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An integrated approach for spatial 
distribution of potentially toxic 
elements (Cu, Pb and Zn) in topsoil
Azadeh Vaziri1,2, Ahad Nazarpour3*, Navid Ghanavati2, Teimor Babainejad2 & 
Michael J. Watts4

In this study, statistical analysis and spatial distribution were performed to compare raw data and 
centred log-ratio (clr) transformed data of three copper (Cu), lead (Pb), and zinc (Zn) potentially toxic 
elements (PTEs) concentration for 550 surface soil samples in Khuzestan plain. The results of both 
approaches showed that classical univariate analysis and compositional data analysis are essential 
to find the real structure of data and clarify its different aspects. Results also indicated that spatial 
distributions of raw data and clr-transformed data were completely different in three studied metals. 
Raw data necessarily shows the effects of anthropogenic activities and needs an additional evaluation 
of human health risk assessment for these three studied elements. Data obtained from clr-coefficient 
maps also demonstrated the role of geological processes in the distribution pattern of potentially 
toxic elements (PTEs). To improve the understanding of the implications for PTE pollution and 
consequences for human health, a RGB colour composite map was produce to identify the potential 
origin of PTEs from areas with higher than typical baseline concentrations.

There are two main sources of PTEs in soils: (i) natural background, which represents the PTEs concentration 
derived from parent rocks, and (ii) anthropogenic contamination, arising from the use of agrochemicals, organic 
amendments, animal manure, mineral fertiliser, sewage sludge disposal, atmospheric deposition and industrial 
 wastes1–4. Soil contaminated with elevated PTEs concentrations is a serious environmental hazard due to their 
toxicity, persistence and potential for bioaccumulation in the urban environmnet, as well as providing a reservoir 
or sink for PTEs and other pollutants in urban  areas5,6. Their elevated levels have negatively impacted human 
health via direct ingestion, inhalation and dermal contact  absorption7,8. They can affect the central nervous sys-
tem and may act as cofactors in other diseases. Different mechanisms, such as physical, chemical, and biological 
processes determine metal retention in  soils6,9,10. Due to its high retention capacity, soil is often regarded as a 
sink for metals discharged into the  environment11–13. It is important that detailed information on the distribution 
of PTEs in the environment, particularly in industrial towns, is available in an easily understandable format for 
policy decision makers so that soil contamination caused by industrial development can be assessed to inform 
practicable mitigation approaches, alongside public health  monitoring14,15. In recent years, many studies have 
focused on the concentration, distribution and source identification of PTEs in industrial  areas16–18. Based on 
spatial analysis, it was found that highly elevated metal concentrations were generally located in industrial and 
urban areas, along road networks and crowded commercial  districts19–21. In contrast to PTEs in agricultural 
soils, those in urban soils have more possible sources, including vehicle emission, industrial discharge or waste 
 incineration22,23. When considering toxicities severity, inability to regeneration, high fetal mortality, mutation, 
offspring abnormalities are the most important consequence of PTEs in  animals24–26.

To better understand the extent of soil contamination from PTEs to inform appropriate management/reme-
diation, it is necessary to have utilise spatial characteristics to employ geostatistics or mapping systems as usable 
 tools27,28. A geostatistical approach can help to identify contamination sources and the spatial distribution of PTEs 
in the  environment29–31. These techniques are ideal for the evaluation of interactions between PTEs released to 
the environment and recipient environment based on the spatial information of pollution distribution sources, 
processes affecting pollutants distribution and population  density32–34. The output of geostatistics techniques 
provided the scientific basis for better evaluation and management of the  environment8,18,25. Since the 1980’s, 
geochemical data for geostatistical consideration have been based on log-transformation  calculations35–37. Based 
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on recent findings, the study of the concentration of the controlling characteristics of geochemical data and their 
distribution in the transformed state could result in reaching differing  interpretations38. However, geochemical 
data should be considered as a sample of composition and closed data, which should be opened before data 
 processing39,40.

To date, studies on PTE concentrations in soil from the Khuzestan plain of Iran have included a limited pol-
lution level assessment by classic statistical procedures and statistical methods such as the cumulative probability 
and box plot and map analysis based on log-transformation41–43.

