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ABSTRACT: Knowledge of the key drivers of the severity of river flooding from tropical cyclones (TCs) is vital for

emergency preparedness and disaster risk reduction activities. This global study examines landfalling TCs in the decade

from 2010 to 2019 to identify those characteristics that influence whether a storm has an increased flood hazard. The highest

positive correlations are found between flood severity and the total precipitation associated with the TC. Significant neg-

ative correlations are found between flood severity and the translation speed of the TC, indicating that slower-moving

storms that rain over an area for longer tend to have higher flood severity. Larger and more intense TCs increase the

likelihood of having a larger area affected by severe flooding but not its duration ormagnitude, and it is found that the fluvial

flood hazard can be severe in all intensity categories of TC, including those of tropical storm strength. Catchment char-

acteristics such as antecedent soil moisture and slope also play a role in modulating flood severity, and severe flooding is

more likely in cases in which multiple drivers are present. The improved knowledge of the key drivers of fluvial flooding in

TCs can help to inform research priorities to help with flood early warning, such as increasing the focus on translation speed

in model evaluation and impact-based forecasting.

SIGNIFICANCE STATEMENT: Knowing ahead of landfall which TCs are likely to lead to significant river flooding

will help those responsible for emergency planningmake appropriate decisions to minimize loss of life and property.We

compare 280 TCs and find that the cases with slow-moving, large, and intense cyclones, affecting areas with wet ante-

cedent conditions, have the highest likelihood of experiencing widespread flooding. Slower-moving storms also have an

increased risk of longer and more extreme floods. Our results show the importance of considering aspects such as the

speed of forward movement along the whole flood early warning chain, from model evaluation and development,

through to warning design and communication, to better inform forecast-based action prior to TC landfall.

KEYWORDS: Flood events; Hurricanes/typhoons; Precipitation; Tropical cyclones; Communications/decision making;

Emergency preparedness; Emergency response

1. Introduction

Considering fluvial flood hazards in tropical cyclone (TC)

forecasting and warning is important because this is a leading

cause of mortality and damages (Rezapour and Baldock 2014).

In the United States, drowning from excessive rainfall occurs

in more TCs than deaths from any other cause (Rappaport

2014). Many of these fatalities occur outside of landfall

counties (Czajkowski and Kennedy 2010) and in inland

counties (Rappaport 2000). The U.S. residential losses from

TC freshwater flooding are 2 times the losses from TC storm

surge, with nearly half of these being in inland areas (Czajkowski

et al. 2017). A multihazard approach considering both wind

speed and rainfall has been shown to be more appropriate for

risk-informed decision-making (Song et al. 2020), but studies

investigating evacuation decision-making during hurricanes in

the United States have shown that the key determining factor is

the intensity of the storm on the Saffir–Simpson scale based on

wind speed (Whitehead et al. 2000), with no significant rela-

tionship between the perceived risk of flooding and evacuation

(Stein et al. 2010). Therefore, it is important to increase public

awareness of the dangers of inland flooding, and provide a better

understanding of those factors that influence the severity of

flood hazard to those involved in emergency preparedness and

disaster risk reduction activities.

Heavy rainfall can present a risk to communities regardless

of the storm’s intensity category. The U.S. National Hurricane

Center (NHC) and the U.S. National Weather Service (NWS)

both indicate the importance of other information beyond

the storm’s intensity-based category. The NHC states that

‘‘Rainfall amounts are not directly related to the strength of
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TCs but rather to the speed and size of the storm, as well as the

geography of the area’’ (https://www.nhc.noaa.gov/prepare/

hazards.php#rain). The NWS states that ‘‘It is common to

think the stronger the storm the greater the potential for

flooding. However, this is not always the case. A weak, slow-

moving tropical storm can cause more damage due to

flooding than a more powerful fast-moving hurricane’’

(https://www.weather.gov/jetstream/tc_hazards). The total

rainfall from a TC in a given location is largely determined by

the length of time a TC spends over that location, which is

dependent on the size of the rainfall area and translational

speed of the storm (Rogers et al. 2009). A slow along-track

motion, or stalling near or after landfall, can lead to higher

amounts of rainfall and a greater flood hazard, as seen during

Hurricanes Harvey (2017) and Florence (2018). Larger TCs

can also increase the rainfall hazard as they precipitate upon

one spot for a longer time than smaller TCsmoving at the same

speed. They can also lead tomore widespread flooding, leading

to increased challenges for responders. Forecasting rainfall

induced by TC landfall is determined by many factors, in-

cluding the TC track, intensity, size and structure, as well as

interaction with topography (Qiu et al. 2019), vertical wind

shear (Chen et al. 2006), and other meteorological systems in

the wider atmospheric environment. This can lead to seem-

ingly similar landfall locations having different rainfall dis-

tributions (Cheung et al. 2018; Shi et al. 2017). Hydrological

factors, such as soil conditions and orography, are also

thought to have been important in determining which TC

cases had elevated impacts from flooding (Rappaport 2000;

Sturdevant-Rees et al. 2001).

While there is broad understanding, largely through case

study or regional analysis (Saha et al. 2015; Hernández Ayala

and Matyas 2016; Touma et al. 2019; Yu et al. 2017), of those

factors influencing the rainfall related to TCs, systematic global

analysis to objectively confirm these drivers and their rela-

tionships to downstream flood hazard is lacking. This study

aims to address this gap and help provide more specific infor-

mation in support of efforts to raise awareness of fluvial flood

risk from TCs, by undertaking a systematic global analysis of

the key meteorological and hydrological factors that lead to an

increased fluvial flood hazard from TCs.

An improved understanding of the key factors that influence

the severity of flood hazard from TCs is important to guide

research work aiming to understand the predictability of fluvial

flooding from TCs, to inform research priorities to improve the

forecasts of flooding, and to guide planning and preparedness

activities in the event of an advancing TC. Information on

which TCs are likely to have storm surge and winds as their

main hazard and which will also have substantial flood hazard

is of vital importance for disaster risk reduction. While the

strongest winds and largest storm surge usually occur near the

center of intense TCs, rainfall and flooding often occur far from

the center, spread far inland, and last beyond when the cyclone

has weakened or dissipated (Villarini et al. 2014; Khouakhi

et al. 2017). This has important consequences for evacuation,

emergency management and recovery programs. If planners

and responders better understand the likely severity of fluvial

flooding for a given storm, and the locations likely to be at

greatest risk from flooding, this can help with evacuation and

emergency planning, response and recovery efforts.

