precipitation ensemble probability distributions for 

the 0.5 mm/d threshold using conventional (non-TWP) exceedance probabilities based 

on the catchment mean (upper row) and TWPs (lower row). 

 

8 mm/d Day 1  Day 2-3 Day 4-6 

Non-TWP 

   
TWP 

   

 

Figure 4 As Figure 3 but for the 8 mm/d precipitation threshold. 
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Rainfall and River Flow Ensemble Verification: Phase 2 

Climatological threshold maps for England & Wales and Scotland 

Final Report Appendix A.5 

Annual hourly thresholds: 

 

 

90th percentile is 

close to 0 except in 

the western 

upslopes of Wales 

and NW England 

95th percentile is 

generally less than 

1.5 mm/h. 

99th percentile is 

generally less than 

2.5 mm/h except on 

western fringes 

where it is ~5 

mm/h. 
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Annual daily thresholds: 

 

  

90th percentile is 

less than 10 mm 

except for western 

fringes/upslopes 

where values 15-20 

mm 

95th percentile is 

less than 15 mm 

except for western 

fringes/upslopes 

where > 20 mm 

99th percentile is 

~20 mm except for 

western 

fringes/upslopes 

where > 30 mm 
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Seasonal daily thresholds: 

 

 

Broadly speaking 

90th percentile 

thresholds below 

10 mm for all 

seasons in the E. 

Upslopes and W/S 

coastal regions 

have slightly higher 

values, especially in 

the colder seasons, 

with values in 

excess of 15 mm. 
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Seasonal 95th daily 

percentiles show 

the biggest contrast 

in winter western 

fringes and uplands 

in excess of 25 mm 

in winter, 

otherwise ~20 mm 

or more. 
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Seasonal 99th daily 

percentile is above 

30 mm for western 

fringes/upslopes 

and comfortably 

above 15 mm 

everywhere. 
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Seasonal hourly thresholds: 

Seasonal 90th 

hourly percentile is 

generally < 0.5 mm 

except for western 

fringes/upslopes in 

the colder seasons.  
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Seasonal 95th 

hourly percentile is 

still < 0.5 mm for 

the E and SE with 

slightly higher 

values W, but even 

in the colder 

season values are 

generally < 4mm.  
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Seasonal 99th 

hourly percentiles 

are comfortably in 

the < 3 mm for 

large parts of the 

UK irrespective of 

season; western 

fringes and 

upslopes have 

values in excess of 

4mm.  



9 of 16 
 

Annual hourly thresholds: 

 

 

 

As in E&W hourly 90th 

percentile values are 

widely less than 1 mm/h 

Even hourly 95th 

percentile values are 

less than 3 mm/h 

Hourly 99th percentile 

values approach 

5 mm/h in western 

upslopes but remain 

lower in the E. 
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Annual daily thresholds: 

 

  

Daily 90th percentile 

values are higher for W 

upslopes, typically of the 

order of 15-20 mm/d 

Daily 95th percentile 

values exceed 25 mm/d 

in some W catchments. 

Daily 99th percentile values 

exceed 30-35 mm/d with W 

or SW exposure.   
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Seasonal hourly thresholds: 

 

Hourly 90th percentile 

values split by season 

remain low but are 

higher in the autumn 

and winter.  
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Hourly 95th percentile 

values show the same 

trends with values still 

modest overall.  
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Hourly 99th percentile 

values show that Spring 

is the driest, and winter 

the wettest, though few 

catchments have values 

~5 mm/h  
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Seasonal daily thresholds: 

Daily 90th percentile 

values show the W-E 

gradient which is more 

pronounced in the 

autumn and winter, 

where values can 

exceed 20 mm/d in 

western upslope 

regions. 
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Daily 95th percentile 

values show how the W-E 

gradient is enhanced with 

western upslope values in 

excess of 25 and even 

30 mm/d in autumn and 

winter. 



16 of 16 
 

 

 

Daily 99th percentiles 

are markedly higher 

everywhere, but the 

differences in the 

seasons remains the 

same with the cooler 

seasons showing values 

in excess of 30 mm/d. 
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Rainfall and River Flow Ensemble Verification: Phase 2 

Forecast triggering investigations 

Final Report Appendix A.6 

 
In Phase 1 of the project there was considerable variability 

in the availability of new ensemble precipitation forecasts. 

There was concern that if there were many forecasts that 

deviated from the expected times of 01, 07, 13 and 19 UTC 

it could affect results and would need to be considered 

when it came to the combination of results. As a 

consequence, an activity was included in the work plan for 

Phase 2. 

Once the study period was finalised, an examination of the 

forecast trigger times shown in Figure 1 indicates that only 

~1.7% of forecasts (34 out of 1940) fall into the late category 

(forecasts badged as 1 to 2 hours after expected) and 

similar for early (badged 1 o 2 hours before expected). 

Monthly scores, which would be the absolute minimum, are 

produced from a sample of ~120 forecasts. Samples of ~30 

forecasts are insufficient to analyse separately and can be 

safely removed.  

Operationally, trigger times should remain fairly stable and 

delayed (late) forecasts should only happen by exception. 

If this is not the case, then it should be investigated from an 

operational perspective rather than be accounted for in the 

verification. 

  

 

 

 

 

 

 

 

 

 

 

  

Figure 1 Forecasts as a 
function of trigger times. 
Main times are 01, 07, 13 and 

19 UTC. 
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Rainfall and River Flow Ensemble Verification: Phase 2 

Commentary on precipitation verification maps and plots 

Final Report Appendix B.1.1 

 

Note: score definitions and references to the Ensemble Verification Framework are provided 

in Appendix A.1. This commentary refers to the plots provided in Appendix B.1.2. 

 

1. Weather model focused precipitation verification 

Weather model focused verification is important because it aims to measure the underlying 

performance of the precipitation forecasting system, ensemble rainfall forecasts from which 

are used as input to G2G to produce ensemble river flow forecasts. The forecast is verified by 

precisely matching the ensemble precipitation forecasts in time and computing some 

aggregates, either in time or both in time and in space over catchments.  

In this verification framework the ensemble characteristics are captured through the Rank 

Histogram and the Continuous Ranked Probability Score (CRPS) and its skill score (CRPSS). 

The CRPS is sensitive to the intensity bias, recalling that it collapses to the Mean Absolute 

Error (MAE) for a single (deterministic) forecast. This bias is translated into ensemble space 

and will affect the scores such as the CRPS directly and the probabilities too (indirectly). To 

this end the weather model characteristics (i.e. the Met Office Unified Model (UM)), which 

determine aspects such as precipitation intensity are examined using the mean error (ME) of 

the ensemble control member.  

Understanding the bias in the model accumulations is always important, but especially so 

given the construction of the Best-Medium Range (BMR) ensemble. The 2.2 km MOGREPS-

UK ensemble is used for ranges up to 36h whereas the 20 km (from July 2017, ~34 km before) 

MOGREPS-G is used for all ranges beyond this. Given the differences in resolution alone, 

these two model configurations produce very different precipitation fields, both in terms of 

texture and intensity, and these combined ensemble precipitation forecasts are used as input 

to the G2G model to produce ensemble river flow forecasts, on a 1km grid at 15 minute 

intervals at national scale. 

The weather model ensemble error can depend on location (e.g. hills and valleys, coasts), 

which may be associated simultaneously with greater predictability (e.g. orographic 

enhancement of precipitation is predictable) but also be subject to larger errors in magnitude 

(e.g. due to the way that the orography is resolved). These larger perceived model errors are, 

however, also subject to uncertainty given the difficulties of measuring precipitation in complex 

terrain for example, where all observation sources have problems of one kind or another. 

It is important to remember that the atmosphere is a continuum and, as far as the modelling 

of the atmosphere is concerned, the same model physics is applied everywhere in the domain. 

As a result, one would not expect the long-term behaviour of model precipitation to show large 

variations in skill (i.e. compared to a reference forecast such as climatology), whilst short-term 

variations can be large and volatile. Skill can, and does, vary as a function of time-of-year, 

which is linked to the type (and often amount) of rainfall. There is a distinct weather 

dependence on the month-to-month performance of the forecast.  

Long-term trends in skill evolve slowly and are more often associated with changes in 

resolution than model physics changes: see, for example, Mittermaier et al. (2013) which 
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shows the step-change in skill between the 4 and 12 km versions of the UM. From a weather 

model development perspective, the desire is to see an upward trend in skill scores over time. 

The only way to see this is to form aggregated scores over longer time periods and/or 

computing moving averages over time. Here monthly, seasonal and annual scores are 

compared to gain an understanding of what is sensible for monitoring catchment-scale 

precipitation. Using the catchment as the unit of comparison implies either a form of upscaling 

(computing a catchment mean or median from all the weather model grid-cells in a catchment) 

or abstraction (checking whether a threshold is exceeded by a subset of the grid-cells within 

a catchment). Secondly it implies that the unit of interest, the catchment, is in a fixed location. 

Therefore, spatial accuracy is important for hydrometeorological applications.  

The weather model precipitation intensity biases are examined first. Monthly ME in the daily 

catchment mean precipitation for the control member of the ensemble is shown in Figure 1. 

The biases are shown for all three observation sources along with the number of catchments 

used to calculate the bias. Recall that error is defined as forecast minus observation. Therefore 

positive (negative) ME means the weather model has too much (too little) precipitation. Whilst 

there is month-to-month variability, there is a general under-estimation trend beyond Day 2 

onwards. The weather model is generally assessed as least biased when compared to the 

raingauge rainfall, though it often has the largest positive bias for Day 1. The behaviour of the 

weather model bias against the merged radar-gauge rainfall product is mixed, though 

generally it produces biases that are between the raingauge and the radar rainfall 

observations. The overall trend in the ME over the 16 months is shown in Figure 2, showing 

that over ~5 seasons the forecasts are generally under-estimating catchment mean 

precipitation against all observation sources except raingauges on Day 1, with a step-change 

in bias from Day 3 onwards where the ensemble contains only MOGREPS-G. Days 1 and 2 

are similar, being a blend of radar nowcast and MOGREPS-UK on Day 1 and a blend of 

MOGREPS-UK and MOGREPS-G for Day 2. The precipitation ensemble forecasts have the 

largest under-estimation bias against radar rainfall. This is perhaps not surprising given that 

MOGREPS-G at 20 km does not resolve showery precipitation elements very well. These may 

also not be well represented in gridded raingauge analysis, which can explain why 

MOGREPS-G seems less biased compared to the raingauge analysis. This simply highlights 

the representativeness differences between the different observation sources and also 

between the observation sources and the weather model. From a G2G perspective, it is 

therefore important to note that the rain volumes ingested have a trend with lead-time and this 

is likely to have an impact on modelled peak flows in different lead-time windows. Although 

the bias of G2G and PDM ensemble forecasts was not assessed directly, the case-study 

analysis does not suggest an overall pattern of under-estimation with some case-studies 

showing the river flow peaks increasing with decreasing lead-time, whilst others showing the 

opposite. Of course, the case-study events here were selected based on having river flow 

impacts so are not generally representative. Thus it is possible that the precipitation 

underestimation may link to an overall river flow underestimation if all data are considered. 

Figures 3 and 4 show the Rank Histograms for daily precipitation given the entire 16-month 

period to give a sense of the ensemble spread and how this is affected by observation source. 

In Phase 1, only radar and raingauge rainfall data were available, whilst under Phase 2 the 

merged radar-gauge rainfall product has been added. For England & Wales, the catchments 

are covered by all three observation sources (see Figure 3). The BMR precipitation ensemble 

is under-spread with the distinctive U-shape for Day 1 and Days 2-3. The middle part of the 

Rank Histogram is relatively flat, but the Days 4-6 time-horizon shows progressively more 

observations falling in the higher bins, suggesting that often the observation is above the 

spread of model rainfall values. This is consistent with the bias findings in Figures 1 and 2. All 

three lead-time horizons show that the merged product has more instances where the 
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observation falls outside the ensemble lower bound and fewer instances than the other 

observation sources of being above the ensemble upper bound. Both are a little curious. The 

lower bound case is probably more so, and one wonders whether this is a somewhat artificial 

outcome of the merging process. At longer lead-times the radar-based lowest bin tends to be 

more populated than for the raingauge, owing to the greater discrimination of 0 and the 

interpolation that is used to create the gridded raingauge rainfall product. The highest bin does 

show the largest number for the radar-rainfall observations lying outside the ensemble, 

especially for Days 2-3 and Days 4-6. The merging does reduce this, which may mean that 

there is a subtle downward shuffling in all the bins, and certainly, the middle bins support this 

notion. For Scotland in Figure 4 the signal is similar, with a few larger differences for Day 1 

where the radar-rainfall shows a much more distinct pattern of being outside the ensemble 

range of values. The results change little depending on whether 12-months are used. Monthly 

and seasonal Rank Histograms for daily precipitation accumulations show similar, but noisier 

results. For brevity these are not shown. 

For completeness the hourly Rank Histograms are shown in Figures 5 and 6, again for the 

entire period from June 2017 to September 2018. The results for England & Wales show very 

little evidence of a conventional U-shape but do show that the ensemble is under-spread given 

the number of observations in the highest bin. Surprisingly, it shows the precipitation ensemble 

is the most under-spread against raingauge rainfall for all lead-time horizons. The merged 

rainfall product does not sit between the radar and the raingauge values, which again is 

curious. There is a definite trend in the raingauge-rainfall histogram, whilst the number of 

observations is more evenly spread between the bins for the merged and radar observations. 

One possibility is this behaviour is linked to the raingauge-rainfall gridding process and the 

spreading of rainfall accumulations spatially. Again, the results for Scotland in Figure 6 are 

broadly similar though the difference in the highest bins between observation sources is less 

pronounced.  

The CRPS and CRPSS (shown here) provide a good summary of the forecast ensemble error 

in the magnitude of precipitation. When viewed as a skill score this puts all the values into 

context and enables a better way of aggregating over climatologically different catchments. 

Here, the whole period Mean Absolute Error (MAE) for each observation source is used as 

the score reference. For example, all errors are capped or limited by the total amount of rainfall 

in the observed or forecast totals. If the totals are small the errors are small, if the totals are 

large, the errors can be larger. Some parts of the country receive more rain than others, and 

therefore have a greater capacity to have large CRPS. It is only through creating a skill score 

that these discrepancies can be accounted for in a fair way, especially when aggregating over 

regions with different climatologies. Figures 7 and 8 show the monthly fluctuations in the 

CRPSS for the daily and hourly precipitation accumulations for different time-horizons, and 

against the three observation sources. One rule of thumb (that may not hold very often!) is 

that scores are lower in the warmer months (spring/summer) and higher in the colder months 

(autumn/winter). The situation is often a lot more complicated over the UK than that. On the 

graph, May-Aug 2018 can be seen to perform really well everywhere, and better than Jun-Aug 

2017. There appears to be no clear winner in terms of the observation sources, though the 

precipitation ensemble performs fairly consistently against the radar rainfall accumulations. 

Differences between the CRPSS computed against the different observation sources over 

England & Wales are unlikely to be statistically significant on a consistent basis though there 

are occasions where it may be the case. The picture is somewhat different over Scotland. 

Here, the weather model performance against raingauges over Scotland in Figure 7(b) 

appears more variable with large differences, and trends in scores going one way for Day 1 

and Days 2-3, with an opposite trend for Days 4-6! As shown in Figure 1, for February 2018 

the weather model bias with respect to raingauge rainfall appears better by some margin 
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compared to that against radar and the merged rainfall product. The CRPS is sensitive to the 

bias and will reward (or penalise) unbiased (biased) ensemble forecasts. The hourly CRPSS 

values in Figure 8 show less variation between the observation sources for England & Wales, 

though again there is more variability over Scotland. There is possibly a clearer upward trend 

in the 16-month period overall but there appears very little evidence of a seasonal cycle per 

se.  

The spatial uniformity in skill is illustrated using the Year 1 and Year 2 verification periods. 

Figure 9 shows the CRPSS for the daily precipitation accumulations for the three forecast 

lead-time horizons against the raingauge rainfall. (Note, most of the maps in this appendix will 

be shown against raingauge rainfall because of its complete coverage for England & Wales 

and Scotland.) There is little tangible difference between Year 1 and Year 2 and a slow 

decrease in skill with forecast lead-time horizon. Scores are generally above 0.4, even for 

Days 4-6. The exception is over the high ground in Scotland, even on Day 1, where skill is 

close to, or even less than 0, suggesting the climatological reference is more skilful. This is an 

emerging theme, evident in all observation sources, and may be related to snow in the colder 

months. Increasing horizontal resolution does not appear to entirely resolve this issue as the 

Day 1 results are also poor. tThis apparent deficiency seen for all observation sources is 

potentially due to deficiencies in the weather model.  

In Figure 10 the previously mentioned characteristics of the CRPS and intra- and inter-

seasonal variability are shown as monthly maps for the three observation sources of 

precipitation. As an example, the Days 2-3 lead-time is shown. Firstly, the west-east rainfall 

gradient across the UK is often apparent, irrespective of observation source. West-facing 

slopes and uplands are associated with the largest errors (recalling that CRPS for precipitation 

has units of mm). April 2018 shows a pattern more common under showery conditions, with 

an increased prevalence of larger errors over South, Central and East England. From these 

maps the coverage/extent of the different observation sources is also clear. These months 

illustrate the principle that errors are small where it is driest and sometimes this can have 

some seasonal dependencies, but this does not have to be the case. Overall, the CRPS as a 

function of lead-time is remarkably consistent between the different observation sources. This 

could be as much due to the changes in weather model characteristics where the absolute 

value of the precipitation accumulation error is approximately the same, though Figures 1 and 

2 indicate that the sign of the bias changes with lead-time. 

Hourly CRPSS also shows considerable uniformity across the UK (not shown). The seasonal 

CRPSS on the other hand does show some inter-seasonal variability as indicated in Figure 11. 

Here, the scores are computed using gauge precipitation and all three lead-time horizons are 

provided to show the decrease in skill with increasing lead-time. One region that stands out 

again is the Scottish Highlands into the lowlands to the east, which seems to have greater 

variations in skill and some of the lowest skill. The region is particularly poor in autumn and 

winter with negative seasonal scores even for Day 1. This may be snow related but could also 

be linked to the placement of precipitation with respect to higher ground and lack of a rain-

shadow effect. Day 1 seems to show some higher variability in scores over Wales too, which 

is less evident for longer lead-times.  

2. User-focused precipitation verification  

When the ensemble precipitation forecasts are turned into probabilities the output becomes 

more user-focused. These probabilities are not used as input to the G2G model for river flow 

but should be seen as an important component of the flood forecasting and warning decision-

making process.  
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The section on verification analyses employing probabilities begins with Figure 12 which 

compares the Brier Skill Score (BSS) for two methods of deriving probabilities (as outlined in 

Appendix A.4) using daily precipitation accumulations for Days 2-3 forecasts. Here the scores 

obtained using raingauge rainfall are shown. To highlight month-to-month and inter-seasonal 

variability, four months have been chosen to illustrate the differences between the use of a 

fixed traditional (non-TWP) and Time-Window (TWP) probabilities for the 8 mm/d precipitation 

threshold as well as the seasonal and annual 95th climatological percentile thresholds (see 

Appendix A.3 and A.5). The climatological thresholds were only used with TWPs since the 

daily 95th percentile annual thresholds range between 15 and 20+ mm across the UK. The 

daily seasonal 95th percentile thresholds show more contrast between the western fringes and 

further east, especially in the winter, where thresholds are in excess of 25 mm. Otherwise a 

general rule of thumb is ~20 mm. Thus, the TWPs derived from the climatological thresholds 

are for much larger accumulations than what would be possible otherwise. For clarity, the 

reader is reminded that the results for the traditional non-TWPs are based on the catchment 

mean; the time-window score is the average Brier Skill Score (BSS) over the time increments 

in the time-window. For example, for the score representing the Days 2-3 time-window the 

BSS is calculated from the combined Day 2 and Day 3 probabilities. 

In Figure 12 catchments coloured dark red indicate negative skill scores, where the forecasts 

(on average) are worse than the sample climatology. At first glance results are much noisier 

and more variable than what has been seen thus far. For summer, the TWPs for the fixed 

8 mm/d precipitation threshold are considerably more skilful with many regions that 

have negative BSS for the traditional probabilities showing good skill with BSS 

exceeding 0.4. The seasonal and annual precipitation thresholds show a lot more negative 

scores but, given that in most instances the threshold used is above 20 mm, there is still a 

surprising amount of skill on offer, even at the monthly scale. This is most noticeable in the 

south, which is perhaps unexpected as this is the driest part of the UK in the summer. The 

pattern of improvement in the skill of the precipitation forecast through the use of TWPs (by 

comparing columns 1 and 2) is evident for all months. Skill in the south appears to be worst in 

April (spring). Whether this is purely down to weather dependence or not is unclear, but 

springtime is often dominated by small-scale showers which may not be captured accurately 

by either weather model configurations in terms of location. There seems to be little to choose 

between the seasonal and annual results, and this is probably because in many instances the 

precipitation thresholds are extremely similar. Seasonal precipitation thresholds may be more 

peaked with slightly higher values. On balance, (rolling) seasonal precipitation thresholds may 

be preferable but come with a bigger maintenance overhead. For this reason, annual 

precipitation thresholds may be the more pragmatic choice. 

The variations in skill across the UK reduce with increasing lead-time and with the verification 

window used. Figure 13 shows the seasonal BSS for daily totals within Days 4-6 against 

raingauge rainfall for the predefined seasons. Again, the 8 mm/d TWPs show considerable 

improvement over the traditional probabilities in the summer. This could be ascribed to 

the fact that timing errors are very damaging to precipitation forecast skill, especially for more 

convective rain. TWPs mitigate or remove this timing error, leading to higher skill. A lot 

of skill is also gained in the winter, with more subtle gains in the spring and autumn. For the 

climatological precipitation thresholds the TWPs have lower skill than the 8 mm/d TWPs but 

in some instances are not that different to the 8 mm/d traditional TWPs, again highlighting how 

the use of TWPs enables the consideration of much higher thresholds (where they occur) to 

be considered and to have some positive skill. From a product-generation and user-

perspective the 90th percentile daily precipitation thresholds would also be available and could 

be more skilful but are not shown here. The purpose here was to show the limits of useable 

precipitation forecast skill. [Results for the 99th percentile are not shown, because the skill for 
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this precipitation threshold, even when aggregated over seasons or 12 months, remains worse 

than climatology.] 

It is well known that the rainfall intensity-duration relationship is non-linear and capturing short-

duration localised events remains a challenging precipitation forecasting problem. For the 

most part this project has shown that the weather model has better skill at capturing events at 

the daily time-scale, and this has been further enhanced by the use of TWPs so that 

precipitation thresholds could be pushed higher. Extreme hourly rainfall is very rare, something 

which was mentioned in Phase 1 but is well illustrated in Appendix A.5, with 4 mm/h sitting 

near the maximum value for many catchments, or outside the climatology for some. These are 

not flood-inducing rainfall amounts. Still, when considering daily rainfall, it is impossible to 

know whether the precipitation accumulation fell at a steady pace over many hours or whether 

it all fell in the space of 30 minutes. Therefore, the daily verification results provide the best 

steer in terms of rain volume to indicate flooding potential because the frequency of truly short-

duration sub-hourly downpours is so rare, i.e. difficult to forecast and impossible to verify 

reliably. 

To illustrate this further, Figure 14 shows quite clearly that even on Day 1 the use of TWPs 

cannot achieve much in terms of extracting skill when applied to a fixed precipitation threshold 

of 4 mm/h, irrespective of the season. The seasonal and annual climatological precipitation 

threshold TWPs on the other hand appear to show a much more positive view of forecast skill 

but the thresholds are all lower than 4 mm/h, and really not of hydrological interest. Most of 

the thresholds are in the region of 1-2 mm/h of rain. The exception again, is much of the 

Scottish Highlands and adjacent lowlands, where even precipitation accumulations in excess 

of 1 or 2 mm/h are struggling to show any skill. Therefore, from a flood forecasting perspective 

these probabilities are not very useful and certainly not skilful. The use of hourly precipitation 

forecasting products needs to be considered very carefully. They are valuable in 

understanding the evolution of rainfall, providing the context for the intensity-duration 

relationship: that is, is the rainfall short-and-sharp or steady-continuous (building up over time). 

There is possibly more value in deriving other precipitation products such as the number of 

hours with more than x mm of rain, to capture events that build up over time. Whilst hourly 

intensity biases were not explored, the intensity biases seen at the daily time-scale are likely 

to be translated to the hourly one too.   

To round off this section, a comparison of the observation sources is provided in Figure 15 

which shows the Day 1 BSS for daily TWPs exceeding the 0.5 mm/d precipitation threshold 

(defining the rain-no-rain boundary) for Year 1 and Year 2. The 12-month scores are very 

similar between Year 1 and Year 2, and the radar and merged results are more similar to each 

other than the raingauge results. Overall, the raingauge scores are locally higher than the 

radar or merged ones, and the lower scores over the eastern Scottish Highlands and adjacent 

lowlands are seen in the maps produced using radar and raingauge rainfall sources, though 

the scores using raingauge rainfall are worse. Even the BSS for a 12-month verification 

window achieves a considerable degree of uniformity across the UK. The anomaly is the very 

poor performance over south Scotland against the radar and merged observations. This is 

thought to be signalling a radar artefact or lack of coverage, rather than a weather model issue. 

The BSS for the hourly Day 1 results for the 0.5 mm/h TWPs are presented for Year 1 and 

Year 2 in Figure 16. The largest difference is the lower magnitude in the scores (compared to 

those in Figure 15) with the same spatial patterns. The poor raingauge scores are probably 

still due to the gridding process in complex terrain. It is unfortunate the merged precipitation 

product does not extend further north. Radar, for all its failings, does provide better information 

about the structure and texture of precipitation, even in complex terrain (unless the signal is 
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completely blocked, which is not the case here). Creating a merged product that covers the 

whole of Scotland should be a priority. 

3. Reliability of probability forecasts of precipitation 

A key question for any ensemble forecasting system of precipitation is answering the question: 

“are the probabilities reliable?”. This is true for the raw precipitation (viewed in the traditional 

sense) as well as for derived probabilities like the TWPs used here. The first thing that is 

needed though is resolution or discrimination. Can the ensemble system discriminate between 

events and non-events? In Reliability Diagram terms, this means the relationship between the 

forecast probabilities and the observed frequency of occurrence must follow the diagonal or 

have a decent slope. If that is the case, then the ensemble probabilities could be calibrated. 

Some aspects of over- and under-confidence can also be related to physical bias. If the 

underlying weather model has a low bias, then the probabilities are likely to be under-

confident, and vice versa. Sometimes a Reliability Calibration can account for these 

deficiencies in the underlying model, but often it is worth investigating whether the underlying 

model can be bias-corrected before probabilities are derived. Precipitation is notoriously 

difficult to post-process in physical space and in this study the raw ensemble is used. 

Calibrating the probabilities is often the (slightly) easier option but does not solve the issue of 

translating model biases to downstream flood forecasting models such as G2G.  

 The method of deriving the conventional (non-TWP) precipitation exceedance probabilities 

is based on the catchment mean whilst the TWPs are derived from individual weather 

model forecasts for grid-cells within the catchment. They are fundamentally different in 

construction.  

 Days 2-3 is the cross-over between weather model configurations and Figures 1 and 2 

suggest that the sign and/or the magnitude of the biases changes substantially, i.e. the 

probability of exceeding progressively higher precipitation thresholds will decrease with 

lead-time, and this will affect the conventional probabilities more than the TWPs because 

there will always be individual weather model grid-cell precipitations exceeding the 

catchment mean value, so that there will be (many) instances where the catchment mean 

precipitation does not exceed a given threshold but the TWP for the same catchment will.  

