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Abstract 14 

This paper describes a novel methodology where Machine Learning Algorithms (MLAs) have been 15 

used to assess the landslide risk for slow moving mass movements, processes whose intermittent 16 

activity makes challenging any risk analysis worldwide. 17 

MLAs has been trained on datasets including Interferometric Synthetic Aperture Radar (InSAR) and 18 

additional remote sensing datasets such as aerial stereo photographs and LiDAR and tested in the 19 

Termini-Nerano landslides system (southern Apennines, Italy).  20 

The availability of such a wealth of materials allows also an unprecedented spatio-temporal 21 

reconstruction of the volume and the kinematic of the landslides system through which we could 22 

generate and validate the hazard map. 23 

Our analysis identifies fifteen slow-moving phenomena, traceable since 1955, whose total area 24 

amounts to 4.1 × 105 m2 and volume to ~1.4 × 106 m3. InSAR results prove that seven out of the 25 

fifteen slow-moving landslides are currently active and characterized by seasonal velocity patterns. 26 

These new insights on the dynamic of the landslides system have been selected as the main 27 

independent variables to train three MLAs (Artificial Neural Network, Generalized Boosting Model 28 

and Maximum Entropy) and derive the landslide hazard for the area. Finally, official population and 29 
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buildings census data have been used to assess the landslide risk whose highest values are located in 30 

the crown area, south of Termini village, and nearby Nerano.   31 

This new methodology provides a different landslide risk scenario compared to the existing official 32 

documents for the study area and overall new insights on how to develop landslide risk management 33 

strategies worldwide based on a better understanding of slope processes thanks to the latest satellite 34 

technologies available. 35 
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1. Introduction 39 

Landslides are ubiquitous in any terrestrial environment with slopes, driven by tectonic, climatic 40 

and/or human activities (Froude and Petley, 2018). In particular, slow-moving landslides, which 41 

move downslope for months to decades at rates ranging from millimetres to several metres per year, 42 

provide an excellent opportunity to study landslide processes (Lacroix et al., 2020). Even if slow-43 

moving landslides rarely claim lives, they still cause widespread destruction and if they rapidly 44 

accelerate result in casualties (Handwerger et al., 2019). 45 

Slow-moving landslide events are recurring phenomena in southern Italy (e.g., Novellino et al., 2015; 46 

Di Martire et al., 2016; Pappalardo et al., 2018) due to its geological history and tectonic-47 

geomorphological evolution which resulted in the occurrence of several formations identified as 48 

Structurally Complex Formations (SCFs; Esu, 1977), flysches or Broken Formations (Mutti et al., 49 

2009). The term refers to geological units constituted by lithologically and structurally heterogeneous 50 

terrains with extra-formational blocks (D’Elia et al., 1998), associable to preorogenic and synorogenic 51 

turbidites of the Alps-Apennine system (Alvarez, 1991). The high heterogeneity and very poor 52 

mechanical properties of the SCFs represent one of the main factors contributing to the predisposition 53 

of slopes to landslide (Del Soldato et al., 2018). The latest Inventory of Landslide Phenomena in Italy 54 

report (IFFI) carried out by the Italian National Institute for Environmental Protection and Research 55 
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(ISPRA, 2018) evidences that slides, flows and composite phenomena (Hungr et al. 2014)). account 56 

for ~30% of the 620,808 mass movements inventoried in Italy. These three types of movements are 57 

typical of instabilities generated in SCFs (Fig. 1a), which have a huge impact on the Italian socio-58 

economic system (Salvati et al., 2010) due to the shorter return periods (Fig. 1b) and higher spatial 59 

density (Fig. 1c) than landslides generated in other types of terrains.  60 

 61 

Fig. 1. Spatial distribution of landslides resulting  in casualties and/or homeless  in Italy between 650-2008 (modified 62 
from Salvati et al., 2010) within SCFs-like outcropping units mapped following the 1:250,000 geological map of Italy 63 
(available at: http://www.isprambiente.gov.it/en/projects/soil-and-territory/the-geological-map-of-italy-1-250000-64 
scale/default) with location  of well-known landslides in SCFs from literature (a). Landslide temporal probability between 65 
2018-2028 in Italy (b). Landslide density in Italy (c). Landslide data are available at: 66 
http://webmap.irpi.cnr.it/webmap_test/webmap.html  67 
 68 

The variability of material properties and landslide kinematics in SCFs, with a long state of activity 69 

at intermittent rates of displacement, makes any estimation of the corresponding risk challenging. To 70 

this respect, field-based monitoring systems (e.g., extensometers, crack meters, inclinometers, GNSS 71 

receivers) only provides spatially discontinuous, costly, labour intensive and time-consuming 72 

information. On the contrary, the use of remote sensing methods, like Interferometric Synthetic 73 

Aperture Radar (InSAR) represents a time-saving and cost-effective approach for understanding 74 

landslides kinematics (Novellino et al., 2017a), namely the hazard and deriving the corresponding 75 

risk. Landslide hazard is the likelihood of a potentially damaging landslide occurring within a given 76 

area with landslide risk being the spatio-temporal probability of the expected losses to life and damage 77 

to property, should a landslide occur (van Westen et al., 2008) and landslide risk maps (LRMs) 78 

represent essential tools for effective land use management and planning (Fell et al., 2008). Given the 79 
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high number of events, the challenge of assessing landslide risk related to slow-moving phenomena 80 

is particularly evident in Italy where this mandate, since 1998, belongs to the River Basin Authorities 81 

(recently merged in eight national Hydrographic Districts). River Basin Authorities have produced 82 

landslide hazards and risk maps which cover the whole Italian territory at scale ranging between 83 

1:5,000 to 1:25,000. These maps represent official tools for land use and urban planning activities but 84 

are limited by common drawbacks: are usually produced from input datasets not regularly updated 85 

and mainly based on data-driven empirical methods which do not account for characteristics such as 86 

landslide velocity or the uncertainty in the maps themselves. 87 

Despite various recent initiatives (Confuorto et al., 2017; Hu et al., 2020), the use of multidisciplinary 88 

approaches where InSAR has been deployed for a complete analysis of landslide kinematics and 89 

driving mechanisms is still limited and, consequently, the translation of these information in LRMs 90 

is even rarer so resulting in the absence of measures sufficient for landslide risk 91 

management/reduction.  92 

The aim of this study is therefore to develop and validate a new methodology to assess landslide risk 93 

for slow-moving landslides based on Machine Learning Algorithms (MLAs). Recently, MLAs and 94 

in particular Ensemble Modelling (EM) has provided a solid contribution to minimize the uncertainty 95 

and improve the reliability of landslide mapping prediction by accounting for different data-driven 96 

methods together (Chen et al., 2017). To this, Ensemble methods have been proposed to combine the 97 

advantages of each stand-alone models and to mitigate the effects of their drawbacks (Thuiller et al., 98 