This study develops three indices to represent the severity of

fluvial flooding for TC cases in terms of the flood area, dura-

tion, and magnitude. These three flood severity indices are

compared with TC and catchment characteristics in 280 land-

falling TCs in the 10-yr period from 2010 to 2019 to identify the

key factors that influence the severity of river flooding in TCs.

The remainder of this paper is set out as follows: section 2

details the data sources used in the study, and section 3 de-

scribes the methods used to select the TC cases, and calculate

the TC characteristics, catchment characteristics and flood

severity metrics for each case. Section 4 then compares the

flood severity metrics for each storm with the TC and catch-

ment characteristics to analyze the key factors that influence

the severity of flood hazard from TCs. Section 5 discusses some

important aspects of the results and where future work would

be beneficial, and section 6 contains the main conclusions of

the study.

2. Data sources

a. IBTrACS

The main observed TC track dataset used in this study is the

International Best Track Archive for Climate Stewardship

(IBTrACS) (Knapp et al. 2010, 2018). Where IBTrACS data

are still listed as provisional (the 2018/19 and 2019/20 Southern

Hemisphere seasons, and the 2019 season in the North Indian

and North West Pacific basins), the track points are supple-

mented by the initial positions in the real-time advisories from

each Regional Specialized Meteorological Centre (RSMC),

which are collated at the Met Office for use in verifying TC

track forecasts (Heming 2017; Titley et al. 2020).

The IBTrACS data are used to calculate the land footprint

for each TC case (section 3a), over which to calculate the flood

severity indices. The IBTrACS data also provide the TC inten-

sity data [section 3b(1)], and are used to calculate the translation

speed [section 3b(2)].

b. Global Precipitation Measurement (GPM) IMERG

Precipitation data are taken from the latest Integrated

Multisatellite Retrievals for GPM (GPM IMERG Final Run

V06) (Huffman et al. 2019). The ‘‘Final Run’’ data are used

because they include gauge data where available to calibrate

the rainfall satellite-derived observations and have been shown

to capture TC precipitation patterns well, with closer agree-

ment with gauge-based measurements than their predecessor

for extreme events (Yuan et al. 2021). The data have a hori-

zontal resolution of 0.18 and are extracted at a 30-min temporal

resolution and then accumulated to give 24-h precipitation

accumulation data. The precipitation summary metrics are

described in section 3b(4).

c. ERA5

ERA5 is the European Centre for Medium-Range Weather

Forecasts (ECMWF)’s latest comprehensive atmospheric re-

analysis with a global horizontal grid resolution of approxi-

mately 31 km, or 0.281 258 (Hersbach et al. 2020). ERA5 mean
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sea level pressure (MSLP) data were extracted from the

Copernicus Climate Change Service (C3S) Climate Data Store

(CDS) (Hersbach et al. 2018a) at 6-hourly intervals and used to

calculate the size of the TC [section 3b(3)]. Daily ERA5 soil

moisture content data were also extracted, along with soil

type, for use in calculating the antecedent soil moisture

saturation [section 3c(1)]. Precipitation accumulations were

extracted hourly and summed to give 24-h precipitation

totals to compare with GPM precipitation accumulations.

Several studies have found large improvements in perfor-

mance for precipitation in ERA5 relative to ERA-Interim

(e.g., Beck et al. 2019; Tarek et al. 2020; Nogueira 2020),

including for TC cases (Hersbach et al. 2018b). A recent

study found that ERA5 agrees well with gridded gauge data

in terms of the spatial distribution of typhoon precipitation,

although it can underestimate the most extreme precipitation

(Jiang et al. 2021).

d. GloFAS-ERA5 reanalysis

The severity of fluvial flooding from TCs is difficult to cal-

culate in a consistent way from observations given the relative

sparsity of river discharge observations, particularly in many

areas impacted by TCs (Lavers et al. 2019). Therefore, this

study uses theGloFAS-ERA5 global river discharge reanalysis

(Harrigan et al. 2020b), as a proxy for river discharge obser-

vations. The Global Flood Awareness System (GloFAS) is

designed to provide a global overview of upcoming flood

events to decision-makers such as humanitarian organizations

(e.g., Coughlan de Perez et al. 2016) as part of the Copernicus

Emergency Management Service for floods. In GloFAS, en-

semble meteorological forecasts from ECMWF are pro-

cessed by the revised land surface hydrology scheme

(HTESSEL) to create land surface runoff fields, with ad-

ditional hydrological processes such as flow routing pro-

vided by the LISFLOOD hydrological model to forecast

river discharge (Harrigan et al. 2020a; Alfieri et al. 2013;

Balsamo et al. 2009, 2011; Van Der Knijff et al. 2010; Hirpa

et al. 2018). Daily GloFAS-ERA5 river discharge reanalysis

data, with a horizontal resolution of 0.18, were extracted from

the C3SCDS (Harrigan et al. 2019), for each day of 2010–19 and

were used to define the flood severity in each landfalling TC case

(section 3d).

Although GloFAS-ERA5 is partially dependent on model-

derived precipitation and soil moisture, the groundwater and

river routing parameters were calibrated against daily river

discharge from 1287 observation stations worldwide (Hirpa

et al. 2018) and a recent comprehensive global evaluation

found it was skillful against a mean flow benchmark in 86% of

catchments (Harrigan et al. 2020b). Other studies have com-

pared GloFAS-ERA5 and observed discharge across regions

(Ficchì and Stephens 2019; Towner et al. 2020), or in case

studies e.g., Emerton et al. (2020), for Cyclones Idai andKenneth

in Mozambique. The use of GloFAS-ERA5 reanalysis data al-

lows an analysis of the flooding across the whole area affected by

each TC, rather than just at isolated points on the river network.

It also allows a direct comparison of flood severity across all TC

cases, using openly available data, in a way that would not be

possible using discharge observations.

3. Methods

a. Selecting TC cases and calculating
their land footprint

For the period 2010–19, the IBTrACS TC track data are

filtered to only include those TCs with a landfall at tropical

storm strength or above [$34 kt (1 kt ’ 0.51m s21)]. The

6-hourly latitude and longitude track position data are extracted

where the storm is at or above tropical storm strength, and is

over land or within 500 km of land. To decide the area, hence-

forth termed the ‘‘footprint,’’ in which to calculate the flood

severity for each TC, the following steps are taken (illustrated

for Cyclone Eliakim, which impacted Madagascar in 2018,

in Fig. 1):

1) The TC positions at the start and the end of each day are

extracted and used to create a daily mask representing the

area of precipitation defined as being associated with the

TC, by calculating all grid points that lie within 500 km of

that 24-h storm track segment. Most studies that have

assigned a set radius for defining TC-related rainfall, have

used a radius of either 500 km (Prat and Nelson 2013, 2016;

Jiang et al. 2011; Luitel et al. 2018), 550 km (Zhou and

Matyas 2017) or 58 (Guo et al. 2017).

