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This paper presents an approach to planning under uncertainty in resource-constrained environments.
We describe our novel method for online plan modification and execution monitoring, which augments
an existing plan with pre-computed plan fragments in response to observed resource availability. Our
plan merging algorithm uses causal structure to interleave actions, creating solutions online using
observations of the true state without introducing significant computational cost. Our system monitors
resource availability, reasoning about the probability of successfully completing the goals. We show
that when the probability of completing a plan decreases, by removing low-priority goals our system
reduces the risk of plan failure, increasing mission success rate. Conversely, when resource availability
allows, by including additional goals our system increases reward without adversely affecting success
rate.

We evaluate our approach using the example domain of long-range autonomous underwater
vehicle (AUV) missions, in which a vehicle spends months at sea with little or no opportunity for inter-
vention. We compare the performance to a state-of-the-art oversubscription planner. Planning within
such domains is challenging because significant resource usage uncertainty means it is computationally
infeasible to calculate the optimal strategy in advance. We also evaluate the applicability of our plan
merging algorithm to existing IPC domains, presenting a discussion of the domain characteristics which
favour the use of our approach.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Many logistics and robotics domains, including long-duration
utonomous underwater vehicle (AUV) and rover missions, can
e thought of as over-subscribed planning problems, where finite
esources, such as battery power and data storage space, limit
he number and duration of tasks achievable by the agent. In
ver-subscribed planning problems, the objective is therefore to
elect the set of tasks, or goals, which maximises reward given
imited resource availability. In many robotics domains, the exact
mount of resources required to complete each task is uncertain
nd not known in advance. This is due to the inherent uncertainty
resent during operations in the stochastic world, and the mea-
urement uncertainty associated with the resources themselves,
uch as charge across multiple batteries [1]. We focus on robotics
omains where a trade-off exists between the probability of
uccessfully completing a mission and the desire to maximise an
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optimisation metric over the mission, e.g. expected reward. For
instance, a robot may collect large quantities of valuable data but
in doing so exhausts its resources, requiring human intervention.
In hazardous environments, such as underwater, in space or
within a nuclear reactor, human intervention may be extremely
difficult or completely impossible, requiring the robot to be fully
autonomous. This paper presents a novel approach to solving
such problems. We evaluate the solution using an AUV domain,
as AUV missions in the open ocean are subject to significant
levels of resource uncertainty as a result of operating in a highly
dynamic environment, e.g. battery consumption and thus vehicle
endurance are greatly affected by environmental properties such
as temperature, currents and biofouling (increasing drag), as well
as faults in the vehicle itself. Prior knowledge of the operating
environment is often limited to ship-based measurements and
forecasts, with physical properties of the ocean and weather
having a significant effect on AUV mission performance. This
significant uncertainty, coupled with the need to maximise the
data-gathering activities of the AUV due to the significant ex-
pense of and limited opportunity for deployments, results in an
oversubscribed goal set. As a result, we feel the AUV domain is
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n exemplar of domains in which a trade-off exists between the
robability of successfully completing a mission and the desire to
aximise an optimisation metric over the mission.
Our approach enables an agent to autonomously refine its

ission plan during execution, adding goals if observed resource
evels are sufficiently high, whilst removing low-priority goals
f resource usage is higher than expected. We employ an on-
ine plan modification and execution monitoring approach which
eeks to utilise the available resources to maximise the reward
chieved during the mission without compromising the safety of
he agent. As the benefits of planning are often hard to quantify in
dvance [2], and any resources used by the agent for planning are
o longer available for performing tasks, rather than generating
new full plan during execution, we have developed an online
lan modification algorithm which sequentially modifies an ex-
sting plan using plan fragments generated prior to execution.
hese pre-computed fragments represent the actions required
o complete each goal individually and their associated causal
tructure. We use this knowledge of the causal relationships
etween actions to either interleave additional actions into the
lan if resources are plentiful (using a novel plan merging al-
orithm), or to remove actions if the probability of successfully
ompleting the mission falls below a user-defined threshold of
cceptable risk. By sequentially modifying the existing plan rather
han replanning from scratch, the plan executed by the agent
esembles the initial plan agreed prior to the start of the mis-
ion. Predictable behaviour is especially important in real-world
utonomous robotics domains, where risks to the robot itself,
umans and the environment are approved in advance by stake-
olders and frequently mitigated through supervision by a human
perator where possible. Investigating why the AUV community
as yet to widely adopt adaptive mission planning, Brito et al. [3]
ound unpredictable vehicle behaviours to be the largest concern
39.7%) of expert AUV operators, which our approach addresses.

In this paper, we define the key characteristics of realistic
omains that motivated the development of our approach (Sec-
ion 3), define an illustrative AUV domain (Section 2) and outline
he position of our work in relation to the existing literature
Section 4). In Sections 5–10, we present a detailed description of
ur online plan modification and execution monitoring approach.
n Section 11, we present an empirical evaluation of our approach
sing our illustrative AUV domain, showing that when resources
re limited, our approach prioritises the safety of the vehicle,
ncreasing mission success rate by removing low-value goals.
onversely, the results show that our approach allows surplus
esources to be exploited to increase mission reward, without
eopardising the success of the mission. Whilst our approach
akes greedy sequential updates to the plan during execution,
e also show that the quality of plans produced approximates
hat of a state-of-the-art over-subscription planner, OPTIC [4],
chieving an average 93.2% of the latter’s reward per unit bat-
ery. In Section 12, we illustrate the wide applicability of our
ovel plan merging algorithm by presenting and discussing its
erformance on two International Planning Competition (IPC)
omains.

. AUV domain representation

AUVs are becoming increasingly popular for a wide variety
f applications, ranging from geological surveys and environ-
ental monitoring to pipeline and hull inspection. Due to their
bility to operate independently from a support ship and crew,
UVs provide unparallelled opportunities for conducting un-
erwater missions. However, despite being fully autonomous,
ost ocean-going AUVs currently perform very little onboard

easoning. Despite notable work by McGann et al. [5] and Pinto
2

et al. [6], who present decision-making architectures for AUVs
both based on the NASA EUROPA planner, many operators con-
tinue to favour simple pre-scripted behaviours such as lawn-
mower surveys, which minimise the complexity of the mission
and risk to the vehicle [7,8]. By analysing data from the vehicle
between missions, AUV operators can then select areas of inter-
est for investigation during subsequent deployments [9]. These
conventional mission formats are inevitably over-conservative,
designed to minimise the risk to the vehicle and its data cargo
whilst ensuring the behaviour of the vehicle is always known to
the operator, reserving a significant proportion of battery as a
contingency should usage be higher than expected. Consequently,
in the average case, the vehicle is not used to its full potential.

Our AUV problem scenario envisages a vehicle with limited
battery power and on-board memory conducting a long-duration
mission to collect scientific data from a network of specific pre-
defined survey areas. The location of these survey areas along
with an estimate of the value of each dataset are assumed to
be provided in advance by a scientist. The relative value of each
dataset should reflect any preference the scientist may have for
collecting one dataset over another. Data-collection behaviours,
such as mapping the extent of a chemical plume, can be per-
formed at each survey area. The vehicle is able to travel between
survey areas using a pre-defined network of waypoints and may
surface at any point during the mission. Whilst on the surface,
the vehicle may attempt to transmit datasets back to base via a
satellite link. We assume datasets are only of value to scientists
if they are successfully downloaded from the vehicle, either by
being present on the vehicle at the point of recovery or by being
transmitted by the vehicle mid-mission. Without this assumption,
the potential value of the data and the cost of losing it (such as
through the corruption of onboard storage or the total loss of the
vehicle) would not be represented within the problem.

During the execution of each action we have assumed there is
a small chance of mission failure. This failure rate represents the
inherent risks to both the success of the mission and the safety
of the vehicle itself. We assume that the vehicle is operating in
open ocean (e.g. not under ice) and thus always has the option to
surface, end the mission and await recovery. The vehicle receives
a reward for finishing the mission without exhausting the battery.
However, if the location of the vehicle does not equal the prede-
fined end location, the vehicle does not receive the full reward
as recovering the vehicle from a different location is costly as it
requires the support vessel to change route. By heavily penalising
plans which do not finish at the agreed end location, such plans
should only be generated when strictly necessary to safeguard the
vehicle and the success of the mission.

The optimisation metric used in our AUV domain is a function
of expected plan value, representing trade-offs between reward
and the probability of completing the plan successfully, and is
further defined in Section 7.2.

2.1. Actions

We use the following seven parameterised action schemas to
oncisely represent the full action space:

• CollectData(d) — Collect dataset d if the vehicle is in the
correct location.
• Move(l1, l2) — If the vehicle is at location l1, move to l2.
• Dive() — Move from the surface to depth at the current

location.
• Surface() — Move from depth to the surface at the current

location.
• TransmitData(d) — Attempt data transmission provided the

vehicle is at the surface and has dataset d.
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• DeliverData(d) — Deliver dataset d provided the mission has
ended and the vehicle has collected the dataset d.
• EndMission(l) — Wait for recovery at current location l.

Continuous state variables are used to represent the amount
of resources currently available to the vehicle. We assume battery
power to be a monotonically decreasing variable which cannot be
recharged during a mission and assume the battery usage proba-
bility distributions for each action to be independent. Therefore,
following the nomenclature defined by Smith and Becker [10],
battery is considered a consumable resource. All actions reduce
the battery by a quantity modelled by a Gaussian distribution, in-
dividual to each action. Additionally, CollectData similarly reduces
the amount of available memory, while TransmitData increases
it by the observed size of the transmitted dataset. We assume
differences in expected memory usage between datasets (i.e. as a
result of sensor type or resolution) are implicitly represented by
their associated means and standard deviations. We assume that
partial datasets are worth nothing and so memory must not be
exhausted during data-collection. Unlike battery power, memory
is thus a constrained reusable resource (following nomenclature
of Smith and Becker [10]), which becomes available for re-use
following successful data transmission. All action preconditions
require current available resources to exceed the mean resource
requirement plus one standard deviation. Positive rewards are
given when the vehicle both successfully delivers a dataset and
ends the mission, with additional reward available for ending the
mission at the agreed location.

The reward function favours plans which prioritise the col-
lection of high value datasets without compromising the overall
safety of the vehicle. This means that during a mission, should
the vehicle find it has used significantly more battery power than
expected to complete a series of actions, the option to travel
to the recovery location and end the mission becomes more
attractive than continuing to collect additional datasets.

A formalised representation of our AUV domain as an Markov
decision process (MDP) [11], including a description of all state
variables, can be found in Appendix.

3. Motivating domain characteristics

Whilst this paper evaluates our approach in the context of
AUV missions, this is just one of a larger set of realistic plan-
ning domains, including many robotics applications, which our
approach may be suited to. In this section, we discuss the key
characteristics of realistic planning domains that suit the use of
our presented approach.

3.1. Uncertainty

When the outcomes of all actions in a domain are certain and
known in advance, there is no benefit to be had from changing
the plan at run-time. In such a situation, a fixed straight-line plan,
consisting of a single sequence of actions with no branches, will
execute exactly as the planner assumed during plan generation
and so there are no alternative outcomes to consider. The ap-
proach we present is designed for domains where the outcomes
of actions are continuous and uncertain, which we represent as
probability distributions. Our system supports the use of any
continuous probability distribution, provided a suitable discreti-
sation may be found for use during plan generation (e.g. in our
example AUV domain, during plan generation we assume action
battery usage is equal to the mean of each Gaussian distribution).
This allows a distribution to be selected that best represents the
discharge characteristics of a specific battery, for instance. Our

AUV domain considers a single reusable resource (memory) and

3

a single monotonically decreasing consumable resource (battery),
but the approach supports any number of reusable/consumable
resources.

The presence of continuous resource uncertainty in a domain
prevents or highly complicates the use of many existing planning
approaches and techniques:

• Fixed plans may fail if states encountered during execution
do not sufficiently reflect the assumptions made during plan
generation [12].
• Many MDP-based methods require coarse discretisation of

the transition function and are limited to those problems
with a sufficiently small state space [13].
• Contingency planners require either a finite number of pos-

sible contingencies or suitable outcome discretisation.
• Replanning, such as that performed by FF-Replan [14], is

likely to result in the generation of an entirely new plan
after the execution of each action, as continuous outcomes
prevent the use of all-outcome determinisation.

