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Foreword 

This report is the result of a study by the British Geological Survey (BGS) and Jarðfeingi into the 

Eocene post-rift stratigraphic development of the Faroe–Shetland region. The report presents a 

stratigraphical analysis of the Eocene Stronsay Group based primarily on a set of released UK 

commercial wells that have been subjected to a detailed biostratigraphic analysis by Ichron 

Limited, and made available – in confidence – to the BGS for the purpose of this study. These 

data have been combined with information from released wells in the Faroese sector, relevant 

BGS boreholes and other published information for which biostratigraphic information exists, to 

construct a stratigraphic-range chart for the Eocene succession. This chart forms the basis for a 

set of timeslice reconstructions based on the rock record. In addition, key seismic sections linked 

to the stratigraphic-range chart provide a correlation tool for the identification of potential 

regionally significant intra-Eocene boundaries, thereby forming the basis for a provisional 

stratigraphic framework for the Stronsay Group. The timing of change recorded by both the rock 

record and the seismic data is investigated with regard to the tectonic setting of the Faroe–

Shetland region in an attempt to better understand the driving mechanisms and controls on the 

early post-rift development of the Faroe–Shetland region.  
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Summary 

A preliminary stratigraphic framework for the post-rift Eocene Stronsay Group succession in the 

Faroe–Shetland region has been constructed, which incorporates lithological information from 

over fifty wells, boreholes and dredge sites, biostratigraphic data provided by Ichron Limited, 

and seismic stratigraphy. A stratigraphic-range chart was compiled using released UK and 

Faroese commercial well data, together with BGS and other public domain information. This 

chart details the chronological range, general lithology and correlation of the post-rift Eocene 

record for each commercial well, BGS borehole and other data point, e.g. DSDP site. This 

dataset was used to construct a set of timeslice maps utilising the Ichron Limited T-sequence 

biozonation scheme, which were used to interpret the spatial and temporal variation of Eocene 

post-rift sedimentation across the region. Seismic profiles further provided an insight into the 

large-scale stratigraphic architecture of the Stronsay Group which, in combination with the 

geological database, provides a context for several regional unconformities and other significant 

surfaces identified in the study.  

On the basis of our provisional assessment of the Stronsay Group in the Faroe–Shetland region 

we have retained the use of the Horda Formation as the main lithostratigraphic unit, as this shelf-

margin to basinal unit – defined originally in the North Sea – is consistent with the character of 

the Eocene succession that we observe preserved offshore NW Britain. Nonetheless, informal 

subdivision of the Horda Formation is proposed that reflects several discrete phases of 

sedimentary input into the Faroe-Shetland Basin. Four unconformity-bounded depositional 

packages have been tentatively identified, and provisionally assigned ages of Ypresian–early 

Lutetian (phase 1), Lutetian–early Bartonian (phase 2), Bartonian–Priabonian (phase 3), and late 

Priabonian (phase 4). The phase 1 and 2 depositional packages are separated by the Mid-Eocene 

(T2d) unconformity which reflects subaerial exposure and channel incision up to 200 m deep 

during its formation in the Lutetian. The early Bartonian Base-slope-apron (T2c) unconformity 

separates the phase 2 and 3 depositional packages, and is similarly erosive along the southern 

and eastern basin margin. Seismic-stratigraphic evidence suggests that synsedimentary 

deformation may have been active during depositional phases 1 and 2, including growth and 

uplift of the Munkagrunnur Ridge, and the Judd and Westray anticlines, as well as uplift of the 

Flett High. The phase 3 depositional package marks a large-scale progradation of the West 

Shetland margin, which may reflect uplift and rejuvenation of the hinterland. The phase 3 and 4 

depositional packages are separated by the Base-marginal-fan (T2b) reflector, which may be a 

consequence of renewed uplift of the margin and/or further growth of the inversion anticlines 

during the Priabonian. 

This stratigraphic framework provides new insights into the early post-rift tectonic and 

sedimentary history of the Faroe–Shetland region, identifying a sequence of unconformity-

bounded units. Comparison with the wider NE Atlantic region indicates broad coincidence 

between the timing of formation of the unconformities in the Faroe–Shetland region and plate 

reorganisation events in the adjacent Norway Basin; as well as orogenic and related 

compressional deformation in western Europe. This raises the possibility that plate boundary 

forcing may be a key mechanism in passive margin development. It is hoped that this framework 

will form a useful foundation for future studies of the tectonostratigraphic development of the 

Faroe–Shetland region.   
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1 Introduction 

The term Stronsay Group was introduced by Knox and Holloway (1992) for the Eocene 

sediments of the UK central and northern North Sea that overlie the Balder and Dornoch 

formations. As these sediments are in direct continuity with deposits of equivalent age on the 

NW UK margin (Figure 1), the geographical range of the Stronsay Group was expanded by 

Knox et al. (1997) to include the area to the west of Shetland.  

Whereas the Stronsay Group in the central and northern North Sea has been divided on the basis 

of lithostratigraphic, biostratigraphic and sequence-stratigraphic techniques (Knox and 

Holloway, 1992; Galloway et al., 1993; Bujak and Mudge, 1994; Jones and Milton, 1994; 

Mudge and Bujak, 1994, 1996; Jones et al., 2003), it has remained undivided in the Faroe–

Shetland region (Knox et al., 1997) (Figure 2), where the main industry focus has been the deep-

water Paleocene sandstone play. Although a Mid-Eocene basin-floor fan play has been 

recognised in the Faroe-Shetland Basin (Davies et al., 2004; Quinn et al., 2011), it has, to date, 

been largely associated with generally poor hydrocarbon indications.  

Academic interest in the Faroe–Shetland region has also been largely focused on its Paleocene–

earliest Eocene (pre-Stronsay Group) development, with a number of workers (e.g. White and 

Lovell, 1997; Jones et al., 2002; Maclennan and Lovell, 2002; Smallwood and Gill, 2002; 

Mudge and Jones, 2004; Shaw Champion et al., 2008; Hartley et al., 2011) linking an early 

Palaeogene increase in clastic sedimentation to Iceland plume-related uplift of the British Isles. 

These studies have tended to emphasise the role of the syn-breakup Iceland plume as the primary 

tectonic influence on sedimentation patterns during the Palaeogene. Indeed, Jones et al. (2002) 

have stated that the sediment flux into the northern North Sea and Faroe-Shetland Basin grew 

through Paleocene time and then decreased into Eocene time. By way of contrast, a recent 

calculation of sediment volumes along the NW British continental margin, including the Faroe–

Shetland region, indicates that ~80% of the total Cenozoic sediment volume was deposited in 

several pulses during Eocene and later time (Stoker et al., 2010b). This indicates that 

sedimentation has not declined in any systematic manner since breakup. A stepwise pattern of 

sedimentation for the Eocene in the central and northern North Sea has been understood for a 

number of years (e.g. Galloway et al, 1993; Jones and Milton, 1994; Mudge and Bujak, 2004), 

and this pattern is becoming increasingly apparent for the NE Atlantic margin tied to plate 

boundary reconfiguration events in the NE Atlantic (Robinson et al., 2004; Praeg et al., 2005; 

Holford et al., 2009; Stoker et al., 2012). 

In order to address the above issues, the Faroe-Shetland consortium of oil companies 

commissioned this regional study of the Stronsay Group in the Faroe–Shetland region with a 

view to providing a basis for the establishment of a stratigraphic framework, as well as shedding 

new light on the early post-rift geological development of this area.  

1.1 SCOPE AND OBJECTIVES   

The project was designed in order to better define the stratigraphic architecture of the Eocene 

post-rift Stronsay Group in the Faroe–Shetland region. The area of study extends northwestwards 

from the West Shetland Shelf to the Iceland-Faroe Ridge, with a south-western boundary 

essentially marked by the Wyville-Thomson/Ymir Ridge and a north-eastern boundary marked 

by the UK/Norwegian median line (Figure 1).  

The major objective of this study is to develop a preliminary Eocene tectonostratigraphic 

framework for the Faroe–Shetland region. To achieve this objective, we have mainly used the 

borehole/well database supplemented by selected seismic profiles. Our stratigraphic framework 

has built upon the UKOOA lithostratigraphy previously developed for the NW UK margin 
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(Knox et al., 1997) as well as the adjacent northern North Sea (Knox and Holloway, 1992) 

(Figure 2a). We have also taken into account the main sequence-stratigraphic schemes developed 

for the Eocene in the central and northern North Sea (Figure 2b); in particular, the use of the T-

sequence scheme of Jones and Milton (1994), which is a basis for biostratigraphical analysis of 

Faroe-Shetland wells (Figure 3). In addition, there are a number of seismic-stratigraphic schemes 

(Figure 4) that we have considered during our stratigraphical analysis. As part of the general data 

gathering process, all stratigraphical information associated with this study will be incorporated 

into the ArcGIS database that is being created on behalf of the Faroe-Shetland Consortium. 

1.2 DATA SOURCES 

There are five main sources of information: 

1. Published scientific literature, as well as unpublished Ph.D theses. 

2. BGS borehole database. 

3. Released commercial well-logs. 

4. Two non-proprietary Ichron Limited biostratigraphy reports. These reports were supplied 

by Ichron Limited (2010a, b) in confidence to the BGS as part of this project. They present 

the results of a biostratigraphic (palynological and micropalaeontological) review of the 

Paleocene to Eocene interval in 50 exploration and appraisal wells from across the Faroe-

Shetland Basin, with the exception of Quadrant 204.  