 The difference in the catchment precipitation means between the weather models is also 

determined by the model distribution of rainfall, which has not been discussed so far. This 

is another feature of the underlying weather model configuration (and horizontal resolution) 

which has not been investigated here. Other studies have found that the km-scale UM (up 

to 36h) is somewhat deficient in light precipitation and has been sparser in terms of spatial 

coverage, with the distribution skewed towards a few large values. The presence of any 

large weather model grid-cell precipitation values will however lead to a large catchment 

mean and could lead to threshold exceedance (for Day 1, maybe Day 2), even for the 

catchment mean (non-TWP) or individual grid-cells (TWP).  MOGREPS-G (Day 2 

onwards) on the other hand has a large 20 km footprint. Given the size of the grid-cell 

there tends to be much less (average) rainfall per grid-cell and a more muted distribution 

overall, which when downscaled to 2 km provides a very homogeneous (possibly bland) 

rainfall pattern. For the Days 2-3 window these two weather model configurations are 

combined and provide a very different view, with potentially very different characteristics. 

 In Appendix A.4 it is illustrated how the use of TWPs skews the precipitation forecast 

probability distribution from being positively skewed (small probabilities dominate) to being 

negatively skewed (larger probabilities dominate), i.e. the TWP distribution has a fatter tail. 

 Finally, there are the observation sources. In the plots below the weather model 

probabilities (non-TWP and TWP) are known to be based on the same model configuration 
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for all the periods analysed: the differences in the results are related to the observation 

characteristics and how these compare to the weather model characteristics. Overall,  

o catchment precipitation means (for the weather model or any of the observation 

sources) are going to provide fewer threshold exceedances than individual grid-

cells.  

o MOGREPS-UK is more likely to produce larger catchment precipitation means and 

also more large individual grid-cell values than MOGREPS-G.  

o Equally, the radar rainfall product is more likely to produce larger catchment 

precipitation means than the raingauge and merged rainfall products, with more 

large grid-cell totals in the radar rainfall than the other observation sources. 

Figure 17 shows the Reliability Diagrams for Year 2 England & Wales Days 2-3 daily 

precipitation accumulations against all the different observation sources and the different 

methods of deriving probabilities and thresholds. All the different thresholds are shown in the 

same plot together.  

The precipitation threshold sequence is described in the left-hand column of Figure 17, with 

the first row showing the fixed conventional exceedance probabilities (non-TWP) results. The 

lowest three thresholds are generally under-confident for the probabilities less than 60%. The 

behaviour for higher probabilities switches to being over-confident, where the precipitation 

forecast is too keen with the greatest degree of over-confidence evident against the radar 

rainfall observations and somewhere in-between for the merged product. What is interesting 

is how good the 8 mm/d non-TWP reliability is against raingauges. This does not seem 

intuitive. Recall that for this lead-time horizon more than half the precipitation forecasts are 

from MOGREPS-G which has more muted rainfall. This also implies the catchment means are 

smooth and on the lower end, producing lower probabilities of exceedance which is a good 

match for the gridded raingauge analyses, where within-catchment variability is likely to be 

much lower than for the radar rainfall analysis, for example. It therefore does make sense that 

the reliability could be quite good against raingauges. For large probabilities the precipitation 

ensemble forecast remains over-confident against all observation sources, which does 

suggest that the weather model configuration and ensemble generation is not providing 

sufficient spread in outcomes. 

Considering now the TWPs for the fixed precipitation thresholds in the second row, the TWPs 

show excellent reliability against raingauges for all thresholds. This simply suggests that the 

frequencies of occurrence in the raingauge observations and the TWPs is well matched. What 

is perhaps surprising is the exaggeration of the under-confidence against radar and merged 

rainfall observations, for a larger range of probabilities. How can this be explained? Recalling 

that these are the same precipitation forecasts, the answer lies in the identified events in the 

observations and given that for TWPs the event definition is related to identifying at least two 

grid-cells in the catchment that exceed the threshold. There are many more identified events 

in the radar and merged rainfall products, so that the ensemble TWPs are now deficient, 

except for the highest probabilities. This is reassuring in that when presented with a large 

probability the precipitation forecast is likely to be fairly reliable and a good steer. Using the 

seasonal and annual thresholds, the TWPs - which are generally at least 8 mm/d - show over-

confidence against raingauges, and a measure of under-confidence against an observation 

source which is likely to detect more events. Again, the largest TWPs over 80% are 

exceptionally reliable.   

The under/over confidence could be remedied through calibration with the exception of the 

99th percentile where in reality even a 12-month sample of precipitation forecasts is insufficient 

to sample the entire spectrum of probabilities, falling short in detecting enough events with 



9 of 12 
 

probabilities exceeding 60-70%. One could try to fit something through a truncated distribution 

where the sampling is sufficient and assume that the shape of the distribution would follow 

subject to sufficient sampling.  

The results for Scotland are a little different, as shown in Figure 18, which provides the results 

for Year 2 against raingauges only for the three different lead-time horizons. This reflects the 

weather model chain fairly well. For the traditional probabilities, for Day 1 a general over-

confidence is seen in the probabilities, which exists for all probabilities for the higher two 

thresholds. This is when MOGREPS-UK dominates. For Days 2-3 there is a shift to more 

under-confidence and improved reliability for the lower probabilities exceeding 4 and 8 mm/d. 

This lead-time is a mixture of MOGREPS-UK and MOGREPS-G. For Days 4-6 the shift 

continues to the left with increased under-confidence of the precipitation forecast probabilities, 

which is most evident for the lower thresholds. The 4 mm/d precipitation threshold becomes 

quite reliable whilst the 8 mm/d threshold also has fairly good reliability compared to 

raingauges, achieving about the same frequency of occurrence based on the catchment 

means compared to that observed in the raingauge catchment means. It is the only 

precipitation threshold that continues to provide slightly over-confident probabilities. These 

lead-times are all based on MOGREPS-G.  

The TWPs for the fixed precipitation thresholds in the second row largely mirror the behaviour 

for Day 1, though the over-confidence for the lowest thresholds increases, which is to be 

expected. TWPs shift the distribution to the right. For Day 2, the TWPs show considerable 

improvements in reliability compared to the conventional probabilities, suggesting that the 

weather model differences are somehow mitigated against, though the TWPs appear to be 

unable to fully mitigate MOGREPS-G characteristics for Days 4-6, where results look fairly 

similar to the traditional probabilities, though the 8 mm/d threshold looks to be the most 

reliable, and especially good for the higher probabilities. The biggest difference seems to be 

between the seasonal and annual precipitation threshold TWPs against raingauges for 

England & Wales (in Figure 17) and Scotland (in Figure 18). TWPs appear to be substantially 

over-confident for Day 1 and Days 2-3. One has to speculate as to how much this is down to 

the raingauge analysis characteristics in complex terrain and its ability to account for local 

extremes. Snow could be another observation-related factor. The other possibility is 

MOGREPS-UK characteristics and the tendency to over-estimate orographic 

precipitation/enhancement. It is after all the same forecast in England & Wales and Scotland, 

and whilst the England & Wales results suggest that the probabilities can be improved by 

calibration, they are not suggesting this level of correction. The 99th percentile results are also 

comparatively noisy, though again appear to follow a somewhat different path to those over 

England & Wales. 

Figure 19 shows the results for Day 1 over England & Wales using the merged radar-

raingauge product. For brevity only the fixed traditional probabilities, fixed TWPs and seasonal 

TWPs are shown, given how similar the annual and seasonal results are. Recall that there are 

only three thresholds considered for the hourly totals. Broadly speaking the results vary little 

with the seasons. This is reassuring, in the sense that any calibration could be independent of 

seasons. The more distinct differences are related to the probability derivation. Traditional 

probabilities using the fixed precipitation thresholds tend to be over-confident with the 4 mm/h 

thresholds suffering from insufficient samples to fully map the full range of probabilities. Fixed 

TWPs show good reliability on the whole: for the 0.5 and 1 mm/h precipitation thresholds they 

are somewhat under-confident for low probabilities and over-confident for larger probabilities. 

The 4 mm/h probabilities tend to be either fairly reliable or over-confident but also vary more 

by season. In the summer there is a tendency to be under-confident as well. The seasonal 

TWPs show a somewhat different picture here. The 90th percentile curves are quite noisy 
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because the precipitation threshold is often very close to 0 (or 0!) for some catchments and 

therefore has a sampling problem in the warmer seasons. Otherwise the 95th and 99th 

percentile values are similar to the fixed precipitation thresholds but with somewhat better 

reliability overall.  

The results for Scotland are shown in Figure 20, though here the gridded raingauge product 

is used. Once again it is best to ignore the 4 mm/h precipitation threshold for the traditional 

probabilities as having insufficient sample size, along with the 90th percentile TWPs, for the 

same reason. The results appear to be fairly consistent between seasons. The hourly results 

are mirroring the daily results for Scotland. The TWPs improve the reliability, especially for the 

larger probabilities, irrespective of season. Using the seasonal thresholds to compute the 

TWPs appears to improve the reliability further: the most marked improvement is for the 99th 

percentile where some of the sampling deficiencies appear to have been removed. All 

probabilities are generally over-confident, except when very small, so some form of calibration 

would seem to be necessary to improve reliability further.  

This analysis is completed by showing some Reliability Diagrams for monthly samples for 

hourly precipitation accumulations over England & Wales using the seasonal percentile 

thresholds against all the observation sources. Figure 21 attempts to show some of the issues 

that arise with reducing the sample size when using less than ~90 days. Again, the forecasts 

are the same so that the differences seen are due to the observation source alone. The 90th 

percentile precipitation thresholds are noisy because they often relate to thresholds which are 

near 0. It’s worth remembering that for the hourly precipitation totals even the 99th percentile 

is only between 2 and 3 mm/h in most cases. The TWPs are fairly reliable for this precipitation 

threshold against raingauges and show similar tendencies towards under-confidence for 

Days 2-3 (see Figure 17). The reliability against the merged rainfall product is somewhere in-

between. Against the raingauges the over-confidence is primarily in the cooler months, but 

overall, the reliability for the 95th and 99th percentile shows little sign of sampling problems. 

The 90th percentile has greater sampling problems against radar and merged rainfall products, 

with reliability extremely good against these products in the cooler months. In the spring there 

is good reliability against radar rainfall and the merged rainfall product for the larger 

probabilities but shows signs of being under-confident at the lower end. The weather model 

may not be capturing showery precipitation with enough spatial density that is seen in the 

radar rainfall observations. 

4. Summary and recommendations 

In this study 16-months of ensemble precipitation forecasts have been evaluated from which 

the following thematic commentary can be drawn.  

On time-window probabilities  

 TWPs extract useful information content by removing or mitigating against timing errors. 

 TWPs allow the use and evaluation of higher precipitation thresholds, which better reflect 

the user needs for identifying and assessing potential flood risk from heavy precipitation. 

 TWPs change the reliability and can switch an under-confident traditional probability to 

being reliable or over-confident. The distribution of precipitation forecast probabilities shifts 

from being positively skewed to negatively skewed, i.e. a so-called “fat tail” with more large 

probabilities which increases user confidence.   

 TWPs improve the sample size for larger precipitation thresholds because of considering 

individual grid-cell values, which helps to improve the stability and robustness of skill 

scores. 
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 TWPs computed using the seasonal and annual percentile precipitation thresholds show 

much better reliability and for higher thresholds. This is good news from the user 

perspective. 

 There is little to choose between seasonal and annual precipitation thresholds. If a simple 

solution is sought then annual precipitation thresholds would do, though seasonal 

thresholds preserve more of the intra-annual variability which exists across the UK. 

 How would these be computed in real-time? Catchment-scale is possible, but one could 

choose to compute TWPs over clusters of catchments, e.g. the EA regions. (Though at 

this point it is worth pointing out that using TWPs - even with higher precipitation thresholds 

- clearly shows the issue at the catchment-scale is not a lack of detection!) Nevertheless, 

the case studies would suggest that regional probabilities of precipitation alongside more 

specific catchment information may be beneficial. This need could be satisfied through the 

generic neighbourhood-processed IMPROVER output. 

On observation sources and biases 

 Characteristics of the observations can have a strong influence on results, which can lead 

to the drawing of opposing conclusions about the performance of the same weather model 

forecast, either over the same area (England & Wales) or over England & Wales and 

Scotland. The latter would seem to be unrealistic, especially if this is against the same 

observation source! 

 Though an assessment of the precipitation forecast bias would suggest that the forecasts 

are the least biased against the raingauge analysis (based on catchment means), this is 

considered somewhat misleading and gratuitous as at longer ranges the forecasts are 

strong under-estimates and the raingauge analysis may provide a poorer reflection of 

localised maxima relative to radar and merged rainfall products.  

 The merged rainfall product would appear to be a good compromise for providing the 

texture that an interpolated raingauge analysis does not have, whilst improving an inherent 

radar rainfall bias. This should be available right across the UK.  

 Good precipitation observation source QC is essential. The results over the Scottish 

Borders point to some kind of observation issue in the radar rainfall data which is translated 

to the merged rainfall product. 

On biases 

 The fact that the weather model bias against the merged rainfall product follows the 

raingauge bias quite closely shows how the raingauge data are used to correct the 

observed radar rainfall amounts. 

 MOGREPS-G is unable to resolve the detail in the radar rainfall fields, so it is unsurprising 

that the catchment means compare well to the gridded raingauge product given that they 

are the most similar in nature: smooth with many features similar at sub-grid-scale for both.  

 There should be some concern (or at least acknowledgement) that the raingauge mean 

error here is gratuitous rather than a true reflection of the precipitation forecasts being the 

least biased against the gridded raingauge analysis. Any mismatches in more localised 

maxima of precipitation (which act to shift the catchment mean), tend to be reflected more 

in the weather model biases computed against the merged and radar rainfall products, 

and make them larger. This should be considered the more realistic view. 

 Physical biases can feed into the biases of the probabilities that are described here. The 

precipitation ensemble forecast is not seamless in time. Where the weather models are 

joined together is evident in the results. From a flood forecasting perspective, the volume 

of water is of interest, highlighting the need and benefit of adjusting the forecast rainfall 

values. However, precipitation is difficult to adjust, especially in the extremes. This is 
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definitely a long-term research problem, especially what impact any adjustments may have 

to the downstream tuning of a river flow model.  

On verification periods 

 Precipitation ensemble forecast skill does vary from month-to-month and season-to-

season, but regional differences are likely to be bigger and more persistent. Annual results 

appear to be fairly robust though 99th percentile results are still somewhat sparse. 

 Seasonal results appear to be stable too. If recent performance is of particular interest, a 

rolling 3-month window may well be very useful alongside something that tracks 

performance for 12 months or more. This ensures that the weather dependencies are 

better accounted for.  

 Monthly results can be useful but, in terms of inferring continual performance, some form 

of rolling performance information would be more useful.  

 Some form of reliability calibration could be beneficial to make the precipitation ensemble 

forecast probabilities more reliable. This could be done without addressing the underlying 

physical biases. Given the differences in the precipitation observation sources, some 

careful thought would need to be given to which observation data to use for this purpose 

(both physical and probability). 
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Rainfall and River Flow Ensemble Verification: Phase 2 

Precipitation verification maps and plots 

Final Report Appendix B.1.2 

This appendix contains a subset of the total precipitation verification maps and plots produced 

by the project, relevant to explaining its aims and outcomes. The commentary on these is 

provided in Appendix B.1.1. Whilst most elements are explained in the commentary it is worth 

pointing out a few here to make the figures easier to browse. 

The selection of plots attempts to provide an overview of all of the following in as succinct a 

way as possible: 

 three precipitation observation sources: raingauge-only, radar-only and merged radar-

raingauge 

 daily versus hourly precipitation accumulations 

 monthly, seasonal and 12-monthly statistics 

 fixed precipitation thresholds (as used in Phase 1) compared to the use of long-term 

annual and seasonal climatological percentile thresholds values shown in Appendix A.5 

 conventional probabilities (for fixed thresholds using the catchment mean rainfall) 

compared to Time-Window Probabilities (TWPs). The derivation of these is explained in 

Appendix A.4. 

Several specific periods were investigated to understand the inter-annual and intra-annual 

variability in scores and metrics. 

 Y1 Year 1   June 2017 to May 2018 

 Y2 Year 2   September 2017 to August 2018 

 S1 Spring Year 1   JJA 2017 

 A1 Autumn Year 1 SON 2017 

 W1 Winter Year 1  DJF 2017/18 

 Sp2 Spring Year 2   MAM 2018 

 S2 Summer Year 2 JJA 2018 

The following scores and metrics are shown.  

 Brier Score and/or Brier Skill Score (against sample climatology) to consider the skill in 

the precipitation ensemble probabilities 

 Continuous Ranked Probability Score and/or Skill Score to assess the distribution of the 

precipitation ensemble values 

 Rank Histograms to assess the spread of precipitation ensemble values  

 Reliability Diagrams to assess the precipitation ensemble probability bias 

Finally, the mean error (bias) in the daily catchment mean precipitation, as provided by the 

control member of the precipitation ensemble was computed to quantify the underlying 

rainfall intensity bias. This is important because the Best Medium-Range (BMR) ensemble 

evaluated here is a combination of three forecasts: STEPS (0-6h), MOGREPS-UK (0-36h) 

and MOGREPS-G (36-149h). The first 36 hours are strongly modulated by MOGREPS-UK, 

but Day 2 is a mixture of MOGREPS-UK and MOGREPS-G, whereas Days 3 to 6 are all 

MOGREPS-G. These weather models are very different in resolution and underlying 

behaviour. Results are provided for the different observation sources available over England 

& Wales and Scotland. 
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Figure 1 Monthly mean error (bias) in the daily catchment-mean precipitation from the 

BMR control member. 
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Figure 2 Average mean error (bias) in the daily catchment-mean precipitation from the 

BMR control member. 
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Figure 3 Rank Histogram (equalised across observation sources) for daily England & 

Wales for the three different observation sources. Whole Period (June 2017 to 

September 2018). 

 

 
 

Figure 4 Same as Figure 3 but for Scotland. 
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Figure 5 Rank Histogram (equalised across observation sources) for hourly 

precipitation accumulations in England & Wales for the three observation sources. 

Whole Period (June 2017 to September 2018). 

 
 

Figure 6 Same as Figure 5 but for Scotland hourly precipitation accumulations.  
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Figure 7 Monthly CRPSS for daily precipitation accumulations (referenced with 

respect to the whole-period MAE for each observation source), equalised across 

observation sources and using an agreed site list (148 sites over Scotland and 731 

sites over England & Wales). 

(a) England & Wales 

 

(b) Scotland 
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Figure 8 Same as Figure 7 but for monthly CRPSS values based on hourly 

precipitation accumulations.  

(a) England & Wales 

(b) Scotland 
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Figure 9 CRPSS for Year 1 and Year 2 for the daily precipitation accumulations 

compared to raingauge rainfall. 

 Day 1 Days 2-3 Days 4-6 
Y1 

   
Y2 

   
 

  



9 of 19 
 

Figure 10 Monthly CRPS in units of mm for the daily precipitation accumulations for 

Days 2-3 comparing the different observation sources. It illustrates the CRPS 

association with the MAE and shows that the errors scale with the rainfall amounts, 

i.e. when the CRPS was low the rainfall amounts were relatively low too.  

 Gauge Radar Merged 
Oct 
2017 

   

Jan 
2018 

   
Apr 
2018 

   
Jul 
2018 
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Figure 11 CRPSS for hourly precipitation accumulations over different against 

gridded gauge rainfall as providing the most comprehensive coverage. 

 Day 1 Days 2-3 Days 4-6 
S1 

   
A1 

   
W1 

   
Sp 2 

   
S2 
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Figure 12 Monthly BSS for daily precipitation accumulations within Days 2-3 against 

gridded gauge rainfall comparing the different methods for deriving probabilities and 

thresholds.  
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Figure 13 BSS for daily precipitation accumulations over different considering Days 4-

6 forecasts against gridded gauge rainfall, comparing different methods for deriving 

probabilities and thresholds.  

 8 mm/d 
non-TWP 

8 mm/d TWP Seasonal TWP 95th Annual TWP 95th 
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W1 

    
Sp2 

    
S2 
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Figure 14 BSS for Day 1 hourly precipitation accumulations over different seasons   

considering Day 1 forecasts against gridded gauge rainfall, comparing different 

methods of deriving probabilities and thresholds.  
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Figure 15 BSS for Day 1 daily precipitation accumulations over Year 1 and Year 2 for 

the 0.5 mm/d TWPs comparing the different observation sources. 

 Gauge Radar Merged 
Y1 

   
Y2 

   
 

Figure 16 BSS for Day 1 hourly precipitation accumulations over Year 1 and Year 2 for 

the 0.5 mm/h TWPs comparing the different observation sources 

 Gauge Radar Merged 
Y1 

   
Y2 
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Figure 17 Reliability Diagrams for Days 2-3 daily precipitation accumulations for Year 

2 over England & Wales showing the differences by observation source and 

threshold-probability derivation. 

 Gauge Radar Merged 
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non-TWP 
(0.5, 1, 4, 8) 

 
  

Fixed TWP 
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Annual TWP 
(90, 95, 99) 
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Figure 18 Reliability Diagrams for daily precipitation accumulations over Year 2 for 

Scotland based on gridded gauge rainfall. 

 Day 1 Days 2-3 Days 4-6 
Fixed  
non-TWP 
(0.5, 1, 4, 8) 

   
Fixed TWP 
(0.5, 1, 4, 8) 

   
Seasonal 
TWP 
(90, 95, 99) 

   
Annual TWP 
(90, 95, 99) 
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Figure 19 Reliability Diagrams for Day 1 hourly precipitation accumulations over 

England & Wales for different seasons against the merged radar-gauge rainfall 

product for different threshold-probability derivation methods. 
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Figure 20 Reliability Diagrams for Day 1 hourly precipitation accumulations over 

Scotland for different seasons   against the gridded gauge rainfall for different 

threshold-probability derivation methods. 
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Figure 21 Monthly Reliability Diagrams for Days 2-3 hourly precipitation 

accumulations over England & Wales, computed for the seasonal percentile 

thresholds showing the impact of observation source. Thresholds: 90th, 95th and 99th 

percentiles.  
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Ensemble rainfall and river flow verification: Phase 2 

Overall verification summary: river flow analyses 

Final Report Appendix B.2.1 
 
 

This document first summarises the findings from the G2G river flow analysis for the Phase 2 

verification periods (falling between 1 June 2017 and 31 August 2018) in Section 1. The aim is to use 

the 15-month period to assess the sensitivity of verification diagrams and scores to the length of 

assessment period, and provide guidance on the appropriate verification period length for an 

operational River Flow Ensemble Verification System. The effect of seasonality on the verification 

output is considered, along with the appropriate spatial scales needed to obtain meaningful 

verification analyses. A comparison is made with the Phase 1 analyses from the much-shorter, but 

abnormally wet, Phase 1 analysis period of December 2015. The focus here is on providing a written 

overview, discussing output verification diagrams and maps, and providing key conclusions. For clarity 

of presentation, only key summary figures are presented. For completeness, all other river flow 

verification plots are provided in appendix 

Appendix_B_2_2_Overall_Verification_Summary_River_Flow_plots.zip,  

with plots grouped into separate PDF files by G2G domain (the filename prefix “SEPA_” indicating the 

Scotland domain) and verification period 

 
Table 1 Verification periods considered within the Phase 2 period 1 June 2017 to 31 August 2018. 

The period starts from the first day of the “Start” month listed and ends on the last day of 
the “End” month listed. 

 Summer2017 Autumn Winter Spring Summer2018 Year 1 Year2 
Start Jun 2017 Sep 2017 Dec 2017 Mar 2018 Jun 2018 Jun 2017 Sep 2017 
End Aug 2017 Nov 2017 Feb 2018 May 2018 Aug 2018 May 2018 Aug 2018 

 

Based on the overall findings from these analyses, the full Year 2 period (Sep 2017 to Aug 2018) was 

selected to verify the PDM local models. In contrast to the different spatial-scale verification 

analyses used for G2G, a number of example single-site PDMs have been verified. These results are 

presented in Section 2.  

The Precipitation verification analyses are summarised separately in Appendix 

Appendix_B_1_1_precipitation_verification_commentary.pdf 

with plots provided in 

Appendix_B_1_2_precipitation_verification_plots.pdf. 

Details of the verification metrics considered are given in  

Appendix_A_1_Joint_Verification_Framework.pdf 
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1 River flow verification analyses for G2G 
 

1.1 Threshold-based score analyses 

1.1.1 Seasonal variation 
The number of threshold-crossings (Figure 1 of River Flow Verification Summary) varies with season, 

with the smallest number seen in the summer when baseflows are lower and flood events tend to be 

linked to intense convective precipitation. In autumn (at least for the 2017 period considered), river 

flow threshold-crossings are more widespread, but limited to catchments in Wales, Scotland, and the 

north and west of England. In winter and spring, river flow threshold-crossings are seen throughout 

England & Wales, although the number of catchments experiencing threshold-exceedances of above 

Q(2)/2 is still relatively small. An example for the Q(2)/2 threshold is shown in Figure 1. For Scotland, 

the spring 2018 season has very few threshold-crossings, even for the Q(2)/2 threshold, and 

predominantly affecting catchments in the south and east. The winter 2017-18 season has more 

threshold-crossings for Scotland but, as for England & Wales, the number of catchments experiencing 

threshold-exceedances of above Q(2)/2 is still relatively low. Of course, these results are to be 

expected as the return-period thresholds relate to the expected return-period of an event. For 

example, for the Q(2) threshold with a return period of 2 years, this would not be expected to be 

exceeded for the majority of catchments in any one year. This again highlights the exceptional nature 

of the December 2015 period used for the Phase 1 analysis where many catchments had crossings of 

the higher Q(T) thresholds, even though only one month of data were considered.  

 

Comparing the two summer periods considered, 2017 and 2018, there are far fewer threshold-

crossings in the abnormally dry summer 2018 period than for 2017 when more normal meteorological 

conditions prevailed (e.g. Figure 1, left-hand side). This highlights the effects of inter-annual variability 

on the verification sample sizes, and suggests that caution is needed when drawing verification 

conclusions from one season of data. This effect of sampling uncertainty when looking at individual 

seasons is also seen when comparing the verification diagrams (Figures 2 to 7 and 9 to 14 of the River 

Flow Verification Summary). Even for the lowest threshold considered (Q(2)/2), the summer-season 

Reliability and ROC diagrams are dominated by sampling uncertainty, even for low forecast probability 

values. This is also true for the spring-season Reliability and ROC diagrams for Scotland. For the other 

seasons, the national-scale verification diagrams (e.g. Figure 2 of the River Flow Verification Summary) 

are consistent, at least for the Q(2)/2 threshold, although the effects of sampling uncertainty are still 

evident for the highest forecast probability bins. Overall, these diagrams lead to similar conclusions to 

those obtained from the Phase 1 analyses (e.g. Phase 1 Report Figures 4.1, 4.6, 4.11) with performance 

decreasing with forecast lead-time, and the river flow ensemble tending to over-forecast (the 

probability values tend to be too high) and also be over-confident (larger probabilities are more over-

forecast). Example Reliability Diagrams, calculated over different verification periods for England & 

Wales, are shown in Figure 2. At the regional-scale (River Flow Verification Summary Figures 6 and 7), 

sampling uncertainties dominate for the majority of regions in south and east England suggesting that 

the seasonal sample-size is not sufficient to obtain meaningful inferences at this scale. An example for 

England & Wales is shown in Figure 3. Similar conclusions are drawn from all catchments at the 

catchment-scale (River Flow Verification Summary Figures 9 to 11), even when catchments are pooled 

by catchment size (River Flow Verification Summary Figures 12 to 14). 
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Summer 2017 Autumn Winter Spring 

    
Summer 2018 Year 1 Year 2  

   
 

Figure 1 Number of river flow forecasts having observed threshold-crossings over different 
verification periods. For river flow threshold Q(2)/2 and time-periods corresponding to 
Day 1 forecasts.  