While these alternative approaches have limitations when
applied to domains featuring uncertainty over continuous state
variables, we would expect contingency planning and MDP-based
approaches to out-perform our approach on domains which con-
tain only discrete uncertainty, i.e. those with a finite number
of possible outcomes (for example, a cycle action may move a
cyclist between two locations with 95% probability but result in
a puncture in the remaining 5% of cases). This is because when
the number of possible outcomes is small and finite, it is compu-
tationally feasible to calculate the optimal course of action (e.g. a
policy) to take in the event of each possible outcome in advance.
Our AUV domain is a stochastic shortest path problem with un-
avoidable dead ends (e.g. exhausting battery). Whilst recent work
has delivered efficient solutions for such problems with discrete
states [15], good performance in our problem involves modelling
the continuous dynamics of the vehicle’s resources. In order to
plan in this space, the state-of-the-art in partially observable
MDPs would suggest sampling-based methods [16,17] are likely
to be effective. However, our problem contains a large amount
of uncertainty, therefore would require a very large number of
samples to adequately characterise the problem, and would not
provide performance guarantees for a finite computation budget.
In contrast, our online plan modification and execution moni-
toring approach is approximate and thus, while it seeks a valid
satisficing solution (i.e. one which meets all constraints) which
maximises a specified metric, it does not perform a full search
for an optimal plan/policy.

3.2. Over-subscribed problems

The extent of relationships and dependencies between goals
in an over-subscribed problem is also an important factor to
consider when determining how effective our approach is likely
to be when applied to a new domain. Our approach is designed
for domains where the causal structure is such that the goal
literals are relatively independent — while resource availability
may prevent the completion of a goal, there should be little to
no goals whose completion is conditional upon the completion
of any other. Consequently, all goals in the problem may be
considered individually and removed in any number and combi-
nation, resulting in a wide range of potential modifications with
their associated costs and benefits. If a wide range of alternative
goal sets (and thus plans) does not exist for a given problem,
this limited choice may force the system to be overly reactive
when removing goals. For example, if a problem only has one

goal which may be removed independently of all others, if the
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ikelihood of successfully completing the plan drops slightly be-
ow the accepted threshold, the goal will have to be removed,
owever valuable it may be. Conversely, if a problem has many
ndependent goals, more subtle changes to the goal set and thus
he optimisation metric may be made.

As a counter example, in domains such as Blocksworld,1 which
re not over-subscribed, the goal literals each represent com-
onents of a single goal state comprising an arrangement of
locks and thus are highly dependent on each other. While it is
ossible for our plan merging algorithm to successfully add goals
o Blocksworld problems under very specific circumstances , such
s adding a new block to the top of a stack, the goal characteristics
f such domains mean that the use of both our merge algorithm
nd our wider online plan modification and execution monitoring
pproach is limited.
In summary, the best performance may be gained from our

nline plan modification and execution monitoring system when
sed with a large over-subscribed goal set, comprised of many
ndependent goals.

.3. Optimisation metrics

In over-subscribed domains, where the available resources are
nsufficient to complete all goals, a choice of goal set must be
ade. In many real-world situations, this choice is informed by
measure of solution quality or metric which reflects character-

stics of an optimal solution, such as minimising cost/time/plan
ength or maximising reward. For example, in their 2016 paper,
siogkas et al. [19] emphasise the importance of time and energy
onstraints in the context of AUVmissions. Instead of purely seek-
ng a valid solution to a planning problem, a user-defined metric
ay be used to evaluate and constrain the quality of solutions.
e consider domains where a trade-off exists between the prob-

bility of successfully completing the mission and maximising
he optimisation metric. Consequently, to enable our system to
ake informed decisions when evaluating plans and goal sets, it

s crucial that a suitable method for evaluating the probability of
ission success and the optimisation metric is defined for use as
composite objective at run-time.

. Related work

.1. MDP-based approaches

MDP-based approaches [11] are a popular representation for
on-classical planning problems: those which are stochastic, have
continuous number of states or where the state of the world is
nly partially observable. An MDP is a tuple ⟨S, A, T , R⟩ where S is
he set of states, A the set of actions the agent can perform, T the
ransition function, which represents the probability distribution
ver states which may be reached by performing an action, and
the reward function, which specifies the reward for performing
n action resulting in a transition to a given state. When solving
n MDP, the planning process uses the reward function to find
sequence of actions which earns the maximum reward given

he probability of each state transition, producing a policy for
xecution.
Representing their oversubscribed Mars rover domain as an

DP with continuous power usage and time, Bresina et al. [13]
ompute the optimal value function for all contingencies within
small branching plan. They computed the optimal policy for

1 The Blocksworld planning domain is very well-known, having been used
xtensively over the years as a test domain. It was widely popularised by
ussman in his 1973 paper [18].
4

their domain using dynamic programming, discretising the con-
tinuous variables representing time and power into 420 and 200
partitions respectively. The optimal value function can be used
as a policy, dictating the optimal branch to take at run-time,
given current resource availability. However, Bresina et al. [13]
state that in practice, standard methods of solving MDPs, such as
dynamic programming, become computationally infeasible when
the search space is large. In a follow-up paper, Feng et al. [20] ad-
dress this computational complexity using an approximate MDP
approach, classifying regions of the continuous state space into
discrete states according to the value of their utility. However,
this approach is restricted to very small problems as a value
function over all continuous variables must be computed for each
discrete state.

In their 2009 paper, Mausam et al. [21] represent the Mars
rover problem as a ‘hybrid’ MDP, using both continuous and
discrete state variables. However, due to the size of the state
space they are unable to use a dynamic programming algorithm
to produce a policy. To address this problem, they developed a
variant of the existing AO* search algorithm (described in [22]),
HAO*, which uses forward heuristic search on an aggregate state
space. In order to obtain an admissible heuristic to drive the
search, Mausam et al. [21] assume that the resource consumption
is monotonic and each action uses a fixed minimum amount of
resource. Consequently, although the paper presents encouraging
results, the HAO* algorithm will not generate good plans for
domains which contain replenishment actions as the assumption
that resource use is monotonic does not hold for every action and
therefore the heuristic is no longer admissible.

4.2. Replanning

FF-Replan [14] capitalises on the speed and efficiency of the
deterministic planner FF [23], replanning from scratch (i.e. re-
placing the entirety of the current plan with a new plan) mid-
execution if an unexpected state is encountered. As FF is a deter-
ministic planner, before generating either the initial plan or per-
forming subsequent replanning, FF-Replan must first remove all
probabilistic information from the planning problem, either via
single-outcome determinisation or all-outcomes determinisation.

As we consider domains featuring continuous resource uncer-
tainty (and thus each action has an infinite number of outcomes)
the use of FF-Replan with all-outcomes determinisation would
not be feasible. Instead, we would have to use single-outcome
determinisation with a suitable heuristic to select the most ap-
propriate outcome, which would intuitively be to use the mean
of the expected resource usage distributions. However, as the
number of outcomes for each action is infinite, it is very likely
that the observed resource usage would not be equal to the
mean. This would result in FF-Replan encountering an unfamiliar
state, thus triggering replanning. It is therefore highly likely that
replanning would occur after the execution of each action. As
the domains we consider feature continuous resources, ‘dead-
end’ states will be encountered if these resources are exhausted.
Although it is possible to reason about the use of resources and
plan to prevent their exhaustion, as FF-Replan does not reason
about the probability of particular outcomes, it would not be
possible to ensure that the plan does not put an agent at risk.

In their 2009 paper, Patron et al. [24] calculate a plan for an
AUV up to a given planning horizon, observing the state during
execution. Their approach handles uncertainty in the domain by
either recalculating a plan when the execution over the current
planning horizon has finished, or by greedily recalculating the
plan as soon as changes have been detected that would lead to
plan failure.
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.3. Contingency planning

Solutions based on the construction and execution of branch-
ng plans are popular for domains with resource uncertainty
25–28].

Citing the inefficiencies of using conventional over-
onservative plans in domains with large resource uncertainty,
ough et al. [29] present an alternative approach which con-
tructs and executes an ‘opportunistic plan’. An opportunistic
lan resembles a contingency plan although, in this case, a main
lan is augmented with branches which represent additional op-
ortunities that may be taken at run-time to increase overall plan
tility if resource availability allows. Gough et al. [29] consider
pportunities as ‘‘ways of extending the main plan rather than as
lternatives to it’’. Consequently, they do not include contingent
ranches requiring fewer resources than the main plan, to take
n the event that resource usage is higher than expected.

Using a branching plan-based approach similar to that of
ough et al. [29], Coles [30] presents an algorithm which aug-
ents an initial plan with contingent branches offline, labelling
ach branch with the conditions of execution. The algorithm is
esigned for domains which share properties with ours, including
ver-subscribed goals and resource uncertainty. Both Gough et al.
nd Coles consider branches solely as points to capitalise on
pportunities to achieve additional goals. Branches are therefore
ot used to avert failure, e.g. by reducing the number of goals
chieved by the current plan. Both approaches instead guard
gainst failure by ensuring initial plan and all branch conditions
dhere to a high confidence level.
Whilst increasing the efficiency of a plan above that of conser-

ative straight-line plans, a very high confidence threshold will,
n average, inevitably result in over-conservative plans. Using the
UV domain example, whilst it is very important to safeguard
he vehicle, AUV deployments are often very expensive, requir-
ng the chartering of a support vessel to the area of interest.
uch costs restrict the frequency of deployments and so it is
ugely important that the vehicle fully utilises the time and
esources available during the mission to maximise the return of
cientific data. While a confidence threshold of 0.95 theoretically
lmost guarantees the safety of the vehicle, it also means many
chievable opportunities are likely to be missed.

.4. Plan repair

Despite the conclusions of Nebel and Koehler [31], who show
hat in theory, the costs of modifying an existing solution to suit
new problem are higher than generating an entirely new plan,
any authors have investigated plan repair and reported promis-

ng results [32–35]. A popular approach is to extend the ideas of
efinement planning [36,37], which models plan generation as the
terative addition of constraints or actions to restrict the set of all
ossible plans until only solutions to the current problem remain.
Patron et al. [38] present a plan repair based technique for AUV

perations, demonstrating their work on a REMUS 100 AUV. They
tilise both domain independent and domain specific knowledge
ntologies to discover and repair failures and gaps in the plan
aused by observations of the vehicle state mid-mission. For
xample, varying the spacing of a lawnmower survey in response
o sensor malfunction.

In the context of online plan repair, Fox et al. [39, p. 212]
ighlight the benefits of a modified plan which closely resembles
he original, stating, ‘‘where it can be achieved, stability is an
mportant property that allows confidence to be maintained in
he safe operation of an executive within its environment’’. They
efine a ‘plan stability’ metric to measure the difference between
he original and repaired plans, and adapt the local-search based
5

planner LPG [40] to use this metric when evaluating partial plans
for refinement. They compare the result of their plan repair strat-
egy to that of replanning and find that plan repair produces plans
more efficiently and with much greater stability than replanning.

Long et al. [41] present a system that uses online plan mod-
ification to enable a planetary rover to perform opportunistic
science. The execution of the initial plan, generated on Earth, is
monitored by a component named TVCR [42]. Actions in this plan
which relate to a particular task are grouped into ‘plan fragments’,
along with any constraints on their execution. If the executive
determines that the current plan is no longer valid, the plan is
modified by first removing fragments (according to a predefined
science priority value) until an executable solution is found. Fol-
lowing this, extra fragments (either from the original plan or
a library) may be added to fully utilise the rover’s resources.
Plan fragments may also be re-ordered to utilise resources and
meet temporal constraints. If re-ordering causes breaks in the
causal structure, ‘glue’ activities, which are independent of the
fragments and perform tasks such as changing the mode of an
instrument, are selected for addition to the plan using means-end
analysis. Long et al. [41] highlight the operational challenges of
planning for such high-risk domains and echo the views of the
AUV community [3] when stressing the importance of fostering
trust between both the planning community and robot operators.
With similar motivations to [35], Fox et al. [42] describe how the
use of fragments and constraints was motivated by the desire
to include and represent the knowledge used by human mission
planners when constructing rover plans.

Sharing motivations with both ourselves and others in the
literature, Bresina and Washington [43, p. 24] present a flexible
on-board executive which monitors and reacts to changes in the
expected utility of the rover’s plan. An initial contingent sched-
ule, represented as a straight-line plan annotated with a tree of
alternative branches, is constructed offline by mission operators
aided by an automated system. Contingent branches are added at
specific points to define the actions to take should an ‘expected
deviation’ occur during execution, such as a predictable action
failure. While these branches are linked to particular points in
the plan, any plan within a library of alternative plans, created in
advance by human operators, may be used whenever the condi-
tions for its execution are met. As the executive is utility-driven, a
branch or alternative plan will only be taken if its expected utility
exceeds that of the remainder of the current plan. The utility of
the plan is modelled as a distribution which maps the temporal
uncertainty of each action to the expected utility of executing
the action followed by the remainder of the plan. Washington
et al. [44] state that they do not currently include uncertainty in
their resource models, leaving this as further work.