Therefore, the aim of this study was to statistically evaluate and determine the spatial distribution pattern of 
three PTEs (Pb, Zn, and Cu) in surface soil from the Khuzestan plain by univariate data and compositional data 
analysis. These elements were recognised as the principle PTE with a high potential risk for human health in the 
Khuzestan  plain44. In order to evaluate the potential effect of these elements on this environment an RGB map 
was prepared to provide a spatial representation of contamination for Pb, Zn, and Cu soil concentrations in the 
Khuzestan plain, which will provide a usable tool for policy decision makers.

Materials and methods
The study area is in the southwest of Iran in Khuzestan province, covering an area of about 63,213  km2 and 
located between longitudes 48° and 49.5° E and latitudes 31° and 32° N with almost 4,000,000 inhabitants (Fig. 1). 
Elevation ranges from 0 to 3737 m, with a cold (in the north) and tropical (in the south) climate, with mean 
maximum summer temperatures (July) about 50 ºC. The climate of the study area is considered to be arid and 
humid. This area is part of the Zagros orogenic belt. This belt is the product of three major geotectonic events 
during subduction between the Arabian and Iranian  plates45. The belt consists of their parallel tectonic zones from 
NE to SW: (1) the volcanic–plutonic zone (Urumieh– Dokhar belt); (2) the Sanandaj-Sirjan metamorphic zone; 
(3) the Zagros fold  belt45. Sedimentary rocks consist of chemical-biochemical limestone to clastic sandstone—
Conglomerate ages ranging from Cretaceous to quaternary are occupied Khuzestan province. Rapid erosion in 
the Zagros area is combined with high water flow resulting in a large sediment load. The rock fragments and 
minerals derived from erosion of the banks of the rivers and its tributaries are transported south and accumu-
late after the break in slope where the rivers reach the flat plain (e.g., Ahvaz city). The surficial distribution of 
sediments shows miscellaneous layers and mixture of sands, silts and hard muds. Generally, Khuzestan plain 
is characterised by the predominance of alluvial and sedimentary rocks of both chemical and detrital origins. 
The sand and much of the coarse silt alluvial are typically composed of quartz. The fine silt and clay fractions 
are dominated by clay minerals. The sediment minerals were subjected to sorting by size and specific gravity, as 
well as some chemical dissolution during transportation.

Soil sampling and laboratory analysis. In this study, 550 soil samples were collected from the Khuzestan 
plain in 2016, which included urban, suburban, agricultural and oil field and industrial zones (Fig. 2). Approxi-

Figure 1.  Satellite image of study area (Khuzestan plain) and sampling points, the image was made by 
ArcGIS10.2, background from Google Earth (Image: Google, Landsat/Copernicus).
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mately 1.5 kg of soil was gathered from each sampling point from 5 to 15 cm depth after sieving to < 200 mm and 
removal of superficial plant material based on the international instruction of GOREGS Geochemistry  Group46. 
Each sample was a composite of three collected samples in 5 m interval. Samples placed in a 60° C oven for 24 h 
to obtain 0.15 mm particles. Then in order to extract metal from samples, 1 g of each dried sample was heated 
in a rubber balloon containing 4 ml nitric acid (with 1 + 1 weight ratio) and 10 ml Hydrochloric acid (with 1 + 4 
weight ratio) in 95° C for 2 h to a final matric of 65%  HNO3/ 40% HCl, for subsequent PTE analysis by ICP-OES 
(Spectro Arcos, Germany). We measured the control and duplicate the samples with a precision of 4 to 6%, and 
reference materials NIST 2710 with an accuracy of 100 ± 8% (n = 30), for Quality Assurance (QA) and Quality 
Control (QC). The duplicate soil samples’ precision was 5 to 7% and less than 5% (Table 1).

Compositional nature of geochemical data. The compositional nature of geochemical data considered 
an important issue and should be considered before any geostatistical analysis of geochemical  data47–50. Com-
position or closed data, is a series of data in which the variants are not independent and represented as percent 
or ppm or a part of the  total40,51. In the classical definition, each data raw named as observation in which the 
total analysed the variation of observation is a constant number (such as, 1, 100 or 106). Although regarding the 
major property of this data as scale instability and its sub-unit integration necessarily does not need to establish 
a fixed total  condition52.