 

 

Summer 2017 Autumn Winter Spring 

    

Summer 2018 Year 1 Year 2 December 2015 

    
Figure 2 G2G river flow Reliability Diagrams over different verification periods, pooled over all 

sites in England & Wales. For river flow threshold Q(2)/2 and Day 1 forecasts. 
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Summer 2017 Autumn Winter Spring 

 
   

Summer 2018 Year 1 Year 2 December 2015 

    

 
Figure 3 G2G river flow Reliability Diagrams over different verification periods, for all sites in 

England & Wales split by region. For river flow threshold Q(2)/2 and Day 1 forecasts. 
 

1.1.2 Annual variation 
To assess the effect of considering slightly different 12-month verification periods, verification 

analyses were compared for the periods 1 June 2017 to 31 March 3018 (i.e. including summer 2017) 

and 1 September 2017 to 31 August 2018 (i.e. including summer 2018). These periods are denoted as 

Year 1 and Year 2 respectively. Although the two summer periods were noticeably different, with 2018 

being much drier with fewer threshold-crossings, their 12-month period analyses are expected to be 

similar as they will be dominated by a majority of threshold-crossings which occur in the months of 

September to May (e.g. Figure 1). This is indeed seen when comparing verification analyses at the 

national-, regional- and catchment-scales for the Q(2)/2 and Q(2) thresholds. Similar to the analyses 

for autumn and winter seasons, those for the national-scale 12-month verification period generally 

agree with those from Phase 1. Figure 4 shows an example for England & Wales.  

 

For Scotland, some differences are seen in the national- and regional-scale Reliability Diagrams, with 

the full 12-month verification period analyses showing the ensemble to over-forecast more (the 

probability values tend to be higher) and also be more over-confident (larger probabilities are more 

over-forecast). This brings the Scotland analyses closer to those seen for England & Wales, and 

suggests that the abnormal December 2015 period was influencing the interpretation of the Reliability 

Diagrams for Scotland. For thresholds above Q(2), high sampling uncertainties are seen for the 12-

month analyses suggesting that there are insufficient threshold-crossings to support this type of 

verification analysis. Figure 5 shows a comparison with the Phase 1 analyses (provided in full in the 

Phase 1 Report Figures 4.1 and 4.2). It suggests that the sampling issue for high thresholds is worse 

for the more-normal 2017 to 2018 12-month periods of Phase 2 than was the case for the extremely 

wet December 2015 period of Phase 1. This is an important consideration for an operational 

verification system: although a long and recent verification period is desired to capture up-to-date 
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weather model behaviour, to capture extreme events it may be necessary to include a verification 

period longer in the past.  

 

For catchment-scale analyses (e.g. maps of Brier Skill Score and ROC Skill Score; River Flow Verification 

Summary Figures 9 to 14, summarised below in Figure 6), the spatial pattern of ensemble skill is 

different from that seen for the Phase 1 analyses (e.g. Phase 1 Report Figures 5.1 and 5.4). In 

particular, the trend of poorer skill measured by the Brier Score for the southeast of England seen in 

the Phase 1 analyses is not seen for the 12-month verification period. As discussed in the Phase 1 

Report, this was thought to be associated with only a small number of threshold-crossings occurring 

in southeast England in December 2015, which is not the case for the 12-month verification period 

which has much more spatially-uniform coverage of threshold-crossings. Where the Phase 1 analyses 

showed a clear trend of skill decreasing with forecast lead-time, this is not clear from the 12-month 

analyses. This may again be related to the sample size, with larger sample sizes associated with the 

longer-duration 48h Days 2-3 and greater than 48h Days 4-6 (England & Wales) verification time-

windows. This conjecture is supported by consideration of the verification analyses for Scotland, 

where a shorter post Day 3 time-window is used and individual site performance at these lead-times 

is poorer than that seen for Days 2-3.  
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December 2015 September 2017 to August 2018 

Day 1 Day 1 Days 2-3 Days 4-6 

 
 

Figure 4 River flow verification diagrams calculated using data pooled from all catchments for 
England & Wales. Reliability, ROC, and REV diagrams are shown using the Q(2)/2 threshold 
over the Phase 1 December 2015 period for Day 1 forecasts (left) and over the Phase 2 12-
month period September 2017 to August 2018 for Day 1, Days 2-3 and Days 4-6 forecasts 
(right). 
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Figure 5 River flow Reliability Diagrams calculated using data pooled from all catchments for 
Scotland. For Day 1 forecasts and Q(2)/2, Q(2) and Q(5) thresholds over the Phase 1 period 
December 2015 (bottom) and Phase 2 12-month period September 2017 to August 2018 
(top). 
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Figure 6 ROC Skill Score (upper panel) and Brier Score (lower panel) calculated for individual 
catchment river flows using a region-based moving catchment-area based pool of 31 
catchments across England & Wales. Scores are calculated for both the Phase 2 12-month 
period September 2017 to August 2018 (inset top) and for the Phase 1 period December 
2015 (inset bottom).  

 
 

1.2 Non-threshold based score analyses 
 

Analyses using the non-threshold based Rank Histogram over the Phase 2 12-month period (River Flow 

Verification Summary Figure 8) agree overall with those seen for the Phase 1 December 2015 period 

(Phase 1 Report Figures 4.16 to 4.18). The ensemble appears under-spread overall due to individual 

forecasts being under-spread, or to conditional biases in the ensemble, or a combination of these. 

Slight differences are seen between the relative populations of the upper and lower histogram bins 



9 of 12 
 

 

(i.e. the relative proportion of observations that fall above or below the ensemble members), but 

these are not thought to be significant. The single-season Rank Histograms show a more coherent 

pattern of differences between the relative populations of the highest and lowest histogram bin. In 

particular, for autumn and winter the lowest histogram bin has the highest population, whereas for 

the spring and summer the largest population falls in the highest histogram bin. This suggests that 

observed river flow is likely to be lower than all ensemble members in the winter (high-bias), but 

higher than ensemble members in the summer (low-bias). This interesting behaviour warrants further 

investigation. 

 

 

 

Summer 2017 Autumn Winter Spring 

    
Summer 2018 Year 1 Year 2 December 2015 

    
Figure 7 G2G river flow Rank Histograms for different verification periods. Calculated for all sites in 

England & Wales using Day 1 forecasts. 
 

 

For the non-threshold based CRPSS, the Phase 1 analyses showed no clear national pattern of 

ensemble performance. This is also seen for the Phase 2 12-month period analyses. Note that, as a 

different type of reference is used in the CRPSS calculations for Phase 2 (based on the Ensemble MSE 

over the full 12-month period instead of the CRPS of the ensemble mean), the magnitude of the CRPSS 

values cannot be compared between the Phase 1 and Phase 2 analyses.  

 

2 River flow verification analyses for PDM local models 
Overall, the river flow verification analyses for PDM local models show high sampling uncertainties as 

expected due to the calculation of verification statistics at the catchment-scale over only a 12-month 

period. As scores for the PDMs are calculated for individual sites only, there are too few threshold-

crossings to calculate verification statistics above the Q(2)/2 threshold (the exception being 

Beddgelert, although the Q(2) verification analyses for this site are also suspect). Example verification 

diagrams are shown in Figure 8 for the catchments Riccal at Nunnington (England), Glaslyn at 
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Beddgelert (Wales) and Findhorn at Shenachie (Scotland); diagrams for the other sites considered are 

provided in  

Appendix_C_3_2_Case_Study_Analysis_Hydrological_Impacts_plots.zip 

To reduce the effect of sampling uncertainty it would be necessary to either 

1. pool the calculations across multiple catchments having PDMs, as done for catchments 

within the G2G model domain, 

2. use a much-longer verification period, or 

3. choose a specific verification period known to contain a number of threshold-crossings.  

 

Of course, each of these options has both advantages and disadvantages. Pooling over multiple 

catchments may not be appropriate for different local-models which, unlike G2G, may lack spatial-

consistency. Although Option 2 would give the most representative analyses, it would require the BMR 

rainfall ensemble to be run in hindcast-mode over a much-longer period, a practise not currently 

supported at the Met Office. There would also be additional overheads in making the long-duration 

PDM ensemble runs and analysing the longer time-series of forecast river flows. Although Option 3 is 

based on the use of a “non-representative” period of data with above-average rainfall and river flow 

events, it is a possible workable solution for analysing ensemble forecast performance in the unusual, 

high-impact situations of particular interest.  

 

In general and noting the differences in score-calculation discussed above, better performance is seen 

for the PDMs than G2G for corresponding catchments: this is as expected when comparing site-

calibrated local models with a national-scale distributed model at gauged catchment locations. 
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 Riccal at 
Nunnington  

(England) 

Glaslyn at 
Beddgelert 

(Wales) 

Findhorn at 
Shenachie 
(Scotland) 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8 River flow verification diagrams calculated for single site PDMs. Reliability, ROC, and REV 
diagrams are shown using the Q(2)/2 threshold for the Day 1, Days 2-3 and Days 4-6 
forecasts. The final row shows the Rank Histograms (no threshold dependency). 
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3 Key conclusions from the river flow verification analyses 
 

 Apart from anomalously wet periods (e.g. December 2015 as used in Phase 1), the number of 

river flow threshold-crossings for Q(T) thresholds appropriate for flood forecasting (e.g. a 

minimum of Q(2)/2) is not sufficient for ensemble verification at sub-national scales when 

forecasts from only one season are considered.  

 For autumn, winter and spring seasons, the number of river flow threshold-crossings can be 

sufficient to give meaningful verification analyses at the national scale for the Q(2)/2 

threshold. This depends on there being a large-enough pool of sites nationally and is, for 

example, not true for the spring season over Scotland with only 225 sites (compared to the 

731 sites for England & Wales).  

 For the lower river flow thresholds (Q(2)/2 and Q(2)) a 12-month verification period can be 

sufficient to give meaningful verification analyses. If a rolling 12-month verification period 

were to be used, the analyses would be expected to be more sensitive to changes in the 

winter months used as these contain the majority of threshold-crossing events.  

 For sub-regional scale analyses, sampling size and forecast skill are influenced by the time-

window increasing in length with increasing lead-time. 

 If threshold-crossings are unevenly distributed across the domain, then the interpretation of 

individual-catchment maps may be influenced by spatially-varying sampling uncertainties. 

Threshold-based score maps should be viewed alongside maps of the number of threshold-

crossings occurring in the verification period.  

 Verification scores can be calculated for local models (e.g. PDM) in the same manner as that 

shown for G2G. Local model verification analyses show high sampling uncertainties when 

calculated for single catchments using 12-months of ensemble forecasts, even for the lowest 

threshold considered, Q(2)/2. 

 The local model verification analyses can be used to inform prototype real-time displays. 

However, given the high sampling uncertainties, these should be considered as 

demonstrative rather than generally representative. 

 In an operational system, the local model sample size would need to be increased through 

either multi-catchment pooling of analyses, consideration of a longer verification period, or 

through using a fixed historical period known to have sufficient threshold-crossings.  
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Rainfall and River Flow Ensemble Verification: Phase 2 

Impact of observation uncertainty on verification metrics 
Final Report Appendix B.3 
 

1. Background 

Accounting for observation uncertainty is essential for the assessment of ensembles. Forecast 
ensembles are used to provide spread (uncertainty) information about what is going to 
happen.  

Observations are imperfect and provide an observation of the true state with an error, which 
is generally unknown or not fully known. Ferro (2017) observes: “In these circumstances, 
proper scoring rules favour good forecasts of observations rather than of truth and yield scores 
that vary with the quality of the observations. Proper scoring rules thus can favour forecasters 
who issue worse forecasts of the truth and can mask real changes in forecast performance if 
observation quality varies over time.”. Observations therefore also come with error bounds, 
which are made up of many sources. For example, the uncertainty can be related to whether 
the quantity is measured directly (instrument error) and/or whether it is inferred or derived from 
something that is measured (estimation). Without having an estimate of the observation error, 
it is impossible to differentiate between what is true ensemble spread (uncertainty) and what 
is due to the observation uncertainty. 

Several authors have explored the idea of including observation error or attributing an error to 
the observations (Saetra et al. 2004, Candille and Tallegrand, 2005, 2008, Bowler, 2006, 
2008, Santos and Ghelli, 2012, Koh et al. 2012, Rőpnack et al., 2013). 

Given this background, within the Ensemble Verification project there exists the opportunity to 
estimate the observation error of two of the observation sources, using well-established data 
assimilation techniques. These estimates can be applied, using an approach similar to Bowler 
(2008) wherein the forecast ensembles are perturbed with the observation error before the 
verification scores are computed. 

2. Methodology 

Two estimates of precipitation are available: a gridded raingauge analysis and a radar-rainfall 

accumulation (which has had some mean-field raingauge-based bias adjustment). Both have 

specific error characteristics. The first is based on point-based observations which have been 

interpolated onto a grid, making assumptions about what happens in between the point 

observations. The second is an estimate on a grid but it is derived or inferred from the 

observed quantity, radar reflectivity. Both have observation errors, but originating from very 

different sources. Also there is a weather model forecast for this quantity. In this instance the 

forecast can be used to constrain the differences in the observations.  

Using a method first proposed by Hollingsworth & Lönnberg (1986) for deriving observation 

error statistics in data assimilation, let a be a vector of forecast values and b and c the vectors 

of two different observation types of the same quantity: here, hourly precipitation 

accumulations. Both of these are estimates of the true observation t which is unknown.  
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Figure 1 Schematic illustrating the three-way 
pairwise comparisons, where the forecast 
constrains the difference between the 

observation types. 

First proceed by computing the pairwise 

mean squared errors (MSE) between all 

possible pairs as shown in Figure 1. If both 

observations were perfect estimates of the 

true state then a = t and b = t and E[(a - b)2] 

= 0. However this is known to be untrue, so 

by introducing t the MSE of the differences 

(or deltas) represent an estimate of the 

observation error. These are referred to here 

as x, y and z. 

 

 
For example, the MSE between a and b is: 

 x = E[ (a – b) 2 ] =  E[ ((a – t) – (b – t)) 2 ]  =  E[δa
2] + E[δb

2] - 2 E[δa δb]  (1) 

The method makes the assumption that the errors are not correlated so that the product term 
in Eq. 1 dissapears. This is a reasonable assumption to make given that the observations are 
measured and derived in very different ways, and are assumed to be much smaller than the 
deviations from the true value. The presence of zeros can break the assumption. For 
precipitation this issue is addressed by binning the values. 

Based on the pairwise MSE equations, a set of three equations with three unknowns can be 
constructed to solve for x, y, and z: 

E[δa
2] = 0.5 (x + y – z) 

E[δb
2] = 0.5 (x – y + z)  (2) 

E[δc
2] = 0.5 (– x + y – z) 

As alluded to, variables such as precipitation which are dominated by zeros need to be binned 

before the method can be applied. In this initial study 5 bins were used with a bin size 

progression which reflects the shape of the underlying distribution. For precipitation the 

lognormal distribution is often used. The bin sizes are: BIN1: [0,0.1), BIN2: [0.1,1), BIN3: [1, 

2), BIN4: [2, 4), BIN5: [4, ∞) mm/h. 

The values of x, y and z are then calculated for each of the bins to obtain an error estimate for 

a given range of precipitation values, as determined by the bin size. 

3. Initial results 

First, there is a check to consider whether the underlying distributions between the three data 

series are similar. For the forecast ensemble there are two choices. Either a single member 

(usually the control) or the ensemble mean. Table 1 shows that the bin-based distributions of 

the ensemble mean and the observations are more different from each other, whereas the 

control member seems to be closer to the observations in most of the bins. Based on this, the 

control member is used as the basis for binning as the ensemble mean is very smooth, with 

potentially larger values removed. What does the basis for binning mean? In this instance, to 

compute the pairwise MSE, the bin of the control member determines the comparison, i.e. if 

the control forecast value is in BIN1, it doesn’t matter in which bin the other value in the 

pairwise comparison is located. If it is in BIN2 or BIN3, it simply means that the MSE value will 

be higher the further away it is and contribute more to the magnitude of the error estimate for 

that bin. 
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Table 1 Summary of the proportion of hourly precipitation values per bin for two different 

forecast options and the two observation types. BIN1: [0,0.1), BIN2: [0.1,1), BIN3: [1, 2), BIN4: [2, 

4), BIN5: [4, ∞). 

 

Figure 2 shows how the MSE converges as a function of sample size, based on the control 

member at t+12h. The errors are generally bigger for the forecast (here the ensemble mean 

is shown) than for the two observation types. By increasing the sample size, the error values 

converge towards a near constant value in each bin. It is clear that the sample is too small for 

the bins 3, 4 and 5, but especially so for bins 4 and 5, though it is clear that (even with the 

small sample size) convergence towards a robust estimate is beginning to happen. It is these 

robust error estimates that are being sought. 

   
Figure 2 Convergence of MSE as a function of sample size based on the t+12h control member 

bins and applied to the ensemble mean and observation types. 

In Figure 3 the error estimates are plotted as a function of lead-time (Figure 2 was only for 

t+12h). for the three middle bins. Recall that BIN 1 contains values which are very close to 

zero and the mathematical assumption is not valid. BIN 5 was excluded as the sample size 

was just deemed to be too small at this stage. (Arguably, for BIN 4 the sample size is not 

enough.) 
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Figure 3 Error estimates as a function of lead-time for BINS 2, 3 and 4, showing that the model 

error is about 2 to 3 times the size of the observations. For the low intensity bins the radar error 

appears to be slightly larger, whereas for BIN 4 the differences between the observation types 

seems less. Numbers in green show the sample size per hour for the first day (up to t+24h). 

Figure 3 broadly reflects expectations: namely that the observation errors should not change 

with lead-time, whereas, the forecast error should. This behaviour is only really seen for BIN 

2. There is a curious discrepancy at t+1h for the two observation types, which is possibly due 

to the characteristics of the forecast which, at this lead-time, is almost entirely based on the 

STEPS nowcast, which is largely an extrapolation of radar rainfall (~80%). This could explain 

why the error estimates for the radar data are so low for t+1h. For any subsequent analysis of 

data under Phase 2 of the project and any aggregated error estimates, t+1h ought to be 

removed (this was not done here). The behaviour as a function of lead-time is still a little noisy 

due to the small sample size of just one month, but a larger sample should resolve this. 

Given the overall behaviour is as expected it allows all the hourly samples to be combined to 

increase the sample size for computing error estimates for Day 1 (for example). This is shown 

in Figure 4. On this graph, the error estimates (MSE) obtained from a combined Day 1 sample 

(made up of 24 hourly samples) are plotted against the bin mid-points. The relationship is 

approximately log-linear, so a log-linear model can be fitted to these data points to provide a 

function which can be applied to compute the effect of observation error on verification 

statistics for all possible precipitation values.  
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Figure 4 Error estimates as a function of bins (intensity) over the sample of all hourly values in 

Day 1. Green triangles show the bin mid-point and green numbers indicate the sample size. A 

log-linear fit (illustrative only) has been added to the forecast points, to illustrate how the 

relationship is applied, e.g. a radar rainfall value of 4.2 mm is associated with a 0.9 mm2 MSE.  

For each hourly time-step and for each catchment, the log-linear relationships are used to 

obtain the observation uncertainty associated with that hour’s forecast catchment-mean value 

(here based on the control). This is done separately for the radar and raingauge observations 

using their respective relationships. 

Similar to Bowler (2008), the forecast ensemble hourly catchment-mean values are perturbed 

using the observation error derived for a given observation type. This is done by first creating 

a random sample (equal to the ensemble size) from a suitable error distribution (e.g. 

Gaussian). This random sample of perturbations (of 24 values in this case) is scaled to have 

a mean of zero and a standard deviation equal to the observation error estimate. These 24 

perturbations are added to the corresponding ensemble member catchment-mean forecast 

value, capping at zero precipitation if necessary (to avoid negative values). At this stage, the 

process has yielded a modified set of 24 ensemble member catchment-mean forecast values 

which have been adjusted to account for observation uncertainty, and these can now be 

verified using the standard methods of the Ensemble Verification Framework. 

Figure 5 shows the impact of including observation uncertainty on reliability. Both radar and 

gauge results are shown for 1, 2 and 4 mm of rainfall. The blue line represents the original 

unperturbed forecasts and the red line the forecast perturbed with the observation error.  

The perturbed results show that the ensemble remains over-confident. In fact, the results look 

to be very close together, especially for low thresholds where the impact is likely to be less. 

Nevertheless, even for the lower thresholds there is a slight improvement in reliability for the 

higher probabilities, which appear to be outside the confidence intervals (which are so narrow 

they are invisible). 
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Figure 5 Illustration of impact of observation uncertainty on reliability. Day 1 results, for both 

raingauges and radar and using three thresholds, are shown for winter over England & Wales. 

For the 4 mm/h threshold, the sample size is too small, as indicated by the drop-off in the 

larger probabilities. This is especially evident in the raingauge results. Differences in reliability 

between the perturbed and unperturbed forecasts appear larger but this could be due to the 

small sample size and subsequent random sampling. Confidence intervals are so narrow that 

they are invisible for the lower thresholds but for the 4 mm/h threshold there is more tangible 

evidence that the original forecast reliability based on the radar data lies outside the spread of 

the perturbed forecast for the larger probabilities. However, it is unwise to read too much into 

this given that, overall, the sample is too small to be robust. 

4. Future work 

The Phase 1 dataset sample, which consisted of only one month of forecasts, is too small to 

draw any definitive conclusions other than to say that there is an impact and the error 

estimates are definitely non-negligible. So, it can be concluded that observation uncertainty 

will have an impact and some estimate of observation uncertainty should be included in any 

future ensemble verification framework. This will be especially important for larger thresholds, 

which are of greater interest for hydrological applications. It is planned to repeat what has 

been described in this report using the larger Phase 2 dataset, although it remains to be seen 

whether a sample of 12 months will be sufficient to extend the range of thresholds beyond 4 

mm/h. 
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Rainfall and River Flow Ensemble Verification: Phase 2 

Fifteen-minute precipitation verification results and future plans 
Final Report Appendix B.4 
 
1. Summary 

Whilst it is true that G2G is driven by 15-min precipitation accumulations and it is at some level 

important to check that the 15-min accumulations have some accuracy and skill, the true utility 

of the precipitation forecasts in a flood forecasting context is not in the 15-min accumulations 

(because they tend to be small). River-based flooding is the result of consecutive 15-min 

accumulations which lead to a flood response. In this instance, the previously analysed hourly 

and daily accumulations are far more useful to gain an understanding of shorter- and longer-

duration event totals and compare to the river response. There is some utility of the precisely 

matched 15-min results for Day 1, where forecast errors are not as dominated by timing errors. 

2. Results in brief 

Figure 1 shows “Figure 5.29” of the Phase 1 Report augmented with the 15-min results for 

Day 1. It shows a slight broadening of the scatter of the precipitation scores for the 15-min 

accumulations. All precipitation scores remain positive (i.e. skilful though a score of near-zero 

is marginal). It is worth pointing out that there is a fundamental mismatch between how the 

scores were derived. Apart from the CRPSS shown here, for river flow the scores have always 

been derived as “events”, searching for exceedances in all lead times for Day 1, for example, 

rather than a precise matching, as is the case for the precipitation.  

 

Figure 1 Comparison of CRPSS between precipitation and river flow for Day 1. Note that 

the river-flow scores between “Daily”, “Hourly” and “15-min” are all 15-min scores.  
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Figure 2 is an extension from what was done in the Phase 1 Report, showing the results for 

all lead-time horizons. The decrease in both river flow and precipitation scores with lead-time 

is clear, though the reduction in scores for precipitation is much stronger, especially for 

England. This is probably linked to the study period used. By Day 4-6 very few catchments 

show any positive precipitation skill whilst a fair proportion of river flow forecasts still have 

positive scores. 

 

Figure 2  As Figure 1, but showing 15-min precipitation and river flow scores only, for 

three lead-time horizons Day 1, Day 2-3 and Day 4-6. 

So, whilst Phase 2 planned to undertake more work on the precisely matched 15-min 

accumulations for the dataset used in Phase I, an inspection of the results obtained thus far 

corroborates the view above. Figure 3 compares the verification measures - ROC Diagram, 

Reliability Diagram, Rank Histogram, and map of Brier Skill Score (BSS) - for Day 1 with daily, 

hourly and 15-min precipitation accumulations against raingauge data for England & Wales. 

Even for Day 1, the measures are slightly worse for 15-min than hourly precipitation 

accumulations.  

Figure 3 shows that Area under the ROC Curve is systematically reduced as the accumulation 

window decreases. The Reliability between daily and hourly is broadly similar but for the 15-

min results there is a sampling problem for the largest probabilities. In terms of the Rank 

Histogram the hourly and 15-min ones are very similar: therefore the hourly version provides 

the information needed with the 15-min version not adding further to this. In terms of the BSS, 

the proportion of poor scores (red) increases with decreasing accumulation window.  
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Figure 3  Selection of plots (ROC Diagram, Reliability Diagram, Rank Histogram, and 

map of BSS) of Day 1 aggregated results for England & Wales in the winter period 

calculated using the 95th percentile threshold with verification against raingauge data. 

Figure 4 shows only the 15-min results for Scotland in winter as a function of lead-time. 

Potential skill, as defined by the Area under the ROC Curve, is not high to begin with, but 

degrades to very low levels when using precisely matched time-windows. The Reliability also 

is also not high, even on Day 1, with further degradation for later days. There is also a 

systematic degradation of the Brier Skill Scores (BSS) beyond Day 1, with scores 

predominantly poor (and many catchments having negative scores, i.e. worse than the sample 

climatology). All this can, at least in part, be attributed to the shortness of the time-window, 

and the increasing likelihood of timing errors and mismatches in the precisely matched 

forecast-observed pairs. None of these results represent the practical utility (other than in 

driving G2G) of the precipitation forecast. Additionally, it is worth bearing in mind that at longer 

lead-times the hourly totals are split into four equal parts to represent 15-min accumulations.  
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Figure 4  Selection of plots (ROC Diagram, Reliability Diagram, Rank Histogram, and 

map of BSS) of aggregated results for Scotland in the winter period calculated using 

the 95th percentile threshold, 15-min accumulations, with verification against raingauge 

data.  

The results would suggest that the G2G forecasts seem to be relatively insensitive to the lack 

of accuracy and skill of the 15-min precipitation accumulations. As in Figures 1 and 2, CRPSS 

values are predominantly positive for most catchments despite the apparent lack of skill in the 

15-min precipitation. This is potentially useful information and encouraging. The outcomes of 

this verification project should not be judged on only a precise-matching approach for 15-min 

precipitation accumulations. Therefore, the results produced under Phase 1 - focusing on daily 

and hourly totals - are emerging as being far more appropriate and sufficient for evaluating 

precipitation forecast utility (having seen and analysed the 15-min results). Monitoring 15-min 

results for Day 1 (before other elements of the forecast error dominate) is perhaps still useful 

to ensure that these behave similarly to the hourly accumulation results. 

3. Recommendation 

Going forward, any future analysis work involving identifying events within specified time-

windows needs to be aligned to match what is being done for river flow. This will be expected 

to show more utility of the precipitation forecast. The analyses might consider using physical 
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rather than percentile thresholds (especially given the additional data under Phase 2) for daily 

and hourly totals.  

It is still unclear whether the analysis of 15-min precipitation accumulations in a case study 

event-based framework will yield anything useful, given that very few 15-min accumulations 

are that extreme. Time permitting, some of the cases in the Phase 1 dataset might be revisited, 

but generally the focus (going forward) will be on the Phase 2 study period. For longer 

verification periods, the focus will be on daily and hourly precipitation accumulations, and 

taking into account the precipitation timing uncertainty within the forecast horizon as is done 

for river flow.  
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Rainfall and River Flow Ensemble Verification: Phase 2  
Comparison of G2G river flows using different rainfall sources as input 

Final Report Appendix B.5.1 

 

1 Background 

The joint Met Office and Environment Agency (EA) project on merging of radar and raingauge data (Project 

SC100004: Radar Rainfall Merging)) was carried out over the period 2011 to 2016 with the main results 

published in Jewell and Gaussiat (2015). This reported on a comparison of different merging methods, 

using raingauge data as a reference “ground truth”, and identified a Kriging with External Drift (KED) 

method as the preferred approach for operational implementation. Subsequently, two products were 

made available (from 29 February 2016) to the EA for trial - Merged 1h and Merged 24 h - with receipt 

delays of 1 h and 24h, the Merged 24 h utilising more raingauges and quality control. Both products 

provide 1 km 15 minute precipitation accumulations over an England & Wales domain. 