5. High-level overview

We devised a novel plan modification approach to planning
under uncertainty which seeks to maximise reward whilst min-
imising online plan generation and computation. Our flexible
approach allows a plan and goal set to be updated and refined
during execution in response to fluctuating resource availability.
During execution if, at pre-defined decision points, the executing
agent is observed to have more resources available than previ-
ously expected, specifically enough to potentially complete an
additional goal, the ability to update the plan to include such
goals could significantly increase the reward of the mission. Con-
versely, if resource usage has been higher than expected and thus
resource availability is low, the probability of successfully com-
pleting the mission will decrease. If it falls below a user-defined
acceptance level, removing existing goals could potentially avert
plan (and thus mission) failure.
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A schematic of our full approach is presented in Fig. 1 and the
key elements discussed in detail in this paper. Instead of adopting
an online planning approach, our approach pre-computes individ-
ual plan fragments for each goal in the over-subscribed problem
offline, to assist with updating the plan during execution. To
combine these fragments at run-time, we have developed novel
algorithms which examine and exploit the causal relationships
between actions in the plan and the goal set, a method inspired
by concepts from classical planning. The online component of
our approach is presented as pseudocode in Algorithm 1. Causal
structure can be computed from the preconditions and effects of
each action as defined in the domain action schema. For example,
the preconditions of an action to transmit dataset d, require that d
has first been collected, which in turn requires the vehicle to be
at the survey location. Whilst different combinations of actions
could be used to satisfy a goal (e.g. a different route between
locations may be taken), the causal structure is associated with
the goal itself and remains unchanged. After modification of the
current plan using the fragments, we then evaluate the suitability
of the resulting plan, given resource usage uncertainty, by esti-
mating the probability of successfully completing the plan using
the Gaussian distributions representing the expected resource
usage of each action.

By combining precomputed fragments at run-time instead
of computing a complete contingency plan, we aim to reduce
the large number of possible contingent branches which would
otherwise need to be computed and evaluated at run-time. With
an over-subscribed goal set, the number of goal set combinations
that would need to be considered and planned for in order to
create a contingency plan with sufficient coverage is significant.
By combining fragments at run-time, we do not have to exhaus-
tively consider all contingencies, instead we only consider those
which are relevant in the context of the states encountered during
execution. In addition, by computing of a set of plan fragments
at a finite number of decision points within the initial plan
offline, our approach bounds the space of possible plans, reducing
uncertainty over resulting vehicle behaviour when compared to
a fully-online replanning approach.

Whilst the ultimate motivation of this work is to improve
the mission planning capabilities of operational robots in real-
world scenarios, the implementation and testing of our system
on a physical platform was outside the scope of this project. To
this end, we have implemented a stochastic simulation along-
side our system which allows current resource availability to be
‘observed’.

6. Pre-computation

Prior to execution, an initial plan is generated and decision
points are defined. At each decision point the initial plan is then
augmented with plan fragments, each achieving an individual
goal from the overall problem.

6.1. Initial plan generation

We assume that the initial plan generation (and goal set selec-
tion) occurs prior to the start of the mission, when computation
is not constrained.

Our approach uses a deterministic representation for the gen-
eration of a straight-line plan, treating resource usage as discrete.
In this paper, all experiments define this discrete usage to be the
mean of the related distribution, although this may be adjusted
depending on the domain used and the preferences of the user.
Discretising the resource usage distributions allows the use of
existing classical planners, avoiding the large continuous state

space and consequent computational complexity which makes

6

Algorithm 1 Online Plan Modification
Require: p—current plan, k—user-defined success threshold, DP—set of decision

points within p, CL—set of causal links within p, G—set of all goals in the
overall problem with associated plan fragments pfg , Gp—set of goals met by
p, sg—goal state of p

1: function OnlinePlanModification(p, k,Gp,G, CL, sg ,DP, pfg )
2: while |p|> 0 do
3: a← pop next action from p
4: sc ← EXECUTE(a) ▷ Update current state sc
5: if sc ∈ DP then
6: while P(success|p) < k do ▷ (Section 7.1)
7: CP ← ∅ ▷ Set of candidate plans
8: for all g ∈ Gp do
9: cp← removeGoal(p, g, CL, sg ) ▷ Remove goal to increase P(success)

above k
10: scp ← Calculate states in cp
11: CP ← {CP, removeRedundantActions(cp,scp)}
12: end for
13: Prune CP to remove plans which violate any resource constraints ▷

(Section 9.2)
14: Prune CP to remove plans where P(success|cp) < k
15: Select pnew ∈ CP which maximises optimisation metric score ▷ (Eq. 3)
16: p← pnew
17: Update Gp , CL, sg , P(success|p) to reflect pnew
18: end while
19: Grem ← goals removed at this DP
20:
21: CP ← {p}
22: repeat
23: for all g ∈ {G \ {Gp ∪ Grem}} do ▷ Add goals excluding those just

removed
24: if (Mean resource usage of pfg and p) < available in sc then ▷ (Eq.

4)
25: cp← mergePlans(∅, pfg , p)
26: if cp = ∅ then ▷ Merge was not possible
27: Generate stitching plan pstitch ▷ (Section 10.1)
28: pfg ← Append pstitch to pfg
29: cp← mergePlans(∅, pfg , p)
30: end if
31: if cp = valid plan then
32: scp ← Calculate states in cp
33: CP ← {CP, removeRedundantActions(cp,scp)}
34: end if
35: end if
36: end for
37:
38: Prune CP to remove plans which violate any resource constraints
39: Prune CP to remove plans where P(success|cp) < k ▷ (Section 10.2)
40: Select pnew ∈ CP which maximises optimisation metric score ▷ (Eq. 3)
41: g ← goal added in pnew
42: CP ← {pnew}
43: for all dp ∈ DP do ▷ Evaluate delaying addition of goal (Section 10.3)
44: if pfg exists at dp then
45: cp← mergePlans(∅, pfg , p)
46: Repeat lines 26 to 35
47: end if
48: end for
49: Select pnew ∈ CP which maximises optimisation metric score▷ (Eq. 3)
50: p← pnew
51: Update Gp , CL, sg , P(success|p) to reflect pnew
52: until No more goals can be added
53: end if
54: end while
55: end function

the use of MDP solvers infeasible for many realistically-sized
domains. After plan generation, we evaluate the resulting plan
using a probabilistic model of resource usage, calculating the
probability of the plan’s successful execution and its optimisation
metric score. The probability of successfully completing the plan
must exceed a minimum threshold, defined by the user. We use
Metric-FF [45] for all plan generation within the experiments
presented in this paper.
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Fig. 1. A high-level overview of our full approach, illustrating the ordering of key components within the system. The box labelled ‘Offline’ represents tasks which
are performed prior to execution (see Section 6). All other tasks occur during execution. Parts of the system relating to goal removal (see Section 9) and goal addition
(see Section 10) are also labelled. The central box represents the plan modification conditions for both goal removal and goal addition.
6.2. Definition of decision points and plan fragments

We place decision points in the plan where modifications to
the goal set are likely to be the most beneficial. We gain the
most information about the probability of a plan completing suc-
cessfully, and thus its expected reward, after performing actions
with the largest associated resource usage uncertainty. This is
because the uncertainty surrounding the resource requirement of
the remainder of the plan is significantly lower than it was prior
to the execution of the uncertain action, resulting in improved,
more-certain estimates of the likelihood of plan success. Given
this reduction in resource uncertainty following the execution of
the most uncertain actions, this is the most informed time to
consider goal set modifications. Consequently, we define decision
points after the n actions with the largest standard deviations,
where n is defined by the user as a percentage of the plan
ength, such that n = 0% results in a straight-line plan with no
pportunities for modification, while n = 100% would consider
he modification options after every action in the initial plan. We
valuated the effect of varying the number of decision points n
n the achieved reward and computation required, presenting the
esults in Section 11.2.

An important point to note is that decision points and plan
ragments are computed offline, prior to plan execution, and so
ay only be defined at points following actions in the original
lan. If a modification is made during execution and new actions
re added to the plan, these new actions will not be followed
y a decision point, regardless of the size of their associated
tandard deviations or the value of n. To add decision points
id-execution would require increased computation as new plan

ragments would have to be generated online. This is disad-
antageous as battery used for online computation is not then
vailable for performing actions. Our model of resource usage
oes not currently represent resources used for computation and
o the system would be unable to reason about when to halt
he planning process. This meta-planning problem is outside the
7

scope of this work and so we instead monitor and evaluate the
computational cost of our approach, with a view to minimising
online computation. There is also a question of when to stop
adding plan fragments and decision points. Contingency planning
approaches are infeasible due to the significant number of contin-
gent branches in domains we consider, where many independent
goals may be both added and removed from the plan throughout
execution. Our algorithm may add a goal at one decision point,
before potentially removing it at the next, which would lead
to many nested fragments being generated online. If resource
availability dictates, such modifications to the goal set may the-
oretically then be repeated throughout the execution of the plan.
Our approach also leads to predictable plans. In theory, the user
can review the complete set of fragments in advance and so the
resulting set of possible plans is finite. By creating plan fragments
online (in a similar way to replanning), the predictability is lost,
especially if the set of fragments (and nested fragments) is very
large.

At each decision point, we generate a plan fragment for each
goal in the overall problem. These fragments each achieve a single
goal and may later be combined with both other fragments and
the initial plan to form a plan that satisfies a set of goals. We
assume all sub-problems are sub-sets of the overall problem and
therefore all relate to the same domain definition. The initial
state of the sub-problem is defined as the expected state at the
associated decision point. When computing the expected state,
the resource usage of each action during this state simulation is
assumed to be the mean of its usage distribution. The goal of a
sub-problem is defined as simply a single goal from the overall
problem. All other goals (such as those in the initial problem) are
not included.

7. Plan evaluation

Prior to execution, and then sequentially after both the com-
pletion of each action and any modifications, the current plan is
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valuated to check it meets all goal and resource constraints. We
ompute a representation of the causal structure of the current
lan using the definition of each action in the action schema, to
e used at run-time to aid online plan modification.

.1. Calculation of success probability

As all actions consume or renew the agent’s available re-
ources, the probability of successfully executing a plan is closely
elated to resource usage. If an action either causes the agent’s
esources to be exhausted or to fall below that required by the
ext action, execution will halt and the mission will fail. Conse-
uently, prior to execution and then sequentially after both the
ompletion of each action and any modifications, we compute the
uccess probability of the plan and its optimisation metric score.
f executing an action affects multiple resources (e.g. both battery
nd memory in our AUV domain), the usage of each resource is
epresented using separate distributions and the probability of
uccess is calculated separately for each resource.
As an example, we present the calculation of success proba-

ility for the two resources in our example AUV domain. Battery
ecreases monotonically throughout a mission, whilst memory is
eusable following successful data transmission. The uncertainty
ver resource usage is represented using Gaussian distributions
or both resources.

attery
As the usage of battery resource across subsequent actions is

ndependent, we sum the distributions for all actions into a single
istribution T representing the battery usage of the plan, by sum-
ing their associated means and variances. Given this combined
istribution T , we can then calculate the probability that exe-
uting the plan will be successful, requiring less battery than is
vailable to the vehicle. First, we integrate the combined Gaussian
istribution to produce the cumulative distribution function:

DF =
∫ ⎛⎝ e− (x−µ)2

2σ2

σ
√
2π

⎞⎠ .dx =
1
2

[
erfc

(
µ− x
√
2σ

)]
(1)

If we solve the cumulative distribution function where x equals
current battery availability and µT and σT are the mean and
standard deviation of the combined distribution T , we calculate
the probability of plan execution requiring less battery than is
available. This result is the probability of success for battery,
P(success|battery):

P(success|battery) =
1
2

[
erfc

(
µT − currentBattery

√
2σT

)]
(2)

Memory
As memory is a reusable resource, the calculation of P

(success|memory) is more complicated. As in the case of battery,
the Gaussian distributions associated with actions which con-
sume memory have a positive mean, while actions which renew
memory have a negative mean. If we employ the same approach
as when calculating P(success) for battery, by summing the means
and variances to create a combined distribution, we discover
a problematic interaction between actions which consume and
renew memory, e.g. by collecting and delivering/transmitting
datasets. The memory usage for each of these actions is based
on the size of the dataset involved. Therefore, the mean of the
distribution when transmitting/delivering a dataset d is the exact
egation of the mean associated with its collection. If we then
um the mean memory usage over a typical plan, which trans-
its/delivers all collected datasets, the combined mean memory
sage of the plan is 0. Consequently, integrating this distribution
8

and solving for current memory, as for battery in Eq. (2), results
in P(success|memory) = 1. This is not an accurate reflection of
the true probability of plan success. To avoid this over-estimate
of P(success|memory), we instead subdivide the plan at the points
where memory is renewed (i.e. where memory usage is at a local
maxima) and calculate the probability of successfully reaching
each of these points. We can then treat each of these subdivisions
as we treat battery, integrating the combined distribution and
solving for current memory. To determine the success probabil-
ity of the whole plan, we consider each subdivision separately,
i.e. if the success probability of any subdivision falls below a
predetermined threshold, the plan is deemed invalid.