2009). 99 

In this work, we have trained three MLAs, Artificial Neural Network (ANN), Generalized Boosting 100 

Model (GBM) and Maximum Entropy (MaxEnt) with geological, geomorphometric and, for the first 101 

time, InSAR datasets to obtain a relative landslide hazard map. The latter has been then combined 102 

with data from the population and building environment to derive a relative risk map.  MLAs 103 

methodologies have been recently applied in the literature to rapid landslides (Di Napoli et al., 2020) 104 

but, to our knowledge, not yet to slow ones.  105 



5 
 

MLAs have proven to outperform, especially at catchment and regional scale, heuristic and statistical 106 

models as they can address the nonlinear corrections between landslides and conditioning factors and 107 

can determine model parameters automatically (Huang et al., 2020). We tested our method for an area 108 

which has experienced rapid urban expansion first and tourism then: Termini-Nerano (southern Italy). 109 

Specifically to the area of study, our work has allowed to update the existing inventory map dated 110 

2011 and compiled by the Southern Apennines Hydrographic District (SAHD, 2011a) and then 111 

improve the existing landslide risk map (SAHD, 2011b). More generally, our new methodology has 112 

already potential to be implemented at national and continental scale and, provided that the input data 113 

are available, easily applied worldwide.  114 

The paper is organized as follows: a description of the geological-geomorphological setting of the 115 

Termini-Nerano site with a brief description of the landslide event history is provided in Section 2; 116 

the methodological approach developed for assessing the landslide risk is described in Section 3 along 117 

with the datasets used. The results are shown in Section 4 followed by the discussion and conclusions 118 

in Section 5 and 6, respectively, where we analyse why and how our approach can be extended 119 

elsewhere. 120 

 121 

2. The Termini-Nerano landslides system 122 

The studied area is located on the south-facing coast of the Sorrento Peninsula, southern Italy (Fig. 123 

2) where the landslide system affects three villages, Termini, Nerano and Marina del Cantone. 124 

Geologically, the Termini-Nerano area belongs to the shallow-water carbonates succession of the 125 

Lattari-Picentini Unit, in the western sector of the Apennine Carbonate Platform (Vinci et al., 2017). 126 

According to ISPRA (2015), the outcropping rocks are composed of pre-orogenic Mesozoic 127 

carbonate sequence of the Radiolitidae limestone Formation (Upper Cretaceous; Iannace et al., 2011) 128 

topped by synorogenic terrigenous deposits of Miocene age including the Recommone Calcarenites 129 

Formation (Lower Miocene), the Termini Sandstones Formation (TSF - Miocene) and the Punta del 130 

Capo Breccias (Upper Miocene; D’Argenio et al., 2011). Quaternary deposits consist of slope debris, 131 
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derived from the limestone and sandstone bedrock, pyroclastic, and beach deposits. The latter cover 132 

the bedrock succession at limited spots, such as Marina del Cantone, but not at the Termini-Nerano 133 

valley. The Miocene TSF (200m thick) is divided into two members: the lowermost is the Nerano 134 

Member where the studied landslides developed. It consists of arkosic sandstones, interbedded with 135 

siltstone and mudstone levels, cropping out south of Termini. A gradual vertical and lateral transition 136 

leads to the Marciano Member, a thin-bedded arkosic turbiditic sandstone succession interbedded 137 

with marly levels. The tectonic features which most influence the local geomorphology are connected 138 

to a first compressional event with a NE-vergence, followed by an extensional one (ISPRA, 2015). 139 

The compressive phase created gentle folds in the TSF with the Upper Cretaceous carbonates 140 

thrusting over the TSF (Vitale et al., 2017) and determined the attitude of the Nerano Member to be 141 

converging towards the valley centre (Fig. 2). 142 

 143 

Fig. 2. Geological map of the Termini-Nerano area. Coordinate system: WGS 1984, UTM Zone 33N. 144 

 145 

The mesoscopic scaly texture of the clayey intervals combined with the strong tectonic deformation 146 

and the presence of calcareous exotic blocks in the TSF, represent an important predisposing factor 147 

to slope instability in the area and a classical example of a SCF with geotechnical properties 148 
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intermediate between soils and rocks, strongly dependent on the scale of the mechanical 149 

discontinuities.  150 

According to historical chronicles, archive documents, local witnesses and data from the Italian 151 

National Research Council (Canuti et al., 1992; de Riso et al., 2004), the valley has been affected by 152 

several instability events in the recent past. The oldest phenomenon reported occurred in the 17th 153 

century with successive reactivations recorded in 1910, 1939, in late December 1940 and early 154 

January 1941. The latter involved a 2.1 ×105 m2 area and a 2×106 m3 volume and destroyed the 155 

Termini-Capo d’Arco road and some houses in Termini (Brugner and Valdinucci, 1973). The 156 

following reactivation took place in Capo D’Arco hill, northeast of the village of Termini, on 19th of 157 

February 1963 and lasted seven days (Cotecchia & Melidoro, 1966). The event was triggered after 158 

101 mm of cumulative rainfall in the previous 24 hours and 217.4 mm in the previous 19 days, 159 

corresponding to almost 20% of the 1963 annual rainfall budget. Landslide velocity ranged from 3 160 

m/h to 27 m/h (Cotecchia and Melidoro, 1966); the movement started as a rotational slide and then 161 

developed as a flow that struck the villages of Nerano and Marina del Cantone, ~900 m downslope, 162 

before reaching the Tyrrhenian Sea. Seismic refraction studies in the aftermath of the event localized 163 

the main rupture surface at ~25 m of depth (Cotecchia & Melidoro, 1966) and reported a total length 164 

of the landslide body of ~1,900 m with an area of 1 ×105 m2 and a volume of 1×106 m3. The current 165 

landslide inventory map (SAHD, 2011a) identifies 20 different sub-movements (five falls, three 166 

rotational slides and twelve complexes) within the Termini-Nerano valley, covering a total area of 4 167 

×105 m2 (Fig. 3a). The SAHD inventory is based on a combination of aerial photography and Digital 168 

Terrain Model (DTM) interpretation complemented by field surveys. The inventory is then combined 169 

with geomorphological predisposing factors to derive the susceptibility and finally is overlaid to 170 

vulnerability and exposure information to empirically asses the risk levels following a matrix-based 171 

heuristic approach (Fig. 3b). 172 
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 173 

Fig. 3. Landslide inventory map (SAHD, 2011a) where each number refers to a single landslide classified according to 174 
the type of movement (a). LRM (SAHD, 2011b) that shows the level of risk only where infrastructure are present (b). The 175 
two maps are overlapped onto shaded relief DTM. Coordinate system: WGS 1984, UTM Zone 33N. 176 