The EA recognised that the assessments of the new merged rainfall products to date had been referenced 

to raingauge data. Further trials were needed when using the merged rainfall as input to the hydrological 

models supporting flood warning and guidance. It was important to gain experience of using the merged 

rainfalls as input to hydrological models, such as the PDM catchment rainfall-runoff model used in local 

river network models and the G2G distributed model applied nationally. The opportunity to assess use of 

the merged rainfalls as input to G2G could be achieved efficiently through including the work in Phase 2 

of the “Rainfall and River Flow Ensemble Verification” project. It also aligned to interest within the project 

on how the rainfall source (radar, raingauge, merged) impacted on the verification of ensemble rainfalls. 

This assessment is reported on here with the aim of providing the EA (along with NRW, SEPA and FFC) 

with evidence of benefits and/or issues with using the new merged rainfalls as input to flood forecasting 

models.  

2 Purpose and approach 

The aim here is to compare the effect on G2G modelled river flows of using different observation sources 

of rainfall. Four different rainfall sources are compared. 

1. Gauge. Raingauge data (from the EA and NRW raingauge networks over England and Wales) 
gridded by multiquadric interpolation with zero offset. This rainfall source is currently used for 
maintaining G2G states.  

2. Radar. Radar rainfall data from the Met Office RadarNet system. 

3.  Merged 1h. Radar rainfall data from the Met Office RadarNet data merged with raingauge data 

from a Met Office network using a Kriging with External Drift (KED) method (Jewell and Gaussiat, 

2015). Available with a 1 hour delay in real-time. 

4.  Merged 24h. As 3. above, but available with a 24 hour delay in real time, allowing more raingauge 

data to be included and with better quality-control procedures applied. 
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All four rainfall sources are available as 15 minute accumulations on a 1km grid covering England & Wales. 

The first two rainfall sources were compared from a rainfall perspective in Phase 1 of the “Rainfall and 

River Flow Ensemble Verification” project. To focus on the effect of the different rainfall sources, G2G 

was run in simulation-mode (that is, no state updating or flow insertion was used). Comparisons were 

limited to England & Wales where the merged product has coverage.   

 

Initially, G2G simulations were made over the period 1 March 2016 to 31 March 2017. This period was 

selected to allow analysis of a full year of river flows when rainfall data from all four sources were 

available. To allow spin-up from the raingauge-data maintained G2G initial conditions, the first month of 

the simulations were not analysed, so the results reported on here are for the year 1 April 2016 to 31 

March 2017. These results are presented in Section 3, with Figures included at the end of this document.  

As more-recent data up to September 2018 became available later in the project, the above analysis was 

completed for the additional periods: 

 

1 April 2016 to 31 March 2017 (using the most-recent observed river flow and raingauge data) 

1 September 2017 to 31 August 2018 (Phase 2 12-month verification period “Year 2”) 

1 October 2016 to 30 September 2018 (two full water years) 

1 April 2016 to 30 September 2018 (full period of data available for comparison) 

 

The results from these periods are available in separate .pdf documents of the form  

  Compare_rainfall_source_YYYYMMtoYYYYMM_731sites.pdf 

where YYYYMM is the start month of the verification period, and YYYYMM the end month of the 

verification period. These documents are contained in Final report Appendix B.5.2..  

 

Results are computed for 731 of the 898 operational G2G gauged catchments in England & Wales where 

observed river flows are suitable for verification of the current G2G configuration. To test the effect of 

this reduction in catchments, results are also included for the 1 April 2016 to 31 March 2017 period using 

the originally-available observed river flow and raingauge data, but using the reduced number of 

catchments. Section 4 provides a discussion of these additional results and compares and contrasts with 

those presented in Section 3. 

 

3 Initial G2G simulations for the period 1 March 2016 to 31 March 2017 

3.1  Effect on the river flow hydrograph: goodness-of-fit measures 

The G2G river flow simulations are compared first using the three goodness-of-fit measures: absolute 

relative Bias, Correlation, and R2 Efficiency. These measures were chosen to analyse the effect of the 

different rainfall sources on the full flow hydrograph. They give an overview of the overall differences 

between the four hydrograph simulations, without focussing on the crossing of particular river flow 

thresholds. These statistics were calculated by comparing, at 15-minute intervals, the instantaneous river 

flows from G2G with observed river flows. 

Box Plots of the Bias, Correlation, and R2 Efficiency are shown in Figure 1, with bars grouped by region of 

England and Wales (NE: North East, NW: North West, MI: Midlands, AN: Anglia, TH: Thames, SO: Southern, 



 

3 of 20 
 

SW: South West, WA: Wales), and lastly for all sites in England & Wales. Overall, the G2G flow simulations 

with Raingauge data as input perform best, with nearer-zero bias values, and higher values of Correlation 

and R2. Analysis of the hydrographs for individual catchments (e.g. Blackwater (SO) at Ower (042014) and 

Roch at Albert Royds Bridge (690207)) showed that this is related to spurious peaks in the Radar data that 

are not removed in the merging process. Overall, the merged products show slight improvement over 

using only the Radar data, with the Merged 24h product outperforming the Merged 1h. However, this is 

not the case for all regions: for example, Midlands and Southern have higher values of Bias for the Merged 

24h product. Of course, these differences at the regional scale are small and based on a smaller sample 

of sites: it will be interesting to see if similar results are obtained when analysing simulations for the 2017-

18 period (Section 4). 

3.2 Effect on upward crossing of flow thresholds: Categorical Skill Scores 

To analyse how the different rainfall sources affect the ability of G2G to capture upward crossings of a 

selected flow threshold (aligned to how flood warnings might be triggered, or severity assessed for flood 

guidance), three Categorical Skill Scores based on the Contingency Table are considered. The Probability 

of Detection, POD, measures the proportion of observed events that were correctly forecast. The False 

Alarm Rate, F, measures the proportion of non-events that were incorrectly forecast as occurring (False 

Alarms). The Critical Success Index, CSI, measures the proportion of all events (forecast or observed) that 

were correctly forecast (Hits). CSI can be seen as combining the POD and F scores, and is included to give 

an overall measure of success with regard to forecasting “threshold events”.  

 

To focus on daily and hourly periods, an “event” is defined as an upward crossing of a river flow threshold 

occurring anywhere within a time window of either 1 hour (4 time-steps) or 1 day (96 time-steps). These 

windows were applied at each 15-minute time-step in the G2G simulations and the observed river flows. 

The windows were symmetric about the time-step in question. Given the year-long period analysed, edge 

effects were not considered to have an impact on the overall conclusions: shorter windows were used in 

the first and last days of the simulations. 

Overall, the number of Hits was found to be much smaller when a 1-hour time window was used, resulting 

in POD and CSI values being calculated for only a small number of sites. Specifically 64 sites over England 

& Wales for the Q(2)/2 threshold (Q(T) signifies the flow Q having a return period of T years) . This sample 

was not considered to be sufficiently large to give meaningful results. Although F values were calculated 

at more sites, these values are all very close to zero due to the lack of observed events, and are not useful 

to analyse further. Thus, POD, F, and CSI results are only presented here for the 1-day window. These 

measures were calculated for the river flow thresholds Q(2)/2, Q(2) and Q(5). However, due to the small 

sample size found at Q(5) (less than 50 sites with non-zero POD over England & Wales), differences 

between the simulations are not considered robust at this threshold and are not presented here. 

The number of sites where scores can be calculated depends on the number of observed and forecast 

events and thus varies between the different G2G simulations. Two possible approaches are considered 

for combining the results of multiple sites when looking at the performance regionally or nationally. 

Method 1. Only including sites where the score is non-zero for all four simulations. This is fair in the 

sense that the same number of sites are compared for a given region. 
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Method 2. Considering sites where the scores were non-zero calculated separately for each of the 

four simulations. Although this results in different numbers of sites being compared, it ensures that 

all False Alarms or Hits are accounted for. For example, if one rainfall source gives a non-zero 

number of Hits (performs better), or gives a non-zero number of False Alarms (performs worse) 

these will be captured in the statistics. 

All results combining multiple sites were calculated using both these methods. 

Results including only sites with non-zero scores for all sites (Method 1) are shown in Figures 2 and 3 for 

the Q(2)/2 and Q(2) thresholds respectively. At the Q(2)/2 threshold the Gauge simulation has lower 

(worse) POD scores than the other simulations which include the use of radar data. This makes sense as 

the multiquadric raingauge interpolation will not capture small localised peaks in the rainfall pattern for 

spatial scales smaller than the distance between raingauges. These peaks are expected to be better-

detected by the radar data. The opposite performance is seen for the F scores, with lower (better) F scores 

for the Gauge simulations. Agreeing with the Bias, Correlation and R2 statistics (Figure 1) there are an 

increased number of spurious peaks when rainfall sources that include radar data are used. The number 

of these False Alarms is not noticeably reduced by merging the radar and raingauge data. Overall, the 

Gauge simulation does better as shown by higher CSI scores, although these differences are generally 

small, balancing the effects of fewer Hits and fewer False Alarms. Overall, little difference is seen between 

the Merged 1h and Merged 24h products, although regional differences exist (with the 24h performing 

both better or worse depending on the region). For this analysis period, regions to the north and west of 

England, and Wales tend to benefit from the 24h delay, with regions to the south and east performing 

worse. However, these differences are small and based on a limited sample. (It will be interesting to see 

whether similar results are found for the 2017-18 period.) .Of course, in an operational setting, the 1h 

delay product would be used. The analysis here suggests that this will not significantly affect the overall 

quality of G2G performance compared to the 24h delay product. 

For the Q(2) (median flood) threshold (Figure 3) the F and CSI results are similar to those obtained for the 

Q(2)/2 threshold. However, the poorer performance for the Gauge simulation at the Q(2)/2 threshold is 

not seen here: at the Q(2) threshold, F values are similar overall across the four rainfall sources. 

This is somewhat unexpected, but suggests that the predominantly longer-duration, larger-area 

precipitation leading to the higher threshold exceedances is being better captured by the raingauge 

interpolation than the lower precipitation peaks. However, it is also possible that these differences are 

related to the small sample size used at the Q(2) threshold with POD scores only calculated for 93 

catchments over England & Wales. This will be tested when analysis has been completed for the 2017-18 

period. 

Similar conclusions can be drawn from Box Plots when including sites with non-zero scores for each rainfall 

source separately (Method 2, Figures 4 and 5), although some subtle differences are seen, particularly in 

the south and east of England. It is interesting that the number of catchments included in this Method 2 

approach is much larger for all simulations than used for Method 1 when all simulations are required to 

have non-zero scores (e.g. a minimum of 482 sites for the POD in Figure 4, but only 382 sites for the POD 

in Figure 2). Thus, zero-scores (resulting from no Hits, or no False Alarms at a given site) are often found 

at different catchments for the each rainfall source. 
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Although the Box Plots give a useful overview of the performance across multiple catchments, it is also 

informative to look at maps of the individual catchment scores. Maps of the POD and F scores for the 

Q(2)/2 threshold are shown in Figures 6 and 7. For ease of comparison, Figure 8 shows the difference in 

POD and F scores between Gauge and those from Radar and Merged simulations of G2G. Overall, the 

maps are consistent with the Box Plot analysis presented above. In particular, it can be seen that the 

overall spatial pattern of performance is similar between the different rainfall sources. Looking at the 

detail, it can be seen that the improvement in POD seen between the Gauge and Radar simulations is 

predominantly for sites with poor-performance. In contrast, when moving from the Merged 1h to Merged 

24h, it tends to be the good sites which are improved. From the maps of F and their associated differences 

(Figure 7, lower panel 8) it can be seen that the Radar, Merged 1h and Merged 24h products have an 

increased number of poor (high) F scores in the north-west and south of England. This is particularly seen 

for small catchments which will be more sensitive to spurious peaks in the radar data. 

Maps of the CSI (Figure 9) show the Gauge source performing better in well performing (shown in green) 

small catchments to the north of England and along the Pennines. Interestingly, the catchments in these 

areas with poorer performance are better captured using the radar and merged rainfall as input to G2G. 

This is consistent with the improvement in POD between Gauge and Radar simulations being seen for the 

catchments with poorer performance, and the better F scores for simulations using the Gauge source as 

input being seen for the smaller catchments. Future work on verification for the 2017-18 period, including 

case-study analysis will investigate these catchment-specific differences further. 

Figures 10, 11 and 12 show the equivalent maps to Figures 6, 7 and 8, but for the Q(2) threshold. These 
maps visually highlight the small sample size used for the Q(2) analysis, and reinforce why differences in 
the Box Plots at this threshold (Figure 3) should be interpreted with this in mind. 

3.3 Conclusions for initial analysis of period 1 April 2016 to 31 March 2017 

G2G flows in simulation-mode, using four rainfall sources as alternative inputs - Gauge, Radar, Merged 

1h, Merged 24h - have been compared for the one-year period 1 April 2016 to 31 March 2017. The key 

conclusions resulting from the comparison are summarised below. 

• Better performance was seen overall when G2G employed Gauge rainfall as input. This was seen 

when analysing the Bias, Correlation and R2 Efficiency statistics, and also the CSI categorical skill 

score. 

• Better Probability Of Detection (POD) scores were often seen for the Radar and Merged 

simulations, particularly at the Q(2)/2 threshold. 

• Better False Alarm Rate (F) scores were often seen for the Gauge simulations. This was particularly 

seen over smaller catchments to the northwest and south of England, and was linked to spurious 

high-precipitation values in the radar data. 

• Sample size remains an important consideration, even when a full year of G2G river flows are 

evaluated in simulation-mode. This is particularly true for thresholds of Q(2) and above. To obtain 

a meaningful number of scores, even at the Q(2)/2 threshold, a moving time-window of 1 day (96 

time-steps) was applied to both the observed and simulated river flows, with any upward crossing 

of a flow threshold within this window counting as an observed or forecast event. 
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• Spurious peaks in the radar data can make the merged rainfalls less robust, and a problem for 

hydrological use. The cause(s) need to be diagnosed and rectified. One possible source is in the 

mean field bias adjustment of the radar data: this can introduce transient errors that are not 

sufficiently suppressed by the radar-raingauge merging process. 

4 G2G simulations for additional verification periods 

4.1 Updated observed river flows, updated raingauge data and a reduced number of sites 

Overall, reducing the number of catchments considered, or changing the version of the observed river 

flow and raingauge data, has little impact on the goodness-of-fit measures (Figure 1). Although slight 

differences can be seen in the position of outlier catchments, or the exact positioning of the across-

catchment median, the relative performance of the different rainfall types remains unchanged and the 

overall conclusions from the initial analysis period still hold. Differences in the categorical skill scores 

(Figures 2 to 13) are slightly more noticeable, but again the overall conclusions from the original analysis 

still hold. When higher thresholds are used (e.g. QMED, Figures 3 and 5) the sample size is smaller so there 

is more sensitivity to individual catchments and threshold crossings. Thus, as the threshold increases, the 

exact details of the categorical skill score values vary more with small changes to the underlying data and 

catchments considered. When considering individual site performance maps (e.g. Figures 6 to 13), the 

effect of reducing the number of catchments considered from 898 to 730 is noticeable, particularly for 

the higher thresholds where sample sizes are small. Although the two sets of maps are not contradictory, 

it is difficult to draw conclusions about the spatial distribution of performance when a large number of 

catchments, particularly in the south-eastern regions of England, are not included. Thus, the discussion 

below comparing the performance over different verification periods does not include the single-site 

maps. For completeness, all maps are still included in the plot documents.  

4.2 More recent 12-month verification period 1 September 2017 to 31 August 2018 

Comparing the two sets of 12-month results (2016-2017 and 2017-2018), a similar pattern overall is seen 

for the goodness-of-fit measures, particularly for the Correlation. However, there are also some 

noticeable differences. In particular, both the merged products show differences in the Bias, with results 

for the most recent period tending to have Bias values closer to those seen for the Raingauge data, 

whereas those for the initial period tended to be closer to the Radar values. This suggests that 

improvements to the merging algorithm are giving more weight to the Raingauge data in terms of 

absolute Bias (noting that the Raingauge data generally has lower-magnitude biases than the Radar data). 

Differences between the R2 values for the different rainfall-types are negligible, although all R2 values are 

generally slightly higher for the more recent period, particularly over the Midlands and Anglian regions.  

4.3 Longer verification periods 1 October 2016 to 30 September 2018 and 1 April 2016 to 30 

September 2018  

As expected, the results from the two longer periods – for two water years and the full period of 

comparison - fall somewhere in between those for the separate two-year periods. For the Q(2) threshold, 

the improvement in sampling uncertainty is clear for the categorical skill scores, with less (noisy) variation 

seen between different regions, and more consistent differences seen between the rainfall-types. In 

general, differences between the rainfall-types were more noticeable for the higher Q(2) threshold, with 

the overall CSI measure showing that G2G performs best with Raingauge data as input, followed by the 

24h delay merged data, 1h delay merged data, and then the Radar data.  
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5 Conclusions 

Overall, the conclusions previously set down - in Section 3.3 for the 1 April 2016 to 31 March 2017 

verification period - are found to still hold for other more recent verification periods, and when a longer 

2-year verification period is used.  

Three additional conclusions can be made. 

 Reducing the number of catchments considered (e.g. from 898 to 730) makes it harder to discern 

spatial patterns at the catchment-scale, especially if the selected catchments are unevenly 

distributed.  

 

 The merged products perform better for more-recent periods (e.g. 1 September 2017 to 31 

August 2018). In particular, the Bias in G2G simulated river flows is improved for the more recent 

verification period, and lies closer to that seen when Raingauge data are used as input, in contrast 

with earlier periods where the Bias is more-similar to that when Radar data are used as input.  

 

 Considering a longer 2-year verification period gives clearer, less-noisy results for higher 

thresholds, with more consistency both across regions and with the Q(2)/2 threshold results. This 

is due to a reduction in the sampling uncertainty.  
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FIgure 1 Box Plots comparing the performance of G2G river flow simulations using different observed 

precipitation sources as input. The Bias (top), Correlation (middle), and R2 Efficiency (bottom) 

goodness-of-fit statistics are shown. Bars are for each grouping of catchments considered: 

each region in England, for Wales, and for all catchments in England & Wales. Each set of bars 

contains (from left to right) results for G2G simulations using Gauge, Radar, Merged 1h and 

Merged 24h observed precipitation data as input. Each bar shows the median (solid line) and 

interquartile range (coloured box) of the distribution of statistics over the set of catchments. 

Dashed lines extend to 1.5 times the interquartile range from the box, and indicate the typical 

range of the data. Outlying points are shown by black dots. 
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Figure 2 Box Plots comparing the performance scores (POD, F, CSI) of G2G river flow simulations - using 

different observed precipitation sources as input - for the Q(2)/2 threshold and 24h moving 

window. Bars are for each grouping of catchments considered: each region in England, for 

Wales, and for all catchments in England & Wales. Each set of bars contains (from left to right) 

results for G2G simulations using Gauge, Radar, Merged 1h and Merged 24h observed 

precipitation data as input. Each bar shows the median (solid line) and interquartile range 

(coloured box) of the distribution of scores over the group of catchments. Only catchments 

with non-zero scores for all precipitation sources (Method 1) are included (the number of 

catchments is indicated beneath the bars). Dashed lines extend to 1.5 times the interquartile 

range from the box, and indicate the typical range of the data. Outlying points are shown by 

black dots. 
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Figure 3 Box Plots comparing the performance scores (POD, F, CSI) of G2G river flow simulations - using 

different observed precipitation sources as input - for the Q(2) threshold and a 24h moving 

window. Bars are for each grouping of catchments considered: each region in England, for 

Wales, and for all catchments in England & Wales. Each set of bars contains (from left to right) 

results for G2G flow simulations using Gauge, Radar, Merged 1h and Merged 24h observed 

precipitation data as input. Each bar shows the median (solid line) and interquartile range 

(coloured box) of the distribution of scores over the group of catchments. Only catchments with 

non-zero scores for all precipitation sources (Method 1) are included (the number of catchments 

is indicated beneath the bars). Dashed lines extend to 1.5 times the interquartile range from 

the box, and indicate the typical range of the data. Outlying points are shown by black dots. 
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Figure 4 Box Plots comparing the performance scores (POD, F, CSI) of G2G river flow simulations - using 

different observed precipitation sources as input - for the Q(2)/2 threshold and a 24h moving 

window. Bars are for each grouping of catchments considered: each region in England, for 

Wales, and for all catchments in England & Wales. Each set of bars contains (from left to right) 

results for G2G simulations using Gauge, Radar, Merged 1h and Merged 24h observed 

precipitation data as input. Each bar shows the median (solid line) and interquartile range 

(coloured box) of the distribution of scores over the set of catchments. Catchments with non-

zero scores for each precipitation source (Method 2) are included (the number of catchments 

included is indicated beneath the bars). Dashed lines extend to 1.5 times the interquartile 

range from the box, and indicate the typical range of the data. Outlying points are shown by 

black dots. 
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Figure 5 Box Plots comparing the performance of G2G river flow simulations - using different observed 

precipitation sources as input - for the Q(2) threshold and a 24h moving window. Bars are for 

each grouping of catchments considered: each region in England, for Wales, and for all 

catchments in England & Wales. Each set of bars contains (from left to right) results for G2G 

simulations using Gauge, Radar, Merged 1h and Merged 24h observed precipitation data as 

input. Each bar shows the median (solid line) and interquartile range (coloured box) of the 

distribution of scores over a grouping of catchments. Catchments with non-zero scores for 

each precipitation source are included - the number of catchments included is indicated 

beneath the bars. Dashed lines extend to 1.5 times the interquartile range from the box, and 

indicate the typical range of the data. Outlying points are shown by black dots. 
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Figure 6 Maps of POD scores calculated for the Q(2)/2 threshold and a 24h moving window. POD scores 

are shown from red with no outline (poor) to green with outline (good) for the G2G river flow 

simulations using Gauge, Radar, Merged 1h and Merged 24h precipitation data as input. 
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Figure 7 Maps of F scores calculated for the Q(2)/2 threshold and a 24h moving window. F scores are 

shown from red with no outline (poor) to green with outline (good) for the G2G river flow 

simulations using Gauge, Radar, Merged 1h and Merged 24h precipitation data as input. 
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Figure 8 Maps of the difference in POD and F scores calculated for the Q(2)/2 threshold and a 24h 

moving window. Gauge-Radar (left), Gauge-Merged 1h (middle) and Gauge-Merged 24h 

(right). Purple colours show Gauge performing better, orange colours show Gauge performing 

worse. 
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Figure 9 Maps of CSI scores calculated for the Q(2)/2 threshold and a 24h moving window. CSI scores 

are shown from red with no outline (poor) to green with outline (good) for the G2G river flow 

simulations using Gauge, Radar, Merged 1h and Merged 24h precipitation data as input.
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Figure 10 Maps of POD scores calculated for the Q(2) threshold and a 24h moving window. POD scores 

are shown from red with no outline (poor) to green with outline (good) for the G2G river flow 

simulations using Gauge, Radar, Merged 1h and Merged 24h precipitation data as input. 
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Figure 11 Maps of F scores calculated for the Q(2) threshold and a 24h moving window. F scores are 

shown from red with no outline (poor) to green with outline (good) for the G2G river flow 

simulations using Gauge, Radar, Merged 1h and Merged 24h precipitation data as input. 
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Figure 12 Maps of the difference in POD and F scores calculated for the Q(2) threshold and a 24h moving 

window. Gauge-Radar (left), Gauge-Merged 1h (middle) and Gauge-Merged 24h (right). 

Purple colours show Gauge performing better, orange colours show Gauge performing 

worse. 
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Figure 13 Maps of CSI scores calculated for the Q(2) threshold and a 24h moving window. CSI scores are 

shown from red with no outline (poor) to green with outline (good) for the G2G river flow 

simulations using Gauge, Radar, Merged 1h and Merged 24h precipitation data as input. 
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Rainfall and River Flow Ensemble Verification: Phase 2 

Evaluation and comparison of December 2015 case study storms 
Final Report Appendix C.1 
 

1. Introduction 

For each of the case study storms - Desmond, Eva and Frank - an informal assessment of the evolution 

of the precipitation ensemble forecasts is first carried out by comparing the catchment-mean 

precipitation accumulations from the ensemble members with those from raingauges. This is 

consistent with the approach followed in Phase 1. Catchment-mean precipitation accumulations from 

radar rainfall are also considered. Under Phase 2, the assessment is extended to include comparison 

of the 99th percentile in-catchment values for each ensemble member with those from radar and 

raingauges, to consider the efficacy of using catchment-mean precipitation for ensemble verification. 

For all plots featuring in this assessment, the y-axes are capped at 20 mm for the catchment-mean 

precipitation and at 40 mm for the 99th percentile in-catchment values to help with the comparison. 

Throughout, the observed precipitation time-series are in blue and the ensemble members in grey. 

Each panel represents a 7-day forecast, with forecasts issued at six-hourly intervals at 01:00, 07:00, 

13:00 and 19:00, covering the period of interest (and subject to forecast availability). 

In the following sections all precipitation “events” or episodes are discussed with respect to the first 

time-series plot (depicting the first forecast in the series), plotted in the top left panel. 

For each case study, the precipitation time-series are visually compared with the river flow 

hydrographs for each forecast issued. These hydrographs were presented in Section 7 of the Phase 1 

Report but are included here to provide a self-contained comparison. 

 

2. Case study catchments  

The case study catchments are those considered In the Phase 1 Report (Section 6.1.2) and summarised 

in Table 1 and mapped in Figure 1.  

Table 1 Catchments used for individual site analysis 

Catchment name G2G ID G2G catchment area (km2) Region 

Eden at Sheepmount  765512 2274 North West England 

Lune at Caton  724629 984 North West England 

Dee at Park  234291 1834 North East Scotland 

Dee at Polhollick 234294 691 North East Scotland 

Dee at Mar Lodge 234274 289 North East Scotland 
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Figure 1 Location maps for catchments used for individual site analysis. Top left: Eden at 

Sheepmount (green) and Lune at Caton (brown) from the North West England region; 

top right: Dee at Park (green, brown and blue), Polhollick (brown and blue) and Mar 

Lodge (blue) from the North East Scotland region. Grey shading shows all G2G 

catchments within a given region. Raingauges are shown by blue triangles, river gauges 

by red squares. 

Two catchments from different river basins in the North West region of England are selected to 

represent catchments with many threshold crossings during the winter period. Considering 

catchments from different river basins, but with results from a similar pool of sites, allows the effects 

of pooling to be demonstrated. Salient points for the two catchments selected are noted below.  

Eden at Sheepmount (G2GID 765512). High flows, 2274 km2 catchment. Greater than 200-year 

return period event with record peak flow on 6 December 2015 (Storm Desmond) and with 

mean flow for period Nov 2015 to Jan 2016 being 232% of long-term average flow (Barker et 

al., 2016). Moderate to high solid geology permeability in the valley, with low permeability in 

the western headwater areas (the Lake District), and low superficial deposit permeability. This 

catchment is mainly natural, but contains the towns of Carlisle and Penrith. Reservoirs control 

around 2% of the catchment (NRFA). 

Lune at Caton (G2GID 724629). High flows, 984 km2 catchment. 100 to 200 year return period 

event with record peak flow on 5 December 2015 (Storm Desmond). Moderate to high solid 

geology permeability with headwaters in the Pennines and Shap Fell, and low superficial deposit 

permeability (where present). Note that this site contains some artificial influences (notably 

reservoirs for public water supply). 