2) The daily masks are combined to create an overall mask for

the track of each TC.

3) The overall mask is combined with a land seamask to create

the final land footprint used to analyze the flood severity.

4) The number of valid 0.18 by 0.18 points (the GloFAS-ERA5

reanalysis resolution) in the land footprint is calculated, and

the small number of TCs with fewer than 1000 points in their

footprint (equating to an area of;100 000 km2) are excluded

to ensure the footprints are large enough to allow a sensible

comparison of the area affected by severe flooding.

This process results in 280 landfalling TC cases from 2010 to

2019 being included in the study (broken down by basin in

Fig. 2). For each case, a set of TC characteristics, catchment

characteristics, and flood severity measures are calculated to

allow an analysis across the cases of the key factors influencing

the severity of fluvial flooding.

b. TC characteristics

1) INTENSITY

The minimum MSLP and maximum sustained wind speed

are extracted from IBTrACS at each track point, and the

prelandfall value is used to identify the storm intensity for

consideration in each case. To ensure that wind speed data are

comparable between basins, 1-min maximum sustained winds

are used where available.

2) TRANSLATION SPEED

Translation speed (speed in a forward motion) is calculated

for each 6-h track segment by dividing the distance between the

track points by 6 h. Three speed measures are then taken for-

ward to consider in the analysis: (i) translation speed during the

track segment where it makes landfall, (ii) average speed while

the storm track is over land (the mean of the translation speeds
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from all 6-hourly track segments over land), and (iii) minimum

translation speed while the storm is over land (the minimum of

the translation speeds from all 6-hourly track segments over

land), to take account of storms that stagnate after landfall.

3) SIZE AND SHAPE

TCs span a huge range of sizes, with gale-force winds

extending anywhere from ;20 km from the center to over

1000 km. A number of methods are commonly used to calcu-

late storm size and shape, including the radial extent of winds

reaching certain threshold values in knots (R43, R50, R64), the

radius of the maximum winds (RMW), and the radius of the

outermost closed isobar (ROCI) (Merrill 1984; Weber et al.

2014). The ROCI delimits the outermost extent of a TC’s wind

circulation and is the most relevant of these metrics for this

study. Each RSMC will have its own, often subjective, proce-

dures to calculate the ROCI recorded in IBTrACS, so to allow

global comparisons this study recalculates the ROCI using

ERA5 MSLP fields along the TC tracks. For each track point

the MSLP field is centered on the storm location and then

decomposed into tangential and radial coordinates, essen-

tially unwrapping the field around the storm center. A search

is carried out for the outermost closed MSLP isobar on each

radial angle. The distance to this isobar is then averaged for all

radial angles to give the overall ROCI, and is averaged for each

quadrant (left front, right front, right rear, and left rear) to give

shape information. Storm asymmetry is calculated by the ratio

of the quadrant with the highest ROCI to that with the lowest

ROCI. The average size and asymmetry in the day prior to

landfall in each case are used in the subsequent analysis.

4) PRECIPITATION

The daily masks containing all points within 500 km of the

storm track in each 24-h period (Fig. 1a) are applied to the 24-h

precipitation accumulation data from GPM and ERA5, to

obtain the precipitation considered to be associated with the

TC. Three subsequent days are also included using the final

mask to ensure that precipitation from any slow-moving rem-

nants of the storm that may still contribute to flooding are in-

cluded in the total storm precipitation. For the day prior to

landfall, the proportion of the masked area with precipitation

accumulations greater than 100mm is calculated and included

as a characteristic, to see how this information, which could be

better estimated ahead of landfall, compares to flood severity.

To calculate the total storm precipitation, the masked daily

precipitation fields are combined to give the overall storm-total

FIG. 1. Method for calculating the land footprint of each TC case, illustrated for Cyclone

Eliakim, which impacted Madagascar in March 2018.
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GPM and ERA5 precipitation in the land footprint (illustrated

for Cyclone Eliakim in Fig. 3). To investigate a range of pre-

cipitation characteristics in terms of their influence on the flood

severity metrics, the following values are calculated from both

GPM and ERA5:

1) the highest precipitation accumulation at any point in the

land footprint area,

2) the average precipitation accumulation across the land

footprint area,

3) the average precipitation accumulation for points in the

land footprint area where the total is greater than 25mm

(giving an estimate of the average precipitation accumu-

lated in those areas where the storm led to rainfall), and

4) the proportion of the land footprint area with precipitation

accumulations greater than 25, 100, and 200mm.

c. Catchment characteristics

1) ANTECEDENT SOIL MOISTURE SATURATION

ERA5-derived soil moisture saturation fields were calcu-

lated as a percentage of the progress along a scale from the

permanent wilting point soil water content to the saturation

soil water content [as specified by soil type in Table 8.9 of

ECMWF (2020)]. The data were calculated on two levels: layer

1 (0–7 cm), and layers 1–3 combined (0–100 cm). For each TC

case, the antecedent soil moisture saturation data were

taken from the date prior to the storm coming within 500 km

of land, to ensure the prestorm saturation levels were being

recorded. The antecedent soil moisture saturation for the

Cyclone Eliakim case is shown in Fig. 3c. For each layer, the

average value in the storm land footprint was calculated,

along with the proportion of the footprint with saturation

greater than 90%.