 177 

The LRM is therefore generated with a method based on expert opinion which, inevitably, cannot 178 

account for the many uncertainties associated with the landslide processes. 179 

 180 

3. Materials and methods 181 

The multidisciplinary approach of the work has been designed to define the relative landslide risk (R) 182 

limited to the slow-moving phenomena (Figure 4).  Different investigations have been performed to 183 

retrieve the characteristics of the landslides needed for assessing and validating R. 184 
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 185 

Fig. 4. Workflow of the approach adopted in this work. Techniques and input data are in green, outputs in cream.  186 

Inputs data include the landslide inventory and geomorphological maps from the Southern Apennines Hydrographic 187 

District (SAHD), ground deformation displacement from Interferometric Synthetic Aperture Radar (InSAR), hazard 188 

maps from the Ensemble Modelling (EM) and exposure and vulnerability data from the Italian National Institute of 189 

Statistics (ISTAT).  190 

 191 

The geological and geomorphological information of the valley have been derived from field surveys 192 

conducted between 2012 and 2013 and then integrated with sub-surface data acquired though five 193 

boreholes drilled in landslides 11 and 18 where, successively, three inclinometers and two open stand-194 

pipe casings have been installed, recording data from different sectors of the valley (Fig. 5). These 195 

investigations provided information on the type of materials involved in the instability and its 196 
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kinematics, constrained the volumes associated to the active part of the landslide and validated the 197 

InSAR results. 198 

The remote sensing dataset allowed the understanding of the state of activity of the movements, the 199 

interaction between the instability zones within the valley and the estimation of the landslide volumes. 200 

Remote sensed data include aerial stereo photographs, LiDAR DTM and InSAR velocities maps. 201 

Aerial stereo photographs for the 1955-2011 time span were obtained from the Italian Military 202 

Geographic Institute and the Agency of Agriculture, Food and Forestry of the Campania Region, the 203 

acquisitions were taken at flying heights ranging from 2,700 m to 6,200 m with a scale ranging 204 

between 1:10,000 and 1:41,000. The DTM, acquired from airborne 2012 LiDAR data, with a 205 

resolution of 1 m and root mean square error of ~0.15 m (http://sit.cittametropolitana.na.it/lidar.html), 206 

has been used to assess the original volume associated to each landslide. InSAR results have been 207 

generated from 35 ascending and 35 descending COSMO-SkyMed (CSK) X-band images acquired 208 

in the 20/10/2011 – 19/4/2014 and 20/2/2012 – 23/12/2013 interval, respectively. The two geometries 209 

have been processed at 3m×3m resolution by means of the Persistent Scatterer Pair technique (PSP; 210 

Costantini et al., 2014) as part of the third phase of the Not-ordinary Plan of Environmental Remote 211 

Sensing project (Piano Straordinario di Telerilevamento Ambientale – PST-A), a nationwide 212 

monitoring plan run by the Italian Ministry of Environment and Protection of Land and Sea in 213 

cooperation with the Italian Space Agency (Costantini et al., 2017; Di Martire et al., 2017). 214 

The EM has been trained to produce the landslide hazard (H) via three MLAs (ANN, GBM and 215 

MaxEnt) well-known for their good performance (Elith et al., 2006). ANN refers to a large group of 216 

models that are inspired by biological neural networks to process information. These networks are 217 

typically structured in layers with an input layer containing the environmental variables used to train 218 

the model, several hidden layers in which the function applies weights to the inputs and directs them 219 

through an activation function as the output (Dou et al., 2015). GBM is a ML technique for regression 220 

and classification models. GBM repeatedly perform many decision trees to enhance model precision. 221 

For each new tree in the model, a random subset of all the data is selected using the boosting method, 222 
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which iteratively aims to reduce the errors of the previous one (Kim et al., 2018). MaxEnt is a 223 

“presence-only” spatial distribution method. It makes use of occurrence data and a large number of 224 

points throughout the study area, known as background points. MaxEnt calculates the ratio between 225 

two probability densities (occurrence and background points), which gives the relative 226 

“environmental suitability” for the presence of an event for each location in the study area (Sepe et 227 

al., 2019). The MLAs use predisposing factors determined and assessed from the geological, 228 

geomorphological and kinematic characteristics of the instabilities which do not show collinearity 229 

according to the Variance Inflation Factor (VIF) calculation (Arabameri et al., 2019). To perform and 230 

assess models achieved with various MLAs, the K-fold Cross-Validation (K-CV) approach was used. 231 

The latter splits a random part of the input population (~80%) for calibration while the remaining 232 

(~20%) is used for testing the prediction of the model; the entire approach is then replicated several 233 

times for each of the three models and the average predictive accuracy is finally reported through the 234 

Area Under the Receiver Operating Characteristic (AUROC) curve and True Skill Statistic (TSS) 235 

(Araujo et al., 2005). Afterwards, the three MLAs were ensembled and H was evaluated by 236 

considering the median values of the spatial probability of landslide occurrence from the three 237 

models. The short temporal interval of the InSAR time series, 3 years, despite provides a constraing 238 

on the landslides state of activity do not provide sufficient records to assess the return periods of the 239 

landslide which tend to occur in the range of tens of years in this area (see Section 2). So the H defined 240 

in this paper is a relative hazard which does not account for the probability of landslides occurrence 241 

within a given period of time, a solution already adopted whenever the knowledge of landslide 242 

mechanisms is limited (Andrejev et al., 2017).  243 

H has been integrated with information on local population and buildings to generate R which, 244 

similarly to H, it refers to a relative risk. Spatially, the R can be conceptually represented as a non-245 

homogeneous Poisson process (NHPP) similarly to what has been done in Bartolini et al. (2013) when 246 

simulating different eruptive scenarios: 247 

                                                           𝑅 1 exp 𝐻 𝑉 𝐸 ∗ 1                                                          (1) 248 
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Where V is the degree of damage (namely the vulnerability) of a specific element-at-risk (E) inside 249 

the area. H, V and E represent variables associated to the landslide that can change in time following 250 

a non-homogeneous Poisson process with an exponential distribution. The probability density 251 

function for V and E have been calculated over the territorial units defined by the Italian National 252 

Institute of Statistics in 2011 (ISTAT, 2011) for the area of study.  253 

 254 

 255 

4. Results 256 

4.1 Geological-geomorphological investigations 257 

Landslide events have intensively reshaped the superficial deposits of the Termini-Nerano valley 258 

where the intensive urban development, especially between 1919 and 1990 according to ISTAT 259 