5. Released seismic reflection data contributed by the Faroe-Shetland Consortium members. 

1.3 METHODOLOGY 

Well-log and core information taken from 54 released commercial wells, two BGS boreholes, 

one DSDP site and two main areas of sea bed dredge sampling form the main rock-record 

component of this regional study – a total of 59 key stratigraphic sites (Figure 1 and Table 1). It 

should be noted that 145 wells in total were investigated; however, the 54 wells used in this 

study were chosen on the basis of the quality of their biostratigraphic information, of which 45 

were included within the Ichron reports. Thus, most of the wells in this study are keyed into the 

Ichron T-sequence scheme, which is based on the original BP T-sequence framework published 

by Jones and Milton (1994) (Figure 3). Correlation between the two schemes is detailed in 

Figure 3. Biostratigraphic data for the remaining nine wells was obtained from CDA (in the UK 

sector) and from Jardfeingi (in the Faroese sector) (Table 1).  

Most of the wells (49) are in the UK sector and show a wide spread of data points along the West 

Shetland margin. The Faroese wells are located at the south-west end of the Faroe-Shetland 

Basin, together with the BGS boreholes (Figure 1). The two dredge-site locations are situated as 

follows: 1) on the east Faroe Shelf; and, 2) on the southern flank of the Ymir Ridge. DSDP site 

336 is located on the northern slope of the Iceland-Faroe Ridge. The stratigraphic range of the 

Eocene sequence at each sample site has been captured on a stratigraphic-range chart 

(Appendix1; Figure A.1). In addition to the age range, the chart also includes lithology (for the 

wells this is largely derived from the composite logs), thickness, additional stratigraphical notes 

where necessary, and a provisional lithostratigraphic subdivision of the Stronsay Group that we 

are proposing from this study. Inspection of Figure A.1 shows that lithological information for 7 

wells (205/10-2, 208/19-1, 214/17-1, 214/19-1, 214/24-1, 214/27a-3, and 214/27a-4) was not 

available, but the biostratigraphic zonal information was utilised.  

This dataset formed by the stratigraphic-range chart underpins the study as it enables a series of 

timeslice maps, linked to the Ichron T-sequences, to be constructed for the Faroe–Shetland 

region. Fifteen maps have been produced; these comprise the syn-rift T45 and earliest post-rift 

T50 intervals (part of the preceding Moray Group), which provide context for the Stronsay 
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Group, together with the post-rift T60 to T99 intervals. The value of these maps is that they 

provide an immediate visual appreciation of the spatial and temporal variation in early post-rift 

sedimentation across the region, based on the actual rock record. The lithological key to the 

sample sites indicated on the maps is calibrated with the stratigraphic-range chart. Although 

sandstones and claystones, specifically, are indicated on the logs, many of the recovered sections 

are reported as interbedded sequences of coarser- and finer-grained clastic deposits. This 

interbedded lithological character is represented by a gradational colour scheme on the 

stratigraphic-range chart; however, this subtle colour variation can be difficult to distinguish on 

the A4-sized hard-copy diagrams. Thus, for best resolution and clarity of the maps the reader is 

directed to the PDF version of this report, which is included on the CD-ROM attached to the 

inside cover of the report binder. 

A preliminary evaluation of the seismic reflection database has also been undertaken to provide a 

basis for an appraisal of the Eocene seismic architecture across the continental margin. This 

work was undertaken alongside, and complemented, the Faroe-Shetland Consortium Project 

„Cenozoic pre- and post-breakup compression in the Faroe–Shetland area within the context of 

the NE Atlantic margin‟ (Johnson et al., 2012), which is based primarily on regional seismic 

interpretation. By combining the two methodologies, the stratigraphic and seismic-reflection 

databases have enabled us to identify a number of provisional key reflectors that might form the 

basis for the definition of regionally mappable units. This preliminary framework is described 

and summarised in section 3. 

1.4 TIMESCALE AND THE BASE OF THE EOCENE 

The timescale used in this study is based on Gradstein et al. (2004) and Ogg et al. (2008) (Figure 

3). The base of the Eocene (55.8 Ma) is now defined globally by the onset of the carbon isotope 

excursion marking the start of the early Eocene thermal maximum (Gradstein et al, 2004; 

Westerhold et al., 2009 and references therein). In the Faroe-Shetland Basin, this boundary 

probably occurs within the T40 lowstand sequence (Lower Flett Formation) of the Moray Group. 

Knox et al. (1997) provisionally correlated the boundary with the top of Flett unit 1B and to the 

top of the Colsay Sandstone Member (which marks the T40/45 boundary) based on the first 

downhole occurrence (FDO) of abundant Apectodinium spp. (Apectodinium spp. acme dinocyst 

biomarker).  This follows a similar assignment by Knox and Holloway (1992) in the North Sea 

where, on the basis of the same criteria, the Paleocene/Eocene boundary was tentatively placed 

at the top of the S1b unit of the equivalent Sele Formation. In the Faroe–Shetland region, this 

would place the Paleocene/Eocene boundary at the T40/T45 sequence boundary. According to 

Ebdon et al. (1995), however, A. augustum is restricted to sequence T40; thus the T40/T45 

boundary is arguably associated with the extinction of this dinocyst, which according to the 

timescale of Gradstein et al. (2004) postdates the Paleocene/Eocene boundary by about one 

million years (i.e. at 54.8 Ma). Thus defined, the base of the Eocene is probably slightly older 

than the top F1B and S1b positions provisionally proposed by Knox et al. (1997) and Knox and 

Holloway (1992) for the Faroe-Shetland Basin and North Sea Basin, respectively (Passey and 

Jolley, 2009; Passey and Hitchen, 2011). More recently, the Paleocene/Eocene boundary has 

been placed lower within the Flett Formation, at about the F1A/F1B contact, within the Colsay 

Sandstone Member (Jolley and Bell, 2002; Jolley et al., 2005).  
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2 Regional setting 

2.1 THE NORTH-EAST ATLANTIC MARGIN 

The Faroe–Shetland region forms part of the Atlantic continental margin of NW Europe, which 

encompasses Norway, Britain, the Faroe Islands and Ireland. The development and shaping of 

this passive margin is inextricably linked to the evolution and breakup of the NE Atlantic rift 

system; its complex bathymetry ultimately being a reflection of the crustal thickness variations 

due to rifting and magmatism that culminated in the separation of Europe and Greenland in the 

early Eocene (e.g. Skogseid et al., 2000). The final localisation of extension along the continent–

ocean boundary took place during an overall northward propagation of seafloor spreading, in the 

Late Cretaceous along the Labrador Sea axis and in the early Cenozoic along the Greenland–

Norwegian Sea axis (e.g. Ziegler, 1988; Doré et al., 1999) (Figure 5a). However, the width of the 

margin (up to 800 km west of Ireland, 500 km west of Norway) reflects an overall westward 

displacement of a „proto-North Atlantic‟ rift axis through the Mesozoic (Doré et al., 1999), 

which left a chain of large, Mid-Jurassic to Cretaceous deep-water sedimentary basins, including 

the Faroe-Shetland Basin, flanked by structural highs and by the inner continental shelf. The 

Vøring, Møre and Faroe-Shetland basins, in water depths over 1000 m, and the underfilled 

Rockall and Porcupine basins with water depths >2000 m continued to accumulate sediment 

throughout the Cenozoic, but contain no tectonostratigraphic evidence of post-Paleocene 

extension (e.g. Roberts et al. 1999).  

Additional complexity in margin physiography has resulted from Cenozoic magmatism, which is 

responsible for the thickened crust of the Greenland-Scotland Ridge (GSR) that flanks the 

Iceland hot-spot (since the Miocene) and for numerous igneous centres or „seamounts‟ (Doré et 

al. 1999) (Figure 5). The development of the GSR is commonly ascribed to the thermal effects 

from a proto-Iceland plume, the „arrival‟ of which is seen by some workers as the decisive factor 

in causing breakup due to lithospheric weakening (e.g. White, 1988, 1989; Smallwood and 

White, 2002). This „plume‟ is also considered to have influenced high-frequency changes in 

relative sea level and pulses of sedimentation immediately prior to breakup, with a particular 

focus on the Faroe–Shetland region (e.g. White and Lovell, 1997; Smallwood and Gill, 2002; 

Shaw Champion et al., 2008; Lovell, 2010; Hartley et al., 2011). However, the opening of the 

NE Atlantic Ocean as we see it today, including the development of Iceland and its insular 

margin, was not a single event in the early Eocene; instead, it represents the final linkage 

between separate Arctic and North Atlantic rifts, which only occurred in the Miocene when Jan 

Mayen separated from Greenland, and since when the GSR has developed symmetrically about 

Iceland (Mosar et al., 2002a; Lundin and Doré, 2005a; Lundin and Sigmond, 2007; Doré et al., 

2008). This has led to the alternate view that the Iceland anomaly developed at the plate 

boundary during breakup and has remained there – fixed – throughout its history (Lundin and 

Doré, 2005b). The southward- and northward-propagating ridges overlapped in the region of 

Iceland; thus, conceivably, the Iceland mantle upwelling anomaly is related to the convergence 

of these ridge tips (Lundin and Doré, 2005a). Therefore, the possibility that the hot spot anomaly 

is an upper mantle response to plate breakup (i.e. a top-down effect of plate tectonics), of which 

the volcanism is a by-product of this extension, cannot be discounted (Doré et al., 1999; Foulger 

and Anderson, 2005). It also raises questions about the mechanism(s) responsible for pre-

breakup uplift in the Faroe–Shetland region. 