2) OROGRAPHY AND GRADIENT

Two of the GloFAS input variables, detailing the orography

and the gradient of each grid point, were extracted for each

footprint area. The average orography and gradient within the

storm footprint area were calculated for consideration in the

data analysis.

d. Calculating flood severity

The period used to calculate the flood severity for each TC

case was defined by setting the first date as the landfall date and

the last date as a week after the final point in the cyclone track,

to allow time for the affected watersheds to respond to the

rainfall. For each day within this case period the GloFAS-

ERA5 discharge data in the land footprint area were compared

with return period flood thresholds to calculate the return

period exceeded at each point. The return period thresholds

were taken directly from GloFAS, where they are determined

from the GloFAS-ERA5 river discharge reanalysis, by fitting a

Gumbel extreme value distribution on the annual maxima time

series over the 1979–2018 period (Alfieri et al. 2019; Harrigan

et al. 2020a; Zsótér et al. 2020).
Flood severity can be defined in several ways, each mea-

suring a contrasting property of the flood hazard that may be of

particular relevance to different stakeholders. In this study the

flood severity is calculated in the following three ways for

each storm:

1) Flood severity (area): This is defined as the percentage of

GloFAS grid points within the storm’s footprint where the

discharge exceeds the 5-yr return period value for that point

at any date during the case period. This has been termed

‘‘area’’ to simplify the decomposition of flood severity into

three component parts, but it is more akin to ‘‘floodiness’’

(Stephens et al. 2015) defined over a storm’s footprint than

it is to measures of inundation extent. For Cyclone Eliakim,

the flood severity (area) was 22% (Fig. 3d).

2) Flood severity (duration): This is defined by selecting

those points where the 5-yr return period was exceeded

on at least one day, and then calculating the average

number of days for which the 5-yr return period was

exceeded at those points. This value is set to zero for

FIG. 2. The locations of the first land point in the track of the 280 TCs included in this study (2010–19), including

the breakdown of cases by the TC basin. Note that no TCs are included in the South Pacific basin, where the only

landfalls are in small island nations and therefore the land footprints were too small to allow for a fair comparison

with the other cases.
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cases in which no points exceed the threshold at all

during the case period.

3) Flood severity (magnitude): For this magnitude-based def-

inition the data are filtered to only include points that have

an upstream area of greater than 1000 km2, to focus on

the magnitude of the flooding on larger rivers in the

footprint. The magnitude of the flood is defined by first

calculating the maximum return period that is exceeded

at each of these river points during this TC event, and

then ranking the points from highest to lowest and cal-

culating the average return period exceeded over the top

100 points. The return periods are capped at 200 years

as a sensible upper limit, given that the return period

thresholds are generated on a 40-yr sample (Harrigan

et al. 2020a). In this way the magnitude-based definition

of flood severity compares the most severely affected

river points in each TC case, in terms of the extremeness

of the discharge levels experienced.

4. Results

a. Comparison of flood severity measures

The flood severity of all the TC cases, split geographically by

the TC basin, is summarized in Fig. 4. For all basins other

than the South Indian Ocean, most of the cases have rela-

tively low flood severity (area) (median of 1%–5%), but

each basin has several cases with higher flood severity.

However, in the South Indian Ocean basin, more of the

cases have a higher flood severity (area), with the median of

13% (Fig. 4a) found by a Kruskal–Wall H test to be sig-

nificantly different from the other basins (significance level

p, 0.01). For flood severity (duration) the median duration

for those points exceeding the 5-yr return period threshold

is between one and three days in all regions (Fig. 4b).

The median duration was higher for the Australian basin

and the lower for the North West Pacific (both significant at

p , 0.01). For flood severity (magnitude) the South Indian

Ocean is again shown to have a higher median value than

other regions have (significant at p , 0.01). All basins have

some cases in which very high return periods are ex-

ceeded (Fig. 4c).

There are significant positive Spearman correlations be-

tween the three flood severity measures (Fig. 5). Although the

correlations are strong (.0.5 in each case), there are some

cases in which storms have a very high flood severity in one

measure and not in another. Good examples of this are Typhoon

Hagibis (2019) and Typhoon Lan (2017), which can be seen in

the bottom right of the plot in Fig. 5a, with highest flood

FIG. 3. Cyclone Eliakim (2018): (a) total event precipitation calculated from GPM, (b) total event precipitation

calculated from ERA5, (c) antecedent soil moisture saturation in the top layer of soil, and (d) GloFAS-ERA5

points that exceeded the 5-yr return period during the event (22% of land footprint).
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severity (area), but where most of that flooding was very

short lived, with flood severity (duration) of only around

1 day. This emphasizes the importance of considering mul-

tiple indices, to take into consideration all characteristics of

the flood severity.

The top 10 most severe cases according to each of the flood

severity indices are shown in Table 1. All basins have storms

represented in the lists. Many storms appear in the top 10

for two of the indices, and two storms, Cyclone Luban (2018)

and Cyclone Idai (2019) appear in all three lists. Table 2

contains a summary of the impacts from the TC cases that

appear in at least two of the three top-10 lists. While it is

harder to ascertain whether there were cases with severe

impacts that were not highlighted, the fact that all of the

storms in Table 2 had significant impacts from flooding indi-

cates that the methods used in this paper have correctly

highlighted high-impact cases of fluvial flooding from TCs.

b. Relationships between flood severity and case
characteristics

1) CORRELATIONS

The Spearman’s rank correlation coefficients between the

flood severity metrics and all the calculated storm and catch-

ment characteristics are shown in Fig. 6. A comparison be-

tween GPM and ERA5 rainfall (not shown) revealed very

strong correlations, so only the ERA5 precipitation variables

are included. All the flood severity variables are significantly

correlated with each other, as was seen in Fig. 5. All precipi-

tation variables (both for the precipitation field prior to land-

fall and for the accumulated precipitation variables within the

footprint) are significantly positively correlated with the flood

severity (area) index, with the highest correlations for the av-

erage accumulation in the footprint where it rained (0.58) and

for the percentage of the footprint over 100-/200-mm

FIG. 4. Box-and-whisker plot showing (a) flood severity (area), (b) flood severity (duration), and flood severity (magnitude)

grouped by TC basin [Australian (AUS), eastern Pacific (EP), North Atlantic (NA), ‘‘North Indian’’ (NI), ‘‘South Indian’’ (SI), and

‘‘North West Pacific’’ (WP)]. In all of the box-and-whisker plots in this study, the box extends from the Q1 to Q3 quartile values

of the data and the whiskers extend from the 5th to the 95th percentiles. Outliers beyond this point are plotted as circles. The median

is shown by a green line, with the 95% confidence bounds in that median shown by the notched area of the box, calculated by

bootstrapping.

FIG. 5. Scatterplots of the different flood severity indices: (a) flood severity (area) vs flood severity (duration); (b) flood severity (area) vs

flood severity (magnitude); and (c) flood severity (duration) vs flood severity (magnitude). The Spearman’s rank correlation coefficient is

displayed on each plot. Points are annotated with the storm name if they have high values on either axis or are outliers to the general

pattern.
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accumulations (0.57/0.54). For flood severity (duration), there

is no significant correlation with the precipitation prior to

landfall, but there are significant correlations with most total

storm accumulation measures. For flood severity (magnitude),

there are positive correlations with all precipitation variables

apart from the percentage of the footprint over the lowest

value of 25mm.