(2011), is now partially covering geomorphological signatures of instabilities.The morphoevolution 260 

of the valley occurs prevailingly through slides and flows and secondarily by rockfalls and surface 261 

runoff through gullies (Fig. 5).  262 
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 263 

Fig. 5. Geomorphological map of the Termini-Nerano valley where slope and superficial deposits have been classified 264 
according to the dominant morphogenesis. Coordinate system: WGS 1984, UTM Zone 33N (modified from SAHD, 265 

2011c) 266 
 267 

The main scarp is associated to a ~15 m high crown area and is located in the Capo d’Arco area, on 268 

a 20o slope. Downslope, landslide flow and slide deposits from lateral lobes converge and fill the 269 

structurally-controlled NW-SE valley. Despite the anthropogenic disturbance, which has confined 270 

gullies on the eastern side of the valley, scarps in the order of some meters are still preserved in the 271 

landslide deposits within the catchment area. Gullies transport colluvial and alluvial deposits along a 272 

NW-SE direction which take a 90o bend downslope, just north of Marina del Cantone, where have 273 

been removed by human intervention to allocate space for leisure activities.On the western side of 274 

the valley, the mass movement deposits are topped by coarse-grained rockfall material from Mt. San 275 

Costanzo but are also embedded in the flow and slide deposits (Fig. 5).  276 

The lithology of landslides 11 and 18 and  its relationship with the bedrock was determined from 277 

drillcores (see Figure 3).  The superficial units are mainly characterized by alternating beds of shales, 278 
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silts, sandstones and, in the transport and accumulation zones, calcarenitic-sandstones from the marly-279 

calcareous olistoliths of TSF (Fig. 6). The component of clay minerals, determined from laboratory 280 

grain-size analyses, increases from 10 % wt. in C1 to 20 % wt. in C2 and 30 % wt. in C3 (Cesarano 281 

et al., 2018).  282 

 283 

Fig. 6. Sketch showing the stratigraphic logs of the units investigated. Piezometers installed are represented in blue with 284 
white stripes indicating the screened section of the borehole. Inclinometer’s zero reading: September 2012. Location of 285 
the boreholes is provided in Figure 5. 286 

 287 

The shallower layers of superficial material are composed of poorly cemented sandstone or siltstone 288 

levels with different degree of weathering and heterogeneity with depth, so confirming the presence 289 

of overlapping mass movement deposits above the bedrock, the latter only found down to 20 m in C3 290 

(Fig. 6). We have indeed interpreted the calcarenites levels in C2 as one of the exotic block embedded 291 

within the TSF, being the Recommone Calcarenites Formation at ~100 m depth in this location. 292 

Inclinometric data show a single slip surface at around 8 m depth in the upper part of the slope (C1) 293 

with displacements of ~5 mm, and two slip surfaces in C3, at depth of 4 m and 6 m, with 294 

displacements decreasing downwards and an overall disarranged structure down to ~20 m. No reliable 295 

information could be reported from C2 as the aluminum casing broke at ~6 m b.g.l. soon after its 296 
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installation, suggesting at least one slip surface at such depth.These differences in the borehole 297 

lithology and the measured inclinometric-material response play an important role in understanding 298 

the kinematics of landslide 11 which is characterized by plastic deformation in the head area with a 299 

motion similar to a slide which becomes a creep downhill where the clay fraction increases and the 300 

failure surface is not so clear anymore. 301 

Groundwater levels, measured from September 2012 to February 2013, suggest the occurrence of an 302 

unconfined shallow aquifer located in the fractured mass above the slip surface which has different 303 

characteristics in the crown and the toe area given the different response in groundwater rise (~ 1 m 304 

in D1 and ~3 m in D3) for the 932 mm of rainfall occurred over this time interval.  305 

 306 

4.2 Aerial photography stereoscopic analysis 307 

The oldest aerial photos available, dating back to 1955, show sparse vegetation and extensive 308 

outcrops of the TSF. The four main lobes belong to the 1941 landslides east of Termini that had 309 

developed into a flow which had reached the village of Nerano and spread as soon as it reached the 310 

Marina del Cantone village (Fig. 7a). The three main lobes correspond to the crown sectors of 311 

landslides 9, 10, 11, 14 and 15 of the SAHD landslide inventory map (see Figure 3a). The 1974 aerial 312 

photograph highlights remedial works carried out by the Public Works Department of Naples 313 

following the 1963 landslides which led to the construction of retaining walls and drain trenches 314 

connected to a drainage basin downslope (Fig. 7b). The imagery shows that the 1963 event developed 315 

in the eastern sector of the Capo d’Arco hill, within the 1941 deposits, had an aerial extension ~30% 316 

smaller than the previous event and was diverted almost at a right angle nearby the Marina del 317 

Cantone village possibly by the 1941 toe zone, which might have confined the flow towards the 318 

eastern side of the valley. The following bioengineering interventions allowed a pine forest to develop 319 

on the surface of the 1963 landslide body, which matured in the following years, as evident from the 320 

1990 frames (Fig. 7c).  From 1990 onward, the intense urbanization of the area erased any 321 

geomorphological evidence of the older landslides with vegetation wiped out by fall and topple 322 
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deposits generated from the eastern side of Mt. San Costanzo, sometime between the 70s and the 80s. 323 

In 2011, the intense urbanization of the area erased any geomorphological evidence of the older 324 

landslides (Fig. 7d). 325 

The 1941 and 1963 event geometries control the following development of any smaller landslides 326 

between Capo d’Arco and Nerano that remobilise material from the past landslides. However, their 327 

slow velocity and dimensions do not provide scars identifiable in the stereo-photos but still observable 328 

on the field, such as the damage associated to landslides 6 and 7 and representing the retrogressive 329 

evolution of the landslides system (see Figure 5). 330 

 331 

 332 

 333 

 334 

 335 
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Fig. 7. Inventory of the active landslides within the Termini-Nerano catchment from aerial stereo-photos: 1955 (a), 1974 336 
(b), 1990 (c), 2011 (d). Coordinate system: WGS 1984, UTM Zone 33N. 337 