As the size of a dataset is known at the point when it is trans-
mitted, the uncertainty regarding its collection should be can-
celled out by its successful transmission (i.e. the value of memory
before and after a collect–transmit sequence should be equal).
Theoretically, this means that the variance of a transmit/deliver
data action should be subtracted from the combined total. How-
ever, a general formula for calculating P(success|memory) was
desired which does not assume plans/plan fragments contain
both the collection and subsequent transmission/delivery of a
dataset. If a plan fragment contains a transmit (replenishment)
action but not the associated collect (consuming) action, the
combined variance of the plan fragment may be negative, which
would violate the definition of variance and standard deviation,
preventing the calculation of success probability. Consequently,
by always summing the variances (i.e. ignoring the reduction
in variance when renewing memory), our calculation of success
probability tends to over-estimate the variance of memory usage
within a plan. However, we felt that this general solution is
acceptable as the resulting P(success|memory) will always be an
under-estimation of the true value and thus does not increase the
risk to the vehicle.

7.2. Evaluation of the optimisation metric

A plan with a high success probability is attractive as it sug-
gests the risk to the agent and mission are minimal. However, in
many domains it is also important to use the available resources
to maximise the completion of valuable goals and consequently
the associated reward. To represent and reason about the balance
between risk and reward, our approach evaluates plans against an
optimisation metric. As discussed in Section 3.3, the user-defined
metric should reflect the characteristics of an optimal solution for
the given domain.

To calculate the optimisation metric score for an AUV domain
plan, the success probability is weighted by the reward:

E[v] =
n∑

x=1

⎡⎢⎣
⎛⎝P(success|batteryx)×

x∏
q=1

P(success|memoryq)

⎞⎠2

× reward(x)

⎤⎥⎦ (3)

t each subdivision of memory x, where x = 1, 2, . . . , n, we
calculate the P(success|battery) for the same range of actions,
P(success|batteryx). To calculate the success probability for mem-
ory over the same interval as battery, rather than just over the
most recent subdivision, we multiply the success probability
for each subdivision prior to x, P(success|memoryq), represented
in Eq. (3) as the product term. The resulting value is then multi-
plied by P(success|battery) and squared to increase the influence
of success probability over reward, as reward may be highly
variable. This is repeated for all subdivisions of memory and the
results summed to give a single result for the optimisation metric,
which is used when comparing plans.
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. Plan execution monitoring

Provided the initial plan exceeds the required success prob-
bility threshold, execution of the plan may begin. After the
uccessful execution of each action, the success probability and
ptimisation metric value of the plan are recalculated given ob-
erved resource usage. When at a decision point in the plan,
f P(success) falls below a predefined threshold, the algorithm
ill consider removing a goal from the current goal set in an
ttempt to reduce resource costs and consequently increase the
robability of finishing the plan successfully. Conversely, if the
urrent resources are sufficient to potentially allow the inclusion
f an additional goal, the algorithm will attempt to merge a
ew plan fragment into the current plan. Provided the success
robability of the resulting plan exceeds the required threshold
nd the optimisation metric score of the new plan exceeds that
f the current plan, the new plan is selected for execution.
The P(success) threshold may be defined by the user to reflect

heir tolerance for risk. As the threshold tends towards one, the
ystem will be much less tolerant of risk, over-conservatively
emoving goals to safeguard the agent, prioritising mission suc-
ess over reward. Conversely, given a much lower threshold
he system will tolerate greater risks and thus is more likely
o attempt to add in extra goals. Such behaviour is likely to
ncrease the rewards achieved but this is potentially at the cost
f mission success. To balance the trade-off between risk and
eward, for experiments and analysis within the AUV domain we
se a threshold for P(success) of 0.841. Given the definition of
he standard deviation of a normal distribution,2 if the success
robability for either battery or one or more subdivisions of mem-
ry falls below 0.841, this implies the vehicle has less resources
han the total combined mean plus one standard deviation of the
emainder of the plan.

. Online goal removal

At each decision point, if the success probability of the current
lan falls below the minimum threshold, goal removal is consid-
red. Each goal in the current goal set is individually passed to
he goal removal algorithm which removes the goal, producing
candidate alternative plan. When removing a goal from the
lanning problem, we can also remove any actions which were
nly present to achieve that goal and are thus no longer required.
An action may be removed if it produces an effect which

atisfies the removed goal and none of its effects are required by
ny other goals or actions in the plan. If an action is removed,
his process is then repeated for any action whose effects were
equired by the removed action. The goal removal algorithm
ecursively examines the causal structure of the plan until no
ore actions may be removed — see Algorithm 2.
Formally, given a goal g to remove, we construct the set Dg

f actions to remove by first setting Dg = {g}, then repeatedly
dding to Dg any action a such that all causal links from a lead
o elements in Dg . All actions in Dg only contribute to the goal
e wish to delete, so can be removed from the plan without

mpacting other goals.

2 In a two-tailed normal distribution, there is a 68.2% chance of the value
alling within 1σ of the mean (µ). However, we are only interested in the
single-tailed case where usage is less than 1σ above the mean. There is a 34.1%
chance of sampling a value between µ and µ + σ , which when added to the
50% chance of sampling a value below µ gives us a total probability of 84.1%
or 0.841.
9

Algorithm 2 Removing a goal.
Require: p—current plan, g—goal to remove, CL—set of causal links within p,

lastRemoved—initially the goal state.
1: function removeGoal(p, g, CL, lastRemoved)
2: gProducers← ∅
3: for all cl ∈ CL do
4: if cl.consumer = lastRemoved AND cl.literal = g then
5: gProducers← gProducers+ cl ▷ cl produces the literal g , consumed by

lastRemoved
6: end if
7: end for
8: for all c ∈ gProducers do
9: if c has only one consumer then ▷ causal links may have multiple

consumers
10: for all actions a ∈ p do
11: if a = c.producer then
12: p← p− a ▷ c is only consumed by lastRemoved, so may be

removed
13: end if
14: end for
15: for all preconditions pre ∈ a.preconditions do
16: p← removeGoal(p, pre, cl, c.producer) ▷ recurse, considering each

precondition of c.producer
17: end for
18: end if
19: end for
20: return p
21: end function

9.1. Removing redundant actions

Following the removal, or addition, of a goal and associated
actions, the resulting plan may contain newly redundant actions.
Using our AUV domain as an example, the following plan achieves
the goals: data_collected(d2) and at_loc(l1).

o1: move(l1, l2)
o2: collect_data(l2, d2)
o3: move(l2, l1)
o4: surface()
o5: end_mission(l1)

Removing the goal data_collected(d2) results in the following
plan:

o1: move(l1, l2)
o3: move(l2, l1)
o4: surface()
o5: end_mission(l1)

In this new plan, actions o1 and o3 are now redundant, con-
suming resources without furthering the completion of any goals.
While it may seem obvious to the reader that neither o1 nor o3
are required within the resulting plan, the action o3, move(l2,
l1) provides for the goal of ending the mission at location l1,
at_loc(l1). For this reason, o3 is not considered for removal by
Algorithm 2. Action o1 does produce an effect (at_loc(l2)) that
is required by the removed action o2 and is thus considered for
removal. However, this literal is also required by action o3, which
prevents the removal of o1 from the plan.

To avoid such redundant behaviour and the waste of resources
in such scenarios, following the removal of a goal any redundant
actions are detected and removed from the plan, see Algorithm
3. Redundant actions are detected by searching the plan for
pairs of duplicated states, ignoring the continuous state variables
representing resource usage as these will inevitably differ. If the
discrete state variables of two states are identical, the actions
between them do not further the completion of any goals (as
there has been no change to the state variables either towards
or away from the goal conditions) and are therefore redundant.
Following the removal of redundant actions, the resultant plan is
now shorter, requires fewer resources to execute and thus has a

higher success probability and optimisation metric score.
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Algorithm 3 Removing redundant actions.
Require: p—current plan, S—set of all discrete states in p
1: function removeRedundantActions(p, S)
2: for all s ∈ S do
3: if |s ∩ S|> 1 then ▷ s appears multiple times in S
4: Remove actions between first and last occurrence of s in p
5: end if
6: end for
7: Update S to reflect changes to p
8: return p, S
9: end function

9.2. Goal selection

Once a list of candidate alternative plans has been produced,
hese are analysed to select the best plan, and thus the goal to
emove. Considering the set of all candidate plans:

• Remove any plans which violate any of the resource con-
straints, i.e. where the resource preconditions of any actions
are not met (see Section 2.1).
• Remove any plans where the probability of success, P

(success), does not exceed the user-defined minimum thres-
hold (see Section 8).
• Of the remaining plans, select the plan which maximises the

optimisation metric.

f none of the candidate plans exceed the P(success) threshold,
he system removes the goal which, post-removal, results in
he plan which maximises the optimisation metric. It will then
ttempt to remove additional goals, using the same method as
efore, until the success probability of the resulting plan exceeds
he threshold. In an extreme case, this may require all goals
o be removed from the current problem, aborting the mission.
hilst drastic, this behaviour prioritises the safety of the agent

n resource-constrained domains and ensures it operates within
he user-defined constraint of risk, as defined by the minimum
(success) threshold. Using the example of an AUV deployment,
uch a scenario would initiate emergency routines, for example
y dropping an abort weight and floating to the surface.

0. Online goal addition

At each decision point, following consideration of the goal
emoval criteria (as described above), the algorithm iterates over
ll candidates for goal addition (excluding any goals which have
ust been removed and therefore may not be re-added at the
ame decision point) to re-allocate any surplus resources thus
aximising reward. For each candidate goal g at the current
ecision point, the algorithm checks whether the mean resource
equirement of the associated plan fragment pf , added to the
xpected resource usage of the current plan p, is less than the
esource available in the current state (i.e. at the decision point).
he algorithm considers adding a goal if:∑
a∈A

µar +
∑
a∈A

σar +
∑
a∈pfg

µar < xr (4)

here A is the set of actions remaining in the current plan p;
ar and σar are the mean and standard deviation of the expected
sage of resource r by action a; xr is the remaining quantity of
esource r at the current state.

This check is only performed for consumable resources. For
eusable resources, the current available resource will differ de-
ending on where the new plan fragment is merged within the
urrent plan. Instead, we check the validity of the plan follow-

ng the merge, ensuring that all constraints are satisfied. If all p

10
resources within a domain are reusable, all plan fragments would
need to be considered (which for certain domains may increase
the cost). We present a domain-independent approach in this
paper, but domain knowledge could be exploited to further prune
the space of plan fragments.

Once the set of candidate goals G (g ∈ G) has been pruned
to remove those which do not meet the consumable resource
constraints (see Eq. (4)), the states of the plan fragment are
updated to include any additional literals from the current state
(at the decision point). In our AUV example, these would include
datasets which have already been collected.

10.1. Plan merging algorithm

Given the plan fragment associated with the additional goal
pf , the current plan p, and the set of states S and causal links CL
within p, the system attempts to merge pf into p, interleaving
ctions to create a valid solution for the new combined goal
et. To create a valid solution, the recursive merge algorithm
mergePlans, shown in Algorithm 4) takes the first action of the
lan fragment pf and compares its preconditions with each state
n the original plan, sequentially from the current state, produc-
ng a list of candidate merge points, i.e. states which meet the
reconditions of the action. The algorithm then checks whether
ny causal links in the current plan would be threatened by the
nclusion of the new action at each merge point. If merging an
ction causes a threat, the algorithm searches the plan fragment
n an attempt to find an action whose effect subsequently re-
tores the threatened link (e.g. by satisfying the precondition). If
restorative effect is found and this effect is then maintained
ntil the end of the plan fragment, the restorative action may
e inserted prior to the consuming action and thus the threat is
arked as resolvable. If no links are threatened or all threats are

esolvable, we add the action to the plan at the current merge
oint, update the plan’s causal links and call the function again
o insert the next action in the fragment. This continues until
ll valid merge points for each action in the plan fragment have
een considered. The set of merged plans Z is then returned for
valuation. If a threat is not resolvable, provided the action does
ot achieve a goal, the recursive algorithm skips the action as it
ay not be required when the two plans are combined.
If no valid plans are found using the mergePlans algorithm,
stitching plan is generated which uses the goal state of the
lan fragment as its initial state and the unsatisfied preconditions
f the remainder of the current plan as the goal. By returning
he state to this point, the stitching plan resolves all threats
aused by the plan fragment. After generation, the stitching plan
s concatenated onto the end of the plan fragment pf and the
ewly extended pf is passed to the mergePlans algorithm to
e merged into the current plan. Computing a stitching plan is
ot guaranteed to be successful in all cases, as whether or not a
lan can be generated depends on the domain, problem and the
haracteristics of the planner used. Heuristics used by some plan-
ers may prevent them from finding a plan for a given problem
ven if one exists. If the generation of a stitching plan fails, the
erge will fail and the next goal and associated plan fragment
ill be considered. If no plan fragments can be successfully added,
xecution of the current plan will continue.