The post-rift development of the NE Atlantic margins is generally classed as passive 

(tectonically inert). However, the configuration of the NW European margin has been 

significantly modified by late Palaeogene and Neogene epeirogenic and compressive movements 

(e.g. Doré et al., 1999, 2002; Praeg et al., 2005; Stoker et al., 2005a, b), indicating an evolution 
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that has been anything but passive. Epeirogenic movements have resulted in a series of broad 

domes along the NW European margin, recording km-scale uplift (Rohrman and van der Beek, 

1996; Japsen & Chalmers, 2000), as well as in offshore episodes of rapid differential deepening, 

also of km-scale (e.g. Cloetingh et al., 1990; Vanneste et al., 1995; Stoker et al., 2005a, b). The 

domal uplifts include southern Norway and Britain–Ireland (Rohrman and van der Beek, 1996), 

each of which provides evidence of two main uplift phases, in the early and late Cenozoic (see 

Doré et al., 2002; Holford et al., 2010). The origin of these enigmatic movements remain 

unclear, and both mantle convective (see Stoker et al., 2005b and Praeg et al., 2005 and 

references therein) and lithospheric fold (see Japsen et al., 2011 and references therein) processes 

have been proposed. In the adjacent North Sea Basin, early post-breakup uplift in the northern 

Scottish–Shetland region is envisaged to have influenced clastic progradational shelf-margin and 

deep-water fan sedimentation throughout the late Palaeogene (Jones and Milton, 1994; Mudge 

and Bujak, 1994), though tectonic mechanisms remain unresolved.  

Over a comparable period, compressional movements have resulted in the formation of inversion 

anticlines on parts of the margin, including the Rockall Plateau, Wyville-Thomson Ridge, Faroe-

Shetland region and the Norwegian margin (Boldreel and Andersen, 1998; Lundin & Doré, 

2002; Johnson et al., 2005; Tuitt et al., 2010). These structures range from 2–4 km in amplitude 

and are tens of kilometres across, with the axes of some individual structures traced for hundreds 

of kilometres. The contractional phases are interpreted to record variations in compressive 

stresses within the European plate, which have been attributed to various causes, such as plate 

tectonic processes originating from the Pyrenean and Alpine orogenies (Vågnes et al., 1998; 

Brekke, 2000), changes in seafloor spreading geometries and rates (Boldreel and Andersen, 

1993; Mosar et al., 2002b), and ridge-push and mantle drag forces (Doré and Lundin, 1996; Doré 

et al., 1999; Roberts et al., 1999; Lundin and Doré, 2002). Alternative explanations attribute the 

formation of the anticlinal structures along the Norwegian margin solely to differential loading 

by Plio-Pleistocene sediment wedges (e.g. Kjelstad et al., 2003). The ambiguity concerning the 

causes of compressional tectonism is in part related to uncertainty over the number and age of 

compressive phases recorded by the anticlinal structures. A compilation of age estimates from a 

number of studies along the NW European margin implies a record of contractional deformation 

that was almost continuous from the late Paleocene to the Pleistocene (Boldreel and Andersen, 

1998; Vågnes et al., 1998; Lundin and Doré, 2002; Ritchie et al., 2003, 2008, 2011; Johnson et 

al., 2005; Stoker et al., 2005c, 2011). Common to most age estimates is an intensification of 

contractional deformation during the Miocene, resulting in the initiation of new structures as 

well as the reactivation of older (Palaeogene) structures. This prominent period of compressional 

deformation may coincide with the development of the Iceland Insular Margin, and it has been 

suggested that the radial body force from the topographic/bathymetric anomaly may have been 

sufficiently large to cause compressional deformation in the adjacent margins (Doré et al., 2008), 

particularly in areas of hyperextended and weakened lithosphere (Lundin and Doré, 2011).  

2.2 FAROE–SHETLAND REGION 

2.2.1 Structural framework 

The structural framework of the study area is dominated by the Faroe-Shetland Basin, which is 

approximately 400 km long and up to 200 km wide and consists of a generally NE-trending 

complex of sub-basins and intra-basinal highs (Figure 6). The basin has had a long history of 

development dating back to Late Palaeozoic times (cf. Doré et al., 1999 and Roberts et al., 1999, 

and references therein) (Figure 7). Basin formation in this region may have been initiated in the 

Devonian, with additional relatively minor rift phases during the Permo-Triassic and Jurassic. 

However, the main episode of basin formation occurred during the Cretaceous, with instigation 

of the Faroe-Shetland Basin during Aptian–Albian times (Dean et al., 1999; Larsen et al., 2010; 

Stoker et al., 2010a). Differential uplift, subsidence and compressional deformation are all 
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evident in the development of the basin throughout the late Early to Late Cretaceous interval and 

are probably linked to regional oblique-slip tectonics associated with transtension and 

transpression in response to the developing North Atlantic rift system (Stoker et al., 2010a).  

A widespread unconformity separates the Cretaceous and Palaeogene successions across much 

of the Faroe–Shetland region. Renewed faulting on some existing faults (e.g. those bounding the 

Judd, Flett, Westray, Corona and Sjúrður highs: Figure 6) rejuvenated and enhanced an inherited 

end-Cretaceous fault-induced topography, and resulted in submarine fan development in the 

adjacent basins (Lamers and Carmichael, 1999; Smallwood and Kirk, 2005). The onset of 

volcanism, possibly as early as 62 Ma, exploited weak spots in the increasingly thinned and 

rifted lithosphere of the NW European region, including the Faroe–Shetland region (cf. Passey 

and Hitchen, 2011 and references therein). This Early Paleocene melting anomaly has been 

attributed by some authors (e.g. White and Mackenzie, 1989; Saunders et al., 1997; Ritchie et al., 

1999) to the arrival, beneath Greenland, of a mantle plume sensu stricto (i.e. the proto-Icelandic 

plume). Indeed, regional dynamic uplift attributable to the proto-Icelandic plume is postulated 

during the Mid- to Late Paleocene to account for the high rates of sedimentation in the Faroe-

Shetland Basin, as well as the earliest Eocene regional unconformity (e.g. White and Lovell, 

1997; Jones et al., 2002; Maclennan and Lovell, 2002; Smallwood and Gill, 2002; Mudge and 

Jones, 2004; Shaw Champion et al., 2008; Hartley et al., 2011). The subsequent onlap of the 

regional unconformity by the Balder Formation is attributed to the removal of asthenospheric 

support from the Faroe–Shetland region as anomalously hot asthenospheric mantle flowed into 

the developing zone of continental rifting to the north and west of the Faroe Islands (Smallwood 

and Gill, 2002). Whether this melting anomaly is the result of a mantle plume or by some other 

process is currently a matter of great debate (e.g. Foulger, 2002; Lundin and Doré, 2005a).  

Extensive igneous activity accompanied the initiation of seafloor spreading between Greenland 

and NW Europe at about 56 to 54 Ma, during C24r, in latest Paleocene to earliest Eocene 

(Ypresian) times (cf. Passey and Hitchen, 2011). North and west of the Faroe Islands, breakup 

occurred between 54.8 and 54.5 Ma (Passey and Jolley, 2009). Following breakup, it has been 

previously assumed that the dominant process affecting vertical movement of the Faroe-Shetland 

Basin was post-rift thermal subsidence accompanied by a decrease in sediment flux (Turner and 

Scrutton, 1993; Jones et al., 2002). However, as noted above, the post-rift structural development 

of the Faroe–Shetland region has been considerably influenced at various stages by enhanced 

phases of compression (e.g. Ritchie et al., 2003, 2008, 2011; Davies et al., 2004; Smallwood, 

2004; Johnson et al., 2005, 2012; Stoker et al., 2005c), local tectonics (Robinson et al., 2004) 

and by regional uplift/tilting of the basin margin (e.g. Andersen et al., 2000; Stoker, 2002; 

Davies et al., 2004; Stoker et al., 2005a, b). Significant (km-scale) post-rift Palaeogene and 

Neogene uplift and structuring of the Faroe–Shetland region is manifest by the Wyville-

Thomson, Munkagrunnur and Fugloy ridges that flank the western margin of Faroe-Shetland 

Basin, together with the general uplift of the Faroe Platform, the growth of the Judd anticline and 

various other anticlines that occur within the basin, as well as the progradation and subsequent 

tilting of Eocene shelf-margin wedges along the eastern side of the basin, flanking the Orkney–

Shetland High (Figures 6–8; see also Ritchie et al., 2011, their Figure 2). In combination, these 

tectonic processes have resulted in the present-day morphology of the Faroe-Shetland Basin – 

commonly referred to as the Faroe-Shetland Channel (see section 2.2.2).   

2.2.2 Regional seismic-stratigraphical architecture of the Stronsay Group 

A series of NW–SE-trending geoseismic sections (Figure 7) across the Faroe–Shetland region 

depicts the gross depositional geometry of the Eocene succession. Figures 7a and b reveal an 

asymmetry that reflects an overall north to northwesterly progradation of the Eocene Stronsay 

Group succession, building seawards towards the developing ocean margin, from the Orkney–

Shetland High. The syn-rift volcanic terrain – the legacy of breakup in this region – probably 

influenced the initial morphology of the basin margin, with major volcanic escarpments, such as 

the Faroe-Shetland and Erlend escarpments, marking former coastlines. Deltas, such as the 
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Munkagrunnur Ridge delta, provide further constraints on the early post-rift palaeogeography 

(see section 4.2.1); the development of the Munkagrunnur Ridge delta has been attributed to 

contemporary uplift at the SW-end on the Faroe-Shetland Basin (Ólavsdóttir et al., 2010). The 

volcanic escarpments were eventually buried as the shelf-margin prograded to the N/NW across 

the volcanic landscape. Large-scale clinoforms are evident on the geoseismic and seismic 

sections in Figures 7 and 8, respectively.  