 338 

4.3 LiDAR analysis 339 

The 2012 DTM has been used to reconstruct the pre-landslides (original) topography, retrieve the 340 

vertical differences between the current and original topography and then assess the volumes. The 341 

original topography has been defined by using as reference surface the topography from un-failed 342 

portions of the slopes. The reconstruction is based on three assumptions: the unslided wallslopes 343 

represent the original geomorphology of the area had the landslides not occurred (i), the sediment 344 

transport process, from sediment detachment to its depositions only occurs within this catchment (ii) 345 

and that human reprofiling (e.g., terracing, embankments) of the slope has had a limited impact on 346 

the elevations despite the wide urbanisation of the valley (iii). 347 

The reconstruction has considered linear, exponential or logarithmic functions to perform a 1D fitting 348 

for profiles along and across the valley, similarly to what has been done in Chang et al. (2018). Of  349 

the three regression models, the one with the highest coefficient of determination (R2) with the 350 

topographic profile has then been selected.  A total of 41 profiles in the TSF parallel and orthogonal 351 

to the landslides have been considered (Fig. 8a): 352 

 Five profiles parallel to the direction of motion of the landslide bodies, to represent the 353 

original topography along the main direction of the valley. These profiles have been derived 354 

from the regression of five profiles located outside the Termini-Nerano valley, in the northern 355 

facing slope of the Sorrento Peninsula (Fig. 8b). These sections have been chosen as they are 356 

largely unaffected by tectonic processes, human activities (terracing, re-profiling) and 357 

previous mass movements and have a similar elevation range to the Termini-Nerano valley. 358 

The best model retrieved from the five profiles outside the landslides has then been used to 359 

retrieve the pre-landslide longitudinal profiles along four profiles within the Termini-Nerano 360 

valley. 361 
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 Twenty-seven profiles transverse to the landslide bodies, to represent the original topography 362 

across the main landslides pathways. In this case the west and east side of the Termini-Nerano 363 

valley that are not part of the landslide have been fitted by the models independently (Fig. 8c). 364 

Again, the transverse profiles were reconstructed by selecting the regression with the highest 365 

R2. 366 

 367 

An envelope surface has been subsequently interpolated from the 32 profiles by using Inverse 368 

Distance Weighting (IDW) method. The average R2 value of 0.83 from the best fitting models along 369 

the profiles supports the idea that, especially in the narrow parts of the valley with steeper surfaces, 370 

the envelope surface can be considered an optimal way to reconstruct original topography. 371 

Compared to the actual morphology, the envelope surface reveals a more rugged topography in the 372 

crown area and a gentler slope at the bottom of the valley (<10o vs 20/30o). The 373 

depletion/accumulation map could finally be retrieved from the vertical difference in the elevations 374 

between the 2012 topography and the reconstructed topography (Fig. 8d).  375 

Positive differences mean that the 2012 topography is above the original topography (i.e. 376 

accumulation areas) while negative differences indicate that the 2012 topography is below the original 377 

topography (i.e. depleted areas) as a result of the mass movements. 378 
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 379 

Fig. 8. Location of the longitudinal and transverse profiles overlapped onto the hillshade map of the study area obtained 380 
from the LiDAR DTM (a). Example of the regression model for the longitudinal profile number 41 (b) and the transverse 381 
profile number 7 (c) where blue, orange and green colour refer to the linear, logarithmic and exponential fitting, 382 
respectively. Elevation difference between the 2012 DTM elevation and the reconstructed topography where  positive 383 
values indicate accumulation areas and negative values indicate depleted areas (d). 384 

DTMs difference highlights two depletion areas, one spreads across the crown sectors of landslide 9, 385 

10 and 11 and the other one where the mass deposits direction of flow converges in the narrow valley 386 

between Termini and Nerano (landslide 15 and 17), in this part elevation difference is -27 m. The 387 

accumulation area is instead located southward, between Nerano and Marina del Cantone, where the 388 

2012 topography is 31 m higher than the reconstructed one. Vertical differences are usually 10 m 389 

lower than slip surfaces retrieved from the inclinometers, thus supporting the idea that the current 390 

moving landslides just involve the superficial deposits of the whole landslide mass.  391 

By taking into account the area, vertical differences have been converted to volumes for each 392 

landslide. The volume differences prove that landslides 17, 18, 19 and 20 represent net accumulation 393 

areas while all the other landslides have a net mass loss. The spatial extension of landslide 11, from 394 

the crown to the toe, inevitably encompasses multiple areas of depletion and accumulation. 395 

The whole displaced mass amounts to ~1.484 × 106 m3, (Table 1).  396 
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Table 1. Area, average elevation difference and volume gain/loss for each rotational and complex landslide in the 397 
Termini-Nerano valley. 398 

Landslide ID area [m2] net volume difference [m3] 

6 11,931 -32,620

7 6,214 -38,181

8 7,637 -90,562

9 21,387 -101,827

10 17,932 -235,681

11 100,284 -89,503

12 11,975 -19,299

13 8,093 -55,820

14 25,427 -332,216

15 14,780 -279,220

16 14,768 -201,408

17 22,603 7,974

18 95,448 1,245,974

19 25,471 234,569

20 24,003 4,298

Total 407,954 16,477
 399 

Because historically small landslides within the Termini-Nerano valley develop within the older 400 

deposits, is likely that reactivations will be fed by materials located southeast of Nerano, especially 401 

at the steep eastern edge of landslide 18 where a net accumulation sector has formed. Considering the 402 

positions of the sliding surfaces measured at C1, C2 and C3 within landslide 11 and 18, we can 403 

estimate that a volume of at least ~0.67±0.03 × 106 m3 is currently active. 404 

 405 

 406 

4.4 InSAR analysis 407 

InSAR measurements have been used to characterize the slope kinematics. By taking into account 408 

the standard deviation (σ) of the LOS (Line of Sight) velocities such as in Aslan et al. (2020), the 409 

stable target threshold has been set to ±1.5 mm/yr, ~2 times σ. The results reveal the presence of 410 

many areas still affected by surface displacements along the basin and related to active slope 411 

instability phenomena with the presence of vegetation that hinders the density of radar targets. 412 
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CSK results (Figs. 9) for the period 2011-2014 have a density of ≥1,800 targets/Km2 and highlight 413 

that seven mass movement systems are moving with instability confined to the head (landslide 6 and 414 

7) and the toe areas (landslides 11, 17, 18, 19 and 20) where LOS velocities reach 10 mm/yr in the 415 

descending geometry. A poor targets coverage characterises the landslides between Termini and 416 

Nerano but, based on geomorphological and ISBAS data, we can realistically assume that none or 417 

limited motion occurs here.  418 

 419 
Fig. 9. InSAR displacements along the LOS obtained from the CSK ascending (a) and CSK descending (b) data. Positive 420 
numbers correspond to motions towards the sensor, negative ones to motion away from the sensor along the LOS. 421 
Coordinate system: WGS 1984, UTM Zone 33N. 422 

Where CSK radar targets were sufficiently covering displacing masses (landslides 11, 17, 18, 19 and 423 

20), the ascending and descending LOS displacements have been projected along horizontal and 424 

vertical directions after interpolation through the IDW method and application of Dalla Via et al. 425 