Three nested catchments from the Dee (Grampian) basin in the North East Scotland region are 

selected which experience Q(5) threshold exceedances for all three storms Desmond, post Storm Eva 

and Frank. All three catchments are natural to within 10% at the 95th percentile flow (NRFA). Overall, 

G2G performs reasonably with better performance seen for the larger, downstream, catchments. All 

three catchments have low solid geology permeability, and where there are superficial deposits their 

permeability is also low. Notes on the three catchments follow.  

Dee at Park (G2GID 234291). 1834 km2 (3rd largest) catchment in the North East Scotland region. 

Greater than 200-year return period event with record peak flow on 30 December 2015 (Storm 

Frank), mean flows Nov 2015 - Jan 2016 are 236% of long-term average flow (Barker et al., 

2016). Low solid and superficial deposit permeability.  
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Dee at Polhollick (G2GID 234294). 691 km2 catchment, upstream of Park in the middle reaches of 

the River Dee (Grampian). Upland catchment with mountainous headwaters, snow-covered in 

winter. This river gauging station is just upstream of Ballater, which was badly flooded around 

the end of December 2015 (Storm Frank). 

Dee at Mar Lodge (G2GID 234274). 289 km2 headwater catchment, upstream of Polhollick. 

Catchment rainfall may be significantly underestimated (NRFA). 

 

3. Case Study 1: Storm Desmond 

Figure 2 sets the scene for this period of unusually wet weather over large parts of the UK, showing 

the daily radar-rainfall maps for each day (00:00 to 00:00) from 31 October to 6 December 2015. 

00Z 31 Nov – 00Z 1 Dec 00Z 1 Dec – 00Z 2 Dec 00Z 2 Dec – 00Z 3 Dec 00Z 3 Dec – 00Z 4 Dec 

    
00Z 4 Dec – 00Z 5 Dec 00Z 5 Dec – 00Z 6 Dec 00Z 6 Dec – 00Z 7 Dec  

   

 

 
 

Figure 2 Sequence of daily radar-rainfall accumulations (mm) over the period 31 Nov to 6 Dec 2015 

Figure 3 covers all the forecasts issued between 07:00 30 November and 01:00 6 December 2015 and 

compares the catchment-mean precipitation of the ensemble and the raingauges for the River Eden 

at Sheepmount (765512). The first panel shows that the raingauge time-series has five distinct 

precipitation “events” or episodes. Events 1 and 2 are well captured in the first forecast (07:00 30 

November), whilst events 3 and 4 are merged into one in the ensemble which spans the period 

between the observed precipitation events. Event 5 is again well captured. Catchment-mean 

precipitation totals for the ensemble are comparable to those from raingauges for events 1 and 2 but 

for the other events the ensemble gives around twice those observed. The timing mismatch for the 

third and fourth observed peaks persists for several forecast cycles. Forecasts of the fifth peak are 

generally good from the first forecast onwards, especially in terms of timing.  
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Figure 3 Time-series of catchment-mean precipitation for the ensemble members (grey) are 

compared to those from raingauges (blue). River Eden at Sheepmount for Storm Desmond.  

The range of catchment-mean totals across ensemble members tightens with decreasing forecast 

lead-time and generally those from raingauges are encompassed by the ensemble spread.  

For the entire event, the catchment-mean rainfall accumulations from the raingauges are generally 

higher than those from radar (not shown) with raingauge estimates tracking closer to the upper 

boundary of the ensemble values and the radar-rainfall estimates to the lower boundary.  

The 99th percentile in-catchment values were also considered for the precipitation ensemble members 

and the raingauge and radar-rainfall accumulations. Some very large spot totals appear in the 

ensemble that do not feature in either the raingauge or radar-rainfall values. Generally, the 99th 

percentile time-series are noisier (see Figure 4 for examples) with the raingauge-derived values often 

larger than the radar-rainfall counterparts. 

1    2     3      4          5  
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Figure 4 Comparison of catchment-mean precipitation for ensemble members (top row) and 99th 

percentile in-catchment values (lower rows) for the raingauge-based (left) and radar-

based (right) catchment means for Storm Desmond. Note that the y-axis maximum for the 

bottom rows is different to the top row. Catchment is the River Eden at Sheepmount.  

In Figure 4, the precipitation catchment-mean totals (top row) are compared to the 99th percentile in-

catchment totals (lower rows). The left and right columns compare the raingauge and radar-derived 

values. In this instance the catchment-mean totals from radar are noticeable lower than those from 

raingauges. As can be expected, the 99th percentile in-catchment values are much larger than the 

catchment-means with the observed totals encompassed within the ensemble spread.  

Comparing with the river flow results for the Eden at Sheepmount (Figure 5, as Figure 7.7 of the Phase 

1 Report), the first two small peaks in precipitation are seen not to result in a noticeable river flow 

response. There is, however, a river flow response from the third and fourth precipitation events that 

were merged into a single event by the precipitation ensemble in the longer lead-time forecasts. This 

can be seen in the hydrographs as a spurious peak on 3 December for the first five forecasts presented  
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Figure 5 Ensemble river flow forecast hydrographs for the Eden at Sheepmount covering the peak 

river flow associated with Storm Desmond at 09:00 6 December 2015. Ensemble 

members are shown in grey and the observed river flow in black. The vertical dashed 

black line shows the time of peak flow at Sheepmount (09:00 6 December 2015). Symbol 

colours and shapes are defined in Section 7.2 of the Phase 1 Report. (This is Figure 7.7 of 

the Phase 1 Report.)  

in Figure 3. Similarly, to the precipitation ensemble, there is high confidence in the river flow ensemble 

that this peak would occur. However, there are a small number of river flow ensemble members which 

give particularly high flows, exceeding the Q(50) threshold. The 99th percentile precipitation in-

catchment values (not shown) provide a prolonged spell of intermittently heavy precipitation of 

between 20 and 40 mm. For later forecasts, the timing of the third peak is better captured by both 

the precipitation and river flow ensembles, although the magnitude of the peak is still around three 

times larger than observed. It is only when the forecasts start to be initialised within a few hours of 

this precipitation (fourth line of plots in Figure 5) that the peak’s magnitude is well predicted. This 

highlights directly the impact of the precipitation ensemble forecast quality on the G2G river flow 

ensemble.  
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The fifth precipitation event results in the highest river flow response, with observed flows exceeding 

the Q(50) threshold. For most forecasts, the catchment-mean precipitation totals from the ensemble 

reach twice those of the observations as discussed above. For these forecasts (e.g. 07:00, 19:00, 01:00, 

13:00) the peak is also overestimated by the majority of river flow ensemble members. However, for 

other forecast initialisations, the precipitation ensemble values are closer to, or below, those 

observed, and the river flow response is less than observed. This again demonstrates the direct link 

between precipitation and river flow ensemble. Interestingly, for the final six forecasts before the 

event end, the river flow ensemble still overestimates the peak magnitude, although it appears well 

captured by the catchment-mean precipitation values from the ensemble. However, when considering 

the 99th percentile in-catchment values for these forecasts, the precipitation ensemble is predicting 

much higher precipitation totals than observed. This reinforces the importance of looking at other 

catchment precipitation values other than the mean when relating to extreme flood-producing events. 

Figure 6 considers the same time sequence but for the River Lune at Caton (724629). As for the Eden 

at Sheepmount, the raingauges detect five distinct episodes, whereas the precipitation ensemble 

shows only four, the third event occurring between the third and fourth peaks defined by the 

raingauge time-series. The fifth episode is well captured to begin with but the forecast for this does 

not remain as good for the Lune catchment throughout the time-window. There are several forecasts 

in the sequence where the largest (most prolonged) event is not captured as well. The ensemble also 

continues to struggle with the timing of the third and fourth peaks until both are contained within Day 

1 of the forecast. Closer to the time, the catchment-means for the ensemble members are on the low 

side compared to those from the raingauges.  

For the fifth peak, the raingauge-derived catchment-means seem to be closer to the upper boundary 

of the ensemble spread whereas those from radar are somewhat lower (not shown). In terms of the 

99th percentile in-catchment values, the profile of rain throughout the event is somewhat different 

between the raingauge and radar, with the radar suggesting that the event lasts a little longer (also 

not shown). Consistent with the observed precipitation values being in the upper boundary of the 

ensemble spread at Caton, the river flow observations generally fall around the upper boundary of 

the river flow ensemble members. For some forecast initiations (e.g. 13:00 1 December) the 

precipitation ensemble values are much lower than observed, and the river flow ensemble drastically 

underestimates the peak: the ensemble performance is varying between initiations. This may be 

related to the weather model’s ability to capture the local structure of the precipitation, for example 

due to orographic enhancement of precipitation seen for this event in Figure 2. This will be further 

investigated through the Phase 2 case studies.  

The precipitation catchment-means and 99th percentile in-catchment values for the Lune at Caton are 

compared in Figure 7. For this particular forecast, where the onset of the main precipitation event was 

a little slow, the offset looks somewhat larger when compared to the radar-derived catchment-means. 

Interestingly when the 99th percentile in-catchment values are used, the timing offset looks less 

pronounced against both radar and raingauges totals. Overall, the radar and raingauge catchment-

means are similar in magnitude but the 99th percentiles show greater differences, with the radar (in 

this instance) providing some larger totals compared to the raingauge values.  
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Figure 6 Time-series of catchment-mean precipitation for the ensemble members (grey) are 

compared to those from raingauges (blue). River Lune at Caton during Storm Desmond.  
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Figure 7 Comparison of ensemble member catchment-mean precipitation (top row) and 99th 

percentile in-catchment values (bottom row) for the raingauge-based (left) and radar-

based (right) catchment means, for Storm Desmond. Note that the y-axis maximum for the 

bottom row is different to the top row. Catchment is the Lune at Caton (note different 

time to Figure 2 for the River Eden at Sheepmount). 

Figure 8 shows another precipitation example, for the river gauging station on the River Dee at Mar 

Lodge (ID 234274, area 289 km2) in the Grampians, Scotland. For this catchment it is harder to identify 

distinct precipitation episodes with catchment-means generally quite low. Broadly speaking there are 

three events: the first episode has a few large totals embedded, the second episode is very marginal, 

and the final prolonged event consists of what one could describe as steady rain. As for the other 

examples in this period, the ensembles produce a large episode of rain between the first and second 

observed events, whereas the first event in the weather prediction model is too short and does not 

reflect the observed intense bursts. The forecast for the first event improves with subsequent 

forecasts, both in terms of duration and intensity but again, as for the other locations, the ensemble 

continues to struggle with the period between the first and third events. The ensemble also struggles 

with the end of the third event, even at short forecast ranges, producing much more rain than was 

observed.  

For this period the catchment-means from radar (not shown) produce much more precipitation overall 

and this signal is repeated and accentuated when considering the 99th percentile values. As discussed 

above, the catchment-mean precipitation values from the ensemble and raingauges are low, not 

suggesting extreme events, but the river flow peaks are high with the observations exceeding the Q(5) 

threshold. Hydrographs for this event at Mar Lodge are presented in Figure 9. Interestingly, the river 

flow ensemble members are generally much lower than the observed river flows, particularly for 

forecasts initialised before 07:00 3 December. It is possible that the peaks in precipitation are falling 

between the locations of raingauges, and thus not being captured by the raingauge gridded-rainfall. 

Another possible contributing factor is snowmelt. Figure 10 shows examples of snow measurements 

from one of the CEH COSMOS-UK sites at Glensaugh (365870 East, 780483 North) from ongoing work 

at CEH (Wallbank et al., in prep.). Although not situated in the immediate vicinity of the Dee at Park 

catchment, the Glensaugh site is at an altitude of around 400m and gives an indication as to the 

broader snow conditions across Scotland at this time. The snow is measured using an above-ground 

Cosmic Ray Neutron Sensor (blue), a SnowFox sensor (orange) and as modelled from the PACK 
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snowmelt model (with parameters as in the operational G2G Snowmelt module over Scotland) with 

observed precipitation at the site as input (grey). Interestingly, Figure 10 shows that the PACK model 

is significantly underestimating the amount of snow in this instance, suggesting a possible 

underestimation of the snowmelt contributing to the G2G ensemble output.  

 

   

   

   

   

   

   

 

  

Figure 8 Time-series of catchment-mean precipitation for the ensemble members (grey) are 

compared to those from raingauges (blue). River Dee (Grampian) at Mar Lodge for Storm 

Desmond.  
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Figure 9 Ensemble river flow forecast hydrographs for the Dee at Mar Lodge covering the time 14:00 

5 December 2015 during Storm Desmond. Ensemble members are shown in grey and the observed 

river flow in black. Symbol colours and shapes are defined in Section 7.2 of the Phase 1 Report.  

 
Figure 10 Snow cover measurements from the CEH COSMOS-UK Glensaugh site (NGR 365870 

780483) during Storm Desmond. The snow is measured using an above ground Cosmic 

Ray Neutron Sensor (blue), a SnowFox sensor (orange) and as modelled from the PACK 

snowmelt model (with parameters as for the operational G2G Snowmelt module over 

Scotland) with observed precipitation at the site as input (grey). (Source: Wallbank et al. 

(in preparation)). 
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In Figure 11, the catchment-mean precipitation and 99th percentile are compared between the 

ensemble, radar and raingauge for a single forecast in the sequence. From Figure 8 it is clear that the 

forecasts really struggle for this catchment. This example shows a lot of deviation between the 

observed and ensemble traces. Events are offset from each other (first observed event), too short 

(second observed event), or just false alarms (between the second and third episodes). In this 

instance, the catchment-mean precipitation from radar signals a larger second episode compared to 

the raingauges and is further enhanced for the 99th percentile. In this instance, the radar totals are at 

times higher than those from the ensemble, especially for the second precipitation episode.  
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Figure 11 Comparison of ensemble member catchment-mean precipitation (top row) and 99th 

percentile in-catchment values (bottom row) for the raingauge-based (left) and radar-

based (right) catchment means, for Storm Desmond. Note that the y-axis maximum for 

the bottom row is different to the top row. Catchment is the River Dee (Grampian) at 

Mar Lodge (note different time). 

Figure 12 shows the Storm Desmond sequence of precipitation ensemble forecasts for the River Dee 

at Park (ID 234291, area 1834 km2). Again, the precipitation traces are muted. Broadly speaking there 

are again three episodes (ignoring the initial blip). For the first two precipitation episodes the forecast 

is too fast. The first event in the initial forecasts (even though they are for relatively short lead-times) 

is not prolonged enough. The second event is too intense and too early. The third event is captured 

relatively well in terms of timing in the early forecasts (at the longest lead-times). The forecasts for 

this event are quite variable as the event approaches and the period beyond the third peak is quite 

irregular with continued mismatches between the intensity of the rain as well as the timing. Short-

lead-time forecasts for the third episode are good with the ensemble catchment-mean totals 

encompassing the raingauge totals.  
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Figure 12 Time-series of catchment-mean precipitation for the ensemble members (grey) are 

compared to those from raingauges (blue). River Dee at Park during Storm Desmond.  

The catchment-mean precipitation from radar tends to be somewhat higher than for raingauges (not 

shown). This signal is replicated when the 99th percentile in-catchment values are considered. The 

river flow hydrographs for the Dee at Park lead to similar conclusions as those discussed above for 

Mar Lodge and are not included here.  

Under Phase 2, novel ways of displaying the rainfall and river flow ensemble information are to be 

explored, along with how the verification information can be incorporated. From the Phase 1 case 

studies and the work already carried out under Phase 2 (exploring the 99th percentile in-catchment 

values), it would already seem clear that the same form of rainfall ensemble envelope which includes 

the mean, median and 99th percentile would be very useful. These ideas will be taken forward in WP 

4 and 5. 
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Comparing the catchment-mean precipitation for the ensemble, radar and raingauges and the in-

catchment 99th percentile values, Figure 13 shows that the raingauge values are well matched for the 

Day 1 period with the radar values slightly larger and closer to the upper boundary of the ensemble 

envelope. The 99th percentile raingauge values are at the lower end of the ensemble envelope 

whereas the corresponding radar values are larger: at times larger than the largest ensemble values. 

Whilst there is arguably an offset in the second episode (based on this forecast time) the weather 

prediction model rainfall totals are closer to the radar-rainfall accumulations.  
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Figure 13 Comparison of ensemble member catchment-mean precipitation (top row) and 99th 

percentile in-catchment values (bottom row) for the raingauge-based (left) and radar-

based (right) catchment means, for Storm Desmond. Note that the y-axis maximum for the 

bottom row is different to the top row. Catchment is the River Dee at Park and forecast 

start time is 19:00 4 December 2015. 

For the Dee at Park catchment, it is worth showing a second example because it is rather peculiar. 

Figure 14 shows another forecast. In this instance there is a very large difference between the 

catchment-mean and in-catchment 99th percentile values, especially for raingauges, which show 

several large peaks that are not replicated in the 99th percentile radar-rainfall series. In this instance 

the radar and ensemble values are comparable. Furthermore, the raingauge series shows one longer 

precipitation episode whereas the radar suggests two distinct events, the second not that well 

forecast. By contrast, for the prolonged third event, the 99th percentile values from the ensemble 

compare favourably to those from raingauges whereas radar values are larger. As discussed above, it 

is possible that snowfall is affecting the measurement of precipitation in this case, with suggested 

snowfall around the start of December (Figure 10), coinciding with the timing of measured spurious 

peaks.   
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Figure 14 Comparison of catchment-mean precipitation for ensemble members (top row) and 99th 

percentile in-catchment values (bottom row) for the raingauge-based (left) and radar-

based (right) catchment means, for Storm Desmond. Note that the y-axis maximum for 

the bottom row is different to the top row. Catchment is the River Dee at Park and 

forecast start time is 07:00 10 November 2015.  

Another river gauging location on the Dee is at Polhollick (ID 234294, area 691 km2). The forecast 

sequence shown in Figure 15 shows a very similar evolution. The forecast is too early in onset for the 

first precipitation episode. It has a poor grasp of the second event, in terms of intensity and timing. 

The third episode is better forecast, but again there is considerable variability in the forecast quality 

as the lead-time shortens. In this instance some of the middle forecasts are exceedingly poor (e.g. 

13:00 1 December 2015). Beyond the third event the forecast is also very irregular with a lot of rain 

being forecast which does not materialise.  

Over the entire sequence of forecasts the catchment-means for radar rainfall and the 99th percentile 

in-catchment values match better for the events beyond the main (third) peak but the forecasts are 

not particularly good overall (not shown). The river flow hydrographs for the Dee at Polhollick lead to 

similar conclusions as those discussed above for Mar Lodge and are not included here. The 

hydrographs for the Dee at Polhollick were included in the Phase 1 Report as Figure 7.11. 
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Figure 15 Time-series of catchment-mean precipitation for the ensemble members (grey) are 

compared to those from raingauges (blue). River Dee at Polhollick during Storm Desmond.  
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Figure 16 shows the comparison of a particular forecast between the catchment-means and the in-

catchment 99th percentiles. In this instance the catchment-means for the raingauges and radar are at 

the high end of the ensemble range for the main (third) event. Beyond that, the forecast is poor. When 

considering the 99th percentile in-catchment values, there is poor correspondence between the 

forecast ensemble members and the observed values. The exception is the event beyond Day 5 for 

the radar 99th percentiles which shows fairly good correspondence.  
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Figure 16 Comparison of catchment-mean precipitation for ensemble members (top row) and 99th 

percentile in-catchment values (bottom row) for the raingauge-based (left) and radar-

based (right) catchment means, for Storm Desmond. Note that the y-axis maximum for the 

bottom row is different to the top row. Catchment is the River Dee at Polhollick (234294) 

and the forecast start time is 01:00 3 December 2015. 

 

  



18 of 26 
 

4. Case Study 2: Storm Eva (post storm) 

Figure 17 shows the sequence of daily radar-rainfall accumulations for the period 21-25 December 

2015 in the aftermath of Storm Eva. 

00Z 21 – 22 December 00Z 22 – 23 December  00Z 32 – 24 December  00Z 24 – 25 December  

    

 
Figure 17 Sequence of daily radar-rainfall accumulations (mm) over the period 21 to 25 December 

2015 

The forecast sequence for Storm Eva (post storm) is between 19:00 21 December 2015 to 19:00 25 

December 2015. Figure 18 shows time-series of catchment-mean precipitation of the ensemble 

members and raingauges for the Eden at Sheepmount. Again, three episodes or events can be 

identified from the first forecast panel. Broadly speaking this appears to be a good sequence of 

forecasts though forecasts for Days 4 to 6 can be variable. The forecast for the third peak is initially 

quite good, but then gets worse before it improves again. The catchment-mean values for the 

ensemble become too large before coming into the right range. Comparing the sequence based on 

the catchment-means and in-catchment 99th percentile values (not shown), there is reasonable 

correspondence for the radar and ensemble values, with little difference between the catchment-

means. 
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Figure 18 Time-series of catchment-mean precipitation for the ensemble members (grey) are 

compared to those from raingauges (blue). River Eden at Sheepmount for post Storm Eva 

period 19:00 21 December to 19:00 25 December 2015. 

Figure 19 compares the catchment-mean and 99th percentile in-catchment values for a specific 

forecast. The second event begins too soon with the catchment-means for raingauges being slightly 

larger than the corresponding radar-rainfall (which is quite unusual). There is a big mismatch in 

intensities for the third episode. There are large mismatches in intensity when considering the 99th 

percentile in-catchment values where the weather prediction model produces some very large values, 

accentuating the timing issues. In this instance the 99th percentile values for radar appear larger (for 

the most part).  
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Figure 19 Comparison of catchment-mean precipitation for ensemble members (top row) and 99th 

percentile in-catchment values (bottom row) for the raingauge-based (left) and radar-

based (right) catchment means. Note that the y-axis maximum for the bottom row is 

different to the top row. Catchment is the River Eden at Sheepmount and forecast start 

time is 19:00 22 December 2015 (post Storm Eva). 
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Figure 20 shows the forecast sequence for the River Lune at Caton. In this instance it is harder to 

define specific events based on the observed trace but, on the whole, the timings for the first three 

forecasts look relatively good with some intensity differences, especially for the “third” episode 

around four days into the forecast. These intensity differences persist as the forecast lead-time 

decreases.  

   

   

   
Figure 20 Time-series of catchment-mean precipitation for the ensemble members (grey) are 

compared to those from raingauges (blue). River Lune at Caton for the period 19:00 21 

December to 19:00 25 December 2015 (post Storm Eva). 

Catchment-means are comparable between the radar and the raingauges on the whole (not shown), 

whilst the traces based on the 99th percentile in-catchment values show the radar values are higher 

on the whole, though the raingauges can produce some interesting spikes. 

Overall, for Storm Eva, both the Eden at Sheepmount and Lune at Caton catchments show an 

overestimation of precipitation by the ensemble, for both the catchment-mean and 99th percentile of 

in-catchment values. This also shows through in the river flow ensemble response for these 

catchments (Figures 21 and 22), with the peak around 27 December vastly overestimated with the 

majority of ensemble members easily crossing the Q(50) threshold, compared to the observed 

crossing of Q(2). This is particularly true for the earlier forecasts issued prior to 25 December (top two 

rows of Figures 21 and 22 for river flow and 18 and 20 for precipitation), but the overestimation 

continues in the run-up to the event. This again shows, as for Storm Desmond, how river flow 

ensemble performance can be directly linked to that of precipitation. This will be investigated further 

with the help of the Phase 2 case studies, including the possibility of directly mapping individual 

ensemble members.  
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Figure 21 Ensemble river flow forecast hydrographs for the Eden at Sheepmount covering the time 
09:00 27 December 2015 (post Storm Eva). Ensemble members are shown in grey and the 
observed river flow in black. The vertical dashed black line shows the time of peak flow 
at Sheepmount (08:00 27 December 2015). Symbol colours and shapes are defined in 
Section 7.2 of the Phase 1 Report. (This is Figure 7.14 of the Phase 1 Report.)  

 

 

Figure 22 Ensemble river flow forecast hydrographs for the Lune at Caton covering the time 
09:00 27 December 2015 (post Storm Eva). Ensemble members are shown in grey and the 
observed river flow in black. The vertical dashed black line shows the time of peak flow 
at Sheepmount (08:00 27 December 2015). Symbol colours and shapes are defined in 
Section 7.2 of the Phase 1 Report. (This is Figure 7.15 of the Phase 1 Report.)  
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5. Case Study 3: Storm Frank 

Figure 23 shows the sequence of daily radar-rainfall accumulations for the period 26-27 December 

2015 associated with Storm Frank. 

00Z 25-26 December 00Z 26-27 December  

  
 

 
Figure 23 Sequence of daily radar-rainfall accumulations (mm) over the period 26 to 27 December 

2015 

Storm Frank is right at the end of the December 2015 time-series available from Phase 1. As a result, 

there are only two forecasts to evaluate: 13:00 and 19:00 26 December 2015. Because of their short 

duration, Figure 20 shows the time-series for all observation options to be considered for precipitation 

verification: catchment-means and 99th percentile in-catchment values for raingauges and radar.  

Catchment-mean, raingauge 

  
Catchment-mean, radar 

  
99th percentile, raingauge 

  
99th percentile, radar 

  
Figure 24 Time-series of catchment-mean precipitation and 99th percentile in-catchment values for 

the ensemble members (grey) are compared to those from raingauges and radar (blue). 

River Dee (Grampian) at Mar Lodge during Storm Frank.  
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Considering first the Dee at Mar Lodge catchment shown in Figure 24, there is one main precipitation 

event in the sequence which follows on from three smaller events. For the main rain event, the 

precipitation persists for longer in the ensemble members than in the observations (either raingauge 

or radar). Catchment-means from radar are somewhat higher overall than those from raingauges for 

this catchment. This is even clearer when looking at the in-catchment 99th percentile values, where 

the ensemble values appear to be closer in magnitude to the higher observations of the radar.  

Figure 25 shows the same display for the River Dee at Park. For this catchment the forecasts are 

relatively good into Day 3, although the biggest precipitation peak in the period is more extended than 

it was in reality. Catchment-means appear to be in relatively good agreement. The 99th percentile in-

catchment values show a lot more noise for the forecasts, with the radar values in this instance again 

higher than the raingauge values. In terms of the means the raingauge and radar values are broadly 

similar.  

Catchment-mean, raingauge 

  
Catchment-mean, radar 

  
99th percentile, raingauge 

  
99th percentile, radar 

  
Figure 25 Time-series of catchment-mean precipitation and 99th percentile in-catchment values for 

the ensemble members (grey) are compared to those from raingauges and radar (blue). 

River Dee at Park during Storm Frank. 

Finally, the Dee at Polhollick is considered in Figure 26. Similar to the Dee at Park, the main 

precipitation peak in the forecast is too broad, with the event extended beyond its observed end. For 

this catchment the catchment-means from the ensemble can be rather large. In terms of the 99th 

percentile in-catchment values the differences between the radar and raingauge values are again 

evident. Again, the raingauge values are prone to producing some spikes (possibly due to the presence 

of snow). The weather prediction model values are comparable (at best) to the radar values, but 

generally too large. 
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Catchment-mean, raingauge 

  
Catchment-mean, radar 

  
99th percentile, gauge 

  
99th percentile, radar 

  
Figure 26 Time-series of catchment-mean precipitation and 99th percentile in-catchment values for 

the ensemble members (grey) are compared to those from raingauges and radar (blue). 

River Dee at Polhollick during Storm Frank. 

For the Storm Frank case study, river flow hydrographs for the two available forecasts for the Dee at 

Park, Polhollick, and Mar Lodge are shown in Figure 27. For all three catchments the observed river 

flow peak is large (much higher than the Q(50) threshold). As expected from the precipitation 

ensemble forecasts where the main precipitation is forecast late, there is a tendency for the main 

peak to be slightly delayed in the river flow response. Overall, the magnitude of the river flow peak 

seems reasonably well captured, again agreeing with the precipitation ensemble. Although it is 

difficult to assess fully, due to being at the end of the period of available data, there is also some 

indication that the extended precipitation in the ensemble forecasts (beyond its observed end) is 

resulting in a longer-duration river flow peak.  
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Figure 27 Ensemble river flow forecast hydrographs for the Dee at Park (top), Polhollick (middle) 

and Mar Lodge (bottom) covering the time 14:00 30 December 2015 (Storm Frank). 