The absence of transported clastic material in Early Eocene limestones recovered from the 

eastern part of the Faroe Platform has been interpreted as an indication that shallow marine 

conditions prevailed across the platform for much of the late Ypresian–Lutetian interval 

(Andersen et al., 2000). It remains uncertain whether or not there was a connection between the 

Eocene Stronsay Group deposits preserved between the Faroe Islands and Shetland and a thick 

wedge of assumed Eocene rocks mapped above the continent-ocean boundary, north of the Faroe 

Islands. Andersen et al. (2000) have inferred that the Fugloy Ridge acted as a watershed 

separating the two areas; however, the profile in Figure 7b suggests that there is continuity of 

Stronsay Group rocks across the ridge.  

Whilst some degree of contemporary thermal subsidence within the Faroe-Shetland Basin cannot 

be discounted, the regional disposition of Eocene rocks above the Fugloy Ridge (Figure 7a, b) 

indicates that their present geometry is primarily a function of later (end- to post-Eocene: see 

section 2.2.3) compression, basin inversion and uplift of the ridge, which resulted in erosional 

truncation of the Eocene section alongside and above the ridge. Thus, the present sag-like form 

of the Eocene Stronsay Group is most probably not a reflection of its original stratigraphical 

architecture, or of the shape and morphology of the early ocean margin in the Faroe–Shetland 

region. 

2.2.3 Shaping the Faroe-Shetland Channel 

The shaping of the Faroe-Shetland Channel was most probably instigated at the end of the 

Eocene and enhanced during late Palaeogene–Neogene times (Johnson et al., 2012). Although 

regionally the Eocene/Oligocene boundary is poorly defined on seismic profiles, there is 

reasonable confidence in the placement of the boundary in the vicinity of well 214/4-1, based on 

the work of Davies and Cartwright (2002) and Davies et al. (2004) (Figure 7b). From this, it is 

clear that the overlying Oligocene and Neogene–Quaternary basinal sequences display a broader 

catenary profile, which implies that post-Eocene basinal sedimentation between Shetland and the 

Faroe Islands was largely constrained within the limits of the present-day Faroe-Shetland 

Channel. The shape of the basin was further accentuated by a phase of enhanced compression 

during the Early to Mid-Miocene, and seaward tilting of the West Shetland Shelf during the 

Early Pliocene (Johnson et al., 2005; Stoker et al., 2005a–c). Since the late Palaeogene, 

oceanographic processes have strongly influenced basinal sedimentation, and Pleistocene 

glaciation of the West Shetland and Faroese shelves and slopes has further modified the basinal 

profile (cf. Stoker and Varming, 2011 and references therein). 
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3 Stratigraphy of the Eocene Stronsay Group 

In the last twenty years, several stratigraphic methods have been applied to the Eocene 

succession in the Faroe–Shetland region, including seismic and sequence stratigraphy as well as 

lithostratigraphy. Seismic-stratigraphic studies have identified a number of key boundaries and 

major sediment packages of potentially regional extent, whilst the application of sequence-

stratigraphic techniques has provided a higher-resolution analysis of Eocene systems tracts. 

Lithostratigraphical procedure was applied to data recovered from exploration wells as part of 

the UKOOA/BGS „Stratigraphic Nomenclature of the UK North West Margin‟, which followed 

an earlier study from the UK North Sea. Biostratigraphic data have been used in many of these 

previous studies to aid correlation and identification of the various seismic, sequence and 

lithostratigraphic units. More detail on the earlier studies is presented below (section 3.1). 

In order to produce a broad regional stratigraphical framework, the resultant scheme is very 

much a hybrid of all of the stratigraphic methods, utilising the most commonly used subdivisions 

and nomenclature. However, the hierarchy of lithostratigraphic nomenclature is adopted as the 

most practicable terminology for describing a succession that is mappable at several levels, is 

divided by distinctive, regionally-bounding surfaces, and displays significant lithological 

variation.  To date, only group nomenclature has been applied to the Eocene succession in the 

Faroe–Shetland region; an extension of that used in the North Sea Basin. In this report, we make 

the case for further extending several formations from the northern North Sea, as well as 

proposing a number of provisional, informal stratigraphic subdivisions of these formations 

(Figure 3). It should be noted that a much more detailed, regional mapping programme is 

necessary before a formal scheme can be presented.  

In the following sections we present a summary of previous seismic-stratigraphic, sequence-

stratigraphic and lithostratigraphic work, followed by an outline of our proposed provisional 

stratigraphic framework for the Stronsay Group.   

3.1 PREVIOUS WORK 

3.1.1 Seismic stratigraphy 

Over the last decade, a number of seismic-stratigraphic schemes have been published, together 

with a plethora of seismic reflector terminology (Figure 4). Correlation between these schemes 

reveals that there is general consensus that a major change in depositional style occurred at some 

point in the early Mid-Eocene, with the onset of significant shelf-margin progradation 

northwards from the West Shetland and north Hebridean platformal areas (e.g. Andersen et al., 

2000; Sørensen, 2003; Robinson, 2004; Robinson et al., 2004; Stoker and Varming, 2011). 

However, the complexity (i.e. the number of named reflectors) of the various schemes is highly 

variable, and is most probably a function of both the quality of the seismic data and the local vs. 

regional scope of the studies. The local studies are commonly focused on limited areas, and 

specific parts of the succession (e.g. the Judd inversion structure, Smallwood, 2004; the Middle 

Eocene basin-floor fans, Davies et al., 2004), whereas the regional studies (e.g. Andersen et al., 

2000, 2002; Sørensen, 2003; Robinson, 2004) concentrated on the broad regional scheme but 

lacked detail. Robinson (2004) recognised, in particular, that his well ties to seismic data had 

insufficient biostratigraphic control. None of the studies, including the most recent framework 

presented by Stoker and Varming (2011), fully integrated the well/borehole and seismic 

reflection data, nor did they take account of the lateral variations in facies or the regional 

implications of contemporaneous compression and uplift on the developing shelf-margin 

succession. The latter, in particular, has led to probable mis-correlations between stratigraphic 

packages (e.g. compare the column of „Stoker and Varming, 2011 (FSBRR)‟ with that of „This 
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study‟ in Figure 4). This mis-match arose from the incorrect jump-correlation of a package of 

submarine fan deposits in block 204 with the Middle Eocene basin-floor fan deposits in blocks 

213 and 214; the former have now been identified to be younger than the latter (see section 3.2). 

3.1.2 Sequence stratigraphy 

A sequence-stratigraphic approach was first applied to the Eocene of the Outer Moray Firth area 

by BP stratigraphers and subsequently published by Jones and Milton (1994), who subdivided a 

basinward prograding clastic sediment wedge into a number of seismic stratigraphic sequences: 

T60 to T98 (cf. Figure 3), which have a resolution of 0.6 Ma to 6.5 Ma. This notation is a 

continuation of the T10 to T50 subdivision that was developed for the lower Palaeogene 

succession in this area, and became commonly known as the BP T-sequence scheme (the letter 

„T‟ abbreviated from „Tertiary‟). However, whereas the T10–T50 scheme has similarly 

developed into common usage in the Faroe–Shetland region by exploration companies 

investigating the deep-water Paleocene sandstone play, the lack of focus on the Eocene as a 

hydrocarbon system in this area has resulted in a general lack of stratigraphic analysis, and hence 

little published material exists for the Eocene T-sequence scheme in this area. 

By way of contrast, Ichron Limited have undertaken detailed biostratigraphic analysis of Eocene 

sections in exploration wells in the Faroe–Shetland region on behalf of oil companies, and have 

developed an Ichron T-sequence scheme that broadly calibrates with the BP T-sequence scheme 

(see Figure 3). For the purpose of this study, Ichron Limited have allowed us to use their 

interpretations and T-sequence scheme for a number of wells in blocks 205, 206, 207, 208, 209, 

213, and 214 (Ichron Limited, 2010a, b) (Table 1). The Ichron T-sequence scheme incorporates 

more biostratigraphic zones, splits the BP T98 into Ichron T98 and T99, and has a resolution 

ranging from 0.6 Ma to 3.6 Ma. 

A higher-resolution 3D sequence-stratigraphic analysis of an intra-Eocene shelf-margin delta 

that developed adjacent to the Munkagrunnur Ridge was recently published by Ólavsdóttir et al. 

(2010). This sediment package was divided into nine units that preserve a record of fluctuating 

relative sea level that the authors‟ link to contemporaneous uplift of the Munkagrunnur Ridge. 

Although this shelf-margin deposit was originally assigned a Mid-Eocene age, this study 

indicates that it correlates in-part with our informal unit A (cf. Figure 3) and spans Ichron T-

sequences T60–T85 of Ypresian age.  

3.1.3 Lithostratigraphy 

As previously noted, the term Stronsay Group was introduced by Knox and Holloway (1992) for 

the Eocene sediments of the UK central and northern North Sea that overlie the Balder and 

Dornoch formations of the Moray Group (Figure 2). In the North Sea, the Stronsay Group 

comprises the Mousa and Horda formations; the former is characterised by a sandstone- and 

siltstone-dominated shelf succession, whilst the latter is a mudstone-dominated basinal 

succession. The boundary between the two formations effectively marks the position of the 

contemporary shelf-edge (Figure 1), though this boundary is not always clear and its position 

may be taken more arbitrarily where there is a basinward expansion of the argillaceous section. 