(2012) formula. The derived time series have been averaged in time, considering the closest satellite 426 

acquisitions, and in space, considering the same landslide body identified from field surveys, in order 427 

to be compared with the monthly rainfall record of the area available from the Massa Lubrense 428 

raingauge station, located ~3 km northwest of our study area.  429 



22 
 

 430 

Fig. 10. Average displacements for landslides 17, 18, 19 and 20 projected along the horizontal (a) and vertical (b) 431 
direction. Blue bars indicate monthly total precipitation.  432 

Following Bonì et al. (2018) classification method for the InSAR time series, the temporal analysis 433 

reveals that landslides move seasonally (non-linearly) with acceleration during Winter months and 434 

deceleration in Summer months and a time lag of 2-4 months with the precipitation peaks (Fig. 10). 435 

This temporal heterogeneity is more evident for the horizontal motion. While the geometry of the 436 

large mass events controls the development/reactivation of smaller rotational and complex landslides 437 

within the valley (see Section 4.2), InSAR time series analysis reveals that seasonal stress 438 

perturbations control the magnitude of the motion rates at a short temporal scale. 439 

Finally, C1 and C3 inclinometers data have been used to validate the nearest PSP points available for 440 

the same time interval (Table 2) after the InSAR horizontal and vertical components of displacement 441 

have been spatially interpolated. The lack of a PSP in correspondence of each inclinometer might 442 

explain the tiny differences between the two measurements that overall agree and confirm the highest 443 
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deformation rates at the toe of landslide 18. The latter represents an unstable body where nearly 30m 444 

of materials have been piled up collecting deposits transported within the whole Termini-Nerano 445 

valley. 446 

 447 

Table 2. Comparison between inclinometer and interferometric data. For the borehole location, see Figure 9. 448 

Inclinometer 
Period of 

acquisition 
(m/yyyy) 

Inclinometer 
displacement 

(mm) 

Inclinometer 
azimuth 

(°) 

InSAR 
displacement 

(mm) 

InSAR 
horizontal 

displacement 
(mm) 

C1 
9/2012 – 
2/2013 

5.0 140 (SE) 1.5 3.9 

C3 
9/2012 – 
2/2013 

20.0 180 (S) 10.7 14.3 

 449 

 450 

4.5 Landslide Hazard Mapping 451 

Fourteen environmental variables considered as predisposing factors have been selected to produce 452 

H: slope angle, slope aspect, profile curvature, planform curvature, Topographic Wetness Index 453 

(TWI), Topographic Position Index (TPI), InSAR horizontal  velocity (according to the interpolation 454 

shown in Section 4.4), elevation, distance to stream, distance to road, stream density, road density, 455 

lithology and land-use. A more detailed description of these is given in Supplementary 2. 456 

Apart from InSAR displacements, the selected environmental variables represent standard factors for 457 

landslide hazard mapping (Van Westen et al., 2008).. To maintain the temporal consistency of all the 458 

input datasets, only the interpolated horizontal InSAR data from CSK have been used (see Section 459 

4.4) in combination with the LiDAR-derived geomorphological indicators and the outcropping layers 460 

mapped during our field investigations. All the layers are raster (including the InSAR results after the 461 

interpolation) that have been interpolated and brought to the same spatial resolution (10 m) and 462 

extension. Considering the (i) assumption made for the volume calculation in Section 4.3, the vertical 463 

differences from the original topography could not be used as training layer but for validation 464 

purposes only, being limited to the landside areas.   465 
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Each stand-alone model (ANN, GBM and MaxEnt) was executed with 50 different combinations of 466 

training and testing of the data using the K-CV approach (Figs. 11a-c). Such a method allows to 467 

generate 150 different H scenarios with corresponding errors values and evaluation scores 468 

(Supplementary 1). In the ensemble procedure stand-alone models with a threshold > 0.7 for AUC 469 

and 0.6 for TSS only were selected. In this way, in the aforementioned procedure were chosen only 470 

the models with a good performance. The median of the probabilities of the three models has been 471 

chosen as the ensemble technique to obtain the final landslide susceptibility map, being the median 472 

less sensitive to outliers than the mean. The final ensemble map has an AUROC value of 0.96 and a 473 

TSS value of 0.82 (Fig. 11d).    474 

The values of H, and later of E, V and R as well, have been grouped into four different classes to 475 

adhere to the Italian laws on hazard and risk assessment. The natural breaks method has been chosen 476 

to divide the distribution in these classes so to minimize the variance within each class and 477 

maximizing the variance between the classes (Fig. 11). 478 

 479 
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Fig. 11. Median value of the hazard map from 50 ANN runs (a), from 50 GBM runs (b) and from 50 MaxEnt runs (c). 480 
EM landslide hazard map considering median values from the 50 ANN, 50 GBM and 50 MaxEnt models (d).  481 

 482 

EM shows that the highest hazard is located on the northwestern sector at the toe of the landslide 483 

system with only landslides 6, 10, 12, 13 and 15 presenting a low to medium risk. On the other hand, 484 

whole landslide bodies (18, 19 and 20) show a very high hazard. Additional hazard is posed by the 485 

bottom of the Mt. San Costanzo eastern slope. Score values, between 0 and 1, indicate how the factors 486 

in EM contributed to H (Table 3). It has to be highlighted that we have not considered interactions 487 

between variables so every factor has been examined independently. Scores close to 1 greatly affect 488 

H while values close to 0 have no influence on the landslide hazard. Three main predisposing factors 489 

emerge: horizontal displacement, slope aspect and the road density. 490 

Table 3. Scores of the fourteen variables used in the EM. 491 

Factor Score Factor Score 

Distance to road 0.042 
Profile 
curvature

0.01 

Distance to stream 0.008 Road density 0.136 

Elevation 0.037 Slope angle 0.025 

Lithology 0.03 Slope aspect 0.144 

InSAR displacement 0.237 Stream density 0.055 

Land-use 0.001 TPI 0.027 

Planform curvature 0.029 TWI 0.009 
 492 

InSAR displacement is the most influential factor, highlighting the importance of regularly 493 

monitoring such type of landslides for building a reliable H. Consequently H tend to be higher where 494 

velocities are the greater. The south facing aspect is an important factor especially if considered with 495 

respect to the attitude of the TSF strata whose dip directions converge toward the Termini-Nerano 496 

valley. Indeed, over the north facing slope just north of Capo d’Arco, no landslide is reported. 497 

Road density is acknowledged to be a predisposing factor especially in the centre of Nerano, where 498 

narrow scenic road snakes within the village, but not a triggering factor since there is no temporal 499 

relationship between the road works and the occurrence of the landslide. Lithology is not a 500 

predominant predisposing factor as the largest contrast in the mechanical and structural properties, 501 

according to the borehole data (see Section 4.1), lies within the different landslide deposits developed 502 
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in the same unit, the TSF. Similarly, slope angle has a low influence on H since slow-moving 503 

landslides in SCFs can develop and move on low angle slopes (<10o), flat, or even slightly uphill 504 

terrains (Del Soldato et al., 2018).  505 

 506 

4.6 Landslide Risk Mapping 507 

The LRM has been combined with information on its potential impact which is expressed by E and 508 