The storm intensity variables, MSLP and wind speed at

landfall, are significantly negatively (20.18) and positively

(0.13) correlated with flood severity (area), respectively.

This shows that generally the more intense the storm

(lower MSLP minima and stronger winds), the greater the

flood severity. However, neither intensity variable is sig-

nificantly correlated for flood severity (duration) or flood

severity (magnitude), so it is not always the case that

a strong storm will lead to severe flooding in terms of du-

ration or magnitude, or that a weaker storm cannot cause

significant flood events. A comparison of the distribution

of flood severity values for TC cases split into those that

are tropical storms at landfall with those that have

equivalent hurricane or major hurricane strength (Fig. 7)

confirms that all storm categories have some cases with

both low and high flood severities. There are no significant

differences between the severity of flooding in tropical

storms and hurricanes, but for major hurricanes there is a

notable increase in the upper quartile range and the me-

dian is significantly higher for the area and magnitude

definitions of flood severity (Kruskal–Wall H test with

p , 0.01).

The three translation speed variables are all significantly

negatively correlated with all the flood severity indices i.e.,

slower-moving storms tending to have greater flood severity

when considered in terms of area, duration and magnitude.

The strongest correlations are with the duration of flooding

(20.31, 20.32, and 20.33, respectively, for the translation

speed at landfall, the average translation speed over land, and

the minimum translation speed over land).

The storm size as measured by the ROCI is significantly

positively correlated with flood severity (area) (0.12), indicating

that larger storms tend to have a greater percentage of the land

footprint exceeding the 5-yr return period. There is no significant

correlation with flood severity (duration) or flood severity

(magnitude), and no significant correlation of storm asymmetry

with any of flood severity measures.

The relationship between flood severity and soil saturation is

complex and varies with each of the flood severity indices. For

TABLE 1. The 10 highest-ranked TCs for each flood severity measure (in boldface type if that TC case is in the top 10 for two of the three

indices, and in boldface italic if it is in the top 10 of all three indices). The regions are defined in the caption of Fig. 4.

Rank Flood severity (area) Flood severity (duration) Flood severity (magnitude)

1 Lan (WP; 2017) Mekunu (NI; 2018) Alex (NA; 2010)

2 Hagibis (WP; 2019) Phet (NI; 2010) Luban (NI; 2018)

3 Komen (NI; 2015) Harvey (NA; 2017) Mekunu (NI; 2018)

4 Luban (NI; 2018) Luban (NI; 2018) Idai (SI; 2019)

5 Kajiki (WP; 2019) Kenneth (SI; 2019) Harvey (NA; 2017)

6 Idai (SI; 2019) Kelvin (AUS; 2018) Komen (NI; 2015)

7 Man-Yi (WP; 2013) Pawan (NI; 2019) Hagibis (WP; 2019)

8 Chedza (SI; 2015) Kajiki (WP; 2019) Yasi (AUS; 2011)

9 Eliakim (SI; 2018) Carlos (AUS; 2011) Odile (EP; 2014)

10 Mindulle (WP; 2016) Idai (SI; 2019) Debbie (AUS; 2017)

TABLE 2. A summary of the impacts from those TCs that appear in the top 10 for at least two of the flood severity measures (in boldface

type if that TC case is in the top 10 for two of the three indices, and in boldface italic if it is in the top 10 of all three indices).All are TCs that

led to significant impacts.

Case Summary of impacts

Idai (SI; 2019) Severe flooding in Mozambique, Malawi, and Zimbabwe, leading to a major humanitarian crisis;

damages of at least $2.2 billion (2019 USD), 1.85 million people in need of humanitarian assistance,

and over 600 fatalities in Mozambique alone (Emerton et al. 2020); deadliest TC recorded in the

South West Indian Ocean basin

Luban (NI; 2018) Flooding in Somalia, Oman, and Yemen, with 14 deaths in Yemen, with damages in the country

estimated at U.S. $1 billion (Associated Press 2018)

Hagibis (WP; 2019) 98 confirmed deaths in Japan andmore than 270 000 households left without power across the country;

severe damage to transport infrastructures

Komen (NI; 2015) Komen led to 45 deaths in Bangladesh, 83 in India, and 39 deaths in Myanmar

Kajiki (WP; 2019) At least 6 fatalities in Vietnam, with agricultural losses estimated at U.S. $12.9 million

Mekunu (NI; 2018) 31 fatalities (Socotra island, Yemen, and Oman); severe flooding led to power outages, and landslides

Harvey (NA; 2017) Unprecedented flooding in Texas inundating hundreds of thousands of homes, displacing more than

30 000 people, and prompting more than 17 000 rescues; over 100 fatalities
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flood severity (area), all the soil saturation metrics have posi-

tive correlations, showing that cases with more saturated an-

tecedent soil conditions tend to have greater flood severity.

However, a different pattern is shown for the other two flood

severity indices (duration and magnitude), where there are

significant negative correlations with the average soil mois-

ture saturation in the top 100-cm layer (20.27 and 20.15,

respectively).

There is a significant positive relationship of average orog-

raphy and flood severity (area) (0.24), and there are significant

FIG. 6. Spearman’s rank correlation coefficients of the flood severity variables with the TC characteristics and catchment characteristics

for each TC case. Those with a Spearman’s rank correlation coefficient with a significance value,0.05 aremarked in boldface type with an

asterisk.

FIG. 7. Flood severity [(a) area, (b) duration, and (c) magnitude], for three categories of TC calculated based on the maximum wind

speed at landfall taken from IBTrACS: (i) tropical storm (34–63 kt), (ii) equivalent hurricane strength (64–95 kt), (iii) equivalent major

hurricane strength (961 kt). In actuality, different storm categories and thresholds are used by different RSMCs when defining intensity,

but to compare across basins the categories from the Saffir–Simpson scale are used here. The 95% confidence bounds in the median is

shown by the notched area of the box, calculated by bootstrapping. The number of cases in each category is overlain.
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negative correlations of the average gradient with flood se-

verity (duration) (20.44) and flood severity (magnitude)

(20.31), so lower gradients would tend to have greater flood

severity in terms of the flood duration and magnitude.