Sandstones within the Horda Formation (e.g. Frigg, Skroo, Tay and Grid (Caran) sandstone 

members) were largely deposited in complex submarine fan systems, and are separate from the 

shelf sandstones of the Mousa Formation. In places where the uppermost Grid (Brodie) 

Sandstone Member can be traced from the basin to the shelf, the boundary between the Mousa 

Formation and the Horda Formation remains arbitrary (Knox and Holloway, 1992).    

The Stronsay Group was extended into the Faroe–Shetland region by Knox et al. (1997), who 

described a gross SE–NW facies change from sandstone and siltstone in marginal areas to silty 

mudstone in more basinal areas. Although four reference wells were proposed (214/28-1, 

208/15-1A, 206/9-2 and 202/3-2) no subdivision of the group was attempted. Two of these wells 
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– 214/28-1 and 208/15-1A – have been studied by Ichron Limited, and are included in this study. 

On Figure 1, the Horda Formation is observed to extend to the eastern limit of the study area, 

whereas the northwestward extension of the Mousa Formation is less clear. 

3.2 A PROVISIONAL STRATIGRAPHIC FRAMEWORK FOR THE EOCENE 

STRONSAY GROUP 

Our provisional stratigraphic framework for the Eocene Stronsay Group of the Faroe–Shetland 

region as summarised in Figures 3 and A.1 is based upon an integration of lithological 

information from the sample database at our disposal and the Ichron T-sequence scheme; both 

linked to the seismic stratigraphy. For reasons outlined below, we propose that most of the 

succession preserved between Shetland and the Faroe Islands be assigned to the Horda 

Formation, within which we have identified six informal units, A to F.  

Although regional seismic-stratigraphic mapping is beyond the scope of this study, an appraisal 

of the seismic data indicates that a predominantly shelf-margin to basinal succession is preserved 

in the study area. Two key profiles are illustrated in this report: Figure 8 is a dip profile that 

crosses the Eocene shelf margin, whereas Figure 9 provides an axial profile of the basin. In 

addition, Figure 10 presents a line drawing that further illustrates the shelf-margin succession, 

especially the stacked nature of successive shelf-margin packages. A number of key seismic 

reflectors are highlighted, several of which retain (in part) the terminology introduced by Stoker 

and Varming (2011); these include T2d, T2c and T2b. The full listing of reflectors that we 

recognise and their provisional age assignment based on calibration with the available sample 

data (Figure A.1) is as follows, in descending stratigraphic order: 

1. Composite TPU/IMU/INU unconformity – a widespread, angular unconformity that 

separates variably eroded Palaeogene and Lower Miocene rocks from overlying Neogene 

deposits. In the southern part of the region, the unconformity comprises a composite 

surface that incorporates the Top Palaeogene (TPU), Intra-Miocene (IMU) and Intra-

Neogene (INU) unconformities (Stoker et al., 2005a; Stoker and Varming, 2011) (Figure 

8). Farther to the NE, where the upper Palaeogene and Neogene succession expands in 

thickness, the top Palaeogene and Intra-Neogene surfaces can be separately identified 

(Figure 9).  

2. Base-marginal-fan (T2b) reflector – late Priabonian. In the southern part of the region, this 

unconformity may define the near-top of the Stronsay Group based on a tie to well 214/4-1 

(Figure 9; see also Lamers and Carmichael, 1999 – their Figure 5 – and Davies and 

Cartwright, 2002). However, the Eocene/Oligocene boundary – previously assigned to 

reflector T2a by Stoker and Varming (2011), and recognised in well 214/4-1 – generally 

remains poorly defined regionally on seismic profiles (Johnson et al., 2012).  

3. Base-slope-apron (T2c) unconformity – intra-Bartonian. In the southern part of the region, 

this surface truncates underlying Lutetian and Ypresian deposits. 

4. Top-basin-floor-fan reflector – late Lutetian. 

5. Mid-Eocene (T2d) unconformity – intra-Lutetian. Includes major channel incisions up to 

200 m deep that erode underlying Ypresian–lower Lutetian deposits. 

6. Base Stronsay Group – early Ypresian (post-Balder Formation). Ichron Limited (2010a, 

2010b) observe missing Early Eocene biostratigraphical zones (representing their T60–T85 

sequences) in a number of wells along the margin of the Faroe-Shetland Basin (Figure A1), 

which is manifest on seismic data as an unconformity marked by onlap or downlap of the 

overlying Stronsay Group onto the eroded top of the Moray Group. In the more basinal 

wells, there appears to be conformity between the Moray and Stronsay groups. The way in 

which this boundary and comparable sequence boundaries within the underlying Moray 

Group relate to the early Palaeogene lava shield on the Faroe Platform and control the 
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regional distribution of potential hydrocarbon reservoirs at base Eocene level, will be more 

fully discussed in a subsequent report describing the pre-Stronsay Group Cenozoic 

succession. 

These reflectors enable the delineation of several depositional packages that stand out on the 

seismic profiles, notably informal units A, D, E and F (Figures 3, 8–10). The regional 

applicability of these surfaces remains to be fully tested, though Johnson et al. (2012) have 

utilised this scheme in their regional study of compression across the Faroe–Shetland region. 

Unit A includes the Munkagrunnur Ridge Delta of Ólavsdóttir et al. (2010); unit D incorporates 

the Middle Eocene basin-floor fans of Davies et al. (2004) and DECC (2010); unit E represents 

the shelf-margin package, including base-of-slope submarine fan deposit, of Stoker and Varming 

(2011). The mis-correlation between the latter and the Middle Eocene fans is clearly indicated by 

Figure 9. Unit F is a discrete base-of-slope deposit herein assigned to the Stronsay Group, though 

an Oligocene (Westray Group) age cannot be discounted. Two other units, B and C, are 

identified from well data; unit B represents a deep-water sandstone in well 213/23-1, whereas 

unit C represents a predominantly arenaceous shelf succession in block 205. Collectively, these 

data are consistent with the Horda Formation as defined by Knox and Holloway (1992), i.e. the 

shelf-margin to basinal setting and the recognition of deep-water sandstone bodies within an 

otherwise generally argillaceous succession (as indicated by the stratigraphic-range chart: Figure 

A.1).  

The Ichron T-sequence scheme has enabled us to put the lithological information into a temporal 

and spatial framework. The temporal correlation between all of the sample data and the Ichron 

T-sequence scheme is captured in Figure A.1, whereas a combined spatial and temporal 

representation of the succession, incorporating the key seismic reflectors, is presented 

schematically in Figure 11.  

It is emphasised that this stratigraphic framework is provisional. The informal units A–F have 

the potential to be ranked as members, but regional seismic-stratigraphic mapping and more 

detailed lithological assessment, probably incorporating wireline logs, may be necessary to 

properly define their spatial distribution and genetic interpretation. Moreover, without access to 

the detailed stratigraphy of the quadrant 204 wells there remains a clear gap in the dataset.  
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4 Eocene (Stronsay Group) post-rift timeslice 

reconstruction of the Faroe–Shetland region 

In this section, we address the temporal and spatial development of the post-rift Stronsay Group 

within the Faroe–Shetland region with a series of timeslice maps based on the Ichron T-sequence 

scheme (Figures 12–26: for highest resolution of the maps the reader should view the PDF 

version of this report). In order to provide context for the Stronsay Group, we have included 

information and reconstructions from the earlier Eocene syn-breakup Moray Group. 

Collectively, these maps present a visual representation of stratigraphical change during the 

Eocene, with a particular focus on lithology and an introduction to the proposed new 

lithostratigraphic subdivision. In addition to the sample and seismic data used in this study, we 

have also drawn upon published material to supplement the timeslice reconstructions wherever 

necessary. Inspection of the timeslice maps in combination with the seismic-stratigraphic 

framework has enabled a number of phases to be identified that may define key stages in the 

Eocene development of the Faroe–Shetland region; these are as follows:  

4.1 YPRESIAN (PRE-STRONSAY GROUP) 

4.1.1 T40 (upper), T45 and T50 timeslice maps (Figures 12 and 13) 

At the start of the Ypresian, before the onset of Stronsay Group deposition, the syn-breakup 

palaeogeographic setting of the Faroe-Shetland region is partly indicated by the lithological 

variation of well penetrations of the underlying Moray Group, which includes the Flett and 

Balder formations of Knox et al. (1997) and encompasses the equivalent BP sequences and 

Ichron biostratigraphic zones T40, T45 and T50.  

Ebdon et al. (1995) interpreted well and seismic data to show that the basal T40 sequence of the 

Moray Group is absent in Quadrant 204 in the southern part of the Faroe-Shetland Basin. In 

places, the associated unconformity separates the upper part of the Flett Formation (T45) from 

the underlying Lamba Formation, which consists of a predominantly marine Palaeocene 

succession characterised on seismic data by a conspicuous set of prograding foresets (described 

as T36 by Ebdon et al. 1995; now assigned to T38 by Ichron and BP).  At the unconformity, 

removal of much of the late Paleocene topset interval, during an episode of fluvial downcutting, 

left a seismically well-defined network of dendritic drainage entrenched within the Lamba 

Formation.  This gently northerly-dipping unconformity surface was subsequently preserved by 

early Ypresian onlap in parts of quadrants 6004/204 and 205 (Smallwood and Gill, 2002; Shaw 

Champion et al., 2008; Rudge et al., 2008; Hartley et al., 2011) (Figure 12). In Quadrant 205, the 

onlapping T45 interval of the Flett Formation is associated with the development of a thin varied 

succession of interbedded claystones, siltstones and sandstones, which, with its characteristic 

paralic biostratigraphy and widespread traces of coal and lignite, is indicative of deposition in a 

coastal plain environment. Similar environments are developed in the Beauly Member at the top 

of the time equivalent Dornoch Formation deltaic complex in the North Sea (Knox and 

Holloway, 1992) (Figure 12). In the Faroe-Shetland Basin, Lamers and Carmichael (1999; their 

Figure 15) supplemented the well lithological data at this level by using a 3D seismic volume to 

construct a palaeogeographic map based on the extracted pattern of amplitude variation within a 

50 ms interval around the top Balder Formation (T50) reflector (Figure 12). 