V. The latter have been sampled by ISTAT over six different units (Fig. 12). These units do not 509 

correspond to administrative or geomorphological boundaries but follow the guidelines of Regulation 510 

(EC) no. 1059/2003 of the European Parliament on the establishment of territorial units that can be 511 

used for statistical analyses of population and buildings across Europe. 512 

 513 

Fig. 12. Territorial units defined by ISTAT for the Termini-Nerano area. 514 

Exposure information has considered information on the number of residents and building within the 515 

territorial unit.  516 

Given the different size of each territorial unit, the density of buildings and population has been 517 

considered for E (Table 4). ISTAT does not provide information on the road network, so this 518 

information has been excluded, but it would spatially represent a minor component of the 519 

infrastructures here. About V, since most of the buildings are masonry and other types of buildings 520 
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(concrete, steel and wooden) represent <0.2% of the urban fabric, only the buildings age has been 521 

considered as a discriminant component for V. 522 

Table 4. Main indicators used to extract element-at-risk and vulnerability inside the Termini-Nerano valley according 523 
to the ISTAT territorial units (see Figure 12). 524 

   density of buildings constructed in time 

Territorial Unit population/km2 buildings/km2 <1945 >1946 & <1970 >1971 & <2000 >2001 

Capo d'Arco 1,725 1,150 431 288 431 0 

Case sparse 114 29 8 6 11 5 

Coppetelle 2,331 802 246 182 310 64 

Nerano 1,488 751 273 341 133 4 

Sirenuse 688 398 15 260 122 0 

Termini 2,255 754 278 172 260 44 
 525 

V and E have then been normalized and summed to H according to the formula given in (1) and the 526 

LRM has been generated (Fig. 13a). R values range between 0 (low risk) and 1 (very high risk) and 527 

have been reclassified according to the natural breaks criterium. The low standard deviation (0.09) 528 

compared to the ranges of each class of R into a high precision for our map (Fig. 13b). 529 
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 530 

Fig. 13. Landslide Risk Map for the Termini-Nerano valley (a) and corresponding histogram (b). 531 

 532 

According to the LRM, most of the valley is under medium and high risk with the highest risk located 533 

south of Termini and in the bottom part of the valley, where most of the recorded damage has been 534 

mapped (see Figure 5). The very high risk southeast of Termini and on the eastern side of the Termini-535 

Nerano valley is associated to the high population density and old building age while the very high 536 

risk in Nerano is mainly due to H despite the lower population density (E) and relatively younger 537 

buildings (V). In turn, the very high H in Nerano is mainly due to InSAR displacement. A medium 538 
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to high risk is instead characterising the top of the valley as result of the low density of population 539 

and buildings in those territorial unit. 540 

  541 

 542 

5. Discussion   543 

The Termini-Nerano valley has been chosen as test area for developing a new methodology to assess 544 

landslide risk due to the range of datasets available. The latter has allowed to build a multidisciplinary 545 

approach which provides a holistic understanding of the landslide risk in the catchment where, in the 546 

meantime, local population has lost the historical memory of the landslides activity (more than a 547 

generation) and so underestimate the current risk. 548 

In the studied area, geological and geomorphological observations have identified fifteen extremely-549 

slow-moving landslides, according to the Cruden and Varnes (1996) classification scheme, covering 550 

a total area of 4.1 ×105 m2.  551 

Field mapping reveals that one of the most important controlling factors for landslides susceptibility 552 

is the lithology given by the dip-slope attitude of the TSF layers and its role for the geometrical 553 

distribution and evolution of the instabilities. Indeed, the valley evolution is characterised by large 554 

and catastrophic movements, like the 1941 and 1963 with velocities up to m/h, who redistribute large 555 

volumes of material from the TSF. Between these big events, however, the slope is continuously 556 

reshaped by smaller instabilities that mainly redistribute the material within the toe area. We retrieved 557 

the volume of each landslide deposit from the LiDAR-reconstructed topography and estimate a total 558 

volume of ~1.484 × 106 m3 for the whole landslides system. The net mass increase (0.016 × 106 m3) 559 

represents ~1% of the total volume calculation and can be attributed to: errors in the regression and 560 

interpolation method, topographic reprofiling from anthropogenic activities and contamination of fall 561 

deposits from Mt. San Costanzo. InSAR results prove the correlation between ground motion and 562 

precipitation with seven mass movements that can be still considered active but with an intermittent 563 



30 
 

activity, a typical characteristic of landslides in heterogeneous terrains, such as the SCF, characterised 564 

by a long activity history with continuous reactivations (Milillo et al., 2014).    565 

A longer record and more dense groundwater observations are needed to fully understand the 566 

hydrogeological conditions of the area  such as  the different response in groundwater rise observed 567 

in D1 and D3.InSAR data confirms the correlation between rates of motion and precipitation. A 568 

longer record of InSAR data, such as the inclusion of 7 years’ worth of data from the Sentinel-1 569 

constellation, would provide additional information to constraint the return period of the slope 570 

instabilities. Despite several engineering drainage solutions have been erected in the head area during 571 

the 1960s to mitigate the landslide hazard, InSAR displacements reveal that they have not been 572 

effective in stabilizing the slope. The updated landslide inventory map, InSAR displacements, land 573 

cover map and geomorphometric parameters have been used for the hazard assessment. Although 574 

several MLAs methods have been explored for the spatial-temporal prediction of landslides (Thai 575 

Pham et al., 2019), EM still represents a novelty and mainly limited to rapid or shallow landslides 576 

(Carotenuto et al., 2017). In this work we have taken a step forward and used EM for assessing the 577 

landslide hazard of slow-moving phenomena. Critical for the accuracy of EM is the selection of 578 

training points and input layers (Micheletti et al., 2014). Ideally, training points are selected over 579 

clearly identifiable landsliding areas, such a task can be relatively challenging in slow-moving 580 

landslide which might not show signs of instabilities unless a detailed field survey is carries out. 581 

Another important benefit of the landslides system in the Termini-Nerano Valley is that we could 582 

chose training and validation pixels from different landslides within the same valley thus to avoid 583 

unrealistic overestimations of prediction accuracy when training and validation points belong to the 584 

instability. In our EM we include InSAR displacements among the input layers, being velocities the 585 

only dynamic information needed to derive a hazard rather than a susceptibility map. The use of 586 