2) CONDITIONAL PROBABILITIES

Conventional wisdom is that translation speed is a significant

risk factor leading to increased flood severity. Significant re-

lationships were shown between the flood severity indices and

the translation speed of the TC in Fig. 6, but the correlations

are perhaps lower than anticipated, at20.22,20.33, and20.26

for the minimum translation speed over land when compared

with flood severity as measured by area, duration, and mag-

nitude, respectively. However, if we look in more detail at

scatterplots for these relationships, and apply a conditional

probability technique to split the plot into four quadrants,

further useful information can be found (Fig. 8). The x axis

is split by the median value of the minimum translation

speed over land, to designate slow-moving and fast-moving

storms. A sensitivity analysis (not shown) was used to select

which percentile of the y axes (the flood severity scores) to

use to designate nonsevere and severe flooding cases. The

90th percentile was selected as the threshold that gave the

best combination of having sufficient cases included in

the upper section while also focusing in on the more severe

cases (the top 10%). The conditional probability of having

severe flooding if the storm is slow moving is then calcu-

lated. For flood severity (area), the conditional probability

of having severe flooding if the storm is slow moving is 14%,

more than double the conditional probability if the storm is fast

moving (6%) (Fig. 8a). So although there are a few cases (e.g.,

Hagibis, Man-Yi, and Lan) in the upper-right quadrant of

Fig. 8a in which flood severity is high in fast-moving storms and

there are many cases in which slow-moving storms do not lead

to severe flooding, overall there is a greater risk of severe

flooding in slow-moving storms, with a significant cluster of

storms with high flood severities and low translation speeds

(e.g., Komen, Idai, Luban, Kajiki, and Eliakim). The results

when we apply the same conditional probability technique to

the other two flood severity metrics are even clearer, with 3

times the probability of having a severe flooding event for slow-

moving storms for flood severity (duration), and 4 times the

probability of a severe flooding event for slow-moving storms

for flood severity (magnitude) (Figs. 8b,c).

Fast movement of TCs appears to often mitigate severe

flooding, and slowmovement increases the likelihood of severe

flooding, but these patterns are not seen in all cases. The role of

other factors in moderating this relationship can be examined

by comparing conditional probability plots of flood severity

with several different characteristics, selected based on the

correlation results shown in Fig. 6 (Fig. 9). Flood severity

(area) is used to examine in more detail the interplay between

characteristics, as the extent of the severe flooding across the

whole area affected by the TC is perhaps the most relevant

when considering preparedness and recovery activities such as

evacuation planning. The strong relationship between flood

severity and the percentage of the footprint with high precip-

itation totals can be seen in Fig. 9a, with only 2% of the cases

lower than the median precipitation having severe flooding.

When the conditional probability technique is applied to the

average soil saturation in the top layer of the soil, there is found

to bemore than double the risk (14% as compared with 6%) of

having severe flooding where there is high soil saturation

(Fig. 9b). Figures 9c–e show three of the TC characteristics that

may play a role in increasing the overall precipitation accu-

mulation: intensity, translation speed, and size. For the more

FIG. 8. Illustration of the conditional probability technique for examining the relationship between minimum translation speed over

land and flood severity. The blue lines divide the plot into quadrants based on the median translation speed (9.19 kt) and the 90th

percentile of the flood indices [12.86% for flood severity (area), 3.10 days for flood severity (duration), and 102.59 for flood severity

(magnitude)]. There are, therefore, equal numbers of cases in the orange and green halves of the plots, and the upper section of the plot

displays the 10% of the TC cases with the most severe flooding. The numbers in the top-right and top-left quadrants can be compared to

see if there is an elevated risk of severe flooding for slow-moving storms. Points are annotatedwith the storm name if they have high values

on either axis or are outliers to the general pattern. The Spearman’s rank correlation coefficients for each plot are (a) 20.22, (b) 20.33,

and (c) 20.26.
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intense storms, there is a small increased probability of severe

flooding (12%) when compared with the less intense storms

(7%) (Fig. 9c). The doubling of the likelihood of severe

flooding for slow translations speeds, as shown in Fig. 8a, are

repeated in Fig. 9d, while Fig. 9e shows the conditional

probability results for TC size, with nearly double the risk of

severe flooding for large storms (13%) relative to small

storms (7%).

Typhoons Man-Yi (2013), Hagibis (2019) and Lan (2017)

appear as relative outliers in the upper right quadrant of Fig. 9d

(fast-moving storms where flood severities were unexpectedly

high or very high). On Fig. 9e it can be seen that these are all

very large storms, indicating that the size of these storms may

have been a significant factor contributing to their high flood

severity, acting to override the mitigative nature of their fast

translation speed. They are also categorized in the more

intense category for intensity (Fig. 9c), and the high soil

saturation category (Fig. 9b). Thus, in these cases the high

translation speed of these typhoons did not prevent a severe

flood event due to the presence of several other risk factors.

A similar conditional probability analysis for the other two

flood severity measures (duration and magnitude) (not shown)

found that the main driving factor from the TC characteristics

was the translation speed of the storm. The other main risk

factors were from the catchment characteristics, with drier soils

and lower gradients being associated with a large increase in

the risk of having a longer and higher magnitude flood event.

These results show that the influence of the catchment char-

acteristics on the duration and magnitude of flooding is greater

than for the flooding measured in terms of the area.

3) INTERPLAY OF CHARACTERISTICS

To investigate further how the combination of several fac-

tors helps to determine the overall flood severity, two charac-

teristics, TC translation speed and TC size, have been used to

split the cases into four categories based on whether they are

larger or smaller than the median size and faster or slower than

the median translation speed (Fig. 10). For flood severity

(area), cases in which the TC is both slow and large have the

highest median and upper quartile range, followed by slow

and small, then fast and large, and finally fast and small cases.

Meanwhile for flood severity (duration) and flood severity

(magnitude) there is a clearer split between the fast types and

the slow types, showing that for flood duration and magnitude

the translation speed of the storm is a more important factor

than the size of the storm.