Figure 2.  Satellite image of some oil related steel industries in Khuzestan plain, the image was made by 
ArcGIS10.2, background from Google Earth (Image: Google, Landsat/Copernicus).
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Compositional data have properties that make it difficult to apply a standard statistical method. The Euclidean 
space is not suitable for compositional data and limitation, whilst the constant sum of these data indicated a 
certain geometry which so-called Aitchison geometry in a simple  environment53. In order to use standard statisti-
cal methods, these data should be transformed in a suitable way such as relativistic logarithm transformations 
presented  by54. The space of sample data or simplex for a partial D combination X =  (X1,….,  XD) or subsequent 
–D defined as Eq. (1):

Using three log-ratio transformation additive log-ratio (alr)55, centered log-ratio (clr)43, and isometric log-
ratio56, (ilr) these data could be transformed to the Aitchison space. For instance, clr transformation led to a 
multivariate observation in D-1-dimension space, and defined according to following Eqs. (2) and (3):

Data interval in this geometry is the Aitchison space, calculated according to Eq. (4) for both X = (x1, . . . , xD) 
and Y =

(

y1, . . . , yD
)

 compositions:

Isometric property of clr conversion mean for two X and Y compositions, Eq. (5) is established between both 
the Aitchison and Euclidean space.

To correct the interpretation of diagrams using univariate scalars (e.g. histogram, boxplot governed by the 
Euclidean relationship), there is another relation proposed by Filzmoser, et al.57) to the univariate conversion of 
 data53 using the following relation for each xi based on Eq. (6):

Average in these types of data calculated according to Eq. (7):

There is a different definition for compositional data variance which metric variance or total variance or global 
variance are between them and the average of distance squared from the data center in company with corrected 
degrees of freedom is the variance of general data and obtained by Eq. (8):

Therefore, standardising combined data is different from typical statistic methods. Firstly, combination data 
have a non-dimensional common scale and thereby standardising with the usual process caused loss of important 
data which included variability in data. Secondly, normal averaging produced negative values that the interpreta-
tion of the combination average power of reverse combined variance square according to Eq. (9):
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Table 1.  Relative percentage difference and accuracy of analytical results of studied PTEs.

RPD (%) Accuracy (%)

Pb 2.83 3.69

Cu 5.35 4.37

Zn 6.32 3.86
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where ⊙ in this relation is the power and � is the reverse function in simplex  space58.

Data analysis. In this study for data analysis, both log-transformed data and compositional data statistically 
and spatially were  analysed53,59. The clr-transformation method was used to analyse combination  data41. Also a 
free open source CoDaPack software was used to transfer raw data to clr-transformation data.

The statistical summary of raw data analysis results and clr-transferred data including minimum, maximum, 
percentile (10, 25, 50, 75, 90, 95, 98), mean, standard deviation, median absolute deviation (MAD), which are 
useful to represent variability and central tendency of data structure are indicated in (Tables 2 and 3). For clr-
transformed variables as variance increased, the effect of these variables raised on multivariate  data38,40,53.

Means and standard deviation were not presented for clr-transformed data because of incompatibility to com-
positional geometry as a criterion for central tendency and dispersion and its behaviour is based on Euclidean 
geometry, while compositional data do not relate to classical Euclidean  space38,40,59.

Data distribution and normality status of studied PTEs of element concentrations were presented by a detail 
in cumulative  Q–Q plot of raw and clr-transformed data (Figs. 3, 4, 5a,b) and exploratory data analysis (EDA) 
plot of log-transformed and clr-transformed of studied PTEs are presented in Figs. 6, 7, 8a,b. Vertical red lines 
in  Q–Q plots of log-transformed data (Figs. 3a, 4a and 5a) indicate threshold values established by the Iranian 
soil quality guideline for assessing human health risk and local background of study  area60. Each EDA plot is a 

Table 2.  Summary of the main statistical parameters (unit of measure (UM), minimum (Min.), maximum 
(Max.), percentiles (P) 10, 25, 50, 75, 90, 95, 98, mean, standard deviation (SD), interquartile range (IQR) and 
median absolute deviation (MAD) of Pb, Zn and Cu measured contents.