0.2. Goal selection

Once there exists a set of valid merged plans for each candi-
ate goal at the current decision point, the system evaluates these
ew plans and selects the best to replace the current plan.
First, the success probability is calculated for each merged
lan. If P(success|resource) for any subdivision falls below the
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Algorithm 4 Merging a plan fragment with an existing plan.
Require: pf—plan fragment, p—current plan, Z—list of valid merges, initially ∅,

filled during recursion.
1: function mergePlans(Z, pf , p)
2: valid← false
3: if p satisfies all goals then
4: Z ← Z + p, return true ▷ p is a solution, backtrack
5: else if pf = ∅ then return false ▷ p is not a solution, backtrack
6: else
7: a← first action in pf ,
8: pf ← pf − a
9: X ← all states in p that meet preconditions of a
0: for all x ∈ X do
1: if inserting a at x causes no threats OR all threats are resolvable then
2: merge← p with a inserted at x
3: Update S, CL following the insertion of a
4: valid← mergePlans(Z, pf ,merge) ▷ recurse, considering the remainder

of pf
5: end if
6: end for
7: if valid = false AND a achieves no goals then
8: pf ← pf − a ▷ skip a

19: valid← mergePlans(Z, pf ,merge) ▷ recurse, considering the remainder of
pf

20: else, return valid
21: end if
22: end if
23: end function

acceptable threshold, the plan is discarded and pruned from the
set. Of the plans which exceed the P(success) threshold, the plan
with the highest optimisation metric score is chosen. If none of
the new plans has a success probability greater than the P(success)
threshold or an optimisation metric score which exceeds that
of the current plan, the new plans are discarded and execution
continues with the current plan i.e. with no additional goals.

10.3. Delaying goal addition

Once the new plan and associated goal have been selected, the
algorithm considers the possibility that adding the goal at a later
decision point, instead of at the current state, may increase the
optimisation metric score of the resulting merged plan. Unlike
removing a goal, which averts risk by remedying a violation of
the P(success) threshold and thus needs to occur sooner rather
than later, delaying the addition of a new goal until a later state
may result in a plan which achieves a higher score against the
optimisation metric, as illustrated in Fig. 2. Gough et al. [29,
p. 25] share our rationale for delayed goal addition, stating that
‘‘it could be the case that a higher utility opportunity will be
missed because the resources were spent earlier on a low-utility
opportunity’’.

When considering whether to delay the addition of the se-
lected goal, our algorithm selects any subsequent decision points,
within the current plan, where there exists a plan fragment for
the goal. A list of valid merged plans is constructed for each
decision point and the list of merges is then pruned according
to the P(success) threshold, as before. This time, the optimisation
metric score of merging the new goal at a later decision point is
compared to that of merging it at the current state, and whichever
is highest is selected as the new current plan. An alternative
option would be to initially consider all goals at all decision
points, selecting a goal to add at a particular decision point from
the full set. However, as resources used for computation are
then not available for use when performing actions, we seek to
minimise online computation. To this end, we instead greedily
select the goal which provides the most benefit at the current
state, before checking whether adding it at a later decision point

would instead increase the optimisation metric score of the plan.

11
Fig. 2. Schematic illustrating how delaying the addition of a goal may be
beneficial, using an example from our AUV domain. The graph shows the
connectivity of locations in a small problem and the distances between them.
The current plan is labelled P . By including a new goal to transmit dataset 4
(TD4) at the current state, the move actions (M) of the resulting plan (labelled
a) increase the cost of the current plan by 100 (all other action costs are ignored
in this example). By instead delaying the addition of the new goal, the resulting
plan (labelled b) only increases the cost by 20. This is because from location 3,
the diversion to location 4 is much shorter than from location 1. As the reward
for dataset 4 is the same for both plans, the cheaper red plan achieves a higher
expected reward.

Fig. 3. Connectivity of locations and datasets in the overall AUV problem. Circles
represent data-collection opportunities.

Following the addition of a goal, the entire goal addition pro-
cess then continues, attempting to add further goals until either
no candidate plan fragments meet the addition criteria or the
optimisation metric score of the merged plans fails to exceed
that of the current plan. Consequently, at a single decision point,
0:N goals may be removed before 0:N goals (excluding those
removed at this decision point) may be added. As such, the space
of combinations of plan fragments is greedily explored.

11. Empirical evaluation

In this section, we present the results of four experiments that
evaluate key parts of our approach. These experiments use our
example AUV domain, as defined in Section 2. Resource usage
is essentially domain neutral and so we did not evaluate the
performance of our full system on additional domains. However,
the performance of the merging algorithm is domain specific,
relying on the causal structure of individual plans. As the perfor-
mance of the merge algorithm is a limiting factor in the success
of our overall system, in Section 12 we analyse and discuss the
merge algorithm when applied to existing International Planning
Competition (IPC) domains.

11.1. Methodology and test problems

Four AUV domain problems were defined, each relating to
the same topology of 20 survey locations shown in Fig. 3, with
one dataset per location. Each of the four problems is a different
subset of the same overall problem. Problems one and two both
have an initial goal set to return five datasets. The collection
and return of the remaining 15 datasets in the overall problem
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ay then be added as additional goals, should resources allow.
uring execution, all goals may also be removed from the current
oal set. Problems three and four extend problems one and two
espectively, increasing the size of the initial goal sets to 10 goals
ach, thus reducing the number of goals which may be added
uring execution to 10.
For each problem, we varied the resource availability, defining

hree levels of resource availability: low (L), medium (M) and high
H). Defining absolute values for both memory and battery for
ach resource level would not permit direct comparison of the
esults as each problem and plan has different resource require-
ents. Consequently, in these experiments the three resource

evels are defined relative to the resource requirements of the
nitial plan for each problem. Representing the minimum required
o execute the initial plan, the low (L) level was defined as:

• Initial battery (L) = the sum of the mean battery usage for
all actions in the initial plan, plus the sum of the associated
standard deviations.
• Initial memory (L) = the mean plus the associated standard

deviation of the action with the highest expected usage in
the initial plan.

edium and high availability were then defined as 110% and 120%
f low, respectively.
As the uncertainty in the domain is significant and the re-

ource usage of each action is randomly sampled for each trial
from distributions where the standard deviations range from
5% to approximately 25% of the mean), it is likely that a direct

omparison of the results would not be fair, for example, when
omparing the results of a run in which the sampled resource
sage was very high, to one in which it was very low, despite
he goal set and initial resource availability being identical. To
acilitate a fair comparison, both between runs and across experi-
ents, the resource requirements of each action and the rewards

or each dataset were sampled and fixed prior to the execution of
ach run, e.g. when testing two approaches A and B, the first run
f A will use the same sampled resource usages and rewards as
he first run of B, the second run of A will use the same samples
s the second run of B, and so on. These sets of fixed values were
hen used by all experiments. By fixing the sampled values for
ach action in each plan, if a plan contains multiple instances of
he same action, all instances will use exactly the same amount
f resources. This is not a true reflection of reality, but as the
epetition of actions in the AUV domain is low, this was not
eemed to be a significant problem.
In all experiments, the minimum accepted success probabil-

ty threshold was defined as 0.841, as discussed in Section 8.
hroughout our experiments, all results were found to be sta-
istically significant to within the 5% significance level unless
therwise stated. The chi-squared test [46] was used when eval-
ating success rate whilst the Wilcoxon signed rank test [46] for
aired samples was used when analysing reward.

1.2. Experiment 1: Determining the quantity of decision points

We evaluated the effect of varying the number of decision
oints on the reward achieved and on the probability of suc-
essfully completing the mission. The experiment compared five
ifferent levels of decision points, defined as percentages of the
otal number of actions in the initial plan. The number of decision
oints was considered at set levels, varying from 0%, representing
fixed straight-line plan, to 100% which permits plan modifi-

ation after any action in the plan. For each problem/resource
ombination, the experiment was repeated 50 times.
 d

12
Fig. 4. Graph showing the average success rate, across all problems, achieved
whilst varying the number of decision points.

11.2.1. Analysis of results
As the runs are grouped to permit direct comparison, in the

manner of paired tests, it was important that failed runs should
not be compared with successful ones. As reward is heavily
penalised during failed runs, the average reward would be sig-
nificantly affected by the presence of failed runs. Consequently,
the analysis of reward was treated separately to that of success
rate.

11.2.2. Success rates
The average success-rates achieved for each proportion of de-

cision points are shown in Fig. 4. Over all problems, the inclusion
of plan modification (i.e. 20%–100%) outperformed the straight-
line, 0% case, achieving an average of 95.6% compared to 92.2%.
When resources were low, 0% decision points resulted in a larger
number of failures. This is to be expected as, with no opportuni-
ties for plan modification, the system is unable to remove goals
to increase the chance of mission success. Considering only the
low cases, the average success rate of the 0% runs is 83.5%. Also
only considering low runs, 20%–100% decision points achieved an
average success rate of 96.63%, significantly higher than that of
the 0% case. The success rate for 0% improves when the resource
availability is medium (96%) or high (97%). This is to be expected
as, in these cases, the additional resources are surplus to the
requirements of the initial plan and are not reallocated to further
the completion of additional goals. The success rates for runs
using between 20% and 100% decision points are very close, with
only 1.5% separating them — a difference which was not found to
be significant.

In summary, when resources are plentiful, the presence of
decision points has little effect on the success rate achieved. How-
ever, in higher-risk scenarios when resources are constrained,
the presence of decision points within a plan is able to avert
failure, avoiding the reduction in success rate suffered by the
straight-line plan.

11.2.3. Average reward
When resource availability was medium or high, plans with

ecision points achieved, on average, 7.9% higher rewards than
hose with 0% decision points. However, when resource availabil-
ty was low, the trend was reversed; plans with decision points
chieved, on average, 7.7% lower rewards than those with 0%
ecision points. When resource availability is heavily constrained,

ecision points allow goals to be removed, sacrificing reward
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Fig. 5. Graph showing the average percentage improvement in achieved reward
over that of the straight-line plan (0% decision points).

to increase the probability of mission success. A straight-line
plan (0% decision points) is unable to make such updates and so
the higher average in the low case indicates that during some
runs, the plan modification algorithm removed goals, reducing
the available reward.

To investigate the cases in which decision points were present,
the average reward for each problem was calculated as the per-
centage improvement over the 0% case, as this provides an ap-
propriate base-line. An overall average may then be calculated
across all resource availabilities for each level of decision points,
facilitating fair comparison across all problems (see Fig. 5). Of the
cases with decision points, 80% and 100% slightly outperform 20%
and 50% on relative average reward, although the difference is
small and was not found to be statistically significant. From these
overall averages, we can conclude that any amount of decision
points increases the overall average achieved reward above that
of the 0% straight-line case. If we also include failed runs (whose
achieved reward is subject to a penalty), the trend is the same.

In summary, where decision points were used, the average
achieved reward was found to reduce when resources were con-
strained. This was expected as plan modification allows an agent
to sacrifice reward to prioritise success rate. However, when
resources were more plentiful, the average rewards achieved by
plans using decision points were 7.9% higher than achieved by the
straight-line plans. This shows that modifying the plan allows an
agent to use surplus resources to capitalise on additional rewards.

11.2.4. Computation time
As battery used by the agent for computation is then not

available for collecting and delivering datasets, it is important
to consider the computational cost of online plan modification.
As all our experiments were performed in simulation, it was not
possible to measure the battery usage directly. Instead, computa-
tion time was measured to approximate computational cost. The
simulation assumes all actions are executed instantaneously.

The computation time for each percentage of branching points
(0, 20, 50, 80, 100) given each problem was calculated as the
average of 50 runs, each performed on the same machine —
13
a laptop with a 2.40 GHz Intel Core 2 Duo CPU and 3GB of
RAM. The computation times are affected by the presence of
timeouts imposed on plan generation. If Metric-FF fails to find
a plan using enforced hill-climbing, it resorts to a greedy best-
first search [45] and may take many hours to find a solution.
This is a prohibitive length of time for both online planning and
the practicalities of our experiment. Consequently, a two minute
timeout was imposed on initial plan generation and a ten second
timeout for the generation of each plan fragment and stitching
plan. Due to the simplicity of plan fragments and stitching plan
problems, ten seconds is more than sufficient for Metric-FF to
complete enforced hill-climbing.