This process is taken further by grouping each TC case

depending on how many of the four risk factors found in Fig. 9

FIG. 9. Scatterplots for the flood severity (area) indices against (a) the percentage of the footprint with event precipitation totals greater

than 100mm, (b) average soil saturation in the top layer of soil, (c) mean sea level pressure minima at landfall, (d) minimum translation

speed over land, and (e) size at landfall (ROCI). Each plot has the conditional probability technique applied using the median of the

variable and the 90th percentile of the flood severity to create the quadrants. The Spearman’s rank correlation coefficients for each plot are

0.57 for (a), 0.15 for (b), 20.18 for (c), 20.22 for (d), and 0.12 for (e).
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(slow-moving storm, large storm, intense storm and wet ante-

cedent conditions) are present (Fig. 11). Total precipitation is

not included here as we are focusing on the factors that

influence that precipitation, that are easier to estimate a

priori when assessing the risk associated with a storm in

forecast mode. Figure 11a shows that the likelihood of a

higher flood severity increases the more risk factors are

present. Figure 11b splits the categories by which of the risk

factors are present. The storms that are classed as having all

four risk factors (slow, large, strong, and wet) have the

highest median flood severity and the highest upper quartile

range. Within those cases that have three risk factors, cy-

clones that are slow and large with wet antecedent condi-

tions stand out as having a high upper quartile range. For

those cases with two risk factors, the highest median value is

for cases with slow TCs with wet antecedent conditions,

while where only one risk factor is present, there are higher

flood severities for slow storms.

5. Discussion of the key outcomes

a. Applying flood severity metrics to TC footprints

This study has implemented three flood severity indices

designed to measure the severity of flooding in TCs, based on

(i) the area affected; (ii) the duration of the flooding; and (iii)

the magnitude of the flooding in the most severely affected

areas. Although the different flood severity measures are all

significantly positively correlated with each other, there are

cases in which a storm has a very high flood severity in one

measure and not in another, for example, where a large area is

affected but flood duration is low. Some of the drivers of an

enhanced flood severity found in this study are consistent

whether considering the area affected, duration, or magnitude

e.g., high total precipitation and low translation speed, whereas

some drivers are only significant for one or two of the indices e.g.,

large storms and the area-based index, and gentler slopeswith the

duration- and magnitude-based indices. This emphasizes the

importance of considering multiple indices to take into consid-

eration all characteristics of the flood hazard, especially given

that stakeholders may have differing priorities. An organization

with responsibility for emergency planning across a large geo-

graphical area would be particularly concerned about the extent

of the area being affected by flooding, whereas an individual in

an area prone to flooding may be most concerned about the

magnitude of flooding likely to be experienced.

b. Importance of precipitation and translation speed

The strongest relationships are found with the metrics

summarizing the event total precipitation, showing the im-

portance of increasing the availability and profile of precipi-

tation forecasts in TC forecast communication and verifying

the ability of models that drive flood forecasting systems to

forecast the precipitation associated with TCs.

Of the other TC characteristics, the speed of forward

movement of the TC is found to be a key factor influencing the

severity of the fluvial flood hazard, in terms of its area, duration

and magnitude. This confirms that slower-moving storms,

which rain over a given area for longer, tend to have higher

flood severity, and that greater focus should be given to

translation speed in forecast warnings and communication.

Climate change is thought to have caused a general weak-

ening of summertime tropical circulation, decreasing the

translation speed of TCs (Kossin 2018). This, combined with

an expected increase in the magnitude of rainfall rates in TCs

(Knutson et al. 2010), is likely to lead to an increased fluvial

flood hazard from these events in the future.

c. Presence of flood hazard at all levels of storm intensity

TC intensity is positively correlated with the flood severity as

defined by area, but not significantly correlated with the du-

ration or magnitude of the flooding. A further analysis splitting

cases into those of equivalent tropical storm, hurricane, and

FIG. 10. Flood severity [(left) area, (center) duration, and (right) magnitude] for four categories of TC: (i) fast and small, (ii) fast and large,

(iii) slow and small, and (iv) slow and large. The number of cases in each category is overlain.
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major hurricane strength, showed that all three have cases

spanning the full range of flood severity values. This shows the

importance of forecasting agencies continuing to emphasize to

both the public and to organizations involved with disaster risk

reduction preparedness and response activities that the fluvial

flood hazard can be severe in all categories of TC.

d. Complex relationship between flood severity and
antecedent soil moisture

Conventional wisdom, established by looking at small to

medium sized flood events, is that higher levels of soil mois-

ture saturation would lead to an increased risk of flooding

(Berghuijs et al. 2019). However, when dealing with the ex-

treme precipitation totals that can be found in TC events, the

relationship appears more complex. For flood severity (area),

there are indeed more cases of severe flooding in those cases

with high soil saturation. However, a different pattern is

shown for the other two flood severity indices (duration and

magnitude), where there is a higher conditional probability

of severe flooding for lower (drier) antecedent soil moisture.

Areas that are drier climatologically (e.g., the Arabian

Peninsula) show higher return periods being exceeded,

which is likely due to a combination of flash flooding, and the

difficulty of accurately estimating return period thresholds in

arid areas. Using soil moisture anomaly data rather than soil

moisture saturation in future studies may help to further

unpack this complex relationship.

e. Interplay of characteristics in modulating flood severity

The interplay between different characteristics acts to

modulate the overall flood severity. For example, although

fast-moving storms can mitigate fluvial flooding, there can

still be a significant flood event if there are other risk factors

present. An example of this is Typhoon Hagibis, which led

to widespread and severe flooding in Japan in 2019. Here,

the relative mitigation of Hagibis being fast moving was

outweighed by the storm’s size, intensity, and wider atmo-

spheric environment, leading to very heavy precipitation

and severe flooding, albeit over a relatively short period

(Takemi and Unuma 2020). Contrastingly, although slow-

moving storms significantly increase the conditional prob-

ability of a severe flood event, many slow-moving storms do

not lead to significant flooding e.g., Tropical Storm Beryl

(2012), which moved very slowly over northern Florida, but

was relatively small and weak, and passed over an area

where the antecedent conditions were dry. As this study

included over 250 cases it was not possible to explore in detail

the varied complexities that contributed to the detailed flood

response in each individual case, such as the wider atmo-

spheric environment, in a way that would be possible if only

examining one or two cases. Nevertheless it provides a sys-

tematic analysis of potential meteorological and hydrological

drivers, and a key finding is that the more driving factors a

case possesses, the higher the likelihood of severe flooding,

with in particular TCs that were slow, large, and strong, with

wet antecedent conditions, having a higher flood severity in

terms of the area that was affected.

f. Implications for research into the predictability of fluvial

flooding from TCs

The severity of flooding in TC cases is shown to be depen-

dent on a range of both meteorological and hydrological fac-

tors, showing the importance of a multidisciplinary Earth

system approach to global flood prediction (Harrigan et al.