Min P10 P25 P50 Mean P75 P90 P95 P98 Max SD IQR MAD

Pb 10 18 33 45 64.38 82 94.1 99.6 298.36 610 64.59 49.75 22.36

Zn 25 40 64 98 102.55 135 163 12 1.22 493 53.39 71 39.21

Cu 8 12 23 39.5 50.95 56.75 67 69 334.22 865 76.65 32.75 36.76

Table 3.  Summary table of the main statistical parameters (minimum (Min.), maximum (Max.), percentiles 
(P) 10, 25, 50, 75, 90, 95, 98, interquartile range (IQR) and median absolute deviation (MAD)) of clr-
transformed values of Pb, Zn, Cu.

Min P10 P25 P50 P75 P90 P95 P98 Max IQR MAD

Pb − 1.5 − 0.06 0.19 0.54 0.8 1 1.22 1.28 1.32 0.75 0.41

Zn − 1.7 − 0.73 − 0.38 − 0.05 0.23 0.46 0.63 0.775 1.7 0.61 0.18

Cu −  1.74 − 1.58 − 0.75 − 0.35 0.07 0.15 0.31 0.98 1.24 0.66 0.29

Figure 3.  Q–Q plot of: (a) Pb original log-transformed data; (b) Pb clr-transformed data.
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combination of histogram, one- dimensional scatterplot and it is considered one of the best graphical displays 
of data  distribution38.

Dot maps (Figs. 9, 10, 11a,b) and interpolated maps (Figs. 9, 10, 11c,d) were produced to visualise the 
spatial data structure. Dot maps were reclassified based on percentiles calculated in Tables 2 and 3 by ArcGIS 
 software59,61,62. Calculated concentrations were interpolated by GeoDdas software and obtained using multifractal 
inverse distance weighted (MIDW) method (Figs. 9, 10, 11 e,f).

Concentration-area fractal method is one of the conventional methods to display distribution of element 
concentration in an area and depicting iso-concentration contour maps in the studied region. If each contour 
value considered ρ , a power equation could be represented as the following  relation59,63–65. D is the fractal dimen-
sion corresponded to different domains of ρ.

Depicting area changes against concentration in Log plot, the dimension of each geochemical population 
could be calculated through the straight-line gradient. Obtained fractal dimension demonstrated coverage area 
of available data, as fractal dimension is the last fitted line with high concentration and typically have the lowest 
value indicating a lower area of high concentration samples.

In this research pixel-based method was used for C-A model in order to separate geochemical populations. In 
this way, raw geochemical samples were firstly prepared in ArcGIS with raster maps with cell size of 500 × 500 m, 

(10)A(> ρ) ∝ ρD .

Figure 4.  Q–Q PLOT of: (a) Zn original log-transformed data; (b) Zn clr-transformed data.

Figure 5.  Q–Q PLOT of: (a) Cu original log-transformed data; (b) Cu clr-transformed data.



7

Vol.:(0123456789)

Scientific Reports |         (2021) 11:7806  | https://doi.org/10.1038/s41598-021-86937-1

www.nature.com/scientificreports/

then single element geochemical surface maps were created. By applying the classification method in an attribute 
table, which are common functions in GIS, the available pixel number was determined at each level. By applying 
the C-A fractal method on current pixel values, threshold estimation performed with more accuracy.

Before MIDW interpolation, because clr-transformed data contains negative values and negative values can-
not represent accurate conception from the data situation in the concentration-area method, therefore, before 
running this model data should be normalised (1–100) (Figs. 9, 10, 11e,f). The Min–Max normalisation method 
was selected because this factor is a linear conversion which preserves the data  structure40,66,67. MIDW Interpo-
lated maps were classified by estimation confines obtained by the C-A fractal  method59,68. With the help of log 
plot of C-A and threshold methods, we could divide interpolated maps based on different pixels’ population and 
showed them by different colors on the map.

Colours on maps provide a visual representation of different units with various geochemical properties (e.g. 
mineralisation events, surface geochemical element concentration, surface weathering), as represented  by63,69. 
In interpolated maps, clr-transformation and C-A classification performed by normalised values (1–100). Then 
interpolated maps of Pb, Zn and Cu were compared to the contamination threshold (CSC) of standard soil in 
Iran. Each raster map with the corresponding element threshold value was divided for residential use: 100 mg/
kg for Pb, 120 mg/kg for Cu and 150 mg/kg for Zn.