Ensemble members are shown in grey and the observed river flow in black. The vertical 

dashed black line shows the time of peak flow at Park (14:00 30 December 2015). Colour-

scale and symbols are as defined in sections 7.2.1 and 6.2.1 of the Phase 1 Report. 

(Source: Figure 7.17 of Phase 1 Report). 

 

6. Summary 

Considering the forecast evolutions shown here for storms Desmond, Eva and Frank it is clear that the 

different weather prediction model configurations have a part to play in terms of introducing biases. 

The high intensity bias from MOGREPS-G is often clear for the longer lead-times.  

Stitching together the forecasts is also somewhat problematic, because there may be mismatches in 

the way the event is forecast between MOGREPS-UK and MOGREPS-G. Therefore, it is unlikely that a 

cleverer merging of forecasts in this time-range will cure the timing issues that are sometimes 

observed in the case studies over the Days 2-4 range. This can at least partially explain why the 

subjective forecast performance takes a dip in this range: that is, whilst there is a clearer bias in 

intensities beyond Day 4, the timing of events appears to be not too bad. Some effort should be 

invested in post-processing the ensembles, such as more sophisticated blending and merging and bias 

correction.  

Overall, a high correspondence was generally found between the performance of the precipitation 

and river flow ensembles. In particular, when the precipitation ensemble miss-timed a peak, or 

significantly overestimated the magnitude of precipitation, this also showed through in the river flow 

response. This will be investigated further in the Phase 2 case studies, including the direct mapping of 

individual ensemble member behaviour. For the Scotland case studies, the influence of snow was 

identified as a possible reason for differences between the precipitation ensemble performance and 

river flow response. This was highlighted for catchments of the River Dee (Aberdeenshire) for the 

Desmond case study, where the river flow ensemble vastly under-predicted the river flow peaks, 

particularly for longer lead-time forecasts, and unrealistic spikes were observed in the raingauge data. 

As snow can affect the performance of both ensembles in a variety of ways and affect the quality of 
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precipitation observations available for verification, it is important that the presence of snow is kept 

in mind when interpreting verification results obtained for winter periods in Phase 2. 

The precipitation observation types are also showing some interesting variations in effect on both 

precipitation and river flow verification performance. In Phase 2 the merged precipitation product will 

also be considered in relation to precipitation verification. It will interesting to see whether this 

product has added-value for precipitation and river flow forecasting.  

The outcomes from this case study analysis provide some useful pointers for Phase 2 work concerned 

with “Real-time displays”. For example, it would seem sensible to provide a precipitation ensemble 

“envelope” defined by the catchment-mean (as the lower boundary) and the 99th percentile in-

catchment value (as the upper boundary) for visualising the precipitation forecast uncertainty. 

 



Rainfall and River Flow Ensemble Verification: Phase 2
Precipitation assessment of case studies
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Scottish cases

E&W cases

These “quick looks” were produced at the start of the project & 
are based on coarsened radar data (to 12 km) and represent daily 
totals from 00 UTC to 00 UTC only.

Coverack Scarborough

Gallery of case studies
Cumbria

Storm Brian

SE England



Case study 
approach

Case study River flow catchments 24h peak rainfall catchments

18/07/2017 Walkham at Horrabridge (47118)
09/08/2017 Gypsey Race at Boynton (Boyntn1)
23/08/2017 Derwent (NE) at Low Marishes 

(MARISH1)
30/09/2017 Kent at Sedgwick (730511)
21/10/2017 Irwell at Irwell Vale (690140)

Lune at Caton (724629)
Wenning at Hornby (72452)
Hindburn at Wray (724427)
Wenning at Wennington (724326)

Calder at Hebden Bridge (HEBDBR1)
Calder at Todmorden (TODMDN1)

Glaslyn at Beddgelert (065001_TG_1201 
& PDM)

Glaslyn at Beddgelert 
(065001_TG_1201 & PDM)

3&4/11/2017 Moors River at Hurn Court (43214)

22 &
23/11/2017

Lune at Caton (724629)
Wenning at Hornby (72452)

Hindburn at Wray (724427)
Wenning at Wennington (724326)

Eden at Sheepmount (765512)
Eden at Temple Sowerby (760502)
Eden at Gt Musgrave Bridge 
(760112)
Eden at Kirkby Stephen (760101)

Glaslyn at Beddgelert (065001_TG_1201 
& PDM)

Glaslyn at Beddgelert 
(065001_TG_1201 & PDM)

27/12/2017 Wensum at Costessey Mill 
(E19862)

02& 
03/01/2018

Derwent at Portinscale (751007)

12-14/03/2018 Dove at Rocester Weir (4008)
Dove at Hollinsclough (4033, & PDM)

Torne at Auckley (4050) Torne at Auckley (4050)
02-04/04/2018 Malton (Malton1)

Derwent (NE) at Low Marishes 
(MARISH1)
Riccal at Nunnington (Nunnington 
& PDM)

Glaslyn at Beddgelert (065001_TG_1201 
& PDM)

Glaslyn at Beddgelert 
(065001_TG_1201 & PDM)

20/09/2018 Taff at Fiddlers Elbow 
(057007_TG_504)

• Search for the maximum 24h precipitation across all 
catchments as a predictor for areas of interest in 
terms of flooding potential. A map indicating the 
catchment location and maximum rainfall is 
provided.

• For each forecast horizon (Day 1, Days 2-3 and Days 
4-6) a single forecast initialisation was used to 
illustrate Time-window Probabilities (TWPs). Here 
the 99th percentile threshold probabilities are 
plotted.

• For Day 1 the identified catchment’s precipitation 
hyetograph is also shown. The 99th percentile in-
catchment value for each hour is plotted. Gauge data 
were used.

• The observation maps show a new depiction of the 
spot 99th percentile 24h accumulation value 
observed in the catchment as an indication of the 
heaviest rainfall (instead of the catchment mean). All 
three observation types are shown: raingauge, radar 
and merged product.

• Each case is provided with a commentary. 

• A second slide for each case provides the context in 
terms of where the peak rainfall occurred as opposed 
to where the river flow response (if any) was 
observed. Hyetographs for these catchments (when 
different) are provided.



England & 
Wales



Coverack - 18 July 2017
Max Catchment Date/Time of Max Rainfall (mm)

5080TH_G2G_FFC 2017-07-19 00:00:00 34.63

Case Study Synopsis. Flash Flooding in Coverack with danger to life, helicopter rescues, 50 
properties flooded, damaged roads and infrastructure.

Summary
Coverack was a highly localised event, with no 
catchment with a river flow gauge in the vicinity 
so no catchment TWP was calculated. From 
precipitation observations, the nearest 
catchment was north-east of London around 
Essex/Hertfordshire. The forecast for this 
catchment captured the timing of rainfall but 
under-forecast the amount by around 3 times. 
Significant differences can be seen between 
observation sources. The largest differences of 
potentially 100mm (red v black) in around 
Essex/Hertfordshire. Large differences can also 
be seen in South Devon. TWPs through time 
windows Days 4-6 and Days 2-3 and focused on 
the southern Central England and Eastern 
Wales/West Midlands. TWPs for Day 1 show very 
few probabilities with low probabilities (0.1/0.2) 
in the region of the catchment with most rain. 
Non-catchment-based products did provide 
some indication of large precipitation totals in 
the vicinity of Coverack.

Radar provided a vital 
nowcasting tool with 
a clear advantage 
over other 
observation sources 
and weather models.

@10:40 @11:20 @11:35



South East – 8 August 2017
Case Study Synopsis. EFAS Flash Flood notification. Minor impacts from surface water 
flooding: Essex, Kent, Surrey, Greater London, Suffolk. No fluvial impacts recorded.

Max Catchment Date/Time of Max Rainfall (mm)

BOYNTN1_G2G_FFC 2017-08-09 00:00:00 54.3

Summary
The maximum rainfall was picked up in a 
catchment north of the Humber with no 
impacts, though there is good agreement 
between the ensemble forecast and 
observed rain in this catchment. 

Time-Window Probabilities also identified some of the areas affected in the Day 4-6 window. The probability of 
an event increased into the Day 2-3 window but was lowered in the Day 1 window. TWPs did however 
identify the catchment that received the highest daily rainfall total from Days 4-6. The probabilities for this 
catchment increased window-by-window and was correctly given a high probability of an extreme rainfall 
event occurring. Peaks in observed rainfall are well correlated with ensemble members for the highest 
catchment. The observed rainfall is also largely within the ensemble spread.

Day 4-6 Day 2-3 Day 1



Scarborough – 23 August 2017
Max Catchment Date/Time of Max Rainfall (mm)

MARISH1_G2G_FFC 23/08/2017 21:00 35.87

Case Study Synopsis. Convective event - no river impacts recorded. Flash flooding 
from surface water, causing travel disruptions. Significant impacts - North Yorkshire 
(Scarborough), minor for York and West.

Summary
Very low TWPs for the 99th percentile TWPs 
at Days 4-6 and Days 2-3. The TWP increases 
into Day 1 but also moves to a neighbouring 
catchment inland. Other high probabilities 
are present around the Wash at longer lead-
times. The forecast for the wettest 
catchment shows a peak in rainfall that 
corresponds with the peak in raingauge 
observations. The magnitude of this peak is 
approximately 3 times larger in the observed 
(gauge) than the highest ensemble member. 
Though there are some higher probabilities 
in the NE, this event was not that well 
captured by the weather model. Between 
the different observation sources, there are 
some large discrepancies across the South 
and South East. Approximately 8mm in 
Hertfordshire/Essex, Dorset and West 
Sussex.  

Note: higher totals were observed in Scotland 
but this was not a Scottish case-study



Cumbria – 30 September 2017
Case Study Synopsis. Narrow band of heavy rain over the south of Cumbria. 40-45 mm in 1 hour 
and 60+ mm in 2-2.5 hrs at Millom and Haverigg between 0800 and 1030 BST. A total of 150-200 
properties affected by surface water flooding, largely in the Millom area and with a small 
number of flooded properties in Windermere and Haverigg.

Max Catchment Date/Time of Max Rainfall (mm)

730511_G2G_FFC 30/09/2017 14:00 54.6

Summary
The catchment with the highest precipitation 
corresponds with case-study location. The 
forecast for this catchment seems accurate. 
Raingauge observations are within the 
ensemble spread and peaks are well 
correlated. TWPs identify Cumbria catchments 
having low probabilities (0.1-0.3) in Days 4-6 
with higher probabilities focussed on the West 
Midlands and South. Probabilities rise across 
the England & Wales into Days 2-3. the highest 
probabilities now 0.8-1 in Wales, West Midlands 
and parts of Lancashire. The probability of an 
event occurring in the catchment of highest 
observed precipitation is 0.5. Probabilities in the 
Day 1 time-window drop significantly to a 
maximum of 0.3 for a group of catchments 
around Exmoor & the Quantocks.
All observation sources are largely in 
agreement. Biggest differences between radar 
and gauge around the Yorkshire Dales.



Storm Brian – 21 October 2017
Case Study Synopsis. Missed SIG event. Flood Sirens in Todmorden, Hebden Bridge and 
Mytholmroyd. 4 properties (river), 1 industrial building (river), 1 pre-school (SW) and a bakery (SW) 
flooded in Rossendale plus 5 properties in Rawtenstall from river and 8 in Rawtenstall from surface 
water

Max Catchment Date/Time of Max Rainfall (mm)

065001_TG_1201 22/10/2017 00:00 70.9

Summary
The catchment with the highest precipitation does 
not correspond with the river flow impacts. The 
forecast for the catchment captures the timing of 
the event well. An exception to this is a peak in the 
observations just before 22 Oct 00:00 occurring 
earlier than forecast. Other than this peak, 
raingauge observations are within the ensemble 
spread. The 3 observation sources largely agree on 
the distribution and amount of rainfall across 
England and Wales. Areas of the greatest 
discrepancies are in the SE, where the gauge totals 
are higher than radar. In the NE and W Wales the 
radar records higher totals. TWPs are high across 
England & Wales for Days 4-6, with the highest 
probabilities of 1 across Wales and the West 
Midlands. On Days 2-3 probabilities are much lower. 
The highest probability of 0.8 in Cumbria, with 
slightly lower probabilities still present in Wales. 
Probabilities in the case-study region are 0.7/0.3. In 
the Day 1 window the highest probabilities (0.9) are 
in similar areas to the Days 4-6 window. The 
probabilities are 0.7-0.5 for the case study region.

Highest catchment rain 
Glaslyn at Beddgelert 
(065001_TG_1201 & 
PDM) in Wales. Impact 
region in W Yorkshire.



Storm Brian – 21 October 2017

 

Catchment 
ID 

Comments Days 4-6 Days 2-3  Day 1 

065001_TG
_1201 

Catchment as 
identified as having 
highest 24hr rainfall 
is not in case-study 
region.  

   

724528 Catchment is in case-
study region. 
Forecast captures 
the magnitude of the 
event well. 
Consistent with 
724427, 724326, 
724629. 

   

TODMDN1 Consistent with 
impact location. 
Similar profile for 
HEBDBR1 – Obs 
outside of ensemble 
spread on Day 1 TW. 

   

Temporal forecast evolution in highest precipitation catchment and those with river flow responses. 



SE England – 3-4 November 2017

Max Catchment Date/Time of Max Rainfall (mm)

43214_G2G_FFC 04/11/2017 21:00 24.5

Case Study Synopsis. Rainfall false alarm? No impacts noted. G2G Deterministic 
supported minimal impacts. Some suggestion of higher flows from G2G ensembles.

Summary
The catchment receiving the highest 24hr accumulation 
between 3 and 4 November was in the Bournemouth area. 
Similar amounts of rainfall were seen around the Chiltern 
Hills, Snowdonia, from West Midlands up to 
Manchester/Peak District and on the North Norfolk coast. 
Generally, the distribution of rainfall across England and 
Wales is consistent across observation types. The forecast 
for the highest catchment captures the general timing of the 
peak in rainfall but shows two peaks either side of the 
observed peak. This leaves the observed peak outside of the 
ensemble spread at that time. The TWPs identify a large 
proportion of C & S England, which received similar amounts 
of rainfall to the highest catchment in the Days 4-6 window 
with probabilities around 0.2-0.5. Probabilities increase into 
the Days 2-3 window. The greatest probabilities (~0.7) across 
central Southern England and the West Midlands. Into the 
Day 1 time-window, probabilities increase again across 
central Southern England to 0.9 along with an area on the 
north Norfolk coast. From the observations, these areas did 
receive similar amounts of rainfall to the highest catchment 
(Bournemouth region). Probabilities in this area were much 
lower, around 0.1 to 0.5.



NW England & N Wales – 22-23 November 2017
Case Study Synopsis. Impacts on 23rd recorded as SIG over Cumbria, Lancashire for rivers and 
also minor for Cumbria, Anglesey, York, and Lancashire. 

Highest catchment 
rainfall
Glaslyn at 
Beddgelert 
(065001_TG_1201 
& PDM)
Snowdonia NW 
Wales

Max Catchment Date/Time of Max Rainfall (mm)

065001_TG_1201 23/11/2017 00:00 112.3

Summary
The catchment of the highest precipitation 
corresponds with case study location of N Wales. The 
forecast for this catchment captures the event 
reasonably. Raingauge observations are within the 
ensemble spread for most of 22 Nov except for the 
highest peak of the event. 
The 3 observation sources show a consensus on the 
distribution of rainfall. There are some discrepancies 
around magnitudes, particularly across the West 
Midlands.
TWPs show NW England with a probability of 1 
through all 3 time-windows. In Days 4-6 probabilities 
of ~0.5 are spread across most catchments of England 
and Wales. In Days 2-3, probabilities become more 
focussed on western parts of England and Wales. 
Probabilities increase to 1 in the Day 1 window in N 
Wales, W Midlands and W & N Yorkshire.



 

Catchment 
ID 

Comments Days 4-6 Days 2-3  Day 1 

065001_TG
_1201 

Catchment as 
identified as having 
highest 24hr rainfall 
is in case-study 
region.  

   

724528 Consistent with 
724427, 724326, 
760112, 760101 

   

765512 Consistent with 
760502 
 
All or nothing 
ensemble spread at 
Days 4-6, well 
forecast at Days 2-3. 
Observed peak just 
outside the 
ensemble spread at 
Day 1. 

   

NW England & N Wales – 22-23 November 2017
Temporal forecast evolution in highest precipitation catchment and those with river flow responses. 



E & SE England – 27 December 2017
Case Study Synopsis. No river flood impacts noted. Minor impacts from surface water flooding: Midlands, SW and SE England.

Summary
From the raingauge observations, the catchment 
receiving the most rainfall was in North Norfolk. 
Similar rainfall totals can be seen across the areas 
identified in the case-study synopsis. These vary 
across the observation sources. Raingauge 
observations show more rainfall around the 
Midlands and East Anglia whereas radar shows more 
in the SE, SW and South.
The forecast for the highest rainfall catchment is 
good and shows persistent rain. The raingauge 
observations are almost at the centre of the 
ensemble spread for the duration of the event. 
TWPs identified the areas affected. In the Days 4-6 
window probabilities of around 0.5 are spread 
across the UK, the highest being 0.9 in central 
southern England. In the Days 2-3 TWPs are of a 
similar magnitude but less widespread and focussed 
on SE Wales, West Midlands and central southern 
England. By Day 1 the highest probabilities have 
generally shifted eastward and increased to 1 across 
the South, SE and East.

Max Catchment Date/Time of Max Rainfall (mm)

E19862_G2G_FFC 27/12/2017 18:00 42.6



Storm Eleanor – 2-3  January 2018
Case Study Synopsis. EFAS Flash Flood notification. No fluvial impacts recorded. Little response in 
G2G deterministic but larger response in G2G ensembles.

Summary
From raingauge observations, the catchment 
receiving the highest rainfall (~69mm) was in 
Cumbria/Lake District. The forecast for this 
catchment generally captures the magnitude of 
the event. Ensemble members show 2 peaks 
during the event but the raingauge observations 
show these peaks occurring slightly earlier. The 
observations show a ~5mm/h peak just slightly 
earlier than the 2 main peaks which isn't forecast. 
The 3 observation sources are largely in 
agreement on totals and distribution of rainfall. 
TWPs are highest,~0.7/0.8, in a region of 
Cumbria/Lancashire in Days 4-6. Probabilities 
decrease to 0.5 at the most in the region in Days 
2-3. The highest TWPs of 1 are focussed on S 
Wales and West Midlands. By Day 1, probabilities 
fall across England and Wales. The highest 
probabilities of 0.6 are in the East 
Midlands/South Yorkshire. Probabilities around 
the highest catchment are around 0.3.

Max Catchment Date/Time of Max Rainfall (mm)

751007_G2G_FFC 03/01/2018 01:00 68.9



SE & SW England & Derbyshire – 12-14 March 2018
Case Study Synopsis. Widespread flooding around Burton, South Derbyshire. G2G gave poor advice on the fluvial flood 
risk in Staffs/High Peaks area. Unusually rapid response given the amount of rain, which lead to quite a few minor 
impacts from surface water and river flooding. Once the rain was in the gauges, G2G then significantly increased the 
response within the gridded MRDET through this area. 

Summary
Catchment with the highest 24hr rainfall total in the 
region of the case-study synopsis location 
(Derbyshire/High Peaks). The forecast for this 
catchment captures the event well. Raingauge 
observations are almost entirely within the ensemble 
spread. The observation types are largely in 
agreement on the distribution of rainfall. Radar 
observations show higher rainfall totals than 
raingauges across the Peak District & Lancashire.
TWPs focus on Southern England in Days 4-6 with the 
highest probability being 0.7. Probabilities in 
the Derbyshire/High Peaks region are around 0.3. In 
Days 2-3, probabilities decrease to 0.01/0.1, in the 
Derbyshire/High Peaks. The focus remains 
on Southern England and a small region around 
Exmoor with probabilities of between 0.4-0.6 at the 
most. Probabilities increase up to around 0.8 into Day 
1. 0.8 is present in Central Southern England, W 
North York Moors, S Yorkshire.

Max Catchment Date/Time of Max Rainfall (mm)

4050_G2G_FFC 13/03/2018 01:00 37.5



SE &SW England & Derbyshire – 12-14 March 2018
Temporal forecast evolution in highest precipitation catchment and those with river flow responses. 

 

Catchment 
ID 

Comments Days 4-6 Days 2-3  Day 1 

4050 Catchment as 
identified as having 
highest 24hr rainfall. 
 
Consistent with 4033 
G2G & PDMs – 
except for Days 2-3 
when obs are within 
ensemble spread  

  

4008  

 
  



SW/Central/NE England & Wales – 2-4 April 2018
Case Study Synopsis. Minor river flooding impacts noted on 3 April: N and W Yorkshire and on 4 April in N 
Yorkshire, Durham and Tyne and Wear. Minor roads around Linton-on-Ouse closed due to flooding from small 
streams and high flows on River Ouse. Surface water flooding caused closures or partial closure of arterial A 
roads around Bishops Auckland (Durham) and Tyne & Wear area.

Highest rainfall 
catchment 

Glaslyn at 
Beddgelert 
(065001_TG_12
01)

Max Catchment Date/Time of Max Rainfall (mm)

065001_TG_1201 02/04/2018 21:00 60.4

Summary
Catchment with the highest 24hr rainfall total in the 
region of the case study synopsis location (Wales). The 
forecast for this catchment captures the event well, 
observations are within the ensemble spread for all of 
the event. The ensemble spread is fairly large (0 to 
7.5mm) for the latter parts of 2 April.
The observation sources are largely in agreement on 
the distribution of rainfall. Some small discrepancies 
can be seen in the rainfall totals, particularly in SE 
England where raingauge observations are lower than 
radar. A band across the West Midlands shows higher 
observations from gauges than radar. TWPs for Days 4-
6 show the highest probabilities of 0.7 in central S 
England with similar probabilities into Wales, Midlands 
& South Coast. In the Days 2-3 window, probabilities 
become better correlated with the affected regions. 
Probabilities in the NE & Cornwall increase to ~0.6. In 
the Day 1 window, probabilities increase to 1 in 
affected areas of the NE, Wales and Central England. 
Probabilities fall to ~0 in the SW.



SW/Central/NE England & Wales – 2-4 April 2018
Temporal forecast evolution in highest precipitation catchment and those with river flow responses. 

 

Catchment 
ID 

Comments Days 4-6 Days 2-3  Day 1 

065001_TG
_1201 

Catchment as 
identified as having 
highest 24hr rainfall. 
Consistent with 
Glaslyn PDM 

 
  

MALTON1 Consistent with 
MARISH1, 
Nunnington G2G, 
F2581PDM 

 
  



Storms Ali & Bronagh – 20 September 2018
Case Study Synopsis. Primarily, surface water flooding. Transport disruption in Sheffield and 
Rotherham. Some road flooding in Wales (Pontypridd).

Taff at Fiddlers Elbow 
(057007_TG_504)

S Wales

Max Catchment Date/Time of Max Rainfall (mm)

057007_TG_504 20/09/2018 23:00 142.6

Summary
Highest rainfall catchment well correlated with case-study 
impact region of S Wales.
The forecast for this catchment captures the event 
reasonably well. Ensemble members tend to converge on 2 
peaks in rainfall after an initial peak of just less than 
5mm/hr. The raingauge observations largely follow this 
pattern and are within the ensemble spread. One difference 
is the raingauge observations do not fall to ~0 mm/hr 
around midday on 20 Jan. Raingauge observations fall but 
then continue to rise to the main peak of ~18mm/h.
The 3 observation sources are in good agreement on the 
distribution of rainfall. Some small discrepancies can be seen 
around the locations of the highest rainfall totals.
TWPs in Days 4-6 are focussed on central southern England 
and Eastern Wales with probabilities of 0.6-0.7. Probabilities 
of 0.5-0.6 can also be seen in south Yorkshire and parts of 
the Midlands. In Days 2-3, probabilities increase across the 
country. The biggest increases can be seen across northern 
England, SW Wales and N Devon/Cornwall. Probabilities of 
1 are present across S Wales & W Midlands. Into Day 1, the 
prevalence of TWPs of 1 increases. The affected areas of S 
Yorkshire and S Wales both show probabilities of 1.



Scotland



6 & 7 June 2017 - Findhorn, Lossie and Nairn catchments

Max Catchment Date/Time of Max Rainfall (mm)

234307_G2G_SEPA 07/06/2017 07:00 110.6

Case Study Synopsis. Hydrologically significant event. FGS 3x2 (low,sig). Flood defences at Forrest 
and Elgin prevented flooding in these places. River Nairn came close to overtopping defences. Summary

Catchment with the highest 24hr rainfall total is in 
the region of recorded impacts. The forecast for the 
highest catchment captures the general timing of 
the event. Raingauge observations are within the 
ensemble spread but this is large, between ~1.5 and 
20mm at times. The forecast shows 2 peaks in 
rainfall with the observed rainfall occurring 
between them. Between the raingauge and radar 
observations, there is agreement on rainfall 
amounts in the case-study region. Outside of the 
region, the radar shows higher totals. Time-Window 
Probabilities are between 0.6 and 0.1 in the case-
study region at Days 4-6. In the Days 2-3 window, 
probabilities increase to 1 across the region with 
similar probabilities to the SE of Scotland. By Day 1 
probabilities of 1 are much more widespread 
around the case study region and SE. 

Problem 
with 
Scottish 
merged 
file for 
this date



23 to 25 January 2018 - Scottish Borders

Max Catchment Date/Time of Max Rainfall (mm)

133087_G2G_SEPA 24/01/2018 02:00 64.2

Case Study Synopsis. Several linked events. Snowmelt overnight 23-24 January.

Summary
The catchment receiving the highest 24hr precipitation 
total was not in the region of the case-study impacts. 
Could suggest snowmelt was an important factor. The 
forecast for the highest rainfall catchment under-
forecasts 2 peaks early on 23 Jan but captures their 
timing. After these peaks, forecast is accurate with 
raingauge observations within the ensemble spread. The 
different observation sources are mostly in agreement 
on rainfall totals and distribution. Differences are 
greatest along the SE and NE coasts where the 
raingauges give lower totals. TWPs identify areas of high 
rainfall from Days 4-6. In Days 4-6, probabilities are 1 to 
the W and S of Scotland and in some areas of the 
Scottish Borders. In Days 2-3, probabilities of 1 become 
much more widespread around the same areas. By Day 
1, the high probabilities of 1 are focussed on the Scottish 
Borders and the West of Scotland (including the area 
around the catchment receiving the highest daily 
rainfall). Probabilities drop to ~0 on the NE coast, a 
region which received little rainfall on both the raingauge 
and radar obs.
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Rainfall and River Flow Ensemble Verification: Phase 2 

Case study analysis: hydrological impacts, rainfall and river flow time-series 

Final Report Appendix C.3.1 

1 Overall approach 

1.1 Selection of case-studies and associated catchments 
A list of potential case-studies was provided by the Project Board (FFC, EA, SEPA, NRW) based on 

operational experience and relevance. Associated catchments were then selected based on observed 

and/or modelled (G2G) river flow and rainfall, and consideration of any reported impacts. Note that 

the catchments with observed river flow available for this project are not the full set used by G2G 

operationally: this further constrained which catchments were selected. More details of the selection 

process are given below. 

The selection of case-studies and associated catchments is based on the following information. 

 G2G modelled river flows produced using observed rainfall, state-updating and flow-insertion 

 Hydrological Summary for the United Kingdom (UKCEH, 2021) 

 Guidance on case-study selection from the Project Board  

 Locations of maximum rainfall (calculated by G2G domain (England & Wales or Scotland) for 

24h raingauge accumulations) 

 Flood Guidance Statement Verification (FGSV) Observed impacts summary 

The main focus with regard to river flow is on the England & Wales and Scotland case-studies having 

river flooding impacts in order to demonstrate the prototype operational displays and their benefit. 