The episode of coastal onlap in the Faroe-Shetland area, which began during the deposition of 

the upper Flett Formation, continued with the deposition of the Balder Formation (T50). 

Biostratigraphically, the Balder Formation is usually identified by a downhole influx of abundant 

Coscinodiscus spp 1 and 2 with an associated acme of Deflandrea oebifeldensis (Knox and 
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Holloway, 1992; Knox et al., 1997; Ichron, 2010a,b), though Knox and Holloway (1992) note 

that Coscinodiscus is known to persist into the basal part of the Stronsay Group.  Tuffaceous 

claystones derived from a series of thin airfall tuffs are widely developed in the early part of 

T50. Later sedimentation is more varied, but lithological data from wells west of Shetland 

suggest that sandstones are not as widespread as in contemporaneous parts of the northern North 

Sea (Knox and Holloway 1992) (Figure 13). Following their extensive deposition in the Faroe-

Shetland Basin during T45, coal and lignite continued to be deposited locally during T50 (Figure 

13), just as the analogous Beauly Member persists into Balder Formation times in the North Sea.  

On well logs from the North Sea and the Faroe-Shetland Basin (Knox and Holloway 1992; Knox 

et al., 1997), the uphole decline in the tuffaceous component of T50 is linked to a marine 

transgression which divides the Balder Formation into two units (B1 and B2). This intra-Balder 

Formation horizon (Top B1) is correlated with the main London Clay transgression of southern 

England by Knox (1996) and may be  equivalent to the  lower of  two downlap surfaces in the 

basal Eocene of the Faroe-Shetland Basin interpreted by Olavsdottir et al. (2010; their Figure 4, 

reflector 10). Early Eocene tuffs recovered in dredge hauls from the eastern flank of the Faroe 

Platform record the transition between largely non-marine environments with spores, pollen, 

plant fragments and lignite (sites 145, 157 and 158) and more marine-influenced locations (site 

161) (Waagstein and Heilmann-Clausen, 1995) (Figure A.1). The top of the Balder Formation in 

the North Sea is a maximum flooding surface that is widely marked on well logs by a high 

gamma-spike (Top T50 of Ichron and BP: Top B2 of Knox and Holloway 1992). This event 

defines the base of the Stronsay Group and in the Faroe-Shetland Basin possibly corresponds 

with the younger of the basal Eocene downlap horizons recognised by Olavsdottir et al. (2010; 

their Figure 4, reflector 20). 

4.2 YPRESIAN (STRONSAY GROUP)  

Ichron Limited (2010a, b) recognise four main biozones (T60, T70, T82 and T85) within the  

Ypresian (Early Eocene) interval of the Stronsay Group. The well lithology data for each of 

these intervals are summarised in Figures 14–17, with a composite isopach map in Figure 18. For 

the most part, these zones are only thinly developed in the Ichron well dataset, where they 

consist predominantly of fine-grained lithologies, commonly with a tuffaceous component. 

Equivalent fine-grained basinal sediments in the North Sea are assigned to the Horda Formation 

(Knox and Holloway, 1992), and it is likely that the deposits of the two basins are laterally 

continuous around the north of the Shetlands. 

4.2.1 T60 timeslice (Figure 14) 

The T60 sequence is commonly absent in wells on the south-eastern flanks of the Faroe-Shetland 

Basin, where the base of the Stronsay Group rests with a slight disconformity on the underlying 

Moray Group.  In adjoining parts of the basin, and possibly including the eastern flank of the 

Faroe Platform, the conformable T60 interval commonly consists of a thin varied succession of 

partly tuffaceous sediments, interbedded with siltstones and claystones. Tuffaceous deposits are 

also recorded from the Ymir Ridge (Jones and Ramsay, 1982). Thicker successions, with a 

higher proportion of coarse-grained lithologies are developed straddling the median line in 

Quadrants 6004/204 and 6005, where Ólavsdóttir et al. (2010) recognise an influx of sediment 

forming the Munkagrunnur Ridge Delta, which we have provisionally included in unit A (of the 

Horda Formation). Thickness isochrons of this sandstone-dominated area thin rapidly to the 

north-east, where seismic sections reveal a series of prograding reflectors downlapping onto the 

Top Balder Formation/Base Stronsay Group event (Ólavsdóttir et al., 2010) (Figure 8). High-

amplitude seismic events within the Munkagrunnur Ridge Delta succession probably indicate the 

local development of a delta-top facies including coal or lignite. The sediments associated with 

similar shelves on the western flanks of the North Sea are assigned to the Mousa Formation, 

which was originally defined within the Stronsay Group to incorporate the undifferentiated 
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shelfal equivalent of the more basinal Horda Formation. On a map showing the distribution of 

the whole Mousa Formation (Figure 1), Knox and Holloway (1992) outline a distinct area of 

early Eocene sedimentation on the flanks of the northern North Sea, which was deposited at the 

same time as the Munkagrunnur Ridge Delta (unit A, Horda Formation) (Figure 14) on the 

opposite margin of the Orkney-Shetland High.  

4.2.2 T70 and T82 timeslices (Figures 15 and 16)  

The contrast established during the T60 interval, between an area of thin sedimentation in the 

Faroe-Shetland Basin and non-deposition on its flanks, persisted locally during the T70 and T82 

intervals, while basin margin onlap resumed in parts of Quadrants 205 and 206. Fine-grained 

sediments were deposited across most of the basin, as thicker, more arenaceous sedimentation 

continued in the area of the Munkagrunnur Ridge Delta (unit A) and near the basin margins 

elsewhere, as in well 209/12-1. In the more basinal well 213/23-1, a 40 m thick turbiditic 

sandstone unit occurs in Ichron biozone T82 and persists into T85. This sandstone body, which 

we have provisionally designated as unit B (of the Horda Formation), provides the only evidence 

in the available Ichron well database for the development of a Lower Eocene basin-floor fan in 

the Faroe-Shetland Basin, and can be linked to erosion of T60 and older sediments from the 

basin margins.  

4.2.3 T85 timeslice (Figure 17) 

Tuffaceous sediments become less widespread in the T85 sequence and the proportion of wells 

proving siltstone increases, possibly indicating the onset of pro-delta deposition on the margins 

of the basin to the east of the Munkagrunnur Ridge Delta.  In a more basinal setting, well 214/4-

1 has some thin sandstone beds (with a total thickness of about 7 m) in a claystone-dominated 

T85 succession. These may be associated with the T82/T85 sandstone turbidite interval in well 

213/23-1, which lies updip to the south-west. Several other wells in the UK sector show thin 

successions of more coarse-grained T85 sediments resting unconformably on the Moray Group, 

continuing the process of basin margin onlap that started in T70 and T82. In contrast, elsewhere 

in the basin, the probable absence of the T85 biozone in the BGS borehole 99/3 and its 

truncation in well 214/26-1 are related to later erosion beneath the Mid-Eocene (T2d) 

unconformity.   

4.2.4 T60–T85 summary (Figure 18) 

Figure 18 presents a summary isopach map for Stronsay Group sediments of Ypresian age based 

on well data and the thickness of relevant Ichron T-zones where information is available (Ichron 

Limited, 2010a, b), as well as generalised from the broad structure of the basin elsewhere. This 

reveals two depocentres: one which straddles the median line and is related to the influx of 

sediment associated with the Munkagrunnur Ridge Delta (Ólavsdóttir et al. 2010) (unit A, Horda 

Formation), and the other is located at the junction of Quadrants 208 and 214 within a part of the 

Faroe-Shetland Basin that lies beyond the progradational limit of the underlying Paleocene 

coastal shelf as defined by Lamers and Carmichael (1993) (Figure 12).  These depocentres are 

separated by an area of thinner sediments in the UK sector in which the basal part of the T60–

T85 interval is often absent as a result of post-T50 relative uplift of the basin margins followed 

by onlap during the Ypresian. Although the well evidence is generally sparse, especially from 

the deeper basinal areas, the thin T82–T85 turbiditic sandstones in well 213/23-1 (unit B, Horda 

Formation) provide the only strong indication for the development of Ypresian point-sourced 

basin-floor fans in the Faroe-Shetland Basin analogous to the Frigg, Skroo and Tay sandstone 

members of the Horda Formation in the North Sea (Knox and Holloway, 1992). 
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4.3 EARLY TO MID-LUTETIAN  

4.3.1 T91 timeslice (Figure 19)  

Well lithology data suggest that, in general, Middle Eocene sediments in the UK sector of the 

Faroe-Shetland Basin rest conformably on the Ypresian and continue to coarsen-up, with 

sandstone- and siltstone-dominated successions becoming more widespread during the Early 

Lutetian. Thickness variation remained similar to the upper Ypresian, with the whole interval 

generally less than 100m thick. The top of biozone T91 may be absent in parts of Quadrants 208 

and 209 on the flanks of the Erlend High and similarly may have been removed locally 

elsewhere by downcutting canyons that sourced the later Mid-Eocene basin floor fans in the 

north of the basin. 