Figure 6.  EDA plots for: (a) Pb original log-transformed data; (b) Pb clr-transformed data.

Figure 7.  EDA plots for: (a) Zn original log-transformed data; (b) Zn clr-transformed data.
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In this approach, three pollution maps were obtained for which each pixel above 1 represents hazardous 
conditions for human health. To prepare an overlay map showing elevated concentrations of the three studied 
elements, a colour composite image processing method was required (Fig. 5). This method is based on the RGB 
(Red, Green, Blue) colour model and was widely used to process satellite images and geochemical mapping show-
ing three differing distribution  patterns40,70,71. To process a digital image, every primary colour had an integer 
number from 0 to 225 and saved based on colour intensity. Each colour of the pixel in the satellite image is the 
result of values (Red, Green, Blue) which indicated colour intensity to produce an RGB combined colour. In this 
study, with the help of a colour composite tool box in ArcGIS software, Zn, Cu and Pb maps were considered 
as monochromatic maps. Three types of pure colours (Red, Green and Blue) were added to generate a special 
colour composite map where each pixel value is indicative of three colours. For improved resolution of colour 
distribution in the composite colour map, a monochromatic map of Zn, Pb and Cu was normalised between 0 
and 1 values. In this approach values above 1 were classified in the RGB space between 0 to 225 in three maps.

Results
The main minerals available in studied area soil included clay, quartz, and carbonate, and subsidiary minerals 
are mainly feldspar and gypsum. The order of the mean frequency of minerals in the soil included clay < 39.55, 
quartz < (19.32%), carbonate < (16.91%), gypsum < (11.32) Alkali Feldspar < (9.14%). The percent of calcite, illite, 
and Smectite is demonstrative of weak soil chemical weathering and collected calcium carbonate.

Lead concentrations in analysed soil samples ranged from 10 to 610 mg/kg with a mean of 64 mg/kg, sig-
nificantly greater than values reported for European soils (5.3–970, median: 15 mg/kg72; Italy (2.55 to 204 mg/
kg, mean: 32 mg/kg73; Netherland (36 mg//kg mean—VROM, 2000—; China (with 26 mg/kg averagely) and 
Worldwide soils (14 mg/kg74).

The Cu concentration in surface soil samples varied from 8.5 to 865 mg/kg with mean value (75.95 mg/kg), 
which this range of concentration is higher than measured values in Europe soil (0.81 mg/kg to 256 with the 
means of 62.2 mg/kg)72 and Italy surface soil (3–215 mg/kg, mean: 22 mg/kg)64, world soil with mean value of 
62 mg/kg74, Netherlands soil means (36 mg/kg)75 and background soil value of China (26 mg/kg average).

The Zn concentration ranged from 25 to 493 mg/kg, with mean value (102.5 mg/kg). Zn concentration in 
studied area was higher than reported values for Europe (37 to 396 mg/kg, mean value of 81 mg/kg)72, Italy 
surface soil (with 3–2900, mean: 48 mg/kg)73, world soil (25 mg/kg)74, Netherland soil mean (85 mg/kg)75 and 
background value of Chinese soil ( 74.2 mg/kg average).

Table 3 provides the descriptive analysis/classification of studied PTEs in the sub-compositional state. High 
concentration metals rather than the geometric mean had a positive sub-composition with clr-value76. For Pb 
with the mean value of the clr-value (clr mean) of 0.54, while 25-percentile of Pb with the positive value indi-
cated that more than 75% of Pb values were above the geometric mean of three studied PTEs elements. The Clr 
median value of Zn and Cu showed that more than 50% of these values were lower than the geometric mean of 
sub-composition data.

The lowest amount for sub-composition variability was for Zn and showed the lowest median absolute devia-
tion (MAD) from the mean (0.18), while Pb and Cu exhibited the same variability of 0.41 and 0.29 absolute 
deviation from the mean, respectively. The IQR and MAD values showed that the data variability effect of Cu and 
Zn was moderately higher than Pb. Clr cumulative distribution graphs of Pb and Zn (Figs. 3, 4, and 5b) showed 
obvious changes in the distribution of slope breaks and demonstrated different geochemical populations and 
geological processes in which higher values were anomalous.