From a precipitation perspective, the focus is both on catchments which have the maximum 24h 

rainfall over the G2G domain being considered (England & Wales or Scotland) and also on catchments 

showing river flooding impacts. Note that some case-studies had limited or no noticeable river flow 

responses (for the catchments available) so only have catchments selected for a precipitation analysis. 

Catchments used in the analysis are referred to by catchment name, G2G (NFFS/FEWS) ID, and G2G 

catchment area (noting that this may differ slightly from the NRFA catchment area). Where a PDM for 

a catchment is also available, the PDM (NFFS/FEWS) ID is also given.  

1.2 Summary of associated documents and additional information 
For reference, this document first provides a guide to the diagrams and displays used for case-study 

analysis (Section 2). This is followed by a discussion of the catchments considered for each case-study 

and the individual case-study analyses (Section 3). Then the key conclusions from across all case 

studies is given in Section 4. The full set of case-study plots can be found in the documents below.  

River flow case-study plots documents, Appendix C.3  

 

Precipitation case-study plot document, Appendix C.2 
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2 Presentation of case-study results including verification 

information in real-time displays 

2.1 River flow diagrams and displays 
To be useful for real-time flood guidance, there is a desire to view verification information that has 

already been interpreted and placed in context. For the verification of ensemble river flows, the 

performance of a specific forecast is assessed in three ways:  

(i) analysing the ensemble hydrograph behaviour and threshold exceedance at a given site, 

(ii) placing the ensemble spread in the context of climatological spread for that site, and 

(iii) analysing the threshold exceedance from a regional perspective.  

 

An example diagram for analysing the ensemble hydrograph behaviour and threshold exceedance at 

a particular site is shown in Figure 2.1. For one forecast (selected, for example, to cover a specific time) 

the ensemble member hydrographs are plotted with one colour per ensemble member, with colours 

selected to match those used for the 24-member Storm Surge ensemble.  If available (i.e. for post-

event analysis) the observed flows are plotted in black to allow the ensemble performance to be 

visually assessed. Flow thresholds Q(2)/2, Q(2), Q(5) and Q(50) are indicated by horizontal black 

dashed lines, when exceeded by at least one ensemble member, or by the observations. If forecasts 

have been selected to analyse performance at a specific time of interest, this time is shown by a 

vertical black dashed line. 

Ensemble probabilities of upward threshold-crossings are calculated for Day 1, Days 2-3 and Days 4-6 

of the forecast. These are plotted at the relevant flow threshold, and the centre point of the lead-time 

range considered, with a coloured symbol indicating the probability of crossing each threshold. Light 

red indicates 0 to ⅓ of ensemble members crossed, medium red ⅓ to ⅔, and dark red ⅔ to 1. The 

symbol shape is used to indicate the direction of any correction suggested by the Reliability Diagram. 

An upper pointing triangle suggests a correction towards higher probabilities; a lower pointing triangle 

towards lower probabilities; and a square suggesting no correction. The suggested correction is 

calculated using a straight line of best-fit through the Rank Histogram traces.  

The background of the hydrograph is coloured according to the Overall Skill of the ensemble taken as 

the average of the BSS, CRPSS and ROCSS values calculated from the full Phase 2 Period 1 (September 

2017 to 31 August 2018). Here, the aim is to give a quick impression of the ensemble performance at 

the site of interest, and how this varies with threshold and lead-time. The Overall Skill has a 

transparent colour-scale of dark red (very poor, worse than climatology) for values less than zero, red 

(poor) for values from 0 to 0.4, orange (satisfactory) for values from 0.4 to 0.6 and green (good) for 

values from 0.6 to 1.0. 
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Figure 2.1 Example hydrograph used to place the ensemble threshold-exceedance in the context of 
the ensemble verification information. The catchment shown is Derwent at Malton 
(Malton1, NE England) for a forecast time-origin of 19:15 31 March 2018. 

An example diagram for placing the ensemble dispersion in the context of climatological ensemble 

dispersion for a given site is given in Figure 2.2. Here, the Coefficient of Variation (CV) is used as a 

dimensionless measure of ensemble dispersion. It is defined as the ratio of the ensemble Standard 

Deviation (spread),  , to the ensemble mean, y , such that: 

 
y


CV . (1) 

The Coefficient of Variation is calculated separately for each time-step in each forecast. For the 

individual forecast considered, the CV is plotted in red as a function of forecast lead-time in Figure 2.2. 

To calculate the climatological CV, the average is taken (separately at each forecast lead-time) of the 

CV values for all forecasts at the site of interest over the Phase 2 Period 1 (September 2017 to 31 

August 2018). This is plotted in black. Thus, when the red line in Figure 2.2 is above the black line, the 

individual ensemble forecast is more spread than the reference climatology.  

 

Figure 2.2 Example display of Coefficient of Variation of the ensemble forecast against forecast lead-
time (given as the forecast time) for one ensemble forecast, placing the forecast 
ensemble spread in the context of climatological spread. The forecast time-origin is 19:15 
31 March 2018. 

To analyse the threshold-exceedance from a regional perspective, maps are drawn showing the 
threshold-exceedance for each site within a given region, for each threshold and lead-time range 
considered. An example for the North East of England region is shown in Figure 2.3. The symbol at 
each site indicates the direction of any correction suggested by the Reliability Diagram, and the colour 
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shows the fraction of ensemble members exceeding the threshold. The same symbols and colours are 
used as were used for the hydrographs in Figure 2.1.  
 

 
 

      
 

Figure 2.3 Example maps showing the variation in ensemble probability of river flow threshold-
exceedance for a particular forecast over a given region (top panels) and zooming in on 
the catchment of interest (bottom panels). The time-origin of the forecast is 
19:15 31 March 2018.  

2.2 Precipitation diagrams and displays 
Precipitation diagrams and displays for each case-study are presented and discussed in 

Appendix C.2.  

To allow a direct comparison to be made between precipitation time-series and river flow hydrographs 

for catchments identified as having river flow impacts, additional catchment-precipitation time-series 

have been produced. These are included where appropriate in the analysis presented below in 

Section 3.  

  

A

A 
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3 Analysis of case-studies and associated catchments 

3.1 Case studies over England & Wales 
The case-studies selected for England & Wales are analysed below in chronological order. Each 

analysis includes identifying features of the case-study, the associated catchments chosen, and key 

conclusions drawn from the results.  

First, Table 1 lists the catchments considered for each case-study based on (i) the observed and/or 

modelled (G2G) river flow response (middle column), and (ii) the peak 24h raingauge rainfall total 

(right column). For consistency, throughout this report catchments are referenced as “River at Site 

Name (G2G ID)”, where the G2G ID is the NFFS/FEWS ID. In Table 1, catchments that are indented are 

upstream of the preceding un-indented catchment. Note that the catchment with the peak 24h rainfall 

total does not necessarily overlap with the catchments selected based on river flow response, or with 

the areas reported as having rainfall or flood impacts. 

Table 2 gives further catchment information for case-study catchments that have a river flow analysis. 

This includes National River Flow Archive (NRFA, nrfa.ceh.ac.uk) details if available. Note several 

catchments are used in more than one case-study and have been grouped accordingly and their 

locations indicated in Figure 1. 

Table 1 Catchments used for case-studies over England & Wales. The catchments in the central 
column were analysed for both river flow and precipitation, the catchments in the right-
hand column were analysed for precipitation only. The exception to this is the 27 December 
2017 case-study catchment Boyd at Bitton (53131 & PDM)* which was only analysed for 
river flow.  

Case-study Catchments selected based on river flow 

response 

Catchment with peak 24h rainfall total 

2017    

18 Jul  Walkham at Horrabridge (47118) 

9 Aug  Gypsey Race at Boynton (Boyntn1) 

23 Aug  Derwent (NE) at Low Marishes (MARISH1) 

30 Sep  Kent at Sedgwick (730511) 

21 Oct Irwell at Irwell Vale (690140) 

Calder at Hebden Bridge (HEBDBR1) 

Calder at Todmorden (TODMDN1) 

Glaslyn at Beddgelert (065001_TG_1201 & 

PDM) 

Glaslyn at Beddgelert (065001_TG_1201 & 

PDM) 

3-4 Nov  Moors River at Hurn Court (43214) 

22-23 Nov Lune at Caton (724629) 

Wenning at Hornby (72452) 

Hindburn at Wray (724427) 

Wenning at Wennington (724326) 

Glaslyn at Beddgelert (065001_TG_1201 & 

PDM) 

https://nrfa.ceh.ac.uk/
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Eden at Sheepmount (765512) 

Eden at Temple Sowerby (760502) 

Eden at Gt Musgrave Bridge (760112) 

Eden at Kirkby Stephen (760101) 

Glaslyn at Beddgelert (065001_TG_1201 & PDM) 

27 Dec Boyd at Bitton (53131 & PDM)* Wensum at Costessey Mill (E19862) 

2018    

2-3 Jan  Derwent at Portinscale (751007) 

 

12-14 Mar Dove at Rocester Weir (4008) 

Dove at Hollinsclough (4033 & PDM) 

Torne at Auckley (4050) Torne at Auckley (4050) 

2-4 Apr Derwent at Malton (Malton1) 

Derwent at Low Marishes (MARISH1) 

Riccal at Nunnington (Nunnington & PDM) 

Glaslyn at Beddgelert (065001_TG_1201 & PDM) 

 

 

Glaslyn at Beddgelert (065001_TG_1201 & 

PDM) 

20 Sept  Taff at Fiddlers Elbow (057007_TG_504) 

 

Table 2 Catchment information for case-study catchments over England & Wales that have a river 
flow analysis.  

Case-study Site 
G2G ID  

(NFFS/FEWS ID) Region River 

G2G 
area 
(km2) NRFA ID 

NRFA 
area 
(km2) 

21 Oct 17 

Irwell Vale 690140 NW Irwell 103 69022 101 

Hebden Bridge HEBDBR1 NE Calder 74   

Todmorden TODMDN1 NE Calder 18   

21 Oct 17  
22-23 Nov 17 
2-4 Apr 18 

Beddgelert 065001_TG_1201 WA Glaslyn 68 65001 68.6 

22-23 Nov 17 

Caton 724629 NW Lune 984 72004 983 

Hornby 724528 NW Wenning 230 72807 232 

Wray 724427 NW Hindburn 83 
  

Wennington 724326 NW Wenning 140 72009 142 

 
 

Sheepmount 765512 NW Eden 2274 76007 2286.5 

Temple Sowerby 760502 NW Eden 618 76005 616.4 

Gt Musgrave 
Bridge 

760112 NW Eden 225 
  

Kirkby Stephen 760101 NW Eden 68 76014 69.4 

27 Dec 17* Bitton 53131 SW Boyd 48 53017 47.9 
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12-14 Mar 18 
 

Rocester (Dove) 4008 MI Dove 398 28008 399 

Hollinsclough 4033 MI Dove 8 28033 8 

Auckley 4050 MI Torne 128 28050 135.53 

2-4 April 18 
 

Malton MALTON1 NE  1407   

Low Marishes MARISH1 NE Derwent 468 27087 457.5 

Nunnington Nunnington NE Riccal 53 27093 40 

 

  

Figure 4 Case-study catchments over England & Wales that have a river flow analysis. Note that 
some catchments cover multiple case-studies as indicated by the key. 

3.1.1 18 July 2017. Flash flood case  

Flash flooding in Coverack. This location has no associated G2G gauged catchment so was not included 

in the analysis for this project. As the Coverack storm was a highly localised event, neighbouring 

gauged G2G catchments did not receive large precipitation totals and do not show a response in river 

flow. A response is seen for Walkham at Horrabridge (47118) which, though not located close to 

Coverack, was affected by heavy, quasi-stationary convective cells to the NW of Coverack, further 

along the line of convection. The locations of Coverack and Walkham at Horrabridge (47118) are 

shown in Figure 5 alongside a Hyrad display of 15 minute radar-rainfall accumulations (H19) for 17:15 

18 July 2017.  



8 of 28 
 

  

Figure 5 South West peninsula G2G gauged catchments (green infill) highlighting the locations of 
Walkham at Horrabridge (cyan catchment boundary) and Coverack (left map) and Hyrad 
display of 15 minute radar-rainfall accumulations (H19) for 17:15 18 July 2017 (right map). 

A rainfall peak was identified in the Thames region. Catchment of the Ash at Mardock (5080TH) in 

Hertfordshire, a tributary of the River Lee and near the town of Wareside. No river flow response was 

seen and river flows were not considered for this case-study.  

 

3.1.2 9 August 2017. Surface water flooding case. EFAS Flash Flood with no recorded fluvial 

impacts.  

For this case-study the peak rainfall was identified in the North East of England for Gypsey Race at 

Boynton (Boyntn1), a chalk stream on the Yorkshire Wolds. 

River flows were not considered for this surface water flooding case-study.  

3.1.3 23 August 2017. Convective event with flash flooding from surface water, significant in 

Scarborough, minor for York and west.  

For this case-study, the 24h rainfall peak was identified in the North East for the catchment Derwent 

at Low Marishes (MARISH1) 

River flows were not considered for this surface water flooding case-study. 

3.1.4 30 September 2017. Narrow band of heavy rain over the south of Cumbria caused surface 

water flooding (Millom, Windermere, Haverigg) 

For this cast study, the 24h rainfall peak was identified for Kent at Sedgwick (730511) 

Observed and modelled river flows (simulation-mode with observed rainfall, state-updating and flow-

insertion) were examined for Cumbria. As no threshold-crossings were seen, river flows were not 

considered for this surface water flooding case-study. 

3.1.5 21 October 2017. Disruption and SWF in west of country due to Storm Brian. River flow 

impacts in Lancashire at Rawtenstall alongside SWF impacts. 

For this case-study, the FGSV Observed impacts summary identified river flooding of five properties 

in Rawtenstall. Nearby catchment of Irwell at Irwell Vale is considered here. 

Irwell at Irwell Vale (690140)  

For Irwell Vale, the observed river flows reached Q(2) on the evening of 21 October, but didn’t cross 

this threshold. Initial Days 3-6 forecasts showed low probabilities of crossing the Q(2)/2 threshold 

(although the peak timing was highly uncertain). Later forecasts (origin on 17 October) showed a low 

probability of Q(2) being exceeded, although there was some jumpiness between forecasts. Days 2-3 

forecasts consistently gave a low probability of Q(2)/2 being exceeded, with some members crossing 

Coverack 
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this threshold later on in the forecast, around 24 October. Although the majority of Day 1 forecasts 

showed a low probability of crossing Q(2)/2 only, there were forecasts which suggested higher 

threshold crossings and one (origin 07:16 21 October) where the Q(2)/2 threshold was not exceeded 

by any members.  

Overall there were a number of sites in this geographical area predicting threshold-crossings of the 

Q(2)/2 and Q(2) threshold around 21-22 October, even at longer lead-times. In general, the 

verification suggested that these probabilities might be too high, although several instances are seen 

of possibly too low, or about right, probability values. In general, there were two periods of high 

ensemble spread: around 00:00 22 October, and again around 24-25 October. This suggests possible 

uncertainty about secondary river flow peaks several days after the main case-study event. This 

uncertainty is also seen in the precipitation ensemble forecasts, for example initiating at 

13:15 19 October 2017 as shown in Figure 6. 

 

 

Figure 6 Example rainfall (raingauge blue and ensemble members grey) and river flow (colours as 
discussed in Section 2.1) time-series for the BMR forecast for Irwell at Irwell Vale (690140) 
initiated at 13:15 19 October 2017. 

The FGSV also notes that there were flood sirens on the River Calder at Hebden Bridge, Todmorden 

and Mytholmroyd. These catchments border Irwell Vale but drain east to join the Yorkshire Ouse. As 

Mytholmroyd has no useable observed river flow data for this period, only Hebden Bridge and 

Todmorden are considered here. 

Calder at Hebden Bridge (HEBDBR1) 

Calder at Todmorden (TODMDN1) 

Observed river flows crossed the Q(5) threshold late on 21 October at Todmorden, with a similarly 

timed peak crossing the Q(2)/2, and reaching the Q(2) threshold, at Hebden Bridge. The ensemble did 

not consistently capture non-zero probabilities of these thresholds being crossed until the final few 

days before the observed peak river flow. There were a small number of very early Days 3-6 forecasts 

(e.g. origins 13:15 16 October, 01:15 17 October (Figure 7, left panel)) which did show low probabilities 

of crossing the Q(5) threshold at Todmorden, with one ensemble member indicating a Q(50) crossing 

at Hebden Bridge. This suggests that that there was, initially, some indication from the ensemble that 

high flows were a possibility, although it was not until 20 October that there was any further indication 
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of these events being possible. Figure 7 shows example BMR forecasts initiated at 

01:15 17 October 2017 and 01:15 21 October 2017 for both precipitation and river flow. It can be seen 

that the higher river flows for the earlier forecast relate to higher forecast precipitation values on 

21 October. In contrast, the Day 1 forecast origin shows forecast precipitation values that were both 

delayed and lower than observed, leading to a much-lower river flow peak around 12 to 24 hours later 

than that observed. 

 

Figure 7 Example rainfall (raingauge blue and ensemble members grey) and river flow (colours as 
discussed in Section 2.1) time-series for the BMR forecasts for the Calder at Todmorden 
(TODMDN1) initiated at 01:15 17 October (left) and 01:15 21 October (right) in 2017. 

Consideration of the regional threshold-crossing maps suggests that the ensemble as a whole was not 

predicting the high peaks for Days 2-3 forecasts at larger scales: there is not simply a spatial 

displacement of the highest predicted rainfall/river-flow values.  

Interestingly the rainfall peak for this case-study occurs not in the North West of England, but instead 

in North Wales at Beddgelert. Whilst no river flow thresholds (Q(2)/2 or greater) are crossed at this 

site, river flow plots are included for consistency and comparison with the rainfall time-series.  

Glaslyn at Beddgelert (065001_TG_1201). PDM catchment Glaslyn_001 

 

For Beddgelert, observed river flows (just) crossed the Q(2)/2 threshold in the evening of 21 October, 

with a second, higher crossing of this threshold on 25 October. The first peak – the focus of this case-

study, and where peak 24h rainfall was identified – was not forecast by any ensemble member after 

18 October, although some Days 4-6 forecasts did have a low probability of this threshold being 

crossed. An example is shown for the 01:15 17 October forecast origin in Figure 8 (left panel) for both 

the G2G and PDM model output. Both models show a similar response to the forecast rainfall with 

some members predicting early threshold crossings linked to high forecast rainfall on the 20 October. 

For the 21 October peak, the precipitation-ensemble spread encompasses the raingauge observed 

precipitation values and this is reflected in the G2G and PDM ensembles also encompassing the 

observed river flows. The right-hand panel of Figure 8 shows a later Day 1 forecast origin for 

01:15 21 October 2020. It can be seen that at this short lead-time the forecast precipitation values are 

much lower (noting the different axis on the precipitation plots) and the river flow peak is not 

captured.  
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Figure 8 Example rainfall (raingauge blue, ensemble members grey, 20 mm h-1 shown in yellow), 
G2G and PDM river flow (colours as discussed in Section 2.1) time-series for the BMR 
forecasts for Glaslyn at Beddgelert (065001_TG_1201) initiated at 01:15 17 October (left) 
and 01:15 21 October (right) in 2017. 

3.1.6 3 & 4 November 2017. No noticeable river response.  

For this case-study, the 24h rainfall peak was identified at South West of England catchment Moors 

River at Hurn Court (43214). This differs from the locations indicated by the case-study events 

document of SE England. Further discussion of the geographical selection of catchments of interest 

from analysis of heavy precipitation is given in Appendix C.2. 

River flows were not considered for this case-study. 

3.1.7 22 & 23 November 2017. (Deep low pressure system brought heavy rainfall to northern 

and western Britain). 

Of all the Phase 2 case-studies, this has the greatest river flow responses. The highest flows are seen 

in NW England, which recorded November highest peak flows for Lune and Eden catchments (UKCEH, 

2021). To capture these events, the focus is on two nested sets of catchments: the Lune at Caton and 

upstream catchments, and the Eden at Sheepmount and upstream catchments. This gives a range of 

catchment sizes and characteristics.  

Lune at Caton (724629, 983km2) 

 Upstream Wenning at Hornby (724528, 232km2) 

 Headwater Hindburn at Wray (724427, 83km2) 

 Headwater Wenning at Wennington (724326, 142km2) 

 

Observed river flows peaked close to, but did not cross, the Q(50) threshold in the early hours of 

23 November 2017 at Caton. This reflects the earlier peaks (late on 22 November) at headwater 

Precip.      

G2G  

PDM   
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catchments Wray, where Q(5) was crossed, and Wennington, where Q(5) was reached but not 

crossed. The Q(5) threshold was also reached at Hornby, upstream of Caton. In this instance the earlier 

forecasts from Days 2-3 and 2-6 seemed to capture the event better that those in Day 1. This is 

particularly clear at Caton, where the majority of Day 1 forecasts had no ensemble members crossing 

the Q(5) threshold, although it is also seen for the other catchments considered. Examination of the 

hydrographs suggests that this is not a timing issue of the ensemble member peaks being “missed” by 

the shorter one-day time-window: rather, the ensemble member rain-rates are noticeably lower in 

Day 1 of the ensemble member forecasts. Analysis of the rainfall time-series confirms this 

interpretation, with forecasts closer to the peak event having considerably lower rainfall values. Two 

example forecasts for the Lune at Caton are shown in Figure 9; forecast origins 

13:00 20 November 2020 (peak in Days 2-3) and 01:00 22 November 2020 (peak in Days 2-3) 

 

 

Figure 9 Example rainfall (raingauge blue, ensemble members grey, 20 mm h-1 shown in yellow) and 
river flow (colours as discussed in Section 2.1) time-series for the BMR forecasts for the Lune 
at Caton (724629) initiated at 13:15 20 November (left) and 01:15 22 November (right) in 
2017.  

Interestingly, the Days 3-6 (and to some extent Days 2-3) forecasts for the days following the event of 

interest also show a low chance of high thresholds (up to Q(50)) being crossed, when in this instance 

the observed river flows show only a small rise. This suggests, perhaps, that higher threshold-crossings 

are, in general, more common at the longer lead-times, though this cannot be shown in a case-study 

context.  

 

Eden at Sheepmount (765512, 2286.5km2)  

 Upstream Eden at Temple Sowerby (760502, 616.4km2) 

 Upstream Eden at Gt Musgrave Bridge (760112, 225km2) 

 Headwater Eden at Kirkby Stephen (760101, 69.4km2) 

 

Overall, the River Eden observed river flow peaks for this case-study were lower than those seen for 

the River Lune. For the catchments considered, the highest peak was seen at Gt Musgrave Bridge 

where the Q(5) threshold was crossed, though flows at Temple Sowerby came close to crossing the 

Q(5) threshold. At the other two catchments considered, Sheepmount and Kirkby Stephen, observed 

flow peaks narrowly crossed the Q(2) threshold. Early forecasts for all catchments predicted higher 
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peak flows with low-medium certainty, with some ensemble members predicting very high peak flows, 

far above the Q(50) threshold. There was also a large degree of uncertainty around the peak-timing 

at these lead-times. Closer to the event the ensemble settled on Q(2) and Q(5) threshold-exceedance.  

Interestingly, like for the Lune catchments for this case-study, a number of ensemble members were 

predicting a second high peak around 26 November, which did not materialise in reality.  

 

 

Figure 10 Example rainfall (raingauge blue, ensemble members grey, 20 mm h-1 shown in yellow) 
and river flow (colours as discussed in Section 2.1) time-series for the BMR forecasts for the 
Eden at Sheepmount (765512) initiated at 01:15 18 November (left) and 13:15 20 November  
(right) in 2017.  

For this case-study, the 24h rainfall peak was located in North Wales, in the Glaslyn at Beddgelert 

catchment. This catchment is considered as an example for both G2G and PDM ensembles (NRW PDM 

catchment ID Glaslyn_001). Although flows are lower here than in NW England, observed flows are 

still high, crossing the Q(2) threshold in the evening of 22 November.  

Glaslyn at Beddgelert (065001_TG_1201). PDM catchment Glaslyn_001 

 

For this case-study, the observed river flows at Beddgelert crossed the Q(2) threshold in the evening 

of 22 November, with peak flows coming close to the Q(5) threshold. Similarly to the Lune 

catchments for this case-study (Figure 9), and the 21 October case-study for Beddgelert (Figure 8), 

the peak seemed to be better predicted by Days 4-6 forecasts, with ensemble member forecasts 

being, in general, too low for forecasts in Days 1-3. Again, this also matches with the precipitation 

analysis.  

3.1.8 27 December 2017. Minor impacts from surface water flooding in Midlands, SW and SE 

England. No river flow impacts recorded.  

For this case-study, the 24h rainfall peak was identified for Anglian catchment Wensum at Costessey 

Mill (E19862). Although this is predominantly a surface water flooding case-study, river flows close to 

the Q(2) threshold were seen for the PDM catchment Boyd at Bitton, and this case study was used as 

an example for that model.  

 Boyd at Bitton (53131) PDM catchment 530350 
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Figure 11 shows the PDM forecasts for all forecast initiation times covering this case-study. Overall, 

the verification statistics show this site performs well for low threshold-crossings as shown by the 

green background. A large range of predicted threshold-crossings are seen, with a small number of 

ensemble members indicating crossings well above the Q(50) threshold. It is thought these will be 

related to very large rainfall totals for these members, but this has not been analysed for this case-

study.  

 

Figure 11 Example river flow (colours as discussed in Section 2.1) time-series for all PDM BMR 
forecasts for the Boyd at Bitton covering 00:00 28 December 2017. 
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3.1.9 2 & 3 January 2018 Storm Eleanor. No fluvial impacts recorded.  

For this case-study, the 24h rainfall peak was identified in the North West for catchment Derwent at 

Portinscale (751007) 

River flows were not considered for this surface water flooding case-study.  

3.1.10 12-14 March 2018. Widespread flooding in South Derbyshire, with poor advice from G2G 

in the Staffs/High Peaks area. 

Analysis of the G2G deterministic output with observed rainfall as input does not show any threshold-

crossings or significant response in the Staffs/High Peaks area. To test whether this is the case when 

forecast rainfall is used instead, the following catchments were considered. 

Dove at Rocester (4008) 

 Headwater Dove at Hollinsclough (4033) also PDM Hollinsclough Zone 1 and 2 

For Rocester, a double-peak is seen in the observed river flows, with peaks around midday on 

10 March and the late evening on 12 March. Both peaks cross the Q(2) threshold, although the second 

is noticeably larger. The G2G ensemble forecasts for this give some suggestion that the Q(2) threshold 

may be crossed, but this varies from forecast to forecast, even at short lead-times. For this case study, 

with two close-together peaks, the effects of timing uncertainty - and its relationship with the time-

period used to calculate threshold-crossings - become apparent. There are, for example, ensemble 

members that capture only one peak in the Days 3-6 forecasts between the two observed peaks, and 

forecasts do “better” when the two peaks are considered in the same time-window.  

 

For Hollinsclough, observed river flows remain low, well below the Q(2)/2 level, contrasting with the 

G2G ensemble member forecasts which show a low chance of crossing thresholds up to Q(5). This is 

seen throughout the period considered for this case-study, not just for the time surrounding the main 

case-study peak. This is shown for example forecast initiation times 13:15 10 March, 19:15 10 March, 

and 01:15 11 March 2018 in Figure 12. Although the performance of G2G for this catchment is 

generally too peaky, the peaks are normally of an appropriate magnitude (e.g. see the G2G 

Performance Summary), with a moderate negative bias seen overall, suggesting this is not the cause 

of the poor performance for this case-study event. For the 13:15 10 March 2018 forecast origin, Figure 

12 also shows the BMR ensemble rainfall time-series. It can be seen that the rainfall forecast values 

are much higher than those observed, at similar times to when the large river flow forecast peaks are 

seen. This suggests that the poor hydrological model performance for this case-study is linked to the 

rainfall forecasts.  
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Figure 12 Example rainfall (raingauge blue, ensemble members grey, 20 mm h-1 shown in yellow), 

G2G and PDM river flow (colours as discussed in Section 2.1) time-series for the BMR 

forecasts for the Dove at Hollinsclough (4033) initiated at 13:15 10 March 2018. The right-

hand panel shows additional river flow forecast origins 19:15 10 March and 01:15 11 March 

2018. 