InSAR as input for improving or refining susceptibility/hazard model is not rare (e.g., Carlà et al., 587 

2016; Ciampalini et al., 2016) but equivalently, InSAR can also be seen as a validation tool of such 588 

models especially when data available is scarce. However, in this work we considered ground motion 589 
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as a predisposing factor, based on the idea that landslides in SCFs have a long reactivation history 590 

and therefore catastrophic/sudden failures always affect sectors previously unstable. Whether is 591 

training or validation, the uneven distribution of InSAR targets with a lower density over vegetated 592 

areas is a critical aspect . In such case, interpolation methods can mask or amplify ground 593 

displacements. . The advent of novel InSAR processing techniques, such as the Intermittent Small 594 

Baseline Subset (ISBAS, Cigna and Sowter, 2017) or SqueeSAR (Ferretti et al., 2011), offer the 595 

possibility of filling this gap by increasing the density of InSAR measurements.  596 

Out of the fourteen layers used for the hazard map, ground displacements is the dominant one so, 597 

even if they are considered slow-moving landslides, velocity still remains critical parameters that 598 

need to be included and regularly updated for hazard and risk calculations as already acknowledge in 599 

previous works (Casagli et al., 2016). 600 

We used the vertical differences derived from the LiDAR DTM to validate the landslide hazard map. 601 

The comparison shows that the areas with very high risk corresponds to areas with the vertical 602 

differences are either highest (between Nerano and Marina del Cantone) or lowest (south of Termini). 603 

Accumulation areas indeed are the fast-moving part within the valley with the old landslide deposits 604 

that have historically supplied unstable materials for rapid events during the 20th century. On the other 605 

hand, we interpreted the already depleted areas to be still unstable given the combination of the slope 606 

aspect, slope angle and planform curvature for these exposed landforms. 607 

Despite the highlighted limitations, we have a unique collection of data sufficient to improve the 608 

current LRM for three reasons: updated information on the geometry and kinematic of the 609 

instabilities, a combination of three MLAs for H and the different age of the buildings has been 610 

considered for V. 611 

Compared to the SAHD, our LRM define, overall, a more dangerous scenario where the area nearby 612 

Nerano and Marina del Cantone from a low to medium level are now classified as a high-risk level 613 

and the highest level of risk is now corresponding to areas south of Termini and on the eastern side 614 

of the valley. Field surveys confirm damage to roads and walls within these sectors. The highest 615 
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difference with the SAHD LRM is over the eastward facing slope of Mt. San Costanzo because we 616 

did not account for the hazard associated to falls and topples affecting the Radiolitidae limestone 617 

Formation being it beyond the scope of this work. We have used a standard approach to evaluate R 618 

by providing the same weights for H, E and V. This, inevitably has penalised the amount of 619 

information within H which is a pixel-based layer compared to V and E that, on the other side, is a 620 

polygon-based census unit. Considering the amount of geological, geomorphological and kinematic 621 

conditioning factors which have been ingested in the risk assessment calculations, some of them with 622 

nonlinear distributions (e.g, InSAR data, E and V), single statistical or ML methods can easily bring 623 

to completely different risk scenarios. These standalone maps can show large discrepancies especially 624 

when are compared against each other, have to be updated or upscaled (Jacobs et al., 2020). On the 625 

other side, EM has enhanced the power prediction of individual classifiers while decreasing noise and 626 

over-fitting problems by combining different MLAs together. 627 

 628 

 629 

 630 

6. Conclusions 631 

Assessing landslide risk is one of the highest challenges in land management and is usually delegated 632 

to national institutions such as geological/environment surveys, civil protection agencies or the River 633 

Basin Authorities in the case of Italy (Solari et al., 2020). Better risk assessment would support the 634 

development of strategies towards disaster risk management and disaster risk reduction. As landslide 635 

activity is expected to grow worldwide as a result of a changing climate (Gariano and Guzzetti, 2016), 636 

the capacity to timely and properly predict landslide susceptibility is critical. The current study 637 

contributes to the advancement of landslide risk analyses. Indeed, an innovative methodology for 638 

producing LRMs, with the combination of InSAR and EM, has been developed and implemented 639 

over the Termin-Nerano landslides system where we could complement standard field surveys and 640 

geological investigations with different remote sensing data.  641 
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The exploitation of MLAs is still in its infancy, far away to become a standard practice to support 642 

researchers, public entities, authorities and civil protection agencies which have the mandate to 643 

generate landslides risk mapping. However, under the pressure of the latest remote sensing 644 

technologies which provide regular and freely observations at continental scale, it has been already 645 

recognised the importance of harmonised landslide hazard and risk map at continental scale following 646 

the European landslide susceptibility map (Wilde et al., 2018). Such products will represent valuable 647 

outcomes for focussing resources and implement medium to long term precautionary measures in 648 

prevention, emergency and post-crisis mitigation phases. In particular, satellite platform and 649 

downstreaming services are supplying geomorphological/kinematic data and information which has 650 

been acknowledged to be the main obstacle for producing reliable landslide hazard and risk maps 651 

from MLAs (Nsengiyumva and Valentino, 2020). 652 

The use of the proposed ML-based landslide risk assessment method can be therefore particular 653 

beneficial if dealing with large datasets at continental scale to be regularly updated considering that 654 

slides, flows and complex movements (usually evolving as slow-moving landslides) represent more 655 

than half of the 849,543 landslide events in Europe (Herrera et al., 2018). With this respect, the 656 

Termini-Nerano valley represents a perfect case study given the amount of high-resolution data 657 

available from remote sensing and ground-based techniques that have been used for developing, 658 

performing and validating for the first time this innovative solution where InSAR and MLAs are 659 

combined to produce a LRM.  660 

Recent initiatives at continental scale work in favour of the replicability of our approach: 661 

 InSAR datasets will be freely accessible at continental scale through the upcoming European 662 

Ground Motion Service (Crosetto et al., 2020) based on Sentinel-1 satellite data. This service 663 

will be of pivotal importance for landslide mapping activities at a national and regional scale.  664 

 The MLAs used here are available for free across the most common statistics library of R-665 

Studio and Python for example. MLAs are able to account for and large training datasets and 666 
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EM, in particular, is a powerful tool which can account for different data-driven approaches 667 

together to regularly update or upscale landslide hazard maps. 668 

 Data on population and buildings, from which V and E can be calculated, are nowadays easily 669 

accessible, homogenised and regularly collected at European level through the national 670 

statistics offices and made available at any user. 671 

 672 

Further research, however, is needed to further develop the presented ML-based methodology in order 673 

to minimize subjectivity for selecting the different sources, resolution and mapping units associated 674 

with the input datasets, usually determined by the available datasets, and to extend it to different 675 

typologies of landslides. 676 

 677 
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