Fig. 6 shows the average computation time for each level of
decision points across all problems. Each bar is then subdivided
to show the average proportion of time spent on both online
and offline computation. The computation times for 0% decision
points were not included in Fig. 6 as both the pre-computation
time (including the computation of plan fragments and decision
points) and the online time were negligible. The vast majority of
the time required by 0% runs consisted of the time taken to gen-
erate the initial plan which was common to all levels of decision
points. The total computation time increased with the number
of decision points. This was expected because additional plan
fragments must be first generated offline prior to being merged
and evaluated during execution. As all offline computation occurs
prior to the deployment of the agent and the start of mission
execution, offline computation time is not tightly constrained.
As with total time, online computation time also increased with
the number of decision points. The largest average online com-
putation time recorded was 304.1 s for a given problem with
100% decision points. Whilst this may initially seem quite large,
if this experiment had instead been performed in real-time using
a vehicle such as Autosub Long Range 1500 (which runs at ROS-
based control system on a 800MHz Dual Core ARM Cortex A9 with
1GB of RAM and has an endurance of six months [47]), a total
online computation time in the order of 5 min would comprise a
very small percentage of total mission time.

Given that the initial plan generation times were fast for
these problems, the reader may question the value of online
plan modification compared to online total replanning (discarding
the current plan and computing a new one from scratch). To
this end, we performed an experiment, again considering the
AUV domain, to compare the computational cost of our plan
modification approach to that of replanning from scratch using
Metric-FF. The methodology and full results are presented in [48],
with the key findings summarised below:

• When resources were plentiful, replanning with Metric-FF
was very fast. However, when Metric-FF was unable to find a
plan using enforced hill-climbing, the computational cost of
replanning increased significantly, above that of our online
plan modification approach.
• In the average case, our online plan modification approach

required less computation time than replanning from
scratch, when either adding or removing goals.
• Our plan modification approach was highly consistent com-

pared to replanning with Metric-FF, displaying significantly
lower variability in required computation time in all tests.
• When adding goals, our system was able to find a plan in

84.6% of cases which did not require a stitching plan and
61.5% of those which did. Replanning achieved 62.1% and
98.2% respectively. However, replanning from scratch was,
on average, 48.8 s slower when a stitching plan was not
required, and 2.83 s slower when it was. Considering only
successful runs which required a stitching plan, replanning

was an average of 0.95 s faster. The extra time required by
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our plan modification approach in this case is due to the
generation of the stitching plan, which first required the
construction of a new PDDL [49] problem file.
The performance of our online plan modification approach
was very consistent, with a standard deviation of only 0.01 s,
compared to 56.45 when replanning (owing to replanning
reaching the two minute timeout).
• When removing goals, our online plan modification ap-

proach found a plan in 46.2% of cases, compared to 85.2%
for replanning. However, replanning from scratch was, on
average, 18.31 s slower than modifying the plan to remove
the goal (again, owing to replanning reaching the timeout)
and 0.13 s slower when comparing only successful runs.
The standard deviation of our online plan modification ap-
proach (0.003 s) was considerably lower than for replanning
(43.59 s).

11.3. Experiment 2: Determining the plan modification criteria

A second experiment was performed to evaluate the plan
odification criteria of the system, i.e. defining when the system
hould consider the options at a decision point and when it
hould instead continue the execution of the current plan. We
ompared our approach, described in Section 8 and formalised in
lgorithm 1, to an intuitive alternative approach, referred to as
bservedVsExpected. Whilst the modification criteria described in
his paper (referred to as our primary approach) triggers the ad-
itional and removal of goals in response to resource availability
nd the probability of successfully completing the plan, Observed-
sExpected instead compares the resource usage observed during
lan execution to the expected usage over the same interval. The
ifferences between the two approaches are summarised below:

hen to consider removing a goal:

• Our primary approach — Consider removing a goal if the
probability of successfully completing the plan, P(success),
for either battery or memory availability, falls below the
threshold of 0.841, i.e. P(success|battery) < 0.841 or P
(success|memory) < 0.841.
• ObservedVsExpected — Consider removing a goal if the ob-

served resource usage of either battery or memory exceeds
the mean plus the standard deviation of the combined re-
source usage distribution since the start of the plan or the
most recent plan modification, i.e. Usage(battery) > µbattery+

σbattery or Usage(memory) > µmemory + σmemory.

hen to consider adding a goal:

• Our primary approach — Consider adding a goal if the cur-
rent battery availability exceeds the mean plus one standard
deviation of the expected battery usage of the remainder of
14
the current plan, plus the mean expected usage of a given
plan fragment (pf ), i.e. AvailableBattery > µbattery+σbattery+

µpf .
• ObservedVsExpected — Consider adding a goal if the ob-

served resource usage of either battery or memory is less
than the mean expected usage, minus one standard devia-
tion (again, since the start of the plan or the most recent
plan modification), i.e. Usage(battery) < µbattery − σbattery or
Usage(memory) < µmemory − σmemory.

In this experiment we recorded the success rate and reward
chieved using the same set of four test problems as in exper-
ment one. Following the results of the first experiment (see
ection 11.2), we fixed the number of decision points at 100%.
y defining decision points after every action in the initial plan,
e remove a variable from this second experiment. As in the

irst experiment, we again used three resource levels: high (H),
edium (M) and low (L), as defined in Section 11. To facilitate a

air comparison across all experiments, we also used the same
ets of fixed resource usages as in the previous experiment and
epeated the experiment 50 times.

1.3.1. Analysis of results
As in Experiment 1, we evaluated the success rates sepa-

ately from achieved rewards. Prior to calculating the average
chieved reward, any failed runs and their corresponding pairs
ere again removed, as explained in Section 11.2.1. The failed
uns are instead used to determine the success rate.

1.3.2. Success rates
The average success rates achieved by both our primary ap-

roach and ObservedVsExpected for problems with low, medium
nd high resource availability are shown in Fig. 7. When resource
vailability was low, our primary approach achieved a success
ate of 98%, outperforming ObservedVsExpected by 5.5 percentage
oints. Our primary approach also achieved a significantly higher
verage success rate in the medium case (96.5%). In the case of
igh resource availability, ObservedVsExpected appears to slightly
utperform our primary approach, achieving an average success
ate of 97% compared to 96.5% for our primary approach, but this
ifference was not found to be statistically significant.
Over all problems and resource levels, our primary approach

chieved a statistically significant 2.2% increase in success rate
ver ObservedVsExpected (using the chi-squared test [46]).

1.3.3. Average reward
The average rewards achieved by both approaches for vary-

ng levels of resource availability are shown in Fig. 8. When
esources were low, both approaches achieved a very similar
verage reward (the difference between them was not found
o be statistically significant). However, as resource availability
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Fig. 7. Graph showing the average success rates (and associated standard
deviations) achieved by both approaches, given low, medium and high resource
vailability.

Fig. 8. Graph showing the average rewards (and associated standard deviations)
achieved by both approaches, given low, medium and high resource availability.

ncreased, the amount by which our primary approach achieved
igher rewards than ObservedVsExpected also increased. In both
he medium and high cases, the difference between the per-
ormance of the two approaches was found to be statistically
ignificant.
Over all problems, our primary approach achieved higher re-

wards than ObservedVsExpected by a statistically significant mar-
gin of 10.5%.

11.3.4. Discussion
In the case of low constrained resource availability, the average

rewards achieved by both approaches were very similar, but there
were significant differences in success rate, where our primary
approach outperformed ObservedVsExpected by 5.5 percentage
points. This means that when compared to ObservedVsExpected,
our primary approach was able to achieve a high success rate
without compromising average reward. In the cases of medium
and high resource availability, our primary approach was then
15
able to achieve increasingly higher average rewards without sac-
rificing success rate. This suggests that our plan modification
criteria are appropriately balancing the trade-off between capi-
talising on additional rewards and minimising risk to the mission
and vehicle.

In Fig. 9, we show the average number of goal additions and
removals made by each approach given varying levels of resource
availability. On average, our primary approach made more goal
additions than ObservedVsExpected and fewer removals per run.
This is especially noticeable in the case of high resource avail-
ability where, despite making a similar number of additions to
our primary approach, ObservedVsExpected also removed a very
high number of goals. On average, across all levels of resource
availability ObservedVsExpected removed nearly as many goals
as it added, compared to our primary approach which made
many more additions. As we are only considering three resource
levels, and the initial goal sets (and thus the options for im-
mediate removal and addition) are individual to each problem,
we did not expect to find a clear trend between the number
of additions/removals and resource availability. However, we did
expect the number of removals to be higher when resources are
constrained (i.e. in the low case) than when they are plentiful (i.e.
high). This was found to be true for our primary approach, but
the number of goals removed by ObservedVsExpected was found
to increase with resource availability. As both approaches used
the same sets of sampled resource usages and rewards, and thus
experienced the same states at each decision point, this would
suggest that the ObservedVsExpected plan modification conditions
resulted in poor decisions, such as potentially re-adding goals it
had previously removed and vice versa. This limited the extent to
which ObservedVsExpected was able to capitalise on opportunities
for additional reward (e.g. in the medium and high cases) and
compromised success rate when resources were low.

11.4. Experiment 3: Evaluating sequential plan modification and
goal selection against an over-subscription planner

We then compared the performance of our goal selection and
plan merging algorithm to a state-of-the-art over-subscription
planner, OPTIC [4]. Whilst the results from our previous exper-
iments showed that our online plan modification and execution
monitoring approach offers improvements over both straight-line
plans and online planning within our AUV domain [48], it was
important to also evaluate the goal selection choices made by our
online plan modification approach and the quality of the resulting
plans against existing methods. As an over-subscription planner,
OPTIC does not require a fixed goal set, instead allowing optional
‘soft’ goals to be expressed as ‘preferences’ in the PDDL problem
encoding. While completion of these goals is optional, doing so
may allow a plan to earn greater rewards. OPTIC reasons about
the cost and reward of each ‘soft’ goal, searching for a plan which
best satisfies a given metric, given resource constraints. In these
experiments, we gave OPTIC a metric to maximise reward.

In the interests of a fair test, we nullified the benefits of online
modification by removing resource usage uncertainty, instead
assuming that all actions use exactly the mean plus one standard
deviation of their resource usage distributions. By making such
assumptions we ensured that plans generated by OPTIC were
executed in exactly the way the planner anticipated and were not
disadvantaged at run-time.

When using a plan repair-based approach, such as ours, the
quality of the eventual solution is inevitably linked to the qual-
ity of the initial plan. As the aim of this experiment was to
evaluate the performance of our online goal selection and plan
modification algorithms, rather than the selection of an initial
goal set (as this is assumed to be provided by an expert user),
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Fig. 9. Graph showing the average number of goal additions and removals made per run by each approach, given low, medium and high resource availability. Error
ars show the associated standard deviations.
t was important that the performance of our system should not
e unduly biased by the choice of initial goal set as this forms
he base structure to which all future modifications are made.
or example, if we defined all goals in an overall problem (i.e.
nitial goals and those which may be added if resources allow)
s preferences, OPTIC may select a goal set which bears no re-
emblance to that used by our system when generating the initial
lan, making direct comparison of the two approaches difficult.
nstead, we defined the goals which comprise our system’s initial
oal set as ‘hard’ (non-optional) goals, whilst only those which
ay be added during execution were deemed preferences. To

his end, OPTIC must generate a plan and choose a goal set that
atisfies at least the initial goal set, adding more goals where and
hen possible. To allow direct comparison, we prevented our
ystem from removing goals, thus preserving the concept of a
hard’ initial goal set.

As resource usage was assumed fixed and known for each
roblem, we invoked our algorithm at a single decision point
rior to the execution of the first action. We recorded the mean
attery usage and mean reward of the resulting plan along with
he time taken by both approaches to find a solution. As OPTIC
s an anytime planner, we recorded the best plan found within a
imeout of one hour. The computation time recorded is therefore
he time taken to find the best plan. Finally, as OPTIC does
ot support negative preconditions, it was necessary to make
inor adjustments to our AUV domain, replacing the negative
reconditions with new predicates. For example, the precondition
on_surface(auv) was replaced by not_on_surface(auv).
The methodology of this experiment is not without drawbacks,

s compromises, discussed above, had to be made in order to
ermit direct comparison of the two approaches. However, as
e have yet to discover an alternative approach in the literature
apable of solving the problems as presented to our system,
etermining suitable and fair compromises so as to evaluate the
erformance of our online plan modification approach against ex-
sting methods was essential. Whilst not optimal, as a deliberative
ver-subscription planner OPTIC provides the closest available
pproximation.