Figure 8.  EDA plots for: (a) Cu original log-transformed data; (b) Cu clr-transformed data.
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Figure 9.  Interpolated (MIDW) maps for (a) Pb raw data; (b) Pb clr-transformed data, and corresponding 
plots of C-A model for map classification. the image was made by ArcGIS10.2, background from Google Earth 
(Image: Google, Landsat/Copernicus).
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Figure 10.  Interpolated (MIDW) maps for (a) Cu raw data; (b) Cu-Clr-transformed data, and corresponding 
plots of C-A model for map classification, the image was made by ArcGIS10.2, background from Google Earth 
(Image: Google, Landsat/Copernicus).
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Figure 11.  Interpolated (MIDW) maps for (a) Zn raw data; (b) Zn-Clr-transformed data, and corresponding 
plots of C-A model for map classification, the image was made by ArcGIS10.2, background from Google Earth 
(Image: Google, Landsat/Copernicus).
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Mapping
Concentrations higher than > 89 mg/kg of Pb in 10% of samples mostly belonged to areas with anthropogenic 
activities, such as petroleum, including oil well drilling, oil desalting units, oil storage units, drilling mud pits 
(mostly oil based mud), petrochemical and oil refinery and steel industries, along with intensive traffic (Fig. 11a). 
The interpolated map showed that the lower concentration of Pb (< 18 mg/kg) is mostly in the Khuzestan plain, 
especially in arid areas and far from large industries and covered largely by windblown sand. Rock outcrops were 
also found in conglomerate and sandstone. Median concentration zones for Pb (19 to 45 mg/kg) were without 
detectable trends, comparable to agricultural and sugarcane industries. On checking the study area, the lack 
of large industries such as oil associated activities agricultural activity is the principle activity in raising PTEs 
concentration in this area. The most widely used fertilisers in Khuzestan plain are urea, ammonium phosphate 
and Triple Super-phosphate. The role of agriculture as the main factor for elevated PTEs in soil was also reported 
by other studies (Li et al., 2008; Bai et al., 2010). The Pb concentrations between 46 and 90 mg/kg in the main 
urban areas were located in Ahvaz, Mahshahr, Abadan and Bandar-e-Emam, while concentrations higher than 
90 mg/kg were related to samples nearby areas with oil drilling mud pits, oil production and with oil-desalting 
units. These areas also included samples with Pb concentrations higher than 298 mg/kg.

Dot and interpolated maps and clr-transformed Pb values showed the spatial distribution as modified 
(Fig. 9b,c). Totally, clr-coefficients of Pb are higher than the geometric mean of other studied metals. As higher 
clr-coefficients located from high-traffic areas and Persian Gulf Ports transit road and Ahvaz as the core of oil 
field activities near to Abadan and Mahshahr with large associated industries (0.78 to 1.11 or 39.4–41.79 mg/
kg). It is noteworthy that agricultural fields with lower clr coefficients (0.54 to 0.78 or 36.68 to 39.3 mg/kg) were 
similar to areas with rock outcrops of sandstone and marl (− 2.4 to 0.6) or (36.68 to 39.03 mg/kg). The remaining 
area in the Khuzestan plain had lower to medium value for clr-coefficients (− 1.58 to − 0.32 or 10.4 to 31 mg/kg).

The dot map of Cu (Fig. 10a) showed that around 10 percent of samples have a high concentration (> 200 mg/
kg) and corresponded to the urban area of Khuzestan plain and agricultural lands. The most elevated area 
(> 417 mg/kg) was observed in Ahvaz, Mahshahr, Abadan, resulting from oil desalting and production units, as 
well as active oil well drilling. Clr-transformed data dot map of Cu (Fig. 10b) had a similar distribution of raw 
data, while transformed data (clr-value) especially the highest concentration observed in the area such as Ahvaz, 
Mahshahr, Abadan and similar oil related areas.

Dot and interpolated maps of Cu (Fig. 10a,b), clearly showed that the urban area of Ahvaz, Abadan, Mahshar 
and some areas of the studied area had concentrations higher than 190 to 450 mg/kg. concentrations between 
451 and 860 mg/kg restricted to areas with oil well drilling activity in oilfields, petrochemicals, steel industries, 
and refineries.