4.3.2 T93 timeslice (Figure 20) 

There is strong evidence for the onset of a major change in the structural configuration of the 

Faroe-Shetland Basin during Ichron biozone T93. The development of thick siltstone- and 

sandstone-dominated sequences at the base of the interval in the UK sector suggests that a pro-

delta succession continued to prograde northwards from the south-eastern flanks of the Faroe-

Shetland Basin extending the area of shelf deposition associated with unit A over the former 

Paleocene depocentres to the north-west of the Rona Ridge. Subsequently, a major Mid-Eocene 

unconformity truncated the top of this interval in Quadrant 205, redepositing much of the eroded 

section in an upward-coarsening succession of Mid-Eocene basin floor fans in Quadrants 

6103/213 and 214 and marking the instigation of unit D of the Horda Formation (see section 

4.4.2) (Figure 9).  Well data show that Ichron biozone T93 is also absent from the basin margin 

near the Erlend High, while to the south of the Rona Ridge, more prolonged Mid-Eocene erosion 

may have removed much of the shallower part of the contemporaneous shelf. Since the exact 

timing of the onset of erosion during the T93 interval cannot be established from the available 

Ichron T zone data, the age of the succession overlying the Lutetian unconformity penetrated by 

BGS borehole 99/3 becomes of critical importance. Current palaeontological data (cf. Riding, in 

Hitchen, 1999), indicating the possible presence of biozone NP14 in the onlapping sequence, 

suggest that the unconformity  is older than 46.75 Ma, while the Ichron data alone are consistent 

with a broader range of dates between 43 and 47 Ma.  More detailed biostratigraphical analysis 

of the 99/3 core may help to constrain the age estimate.  

4.3.3 T91-T93 summary (Figure 21)  

The summary isopach for Ichron biozones T91–T93 shows a depocentre in the south-eastern 

corner of Quadrant 214, close to the northern depocentre of the Ypresian Stronsay Group 

(Figures 18 and 21). This suggests that differential compaction of the underlying Upper 

Paleocene basinal sequence, which was laid down in the Faroe-Shetland Basin beyond the 

northern limit of the T45 coastal plain (Figure 12), may have continued to influence Mid-Eocene 

deposition and controlled the northern limit of shelf progradation. Further to the south-west, the 

T91–T93 isopach shows the effect of the subsequent partial erosion of T93 sediments beneath 

the Mid-Eocene (T2d) unconformity. 

4.4 MID-LUTETIAN–EARLY BARTONIAN 

4.4.1 T94 timeslice (Figure 22) 

The Ichron biostratigraphical data show that the T94 biozone is largely absent from wells in 

Quadrant 205, where the Mid-Eocene (T2d) unconformity is strongly developed and cuts deeply 

into the older T91 and T93 biozones (Ichron Limited, 2010a,b) in northerly-trending incised 

channels. The depth of incision ranges from 80 m to 200 m (Robinson et al., 2004). Since these 
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gently sinuous linear features are backfilled by sediments which are characterised by high 

amplitude reflections, their areal distribution can be mapped by amplitude extraction on 3D 

seismic data (Robinson 2004; Robinson et al. 2004). Enhanced thicknesses of the T94 interval in 

Quadrant 214 suggest that redeposition from an eroding shelf in the southern part of the Faroe-

Shetland Basin contributed to an increase in coarse-grained sedimentation further north (unit D, 

Horda Formation: see section 4.4.2). Elsewhere, other wells show that sediments had already 

begun to onlap the Mid-Eocene (T2d) unconformity during the upper part of the T94 biozone 

along parts of the basin margin (wells 205/10-4, 208/15-1A and 214/26-1) including the Erlend 

High (wells 209/6-1 and 209/12-1).  

DSDP site 336 indicates that basalt was being extruded subaerially along the northern flank of 

the Iceland-Faroe Ridge at about this time (dated by K-Ar as 43–40 Ma) (Talwani and Udintsev, 

1976; Talwani et al., 1976). The basalt grades into, and is overlain by, a volcanic conglomerate 

(basaltic rubble), which in turn is overlain by red claystone (Figure A.1). This section is 

interpreted as a ferruginous lateritic palaeosol formed by the in situ weathering of the basaltic 

basement (Nilsen, 1978; Nilsen and Kerr, 1978). 

4.4.2 T96 timeslice (Figure 23) 

The Mid-Eocene episode of basin-floor fan deposition, which was instigated during the T93 

interval, culminated in parts of the Faroe-Shetland Basin in Ichron biozone T96 during the late 

Lutetian. The top of the fan  is commonly associated with a conspicuous seismic reflector 

(Figure 9) and 3D seismic interpretation has revealed a mounded basin floor topography with 

overlapping fan lobes and sinuous northerly-trending sediment thicks linked through incised 

channels to point sources on the eroded shelf to the south (DECC, 2010). Names for each of the 

currently-recognised fan lobes in the Faroe-Shetland Basin have been informally adopted in the 

literature (the Portree, Caledonia and Strachan fans: cf. Davies et al., 2004), which we refer to 

collectively as unit D of the Horda Formation. Contemporaneous basin-floor fans in the North 

Sea are generally included in the Grid Sandstone Member, which incorporates Eocene 

sandstones of various origins. Knox and Holloway (1992) suggest that in areas where a specific 

Mid-Eocene basin-floor fan origin can be recognised in the North Sea, the sandstones may be 

assigned to the Caran Sandstone unit. The flooding surface that marked the end of widespread 

Mid-Eocene basin-floor fan deposition in the Faroe-Shetland Basin may be linked to the return 

of basin margin onlap in Quadrant 205, where some thick arenaceous shelf successions of T96 

age, which we have informally designated as unit C (of the Horda Formation), are preserved 

above the Mid-Eocene (T2d) unconformity. On the flanks of the basin, the relics of this 

unconformity-bound shelfal succession of late Lutetian age are closely juxtaposed and 

overlapped by the prograding deposits of the later (Bartonian–Priabonian) shelf. 

Subaerial basalt extrusion and/or palaeosol formation persisted on the Iceland-Faroe Ridge 

during this time. 

4.4.3 T97 timeslice (Figure 24)  

Thickly-developed basin-floor sandstones in well 213/23-1 show that turbidite deposition in the 

Caledonia Fan continued locally into Ichron biozone T97 (Figure A.1). This contrasts with well 

214/4-1, where fan deposition ceased in T96, and implies that the top basin-floor fan seismic 

reflector (and thus the top of unit D) is partly diachronous within the Mid-Eocene (Figure 11). 

Regionally, biostratigaphic interpretation of the T97 sequence is otherwise very poor, largely 

because many of the late Lutetian and younger successions on the basin margins are commonly 

penetrated above the depth of first returns, at which well sampling begins. The few analysed 

intervals are generally arenaceous, but their sparse distribution makes it difficult to assess the 

limits of the contemporaneous shelf from well data alone (Figure 24). The seismic panels 

illustrated by Robinson (2004) reveal a pattern of downlapping shelfal reflectors from latest Mid-
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Eocene to Late Eocene times on the basin margin in the UK sector, but there is not enough well-

constrained thickness information to interpret the full history of the shelf throughout this time.  

Subaerial basalt extrusion and/or palaeosol formation persisted on the Iceland-Faroe Ridge 

during this time.  

4.5 BARTONIAN–PRIABONIAN 

4.5.1 T98-T99 timeslices (Figure 25) 

The T98 and T99 biozones are commonly undifferentiated by Ichron and thickness estimates for 

the interval are sparse because of poor sample recovery from wells at these levels. The 

sandstone-dominated intervals in wells from Quadrant 205 provide some indication of the 

presence of a shelf sequence (unit E of the Horda Formation) whose large-scale depositional 

geometry can be broadly inferred from the seismic panels of Robinson (2004) and other seismic 

data (Figures 8 and 9). These profiles show a sequence of downlapping reflectors beneath the 

Top Palaeogene unconformity, which prograde north-westwards and terminate in a conspicuous 

shelf margin feature. Basinwards, the steep prograding reflectors pass into a more gently-dipping 

apron of higher-amplitude events, which is interpreted as a „slope apron fan‟ laid down in front 

of the advancing shelf. The slope apron thins to the north-west, where its limit can be crudely 

estimated from the regional seismic coverage. In places, the seismic data reveal that the slope 

apron rests unconformably upon a truncated succession of older sediments probably related to 

the previous (T96-T97) basin margin. The age of the bounding unconformity – the Base-slope-

apron (T2c) unconformity – may be estimated from the Ichron well data, where fossils from 

biozone T98 are absent from some wells, such as 205/8-1 and 205/9-1, and are generally poorly 

represented in the well dataset. This would date the unconformity as an early Bartonian event at 

approximately 39–40 Ma. This age is consistent with the absence of the biozones equivalent to 

T98 in BGS borehole 99/3.  In places, the unconformable early Bartonian–Priabonian shelf 

sequence may overstep the older Mid-Eocene shelfal deposits to rest directly upon Ypresian 

sediments originally exposed by the Mid-Eocene (T2d) unconformity. Interpretation of 3D 

seismic data in Quadrant 205 (Robinson 2004; Robinson et al. 2004) reveals that the shelf 

sequence includes a stacked series of slightly downcutting north-westerly-trending channel 

features several tens of metres deep in the area of the shelf/slope transition. In the Central North 

Sea, undifferentiated shelf deposits of Mid–Late Eocene age are assigned to the Mousa 

Formation, while the Brodie Sandstone Unit is used to describe the upper, more shelfal deposits 

of the Grid Sandstone Member, where these can be distinguished (Knox and Holloway 1992). 