1.4.1. Analysis of results
OPTIC was unable to solve problems in the previously used test

et and so we instead defined a set of smaller problems for use
n this experiment. The topology of survey locations in the new
roblem set equates to half the number of locations used in the
ther experiments in this paper. Each of the five problems in the
ew test set comprised five initial goals plus five goals which may
e added if resource availability is sufficient, so as to maximise

ventual reward.

16
Fig. 10. Graph showing the average percentage improvement in reward (and
associated standard deviations) of plans produced by OPTIC over those produced
by our online plan modification approach, given a range of resource availability.

11.4.2. Average reward
Using the new reduced test set, our system was able to find

a valid plan in 100% of cases, while OPTIC found plans in 90%,
failing on two problems where resource availability was relatively
low (120%). Across all problems, OPTIC improved on the reward
achieved by our system by 3.26% on average, as shown in Fig. 10,
a difference found for be statistically significant at the 5% level.

11.4.3. Plan quality
When attempting to judge the quality of a plan, we also must

consider the expected resource usage of the plan. As the memory
usage of a plan is not very informative as it is reusable, we solely
consider resource usage in terms of battery.

Whilst the standard deviations were large across all cases,
plans produced by OPTIC used, on average, 2.59% less battery than
those produced by our online plan modification approach, a dif-
ference found for be statistically significant at the 5% level. Conse-
quently, the reward achieved by OPTIC is slightly higher than that
of our system on average (OPTIC achieving 3.26% higher rewards)
whilst the battery used by OPTIC was lower by a comparable
amount.
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Fig. 11. Graph showing the average reward per unit battery (and associated
tandard deviations) of plans produced using both our approach and OPTIC, for
arying levels of resource availability.

In summary, in comparison to OPTIC, our approach achieved
ower rewards and used more battery to do so. If we divide the
eward of each plan by its mean battery requirement to calculate
he amount of reward achieved per unit of battery, we find a
rend across all problems, shown in Fig. 11. The reward per unit
attery decreases as the surplus resources increase. This would
uggest that both systems prioritise the ‘best value’ additional
oals — first adding those whose cost to reward ratio is most
eneficial, before choosing to add goals which represent pro-
ressively less good trade-offs as the surplus increases. It is very
ncouraging to see that, despite our system performing greedy
lan repair, it achieves an average 93.2% of the reward per unit
attery achieved by OPTIC which performs a more comprehen-
ive search. Whilst never outperforming OPTIC, this result, and
ts consistency across all levels of resource availability, shows
hat our greedy system produces plans and associated goal sets
hose value closely approximates that of those generated by a
tate-of-the-art over-subscription planner.

1.4.4. Computation time
Finally, we considered the computation time required by each

pproach. The average times of only the successful runs (i.e.
gnoring the cases where OPTIC reached the timeout) are shown
n Fig. 12. When resources were very plentiful (i.e. in the cases of
40% and 150% resource availability), OPTIC was consistently fast,
utperforming our approach by an average of 18.5 s. However,
hen resource availability was lower (i.e. the 120% and 130%
ases), OPTIC was 55 s slower on average, with a much higher
ariability. On average, our system requires 52.4% less time than
PTIC when considering only successful cases.
As our system is designed to capitalise on ‘unexpected’ addi-

ional resource availability, observed during the execution of a
lan, we believe it is highly unlikely that surplus resources of
0% of the expected plan cost (i.e. as in our 150% availability
est case) will arise in practice. This is both because an expert
perator is likely to define a larger initial goal set, and because
ur system adds goal as soon as resources and success probability
onstraints will allow, without ever allowing large amounts of
urplus resources to accumulate during execution. Our system is
nstead designed to make multiple minor adjustments to the goal
et over the course of plan execution, in response to observed
esource availability.
17
12. Application of our merge algorithm to existing domains

Given an over-subscribed goal set, our merge algorithm (pre-
sented in Section 10.1) is able to return valid plans for problems
in many domains and thus is widely applicable. To illustrate this
applicability, in this section we present example output from
our merge algorithm when applied to two widely publicised
International Planning Competition (IPC) domains — Hiking (see
PC 2014 — domains) and Transport (see IPC 2014 — domains).
oth example domains are from the deterministic track of the
ompetition, rather than either the specialist discrete probabilis-
ic or continuous probabilistic tracks. This is because our plan
erging algorithm does not consider resource usage and thus the
eterministic domains may be used as is, without requiring any
odification or discretisation. In all examples, Metric-FF [45] was
sed for both initial and sub-plan generation. After performing
he merge algorithm, any redundant actions were removed, as in
ur full approach (see Section 9.1). We decided against using the
overs domain (as used by [13]), as it shares many characteristics
ith our AUV domain example, including independent goals, a
ingle agent and few constraints on the order in which goals are
ompleted. To enable discussion of the wider application of the
erge algorithm, we instead trialled it on sufficiently different
omains to investigate its performance on domains outside the
ubset it was designed to solve. By doing this, we aim to high-
ight the merge algorithm’s strengths and weaknesses, identifying
omain characteristics which suit our approach.

2.1. Hiking

The Hiking domain (authored by Lee McCluskey, see IPC 2014)
cenario involves a couple walking a multi-day hiking route,
alking one leg of the journey each day. The hikers may only
alk in one direction and must complete each leg of the walk
ogether. Prior to starting each leg of their walk, the hikers must
ave first set up a tent at the end of the day’s leg, ready for their
rrival. Tents may not be carried by the hikers but must instead be
oved in one of at least two cars. Cars may be driven backwards
nd forwards by the hikers between any waypoints on the hiking
oute and may carry either one or two hikers at a time.

We chose Hiking as an example alternative domain because:

• It features independent goals.
• The domain scenario lends itself to being extended to in-

clude both resource usage and resource uncertainty, e.g. the
cars could consume fuel or people could consume energy
whilst walking (only needing to sleep in a tent to replenish
their energy once it falls below a threshold).
• In contrast to our AUV domain, the Hiking domain is much

more constrained: people may only walk as a couple and
may only walk in one direction, whilst tents may only be
moved using a car and must be set up at the next stop on
the route before the hikers may walk to it. Dead-end states
occur when the hikers are unable to set up a tent at the next
location due to not having a car available at their current
location.

2.1.1. Example output
Given the initial state and goals shown in Fig. 13, Metric-FF

enerated the following plan:
o1: put_down(girl1, place1, tent1)
o2: put_down(girl0, place0, tent0)
o3: drive(guy0, place0, place1, car4)
o4: drive_tent(guy0, place1, place0, car4, tent1)
o5: drive_tent_passenger(girl0, place0, place1,

car4, tent0, guy0)
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Fig. 13. (a) Schematic illustrating the initial state of the initial plan in the Hiking
omain. (b) Schematic illustrating the goal state of the initial plan. The location
f cars, tents and couple1 are not defined in the goal state. In both diagrams,
reen circles represent places, green arrows represent the hiking route and black
rrows represent journeys which may be taken in a car.

o6: drive_passenger(girl0, place1, place0, car4,
guy0)

o7: put_up(girl1, place1, tent0)
o8: drive_tent(guy0, place0, place1, car4,

tent1)
o9: drive_tent_passenger(guy0, place1, place0,

car4, tent1, girl1)
o10: walk_together(tent0, place1, guy0, place0,

girl0, couple0)
o11: drive_tent(girl1, place0, place2, car4,

tent1)
o12: put_up(girl1, place2, tent1)
o13: walk_together(tent1, place2, guy0, place1,

girl0, couple0)
o14: put_down(girl0, place2, tent1)
o15: drive_tent(girl1, place2, place3, car4,

tent1)
o16: put_up(girl1, place3, tent1)
o17: walk_together(tent1, place3, guy0, place2,

girl0, couple0)
However, while actions o10 onwards are straightforward, the

plan is unnecessarily convoluted as the first nine actions result
18
in swapping the locations of tent0 and tent1, which there is no
need for. The only thing which needs to happen prior to couple0
walking from place0 to place1 (o10) is that either girl1 or guy1 is
moved to place0, ready to pick up a car to move a tent to future
locations once couple0 arrives at place1.

Prior to the execution of the first action in the initial plan, we
added a new goal for couple1 (girl1 and guy1) to walk to place3.
Metric-FF generated the following sub-plan:

pf1: put_down(girl1, place1, tent1)
pf2: put_down(guy0, place0, tent0)
pf3: drive_tent_passenger(guy0, place0, place2,

car4, tent0, girl0)
pf4: put_up(guy0, place2, tent0)
pf5: walk_together(tent0, place2, guy1, place1,

girl1, couple1)
pf6: put_down(girl1, place2, tent0)
pf7: drive_tent(girl0, place2, place3, car4,

tent0)
pf8: put_up(girl0, place3, tent0)
pf9: walk_together(tent0, place3, guy1, place2,

girl1, couple1)
This time, guy0 and girl0 move tent0 to each location along

couple1’s route. It is pure coincidence that tent0 was used in the
sub-plan and tent1 in the initial plan. The sub-plan is generated
using only the state at the branch point and a single goal — the
external planner (in this case, Metric-FF) has no knowledge of the
causal structure of the initial plan when generating the sub-plan.

A single plan was returned by our merge algorithm which
required a stitching plan (actions annotated sn). N.B. ‘. . .’ indicates
where contiguous sections of the initial and sub-plans have been
removed from this write-up for the sake of brevity:

- - - current state - - -
pf1: put_down(girl1, place1, tent1)
. . .
pf9: walk_together(tent0, place3, guy1, place2,

girl1, couple1)
s1: drive(guy1, place3, place2, car4)
s2: drive(guy0, place2, place3, car4)
s3: put_down(guy0, place3, tent0)
s4: drive_tent_passenger(guy0, place3, place1,

car4, tent0, girl1)
s5: drive_tent(guy0, place1, place3, car4, tent0)
s6: drive_tent_passenger(guy0, place3, place0,

car4, tent0, girl0)
q s7: put_up(girl1, place1, tent1) s
q s8: put_up(guy0, place0, tent0) s
q o : put_down(girl1, place1, tent1) s
1
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q o2: put_down(girl0, place0, tent0) s
o3: drive(guy0, place0, place1, car4)
o4: drive_tent(guy0, place1, place0, car4, tent1)
. . .

o17: walk_together(tent1, place3, guy0, place2,
girl0, couple0)
The stitching plan resolves threats to causal relationships in

the initial plan by returning guy0, girl0 and tent0 back to place0,
nd girl1 from place3 to place1. Four actions were deemed redun-
ant and removed, indicated by the red q...s symbols.
Whilst our merge algorithm was able to return a valid plan,

his example illustrates the importance of a high quality initial
lan. The convoluted action sequence from the initial plan is pre-
erved in the resulting plan as the merge algorithm modifies the
xisting plan, maintaining causal structure, rather than throwing
way the existing plan and starting from scratch, as in replanning
pproaches (see Section 4.2).

2.2. Transport

The Transport domain (see IPC 2014 — domains) scenario is that
f multiple trucks collecting packages from various locations in a
raph and delivering them to associated goal locations. Each truck
as a limited capacity for carrying packages and may only collect
ackages while it still has space for them. Delivering packages
reates space within the truck. Moving between locations has
n action cost, as do collecting and delivering packages. Each
roblem in the domain has an associated optimisation metric
equiring a planner to minimise the total cost of the plan.

We chose Transport as an alternative domain because:

• The goals are relatively independent.
• The Transport scenario may be logically extended to in-

clude resource uncertainty and rewards, making it a suitable
candidate for use with our full approach.
• It shares characteristics with our AUV domain, including:

bi-directional edges between locations, action costs, no con-
straint by logical preconditions on the order in which goals
are completed and both domains seek to optimise a metric.
• It is suitably different from our AUV domain, in that there

are multiple trucks as opposed to a single AUV and the
completion of each goal is tied to a specific location.