The highest continuous concentration of Cu (0.15–0.31 or 30.7–34.9 mg/kg) was observed in the northwest 
area, denoted as the dot in clr-transformed maps. The highest clr-coefficient (> 0.98 or > 34.9 mg/kg) could be 
observed as the dot in the middle of the studied area. In contrast, the eastern part, (nearby area with rocky out-
crops and sand) had a lower value than clr coefficient (− 0.1 < or < 16 mg/kg) which is lower than two other metals.

As observed in the dot map of Zn (Fig. 11a), about 10 percent of samples had a high concentration (> 67 mg/
kg) which are associated with the urban areas, petrochemical, and petroleum industries expanded toward the 
plains and agricultural lands. The interpolated map (Fig. 11) illustrates the high Zn areas with the restricted pot. 
Soil Zn concentrations were greater than 819 mg/kg in industrial cities such as Ahvaz, oil, and gas drilling areas 
like Omidieh, Mahshar, Sarbandar, and Abadan.

The dot map of clr-transformed Zn showed that this metal had the highest concentration between studied 
metals, confirming the positive frequency values of zinc clr-coefficient Fig. 11. The highest value of the Zn clr-
coefficient (0.6–1 or 62.1–73.2 mg/kg) essentially occurs in the carbonate rock mass. Areas such as agricultural 
lands and newly developed urban areas around Ahvaz and places covered by windblown sand had the minimum 
clr-coefficient (0.3–0.9 or 20.7–54.2 mg/kg), which were lower than the geometric mean of studied PTEs.

Discussion
Based on results in previous studies (Cicchella et al., 2005; Nazarpour et al., 2016), the high Pb concentration in 
raw data for urban areas, especially in the ‘old town’ was due to the use of Pb-based fossil fuels until recent years 
in  Iran77. Lead is persistent in soil and its high concentrations could remain in the soil  indefinitely78. The high 
amount of Pb clr concentrations between the northern and western parts of the studied area may be related to 
the combination of geogenic and anthropogenic effects (e.g. carbonate and gypsum rocks, traffic and industry 
and oil well drilling activities, petrochemical industry and steam power plants). The high constant of Pb clr-
coefficient around Ahvaz and to wider urban areas might be due to the frequency of oil, steel and pipe industries 
which is different from area that covered by sand which have a low clr-coefficient -0.6–2.4 or 3.1 to 42.7 mg/kg. 
A similar area with low amounts of Pb according to interpolated maps used raw data and clr-transformed to 
determine in the eastern reach of the study area and some areas where rock and sandstone outcrops exist and 
far from oil industrial activities.

The higher amount of Cu concentration (> 190 mg/kg) in central parts of Khuzestan, corresponded to the 
presence of agriculture lands and weathering gypsum formations in the upstream  region79–81. In the central to 
southern part of Khuzestan, a high concentration of Cu (> 190 mg/kg) was scattered and observed in areas with 
extensive agricultural (mostly sugarcane industry) and industrial lands. Median and high concentrations of Cu 
(111 to 860 mg/kg) might be related to anthropogenic sources in the metropolitan area of Ahvaz, Abadan, and 
Mahshahr. The highest concentration of transformed Cu clr (> 0.15 and 35 mg/kg) is around petrochemical and 
oil refinery industries, oil desalination units, and observed in small parts of the southern region.

The spatial distribution of Zn indicated a high anthropogenic influence in some limited and localised urban 
areas, while the spatial distribution of clr-coefficient was mainly affected by anthropogenic and geogenic features. 
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Unlike two other elements, high clr Zn concentration (> 0.46 or 30.1 mg/kg) located in the west and north parts. 
In this area, Zn (50 mg/kg) was higher than Cu (15 mg/kg) and Pb (5 mg/kg), which might be due to Zn con-
taining carbonaceous alluvium deposits. In eastern Khuzestan, despite two other metals, the clr-coefficient of 
Zn was lower than the geometry means of all three elements.

The absolute concentrations of the three studied metals exhibited an association with high anthropogenic 
pollution in Ahvaz, Abadan, Mahshar and some small surrounding cities, such as Susangerd. Although the 
anthropogenic effect is not apparent at the converted concentrations of Pb, Ahvaz, Dezful, and Susangerd showed 
these effects properly. Traffic intensity in this area caused Pb concentration increment rather than Cu and Zn. 
Finally, from the raw data concentration and spatial distribution of three studied metals, one can derive informa-
tion from location of samples and area with high anthropogenic pollution. The spatial distribution of the three 
elements clearly show that the main pollution in the Khuzestan plain is principally concentrated in large cities, 
including Ahvaz, Abadan, Dezful, Mahshahr, Sarbandar and Omideh.