2020c). The flood forecasts from hydrometeorological fore-

casting systems will be highly dependent on how reliably the

FIG. 11. Flood severity (area), for TCs grouped by risk factors (slow-moving storm, large storm, intense storm, and wet antecedent

conditions) (a) grouped according to how many of the risk factors they possess and (b) further split by which risk factors (highlighted in

boldface type) are present in each group. The number of cases in each category is displayed below the box plot.
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input meteorological forecasts are able to predict not only the

track and the intensity of TCs, but also their precipitation ex-

tent and intensity. This in turn will be dependent on the size

and in particular the translation speed of the storm. There has

generally been less focus on verifying these characteristics of

TCs in ensemble forecasts, with most studies focusing on the

predictability of track, intensity, and genesis. To understand

and improve the forecasts of fluvial flooding from TCs, studies

evaluating these aspects of forecast performance are recom-

mended. It would also be beneficial to examine how uncer-

tainty in each aspect of the forecast, and in each part of the

forecasting chain, impacts on the overall predictability of flu-

vial flooding for TCs.

g. Implications for disaster risk reduction, preparedness,
and response

The finding that the forward speed of the storm is of more

importance than the intensity in modulating the severity of

fluvial flooding is an important result. The expected speed of

movement of the storm tends to have far less coverage in both

traditional and social media than the intensity of the storm.

This means that the public, local emergency responders, and

those involved in planning disaster risk reduction activities

may become too focused on storm intensity categories when

making evacuation decisions, undertaking storm preparedness

activities, or planning deployment of resources. Significant

impacts from fluvial flooding can occur regardless of whether it

is a strong storm, where there will likely also be significant wind

and storm surge hazards, or a weak storm, where the fluvial

flooding may be the main hazard. Both circumstances have

important implications for forecast-based early action. An

example of a TC that caused significant flooding while being

relatively weak is Cyclone Komen, which impacted Myanmar,

Bangladesh and India in 2015. Komen only reached equiva-

lent strength of a tropical storm, but was very slow moving,

with a broad circulation leading to prolonged heavy rainfall

over areas of Myanmar already saturated due to weeks of

monsoonal flooding, leading to severe impacts. Raising the

profile of cases such as these where the wind hazards may be

relatively low, but there is potential for a slow-moving storm

impacting vulnerable areas, meaning the fluvial flood hazard

and impacts are likely to be more severe, will help to ensure

that preparations are made to ameliorate impact. For intense

TCs, where evacuations and deployment of aid may be being

organized in advance of landfall due to the anticipated wind

impacts, it is also vital to know whether that storm also has an

elevated likelihood of fluvial flooding due to other risk factors

such as a slow translation speed or saturated antecedent soil

conditions. If it does it would be important to select evacuation

routes, shelters and aid deployment sites that would not be

impacted in the event of extensive fluvial flooding, which may

extend far from the landfall location. For example, Cyclone

Idai, which led to catastrophic flooding in Mozambique in

March 2019, exhibited most of the factors shown in this study to

be key drivers of fluvial flood hazard: it was a strong storm, but

significantly it was also a slow-moving storm at and after

landfall, a relatively large storm, and also had wet antecedent

soil moisture conditions. Highlighting this co-occurrence of

flood drivers to decision-makers in future cases in which a storm

is approaching landfall will help to ensure early action can be

taken to plan for and mitigate the impacts of severe flooding.

6. Conclusions

Landfalling TCs over the last decade have been classified in

terms of the severity of fluvial flooding that was associated with

each storm using GloFAS-ERA5 reanalyses. Flood severity

has been calculated using three different indices, each focusing

on a different characteristic of the associated fluvial flooding

(area, duration and magnitude). The key factors that impact

the severity of fluvial flooding were investigated by comparing

these flood severities with a range of TC characteristics (storm

speed, size, shape, intensity, and precipitation), and catchment

characteristics (antecedent soil moisture, orography, and gra-

dient). The key findings are the following.

d There are cases that have very high flood severity in one

measure and not in another, highlighting the importance of

considering the area, duration and magnitude characteristics

of TC flood events.
d Flood severity is strongly positively correlated with metrics

summarizing the event total precipitation, showing the im-

portance of increasing the availability and profile of precip-

itation forecasts in TC forecast communication and verifying

the ability of models that drive flood forecasting systems to

forecast the precipitation associated with TCs.
d Slow-moving storms were found to have a much higher

conditional probability of a severe flood event relative to

fast-moving storms, confirming that slower-moving storms,

where storms are raining over an area for longer, tend to

have higher flood severity.
d All intensities of TC have cases spanning the full range of flood

severity values, including several cases of tropical storm strength

that were associated with severe flooding. This confirms the

need for forecasting agencies to continue emphasizing that the

fluvial flood hazard can be severe in all categories of TC.
d Large storms have a higher conditional probability of severe

flooding than small storms in terms of the area affected. The

duration and magnitude of the flooding are found to be more

dependent on the catchment characteristics within the land

footprint of the storm, with gentler slopes having a much

greater conditional probability of severe flooding. The rela-

tionship between flood severity and antecedent soil moisture

is found to be complex and not consistent across the different

flood severity indices.
d Several TC and catchment characteristics often combine to

influence the overall flood severity and negate or enhance

other factors e.g., fast-moving storms still having a severe

flood hazard if they are large, intense and passing over sat-

urated ground. Themore driving factors that a case possesses

the higher the flood risk is found to be, with the highest

likelihood of having a large area affected by flooding found

for TCs that were slow, large, intense, and affecting areas

with wet antecedent conditions.

The reanalysis data used in this study provide a proxy for the

observed severity of flooding, and, although this allows a direct
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comparison of flood severity across all TC cases, studies of

fluvial flooding in TCs would benefit hugely from an increase in

the availability and consistency of hydrological observations

(Lavers et al. 2019).

This study has highlighted the characteristics of TCs that

have the most control on flood hazard. For those involved in

communicating early warnings and taking forecast-based

action before a storm our results show the importance of

considering aspects such as storm speed when assessing the

risks. For developers of hydrometeorological ensemble

forecasts of river flows our work underlines that the input

meteorological ensemble forecasts for TCs need to be able

to reliably predict not just their track and intensity, but also

their precipitation, size and translation speed. Future re-

search needs to focus on verifying and improving these

characteristics for agencies to be able to provide more ac-

curate forecasts of flood hazard.
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