The 24h Rainfall peak for this case-study was identified in the Midlands for catchment Torne at 

Auckley (4050, 141km2) which shows both modelled (known rainfall and past flows) and observed 

river flows crossing the Q(2) threshold. This catchment is considered for both rainfall and river flow 

analysis. 

Torne at Auckley (4050) 

Observed river flows for Auckley reach, but do not cross, the Q(2) threshold. Overall the observed 

river flow peak is poorly predicted at longer lead-times with ensemble members either vastly 

overestimating the peak (e.g. forecast origin 07:15 7 March) or under predicted (e.g. forecast origin 

01:15 9 March). Example forecasts of both rainfall and river flow for origins 01:00 8 March and 

13:15 12 March 2018 are shown in Figure 13. It can be clearly seen that the over-estimation of the 

river flow peak is not directly linked to the magnitude of the rainfall peaks (the forecast rainfall being 

higher for the earlier initiation time), but rather to the duration of the rainfall.  

Precip.     
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Figure 13 Example rainfall (raingauge blue, ensemble members grey, 10 mm h-1 shown in yellow) 
and river flow (colours as discussed in Section 2.1) time-series for the BMR forecasts for the  
Torne at Auckley (4050) initiated at 01:00 8 March and 13:15 12 March 2018. 

 

3.1.11 2-4 April 2018. Minor river flooding impacts noted on 3 April in N and W Yorkshire and on 

4 April in N Yorkshire, Durham and Tyne and Wear.  

 
Derwent at Malton (Malton1) 

 Upstream Derwent at Low Marishes (MARISH1) 

 Headwater Riccal at Nunnington (Nunnington) (PDM Nunnington, F2581) 

For headwater catchment Nunnington on the River Riccal, observed river flows peaked around 

00:00 3 April, with the Q(2)/2 threshold being crossed. The larger Derwent catchments Low Marishes 

and Malton both showed broader observed peaks with the highest flows seen from 00:00 4 April. For 

Malton, the Q(2)/2 threshold was crossed in the early hours of 3 April. For Low Marishes, observed 

river flows crossed the Q(2)/2 threshold on 31 March, increasing to close to the Q(2) threshold by 

4 April. Overall, ensemble forecasts for both Derwent catchments showed a low-medium chance of 

very high (up to Q(50)) river flow threshold-crossings, which were not observed for this case-study. 

The high ensemble member peaks persisted into the Days 2-3 forecasts.  

For Nunnington, a number of ensemble members predicted an earlier peak than observed, particularly 

for forecasts over three days ahead. An example is given in Figure 14 (left) for forecast origin 

01:15 29 March 2018. For early Days 4-6 forecasts, with the longest time-window for threshold-

crossings, these peaks fell within one time-window (the same as the observed peak) and the guidance 

appeared good. However, for later forecasts some forecast peaks fell into the Days 2-3 window, while 

others (and the observed peak) fell into the Days 3-6 window, giving a more-mixed message. This 

highlights the effect of considering fixed time-windows, and the utility of looking at the hydrographs 

themselves alongside summary statistics. Comparing the precipitation and rainfall time-series in 

Figure 14, the false river flow peak in the Days 3-6 forecasts can be linked to high rainfall values 

persisting for much of the 31 March in a number of ensemble members. At these forecast lead-times 

very few rainfall ensemble members are predicting a high rainfall peak around the time of the 

observed peak (2-3 April 2018). This leads to a low probability of river-flows crossing the Q(2)/2  
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Figure 14 Example rainfall (raingauge blue, ensemble members grey, 20 mm h-1 shown in yellow), 

G2G and PDM river flow (colours as discussed in Section 2.1) time-series for the BMR 

forecasts for Riccal at Nunnington (Nunnington) initiated at 01:15 29 March (left) and 

01:15 13:15 31 March (right) in 2018. 

threshold at this time, both for G2G and PDM. Later forecasts (e.g. forecast origin 

13:15 31 March 2018, Figure 14 right) show much higher probabilities of crossing the Q(2)/2 

threshold, and for G2G, a low probability of crossing the Q(2) threshold.  

Wales was also highlighted as an area affected by this case-study. This is where the 24h rainfall peak 

was identified, again in the catchment of Glaslyn at Bedgellert. For comparison, this is also included 

in the river flow analysis. 

Glaslyn at Beddgelert. PDM catchment Glaslyn_001  

 

Observed river flows for Beddgelert crossed the Q(2)/2 threshold late evening on 2 April. For all lead-

times, ensemble forecasts were much lower than the Q(2)/2 threshold for G2G forecasts, although 

small peaks were seen on 2 April. No G2G ensemble members suggested a possible Q(2)/2 threshold-

crossing. Forecasts from PDM showed slightly higher river flows as expected due to the use of a rainfall 

factor of 1.2 for this catchment, although the highest member peaks on 3 April still did not reach the 

Q(2)/2 threshold. However, for PDM there is one ensemble member with sufficiently high flows to 

suggest a Q(2)/2 threshold-crossing the following day. Comparison with the BMR rainfall time-series 

shows this second peak relates directly to an ensemble member with much higher precipitation 

values. An example is given in Figure 15 (left) for forecast origin 01:15 29 March 2018. 
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Figure 15 Example rainfall (raingauge blue, ensemble members grey, 20 mm h-1 shown in yellow), 

G2G and PDM river flow (colours as discussed in Section 2.1) time-series for Glaslyn at 

Beddgelert (065001_TG_1201) BMR forecasts initiated at 01:15 29 March (left) and 13:15 31 

March (right) in 2018. 

 

3.1.12 20 September 2018. Primarily surface water flooding case-study with transport disruption 

in Sheffield, Rotherham and Pontypridd.  

River flows were not considered for this surface water flooding case-study.  

3.2 Case-studies over Scotland 
The two case-studies selected over Scotland are analysed below. Each analysis includes identifying 

features of each case-study, the associated catchments chosen and key conclusions drawn from the 

results.  

First,   
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Table 3 lists the catchments considered for each case-study based on (i) the observed and/or modelled 

(G2G) river flow response (middle column), and (ii) the peak 24h raingauge rainfall total (right column). 

In   
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Table 3, catchments that are indented are upstream of the preceding un-indented catchment. Note 

that for the Scotland case-studies, as opposed to those for England & Wales, the catchment with the 

peak 24h rainfall is also included in the catchments used for the river flow analysis.  

Table 4 then gives further catchment information for case-study catchments that have a river flow 

analysis. This includes National River Flow Archive (NRFA, nrfa.ceh.ac.uk) details if available. The 

locations of the catchments are mapped in Figure 16. 

  

https://nrfa.ceh.ac.uk/
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Table 3 Catchments used for case-studies over Scotland 

Case-study Catchments selected based on river flow response Catchment with peak 24h rainfall total 

7 June 2017 Lossie at Sheriffmills (234307) 

Mosset Burn at Wardend Bridge (234331 & PDM) 

Findhorn at Forres (234221) 

Findhorn at Shenachie (234306 & PDM) 

Divie at Dunphail (234206 & PDM) 

Nairn at Firhall (234218) 

Nairn at Balnafoich (234164) 

Lossie at Sheriffmills (134307) 

24 January 

2018 

Tweed at Sprouston (15012) 

Ettrick Water at Lindean (14990) 

Ettrick Water at Brockhoperig (14987 & 

PDM Ettrick at Brockhoperig) 

Tima Water at Deephope (14986) 

Orchy at Glen Orchy (133087) Orchy at Glen Orchy (133087) 

 

Table 4 Catchment information for case-study catchments over Scotland 

Case-
study Site 

G2G ID 
(NFFS ID) Region River 

G2G 
area 
(km2) NRFA ID 

NRFA 
area 
(km2) 

7 Jun 17 
 

Sheriffmills 234307 NW Lossie 214 7003 216 

Wardend Bridge 234331 NW Mosset Burn 29 7009 28.3 

Forres 234221 NW Findhorn 781 7002 781.9 

Shenachie 234306 NW Findhorn 416 7001 415.6 

Dunphail 234206 NW Divie 165 7005 165 

Firhall 234218 NW Nairn 312 7004 313 

Balnafoich 234164 NW Nairn 130 7008 128.1 

24 Jan 17 

Sprouston 15012 SE Tweed 3345 21021 3330 

Lindean 14990 SE Ettrick Water 503 21007 499 

Brockhoperig 14987 SE Ettrick Water 38 21017 37.5 

Deephope 14986 SE Tima Water 30 21026 31 

Glen Orchy 133087 SW Orchy 252 89003 251.2 
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Figure 16 Case-study catchments over Scotland coloured by case study. 

3.2.1 7 June 2017. Hydrologically significant event. Flood defences at Forres and Elgin prevented 

flooding in these places. River Nairn also affected. 

This case-study showed high (Q(5) to Q(25)) river flow thresholds being exceeded in the Moray 

Region of North East Scotland. Catchments were selected on the three main rivers where significant 

flood events were noted – Lossie, Findhorn and Nairn – and also on the small Mosset Burn 

catchment. The peak 24h rainfall was recorded for the Lossie at Sheriffmills catchment.  

Lossie at Sheriffmills (234307) 

Mosset Burn at Wardend Bridge (234331 & PDM Mosset to Wardend Bridge) 

Findhorn at Forres (234221) 

 Headwater Findhorn at Shenachie (234306 & PDM Findhorn to Shenachie) 

 Headwater Divie at Dunphail (234206 & PDM Lochindorb to Dunphail) 

Nairn at Firhall (234218) 

 Headwater Nairn at Balnafoich (234164) 

Overall, all seven catchments considered for this case-study showed high river flow peaks. The highest 

observed river flow threshold-crossing was of the Q(50) threshold for the Mosset Burn at Wardend 

Bridge early on 7 June. However, the downstream Findhorn and Nairn catchments also showed the 

Q(5) threshold being clearly crossed as listed below. 

Sheriffmills Q(5) evening 7 June 

Wardend Bridge Q(50) early 7 June 

Forres Q(5) early 7 June, Shenachie Q(2) evening 6 June, Dunphail Q(5) early 7 June 

Firhall Q(5) early 7 June, Balnafoich Q(2) early 7 June. 
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For all catchments considered, initial ensemble forecasts of the case-study event beyond a lead-time 

of Day 3 showed little indication of river flow threshold-crossings above Q(2)/2. Although there was 

some variation from forecast-to-forecast, (e.g. Shenachie in Days 2-3) by Day 1, and late Days 2-3, the 

ensemble was giving a low-medium chance of threshold-crossings of the Q(5) and Q(50) threshold. 

Three example forecasts (Days 3-6, Days 2-3, and Day 1) are shown for the Shenachie catchment in 

Figure 17. Other sites lead to similar conclusions.  

Figure 17 shows results for both G2G and PDM. Although the results are similar overall, with a direct 

correspondence between individual ensemble members, there are some differences in the 

presentation. Firstly, whereas the PDM forecasts continue for the full six-day BMR ensemble rainfall 

forecast duration, the G2G forecasts only extend out to ~4.5 days due to the requirement for air 

temperature data to run the G2G Snow Hydrology module. Secondly, the PDM forecasts do not show 

verification information above the Q(2)/2 threshold. As discussed in the Appendix B.2 Overall river 

flow verification summary, the PDM verification scores are calculated for single-catchments only, and 

there are too few events above the Q(2)/2 threshold to calculate verification scores. Of course, this 

case-study event in June 2017 does feature crossings above the Q(2)/2 threshold, and would allow 

scores to be calculated for higher verification thresholds if it were included in the overall verification 

period. However, as the verification period used in this instance is from 1 September 2017 to 31 

August 2018, this is not the case. In a real-time forecasting system this might also be the case: there 

could be extreme river flow values which have not featured in the verification period used, and for 

which the verification can provide little guidance on ensemble forecast performance. 
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Figure 17 Example rainfall (raingauge blue, ensemble members grey, 20 mm h-1 shown in yellow), G2G and PDM river flow (colours as discussed in Section 

2.1) time-series for Findhorn at Shenachie (234306) BMR forecasts initiated at 07:15 2 June (left), 19:15 4 June (middle) and 07:15 6 June (right) in 

2017. 
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3.2.2 24 January 2018. Several linked events in the Scottish Borders. Snowmelt overnight from 

23 to 24 January may have influenced this case-study.  

For this case, observed river flows crossing thresholds Q(2) to Q(10) were noted in the highlighted 

Scottish Borders region. Example catchments on the River Tweed are considered here, with the 

highest threshold-crossings seen for the small headwater catchments.  

Tweed at Sprouston (15012) 

 Upstream Ettrick Water at Lindean (14990) 

 Headwater Ettrick Water at Brockhoperig (14987) & PDM Ettrick at 

Brockhoperig) 

 Headwater Tima Water at Deephope (14986) 

For this case-study, all the catchments considered showed a double-peak in the observed river flow, 

with the two headwater catchments peaking around midday on 23 January (Q(2)/2) and again in the 

morning of 24 January (Q(2)). The larger downstream catchments showed a smaller fall between the 

peaks, particularly at Sprouston where the overall hydrograph shape was of one large peak which 

crossed the Q(5) threshold in the afternoon of 24 January.  

Overall, there was little indication of the ensemble member forecasts capturing the double-peak 

characteristic. Overall, the G2G ensemble gave a reasonable indication of the observed threshold-

crossings for the two larger catchments, but for the headwater catchments Brockhoperig and 

Deephope, many forecasts showed no chance of threshold-crossings, even at Q(2)/2. The 

Brockhoperig PDM model performed better, capturing a low chance of crossing the Q(2) threshold for 

all forecasts initiated after 07:15 18 January 2018, and a chance of crossing the Q(2) threshold for 

several Days 2-3 and Days 4-6 forecasts. An example is shown in Figure 18. 



27 of 28 
 

 

Figure 18 Example rainfall (raingauge blue, ensemble members grey, 20 mm h-1 shown in yellow), 

G2G and PDM river flow (colours as discussed in Section 2.1) time-series for Ettrick Water 

at Brockhoperig (14987) BMR forecasts initiated at 19:15 21 January 2018. 

The 24h rainfall peak for this case-study was identified in the North West region for the Orchy at Glen 

Orchy catchment. This catchment also showed a high river flow response, with observed river flows 

crossing the Q(5) threshold and is considered here for both precipitation and river flow analysis.  

Orchy at Glen Orchy (133087) 

The observed river flows show a double-peak at Glen Orchy, the first, higher Q(5) peak occurring on 

the afternoon of 23 January, with the second, lower Q(2) peak occurring on the afternoon of 24 

January. The G2G ensemble members tend to only forecast one peak, indicating a time around the 

second observed peak. Analysis of the rainfall ensemble forecasts suggested that forecasts 

underestimated the precipitation values for the first peak, with the second peak values tending to be 

overestimated as shown in Figure 19. Overall, G2G forecasts beyond Day 3 were better at capturing 

the observed peak river flows for this case-study. In particular, a number of Days 3-6 forecasts 

predicted a low chance of the Q(5) threshold being exceeded, whereas Days 2-3 forecasts generally 

only showed a low chance of the Q(2) threshold being crossed, and Day 1 forecasts the Q(2)/2 

threshold. It is noted that river flow peaks could have been enhanced by snowmelt for this case as 

noted in the case-study description.  
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Figure 19 Example rainfall (raingauge blue, ensemble members grey, 20 mm h-1 shown in yellow), 

time-series for Orchy at Glen Orchy (133087) BMR forecasts initiated at 07:00 19 January 

(left) and 19:00 21 January (right) in 2018. 

4 Conclusions from analysis of all case-studies 
Analysis of the case-studies above leads to the following key conclusions. 

 Useful information can be gained by viewing together the river flow and precipitation 

ensemble time-series 

 Often a direct link can be made between the precipitation and river flow ensemble members 

for both PDM and G2G. 

 Forecast performance does not necessarily improve with lead-time. For example, there are 

instances where longer lead-time forecasts perform better than those close to the event, or 

forecast performance varies between consecutive forecasts. This highlights the advantage of 

looking at multiple forecast-origins covering an event, not just the most-recent forecast.  

 The verification period chosen, and pooling method for calculating verification statistics, 

impact on the thresholds where verification information can be provided.  

 One year of data is not sufficient to calculate verification statistics beyond the Q(2)/2 

threshold for single sites, as exemplified here for PDM. Even for this threshold, single-site 

results from one verification year are highly noisy and should be treated as demonstrative 

instead of representative. 

 In general, for a given catchment, better performance is seen for PDM than for G2G. This is 

expected from comparing a countrywide distributed model to a set of catchment-calibrated 

local models. 

References 
UKCEH (2021) Hydrological Summary for the United Kingdom. National River Flow Archive Catalogue 

of Monthly Summaries. https://nrfa.ceh.ac.uk/monthly-hydrological-summary-uk  

https://nrfa.ceh.ac.uk/monthly-hydrological-summary-uk
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Rainfall and River Flow Ensemble Verification: Phase 2 

The Joint Coding Framework 

Final Report Appendix D 
 

1. Overview of Joint Coding Framework 

This document provides an overview of the Joint Coding Framework developed in Phase 2 of the 

Rainfall and River Flow Ensemble Verification project. The Framework aims to ensure that the code 

developed under the Project is robust, consistent across both river flow and precipitation, and 

structured appropriately to allow future flexibility and operational implementation. The technical 

details of the Framework have been developed as a detailed flowchart combining the river flow and 

precipitation coding structures and data workflows. This is included at the end of this document in 

Figure 1.  

Overall, the key principles underpinning the Joint Coding Framework are as follows. 

Code sharing. Where possible the same (identical) code will be used for river flow and precipitation 

processing and verification. Where this is not possible, the code will be consistent.  

Saving data. Once calculated, all verification score data and products derived from the raw 

precipitation and river flow fields will be saved in a standard, simple, human-readable format. This 

gives the flexibility of reading in such information using different systems/coding-languages in the 

future. Processed river flow and precipitation data will be saved in daily or monthly blocks, giving 

flexibility when verifying ensemble forecast performance over longer periods.  

Plots and diagrams. The same file structures and naming conventions will be used to ensure these 

are easily comparable and identifiable for future systems. Where differences occur – for example, 

due to differences in the definition of thresholds - these will be clearly defined. 

The following sections serve to summarise the Joint Coding Framework and its four stages of 

processing, calculating and output. 

2. Stages of the Joint Coding Framework 

There are four stages of the Joint Coding Framework. 

Stage A. Initial processing 

Stage B. Calculations involving the full 24 ensemble member data 

Stage C. Calculations involving the binary observations and ensemble probabilities 

Stage D. Final outputs.  

These stages have been designed to maximise computational efficiency, whilst ensuring consistency 

across river flow and precipitation verification, and flexibility for future use. Further details of each 

stage are given below and are visualised in the detailed flowchart of the combined coding plans 

(Figure 1). 

2.1 Stage A. Initial processing 

This stage involves processing the observed and Best Medium-Range (BMR) ensemble precipitation 

grids to obtain the catchment values needed for precipitation verification, and to reformat the data 
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into the appropriate format for input into G2G. For the river flow, this stage also involves running the 

required G2G forecasts using the processed BMR forecast input. To maximise efficiency, the 

precipitation grids are processed once, covering the requirements of both the rainfall and river flow 

verification. The processing of precipitation grids, particularly those from the BMR ensemble (around 

27 million 2 km resolution precipitation grids; 24 members run for 596 time-steps, 4 times a day, for 

487 days), requires large CPU and memory resources. To facilitate this processing in a reasonable time-

period (around 1 month) the data are processed in daily chunks, using the LOTUS cluster from the 

JASMIN HPC facility. Catchment values are output in NetCDF file format (1 file per date for 

observations, 1 file per forecast and member for the BMR ensemble) for later input into the 

precipitation verification (Stages B and Stage C). 

The initial processing had been coded in python and, for compatibility, will run using either python 2 

or python 3. Only common modules are used to simplify the code-use on multiple platforms.  

2.2 Stage B. Calculations involving the full 24 ensemble member data 

The most computationally expensive scores to calculate are those that require data from all 24 

ensemble member forecasts. For this project, two scores fall into this category: the CRPS and Rank 

Histogram. Both these scores can be calculated on a subset of the data and later combined to give 

scores for the full verification period. This has two advantages: firstly, the computational requirements 

are reduced to a manageable level and, secondly, it provides the flexibility to consider different 

lengths of verification period at a later date. For both the river flow and precipitation verification, the 

CRPS and Rank Histogram are calculated separately for each day of data and for each forecast-origin 

time. 

To enable the threshold-based scores to be calculated, the ensemble probability of threshold-crossing 

(river flow) or threshold-exceedance (precipitation) must first be calculated from the full 24 ensemble 

member data. For computational efficiency (so that the full ensemble data are only read once), this is 

completed at the same time as the CRPS and Rank Histogram calculations. The ensemble probability 

time-series are saved for input into the threshold-based score calculation code. The binary time-series 

of observed river flow and precipitation threshold-crossing/exceedance are also calculated and saved.  

To ensure that the same score-calculation code is used for both river flow and precipitation 

verification, all scores are calculated using the R “verification” package. There are currently no 

equivalent packages or modules available in python. Note that the python and R programs are fully 

independent to simplify use of the code across multiple platforms, and to give flexibility for future 

applications.  

2.3 Stage C. Calculations involving the binary observations and ensemble probabilities 

Consistent with the CRPS and Rank Histogram, the threshold-based scores are calculated from the 

ensemble probability and binary observation time-series using the R “verification” package. However, 

as the computational demands are smaller for the threshold-based score calculations due to only the 

ensemble probabilities being read in (instead of data from all 24 members), these scores are calculated 

directly for the full verification period. Different methods of pooling the data are applied before 

calculating the threshold-based scores (e.g. pooling over all sites nationally, regionally or by catchment 

properties). The scores are calculated separately for each pooling option, and saved for future plotting 

and analysis.  
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2.4 Stage D. Final outputs 

The final coding stage relates to the plotting of the score results and the production of summary 

diagrams and displays. There is no further data processing at this stage: all the data have been 

processed, and scores calculated and saved, in stages A, B and C. Where appropriate, the same plotting 

code has been used for both the river flow and precipitation verification diagrams for consistency 

across the different displays. In Phase 1 of the project, R code was used to produce the plots and 

diagrams. Python code has also has also been developed for creating catchment maps and verification 

diagrams. 
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Figure 1 Detailed flowchart showing the technical details of the Joint Coding Framework, combining river flow and precipitation coding structure and data workflows.  
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FUTURE LANDSCAPE OF FLOOD FORECASTING 
ACTIVITY 1: PROBABILISTIC FORECASTING: CURRENT STATE 
a) What’s your organisations current state? 
Overall, people are not using ensembles (with a few exceptions) and people are not aware 

how best to use them. There are some emerging capabilities in systems to deal with 

ensembles but how to apply them to flood forecasting is poorly understood and there is no 

clear plan in many of the partner organisations. 

ACTIVITY 1: PROBABILISTIC FORECASTING: ASPIRATIONS 
b) What are your organisation’s aspirations? Where do you want to be? 
There is a clear and positive intention, at an organisational and at an individual level, that 

more use is made of probabilistic forecasting in the future. Indeed, there are emerging 

strategies in some of the represented organisations. For example, some want to underpin 

and improve their services in the future using probabilistic forecasting. There are varied 

aspirations on how to do this. 

ACTIVITY 2: PROBABILISTIC FORECASTING: FUTURE SERVICE 
How do you think rainfall and river flow ensemble information could be used in a future flood 
forecasting service? 
There is a desire to improve decision making for flood forecasting by using ensembles 

combined with decision support tools or frameworks, perhaps particularly (but not 

exclusively) at longer lead-times. However, there is a sense from the responders that there 

is no coherent way on how to achieve this, with varied responses in how to apply ensembles 

to the forecasting problem. That said, there is a desire to understand uncertainty in an 

objective way and to use ensembles to provide a stable forecast flood risk narrative. 

ACTIVITY 3: PROBABILISTIC FORECASTING: CUSTOMERS 
How do you think your customers could benefit from a probabilistic forecasting service? 
The responders thought the customers would benefit from a more ‘honest’ appraisal of 

confidence levels from a probabilistic based service. That would allow their customers to 

make better, more bespoke decisions and take more proportionate actions. They also 

thought a probabilistic based forecasting service will promote earlier discussions with 

customers and ultimately better outcomes, for example, around low confidence/high impact 

events. Efficiencies may be introduced such as using ensembles to inform automated, lower 

consequential decisions. 
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ACTIVITY 4: PROBABILISTIC FORECASTING: FUTURE BENEFITS 
What benefits, if any, do you think there are in using probabilistic rainfall and river flow 
forecasts? 
There is a consistent view from flood forecasting practitioners that using probabilistic rainfall 

and river flow forecasts will lead to medium to large future benefits. These may include; 

reduced subjectivity around confidence levels, reduce risk of missed impactful events, better 

operational decisions and ultimately reduced loss of life and improved damage mitigation. 

ACTIVITY 5: FUTURE REQUIREMENTS 
What are your future requirements in order to understand the performance of rainfall and 
river flow ensembles? 
The future requirements should be considered by working in partnership across the partners 

and considering the whole forecasting chain with a clear purpose in mind. As the current 

state is set up largely for deterministic based flood forecasting services there is a need to 

understand where the greatest return in benefit lies with probabilistic forecasting. This 

extends to how the verification information is processed, delivered and visualised.    

OPERATIONAL FLOOD FORECASTING PLATFORM(S) 
ACTIVITY 6: FUTURE SYSTEMS 
How could the rainfall and river flow ensemble verification framework be incorporated in 
current or any envisaged future operational forecasting systems?  
- Consider technical and/or strategic aspects 
Stakeholders need to recognise the importance of verification information and give it a high 

enough priority to provide sufficient resource and funding to implement within systems. 

Technical solutions are considered achievable but there’s a prior need to fully understand 

the value of the verification data and where this should be best targeted. There is a need to 

set protocols or a ‘minimum standard’ on how a verification framework can be incorporated, 

including visualisation, into disparate systems. There is agreement that the processing of 

verification information is automated and should be integrated across rainfall and river flow. 

There are questions where the large volumes of data could be most efficiently hosted and a 

‘cloud’ based approach integrated with FEWS is a potential solution. 

RESEARCH AND DEVELOPMENT 
ACTIVITY 7: SCIENCE KNOWLEDGE/CAPABILITY GAPS 
What knowledge and capability gaps exist in verification of probabilistic based flood 
forecasting products? – verifying risk based products 
Responders say there is a gap in knowledge in how best to apply ensemble forecasts to the 

flood forecasting problem. This stems from a lack of knowledge at what spatial and temporal 

scale ensembles are most effective. Verification of ensembles applied to extreme events is 

challenging with many variables needing to be accounted for. 

TIMESCALES 
ACTIVITY 8: FOR POTENTIAL IMPLEMENTATION OF ENSEMBLE VERIFICATION 
Do you think operational use of rainfall and river flow ensemble information in your flood 
forecasting systems is a short, medium or longer-term aspiration? 
Overall, the respondents comments placement suggested a medium term (3-4 years) 

aspiration of using rainfall and river flow ensemble information in the their flood forecasting 

systems. However, two responders (one FFC and one UKCEH) suggested it spanned short, 

medium and longer term aspirations as models, systems and capabilities evolve. One 

responder suggested beyond 4 years. 
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