Evaluation geochemical factors showed that clr-coefficient maps might corresponded to the main geological 
structures: (1) high Pb values related to low Zn concentration in the western and southern parts of the study area; 
(2) the high amount of Pb and Zn in oil and petrochemical industries; (3) high amount of Pb in the western part 
especially including Susangerd and Hur-Al-Azim wetland with active drilling oil wells; (4) low amount of Pb and 
high Cu in agricultural areas; (5) the high amount of Cu upstream contains gypsum lithology and gypsiferous 
soils, and (6) low and high amount of Cu and Zn respectively in the area covered by windblown sand.

The RGB composite map effectively distinguishes contaminated areas related to different pollution sources. 
Agriculture and especially farming industry activities are between the main contaminations factors to Cu in 
the areas with oil drilling (Fig. 12). Several studies showed Pb, Zn and Cu enrichment in surface soils near to 
agricultural production  shops82,83. A lack of waste and activity management may have led to Zn and Cu contami-
nation, shown in yellow for this area. The origin of Cu in agricultural lands is probably geogenic and resulted 
from intensive hydrothermal activities in the  area68,84. The main source of Pb, Cu and Zn contamination (Purple) 
in Ahvaz and Mahshahr is likely due to intense car traffic and the existence of oil, petrochemical and refinery 
industries in these areas. High Pb concentration, as revealed  by85 in the southern plain of the study area cor-
responded to anthropogenic sources related to the illegal burning of municipal waste. Ahvaz city is represented 
as a white colour, indicating high concomitant concentrations of all three studied metals in the region as a result 
of industrial and traffic pollution.

Conclusion
In this study, statistical patterns and spatial distribution of Pb, Zn and Cu were evaluated in surface soil of the 
Khuzestan plain. The analytical comparison was performed between the manipulated distribution pattern of raw 
data and clr-transformed data. Both approaches were valuable due to revealing the true structure of the multivari-
ate data and a new perspective on data analytical results. Raw and clr-transformed data showed different spatial 

Figure 12.  RGB composite map of Pb, Cu and Zn contamination maps. Pb, Cu and Zn distribution maps were 
first divided for the corresponding element concentration thresholds established by the Iranian legislation, the 
image was made by ArcGIS10.2.
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distribution. Raw data distribution mainly indicates points with anthropogenic pollution, while clr-transformed 
data distribution could determine anthropogenic and geogenic causes effectively. This study clearly indicates that 
spatial distribution of raw and clr-transformed data should be carried out when studying spatial distributions 
analysis of PTEs, as different processes could be highlighted by analysing separately raw and clr-transformed data.

The Clr-coefficient of Pb in the studied area was associated with terrestrial and anthropogenic effects. The 
high concentration of Pb was observed in Ahvaz, Mahshahr and Abadan urban area as well as active zone in oil 
well drilling and operating activities. In addition, the clr value of transformed data, and geometric mean of Pb 
concentration was greater than Cu and Zn. Geometric studies could be determined by clr maps. The Pb amount is 
relatively low in areas covered by sandstones and windblown sand. The high amount of raw and clr-transformed 
data for Cu corresponded to farming activities, especially sugarcane in this region. Farming industry activities 
were highlighted by the high value of clr-transformed data. The high value of clr data in the central and south 
part of the studied area is mainly related to sugarcane cultivation and cultivated areas.

The Clr-coefficient map of Zn indicated a high amount of this metal in carbonate sediments for the area and 
anthropogenic activities in the urban area of Ahvaz, Abadan, and Mahshahr make it difficult to discriminate 
the low pollution inputs. This study showed to investigate the pattern of element distribution, the spatial dis-
tribution of raw and clr-transformed data should be analysed separately with different processes on raw and 
clr-transformed data. In addition, an RGB composite map is helpful in order to distinguish polluted areas in 
comparison to baseline concentrations and alongside the standard soil threshold of Iran to assess and mitigate 
anthropogenic and terrestrial pollution sources.
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