2.2.1. Example output
Given the initial state and four delivery goals to complete

ith two trucks, as illustrated in Fig. 14, Metric-FF generated the
ollowing initial plan (p denotes packages, loc locations and c
alues which represent a measure of the current and previous
apacity of the truck) — note the redundancy between actions o8
nd o9:

o1: drive(truck2, loc1, loc3)
o2: pick-up(truck1, loc2, p4, c2, c3)
o3: drive(truck1, loc2, loc5)
o4: drop(truck1, loc5, p4, c2, c3)
o5: pick-up(truck2, loc3, p3, c1, c2)
o6: drive(truck2, loc3, loc1)
o7: drop(truck2, loc1, p3, c1, c2)
o8: drive(truck2, loc1, loc3)
o9: drive(truck2, loc3, loc1)
o10: pick-up(truck2, loc1, p1, c1, c2)
o11: pick-up(truck2, loc1, p2, c0, c1)
o12: drive(truck2, loc1, loc3)
o13: drive(truck2, loc3, loc2)
o14: drop(truck2, loc2, p1, c0, c1)
o : drop(truck2, loc2, p2, c1, c2)
15

19
Prior to the execution of the first action, we added a new goal
o collect package five from location four and deliver it to location
hree. Metric-FF generated the following sub-plan:

pf1: drive(truck2, loc1, loc4)
pf2: pick-up(truck2, loc4, p5, c1, c2)
pf3: drive(truck2, loc4, loc3)
pf4: drop(truck2, loc3, p5, c1, c2)

Two plans were returned by the merge algorithm, both requir-
ng the generation of an additional stitching plan that, along with
n action from the initial plan, was later removed as redundant.
n the first ordering, shown below, the sub-plan was added as a
ingle contiguous block prior to the initial plan:

- - - current state - - -
pf1: drive(truck2, loc1, loc4)
pf2: pick-up(truck2, loc4, p5, c1, c2)
pf3: drive(truck2, loc4, loc3)
pf4: drop(truck2, loc3, p5, c1, c2)
q s1: drive(truck2, loc3, loc1) s
q o1: drive(truck2, loc1, loc3) s
o2: pick-up(truck1, loc2, p4, c2, c3)
o3: drive(truck1, loc2, loc5)
o4: drop(truck1, loc5, p4, c2, c3)
o5: pick-up(truck2, loc3, p3, c1, c2)
o6: drive(truck2, loc3, loc1)
o7: drop(truck2, loc1, p3, c1, c2)
q o8: drive(truck2, loc1, loc3) s
q o9: drive(truck2, loc3, loc1) s
o10: pick-up(truck2, loc1, p1, c1, c2)
o11: pick-up(truck2, loc1, p2, c0, c1)
o12: drive(truck2, loc1, loc3)
o13: drive(truck2, loc3, loc2)
o14: drop(truck2, loc2, p1, c0, c1)
o15: drop(truck2, loc2, p2, c1, c2)

As the sub-plan resulted in truck2moving from loc1 to loc3, the
irst action in the initial plan, o1 is not strictly necessary to meet
he preconditions of o2. However, as the merge algorithm may
nly skip actions in the sub-plan, it was not possible to simply
kip o1 and so the generation of a stitching plan was necessary to
esolve the threat to o1, which required truck2 at loc1. After the
erge was complete, redundant actions were removed between
uplicated states (see Section 9.1). As the state preceding s1 is
dentical to that following o1, both actions were pruned from the
lan (indicated by the red q...s symbols).
Whilst the resulting plan is valid and no longer contains re-

undant actions, the steps taken by the merge algorithm probably
eem unnecessarily convoluted to the reader — why could the
lgorithm not just skip o1 in the first place, preventing the need
or a stitching plan? However, while it is straightforward to detect
edundancy in a completed merge, knowing which action to skip
n the current plan mid-merge is not so trivial as the causal
tructure may be complicated with many interdependencies.
In the second ordering, shown below, the sub-plan was added

alfway through the initial plan and again, a stitching plan was
irst generated and then pruned along with an action from the
nitial plan, o8:

- - - current state - - -
o1: drive(truck2, loc1, loc3)
o2: pick-up(truck1, loc2, p4, c2, c3)
o3: drive(truck1, loc2, loc5)
o4: drop(truck1, loc5, p4, c2, c3)
o5: pick-up(truck2, loc3, p3, c1, c2)
o6: drive(truck2, loc3, loc1)
o7: drop(truck2, loc1, p3, c1, c2)
pf1: drive(truck2, loc1, loc4)
pf2: pick-up(truck2, loc4, p5, c1, c2)
pf : drive(truck2, loc4, loc3)
3
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Fig. 14. (a) Schematic illustrating the initial state of the initial plan in the Transport domain. (b) Schematic illustrating the goal state of the initial plan (the additional
goal, to move p5 is shown in brackets). The location of trucks are not defined in the goal state. In both diagrams, yellow circles represent locations and arrows
represent roads between locations. The initial and goal locations of each package p are shown and trucks are annotated with their initial capacity, c.
pf4: drop(truck2, loc3, p5, c1, c2)
q s1: drive(truck2, loc3, loc1) s
q o8: drive(truck2, loc1, loc3) s
o9: drive(truck2, loc3, loc1)
o10: pick-up(truck2, loc1, p1, c1, c2)
o11: pick-up(truck2, loc1, p2, c0, c1)
o12: drive(truck2, loc1, loc3)
o13: drive(truck2, loc3, loc2)
o14: drop(truck2, loc2, p1, c0, c1)
o15: drop(truck2, loc2, p2, c1, c2)

As the inclusion of the sub-plan met the preconditions of o9
and all subsequent actions, o8 was no longer required. However,
as before, o8 was only able to be removed as a redundant action
following the completion of the merge.

If we instead choose to include the new goal following the
execution of the first action in the initial plan, o1, the causal
structure is such that we avoid this complexity entirely. In this
case, the sub plan generated by Metric-FF is as follows:

pf1: drive(truck2, loc3, loc4)
pf2: pick-up(truck2, loc4, p5, c1, c2)
pf3: drive(truck2, loc4, loc3)
pf4: drop(truck2, loc3, p5, c1, c2)

The merge algorithm is able to merge the sub-plan, without
the need for a stitching plan. In total, 36 unique orderings were
found when merging this second sub-plan into the initial plan.
While this may sound computationally expensive, the merge
algorithm required a total of 1.82 s to generate all 36 orderings.

As sub-plans are generated to achieve a single goal, situations
may occur in which the addition of a new goal increases the
amount of actions/cost required to achieve an existing goal. For
example, if a new delivery goal is added when all trucks are full,
a sub-plan may specify that a package is temporarily dropped off
at a location which is not its goal to make space in the truck to
enable the collection and delivery of the package associated with
the newly added goal. However, while this may seem to be a
disadvantage when the ordering is considered in isolation, within
the context of our wider system the goal will only be added if
the resulting plan is better (according to the optimisation metric)
than the current plan. If there was no uncertainty in the domain,
and thus no need for online modification, given sufficiently high
resources we would expect an over-subscription planner such
as OPTIC to include package five from the start, producing a
higher quality plan which takes advantage of cross-over/helpful
interactions between the goals.
20
13. Conclusions

In this paper, we have presented a novel online plan mod-
ification and execution monitoring approach to planning under
uncertainty in resource-constrained environments.

We defined the key characteristics of realistic domains, com-
mon to many robotics applications, that suit the use of our
approach (uncertainty, over-subscribed goals and optimisation
metrics). Uncertainty over continuous state variables such as
resources, coupled with a significantly large number of possible
goal combinations, prevents the use of existing offline methods
for planning under uncertainty, such as Markov decision problem
solvers and contingency plans. By using an online approach, we
are able to reason about goals and reduce the risk and uncertainty
associated with the rest of a plan by using observations made
during plan execution. We presented our online plan modification
approach which sequentially modifies a plan during execution
using pre-computed plan fragments, each comprising the actions
required to complete a single goal along with the associated
resource costs and causal structure.

We evaluated our full approach using our AUV domain and
the results showed that altering the plan during execution al-
lowed surplus resources to be used for exploiting additional
opportunities, increasing the overall reward without adversely
affecting the success rate. Conversely, when resources were con-
strained, our algorithm was able to increase success rate by
removing low-value goals and their associated actions. This is
especially important when considering robot operations in haz-
ardous environments, where human intervention is very limited
or impossible, as data collection capabilities may be fully utilised
without compromising the safe return of the robot and its data
cargo. We then compared the goal selection and plan merging
capabilities of our greedy online modification algorithm to plans
produced by a state-of-the-art over-subscription planner, finding
that our approach was able to closely approximate the quality
produced by the more comprehensive approach. When consid-
ering the computational cost of our approach, in the average
case our online modification algorithm was found to require less
computation time than both the over-subscription planner and
replanning from scratch [48].

Whilst implementing our online plan modification approach
on a real robot was outside the scope of this work, the results
from testing our approach in simulation are encouraging and
confirm it has promise as an effective solution to planning for
a large class of oversubscribed planning domains which feature
significant resource uncertainty.
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ppendix. MDP representation of AUV domain

An MDP is a tuple ⟨S, A, T , R⟩ where S is the set of states, A
the set of actions the agent can perform, T the transition function
and R the reward function. As S is infinite due to the continuous
variables representing resources, T is also infinite. Consequently,
without first discretising the continuous variables, the use of a
standard MDP solver is infeasible. As a result, we do not define T ,
instead using this representation as a convenient formalism. The
AUV domain is defined as follows:

• A complete system state s ∈ S defined by the following set
of state variables:

– Location of the vehicle:
at_loc(l) where l ∈ Locations and Locations = {start,
end, l1, l2, . . .}.

– Whether the vehicle is on the surface or at operating
depth:
on_surface() = {true, false}.

– Datasets which have been collected:
data_collected(d) = {true, false} where d ∈ Datasets
and Datasets = {d1, d2, . . .}.

– Datasets which have been transmitted:
data_transmitted(d) = {true, false} where d ∈ Datasets
and Datasets = {d1, d2, . . .}.

– Datasets which have been delivered at the point of
vehicle recovery:
data_delivered(d) = {true, false} where d ∈ Datasets
and Datasets = {d1, d2, . . .}.

– Datasets with the scientists — true if dataset has either
been transmitted or delivered:
data_with_scientists(d) = data_transmitted(d) ∨ data_
delivered(d).

– The size of each on-board dataset — zero for uncol-
lected sets, unknown at planning time and thus is
assumed to be the mean of the associated distribution:
data_size(d) = (positive real) where d ∈ Datasets and
Datasets = {d1, d2, . . .}.

– Status of the mission:
mission_ended() = {true, false}.

– Available battery power: battery = (positive real).
– Available memory: memory = (positive real).
– Achieved reward: reward = (positive real).

To represent the world in which the vehicle operates, the
following constants are also included in the state represen-
tation:

– Traversable graph of locations, represented as neigh-
bouring pairs:
is_neighbour(li, lj) = {true, false}

– The predefined end-location, at which the vehicle is to
await recovery by a support vessel: is_end_location(l)

– The location of each collectable dataset:
data_to_collect(l, d) = {true, false}
21
– The mean battery usage when moving between two
locations:
move_battery_usage(li, lj) = (positive real).

– The mean battery usage when collecting a dataset:
collect_battery_usage(d) = (positive real).

– The standard deviation of the battery usage distribu-
tion when collecting a dataset:
sd_collect_battery_usage(d) = (positive real).

– The mean memory usage when collecting a dataset:
mean_memory_usage(d) = (positive real).

– The standard deviation of the memory usage distribu-
tion when collecting a dataset:
sd_memory_usage(d) = (positive real).

– The mean reward associated with each dataset,
awarded upon
data_with_scientists(d) = true:
mean_data_reward(d) = (positive real).

– The mean battery usage when surfacing:
surface_battery_usage() = (positive real).

– The standard deviation of the battery usage distribu-
tion when surfacing:
sd_surface_battery_usage() = (positive real).

– The mean battery usage when diving:
dive_battery_usage() = (positive real).

– The standard deviation of the battery usage distribu-
tion when diving:
sd_dive_battery_usage() = (positive real).

– The mean battery usage when transmitting a dataset:
transmit_battery_usage(d) = (positive real).

– The reward achieved for ending the mission at the
pre-defined end location, is_end_location(l):
reward_end_location() = (positive real).

• A, the set of discrete actions available to the vehicle is
represented by seven parameterised action schemas:

– CollectData(d) — Collect dataset d if vehicle is in the
correct location.

– Move(l1, l2) — If the vehicle is at location l1, move to l2.
– Dive() — Move from the surface to depth at the current

location.
– Surface() — Move from depth to the surface at the

current location.
– TransmitData(d) — Attempt data transmission provided

the vehicle is at the surface and has dataset d.
– DeliverData(d) — Deliver dataset d provided the mis-

sion has ended and the vehicle has collected the data-
set d.

– EndMission(l) — Wait for recovery at current location l.
Upon executing this action, only DeliverData actions
may subsequently be performed. The vehicle receives a
reward for finishing the mission. However, if l does not
equal the predefined end location (is_end_location(l))
the vehicle does not receive the full reward. Recovering
the vehicle from a different location is costly as it
requires the support vessel to change route.

• R is the reward function R(s, a, s′) which specifies the im-
mediate reward for performing action a in state s and tran-
sitioning to s′. Positive rewards are given when the vehicle
successfully delivers a dataset and ends the mission, with
additional reward available for ending the mission at the
agreed location, defined by is_end_location(l). For example,
successfully performing TransmitData(d) in a state where
dataset d has been collected but not transmitted would
result in a reward.
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