Subaerial basalt extrusion and/or palaeosol formation may have persisted on the Iceland-Faroe 

Ridge during the earliest part of T98; however, marine claystones of Bartonian age overlie the 

palaeosol at DSDP site 336 (Talwani et al., 1976), and represent the first record of marine 

sedimentation on this part of the ridge. The marine section exceeds 200 m in thickness, and 

indicates submergence of the northern flank of the Iceland-Faroe Ridge from a subaerial setting 

in the Mid-Eocene to a neritic to upper bathyal (shelf to upper slope) environment during the 

Late Eocene (Talwani et al., 1976; Schrader and Fenner, 1976; Berggren and Schnitker, 1983).  

4.6 LATE PRIABONIAN 

4.6.1 T98–T99 timeslice with marginal fan (Figure 26) 

Regionally, the Base-marginal-fan (T2b) seismic reflector, of Late Priabonian age, may define 

the top or near-top of the Stronsay Group and the base of the onlapping, claystone-dominated 

Westray Group. However, in Quadrant 204 of the UK sector, there is an additional, locally 

developed seismic unit at the boundary between the two groups, which is characterised by a 

pattern of chaotic internal reflections that may indicate an origin as a debris flow alongside the 
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Late Eocene shelf. This specific unit is not laterally extensive and is provisionally described here 

as a marginal fan and designated as unit F (of the Horda Formation). Although its distribution 

has been partly truncated near the present day sea bed by erosion at the Top Palaeogene 

unconformity (TPU) (Figure 26), seismic sections reveal that it remains >200 ms (~ 200 metres) 

thick in places. A line drawing based on a seismic profile (Figure 10) shows the stratigraphical 

relationship between the marginal fan (unit F) and the adjoining Bartonian–Priabonian shelf (unit 

E) and also displays some of the effects of subsequent Cenozoic folding and uplift. The presence 

of steeper dips beneath the gently folded Base-marginal-fan reflector may indicate that some of 

the Cenozoic tectonic movements are of pre-late Priabonian age and are possibly linked to the 

resurgence of fan deposition on the slope.  

BGS borehole 99/3 penetrated 7 m of dark yellowish brown to dark greyish brown, fine-grained, 

slightly bioturbated mud of Priabonian age, which was deposited in a basinal setting (Hitchen, 

1999; Leslie et al., 2010; Stoker and Varming, 2011). This unit was placed above seismic 

reflector T2b as originally defined by Stoker and Varming (2011); however, the reinterpretation 

of the seismic data in the present study, and the wider recognition of the Base-marginal-fan 

(T2b) reflector, casts some uncertainty over their initial interpretation.   
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5 Discussion 

The stratigraphic development of the Stronsay Group records the interrelationship between shelf 

and basin environments in the Faroe-Shetland Basin in the first 20 million years following the 

opening of the North-East Atlantic Ocean between Greenland and NW Britain. Using 

biostratigraphic analyses of well data from the Eocene successions of the Faroe-Shetland region 

(Ichron Limited (2010a, b) we have divided this time interval into a series of higher-resolution 

timeslice maps (Figures 12–26) that better constrain the depositional history of the Stronsay 

Group. Unconformities recognised by the development of missing or truncated biozones have 

been linked to selected regional seismic profiles, which have confirmed that the Stronsay Group 

could potentially be divided into a number of informal lithostratigraphic units whose boundaries 

correspond to regionally significant seismic events (Figure 11); and which themselves may 

correspond to changes in basin shape and shifts in basin depocentre.   

In this section, we summarise the Eocene post-rift geological development of the Faroe–Shetland 

region by placing our stratigraphic scheme into a provisional tectonostratigraphic framework. As 

part of this discussion, we also consider the broader-scale elements of the Stronsay Group 

stratigraphy and their implications for a possible revised understanding of the late syn-rift 

development of the region.      

5.1 EOCENE POST-RIFT GEOLOGICAL DEVELOPMENT 

The Eocene post-rift geological development of the Faroe–Shetland region can be described in 

terms of three main depositional phases, each of which is equivalent (in duration) to a 3
rd

 order 

sedimentary cycle and linked to progradation of the shelf-margin into the Faroe-Shetland Basin. 

In the following sections, we present our provisional tectonostratigraphic framework followed by 

a consideration of the regional controls that may be responsible for this development. The 

margin-wide applicability of our reconstruction remains to be tested by regional mapping. 

5.1.1 A provisional tectonostratigraphy 

The informal subdivision of the Stronsay Group that was presented in Figure 11 forms the basis 

for our provisional tectonostratigraphy, which is summarised in Figure 27. Four main 

depositional phases are highlighted – phase 1 of Ypresian–early Lutetian age; phase 2 of 

Lutetian–early Bartonian age; phase 3 of Bartonian–Priabonian age; and, phase 4 of Late 

Priabonian age – separated by the three intra-Eocene bounding surfaces of the Mid-Eocene (T2d) 

unconformity, the Base-slope-apron (T2c) unconformity, and the Base-marginal-fan (T2b) 

reflector. The main characteristics of each phase are summarised below: 

5.1.1.1 YPRESIAN TO EARLY LUTETIAN (PHASE 1)  

The basal part of the Stronsay Group in the Faroese sector comprises a deltaic succession of 

Ypresian age (part of unit A), which downlapped the top of the Balder Formation and prograded 

north-eastwards from the area of the Munkagrunnur Ridge (Ólavsdóttir et al., 2010). Wells from 

adjoining parts of the UK sector prove contemporaneous Early Eocene successions that consist 

mainly of thin, commonly tuffaceous sediments, but with sporadic basin-floor sandstone (unit 

B), which locally rest disconformably on the Balder Formation. Water depths in the Faroe-

Shetland Basin were probably between 250 and 350 m, though relative sea level may have 

fluctuated due to contemporary tectonic movements, e.g. inversion of the Munkagrunnur Ridge 

and Judd anticline (Smallwood and Gill, 2002; Smallwood, 2004; Ólavsdóttir et al., 2010). The 

Stronsay Group on the eastern flanks of the Faroe-Shetland Basin appears to coarsen up during 

the early Lutetian (part of the pro-delta expansion associated with unit A). This phase of shelf-
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margin progradation and its areal expression is well illustrated by the isopach map based on the 

combined thickness of the T60–T85 sequences (Figure 18), and has since been revealed in 

greater detail by Johnson et al. (2012; their Figure 29) on the basis of regional seismic mapping. 

Any extension of shelf deposition northwards was terminated by the subsequent development of 

the Mid-Eocene (T2d) unconformity surface.  

5.1.1.2 LUTETIAN TO EARLY BARTONIAN (PHASE 2) 

There is seismic evidence showing that incised channels 80–200 m deep dissect the early 

Lutetian shelf, in association with the development of the Mid-Eocene unconformity. These 

channels have yet to be widely mapped in detail (Robinson 2004; Robinson et al. 2004; DECC 

2010), but there are indications that they may compare closely in scale, distribution and trend 

with those formed during a previous episode of basinal uplift at the start of the Eocene 

(Smallwood and Gill, 2002; Shaw Champion et al., 2008; Rudge et al., 2008; Hartley et al., 

2011). Detritus eroded from the Lutetian shelf accumulated in a pile of overlapping fans – the 

Caledonia, Portree and Strachan fans of unit D – on the Mid-Eocene basin floor (Figures 22–24; 

see also Johnson et al. 2012, their Figure 30). At the end of the Lutetian, changes in relative sea-

level, indicated by flooding surfaces that marked the end of fan deposition, brought about a 

resumption of shelf progradation, though further deposition on the basin margins was terminated 

by the development of another local unconformity – the Base-slope-apron (T2c) unconformity – 

during the early Bartonian.  

5.1.1.3 BARTONIAN TO PRIABONIAN (PHASE 3) 

The Middle to Upper Eocene sediments overlying the Base-slope-apron (T2c) unconformity are 

characterised on seismic data by prograding reflectors (unit E) that define another phase of 

significant shelf-margin progradation. These reflectors pass basinward into a tapering wedge of 

more gently-dipping high-amplitude events (Figure 8). This probably corresponds to a slope 

apron that interdigitates with submarine fan deposits at the base of the slope, in front of the 

advancing Mid- to Late Eocene shelf (Figure 25; see also Johnson et al. 2012, their Figure 31). 

The prograding clinoforms indicate water depths of several hundreds of metres. The adjacent 

shelf preserves much of its depositional topography from this time and the slightly incised 

courses of north-westerly-trending channels can be traced near the top of its slope on 3D seismic 

data (Robinson 2004; Robinson et al. 2004) (Figure 25).  

5.1.1.4 LATE PRIABONIAN (PHASE 4)  

At the southern margin of the Faroe-Shetland Basin, the upper part of the Stronsay Group locally 

includes a 200-metre thick mounded unit (unit F, the marginal fan) that probably originated as a 

debris flow abutting the Late Eocene shelf (Figure 10). The pattern of divergent reflectors, 

possibly related to folding, beneath the base of the unit (Base-marginal-fan T2b reflector) 

suggests that its deposition may be linked to renewed minor uplift and deformation close to the 

basin margin. Johnson et al. (2012; their Figure 32) have mapped the seismic-stratigraphic unit 

that represents this interval over a wider area, and have identified a number of areas with local 

thickening, including the infill of a contemporary growth syncline in the Guðrun Basin area 

(Figure 6). 

5.1.2 Regional controls on stratigraphic development 

Channelized incision of the Ypresian–early Lutetian (phase 1) shelf deposits, up to 200 m deep, 

occurred during the development of the Mid-Eocene (T2d) unconformity; incision of 

contemporary shelf deposits also characterises the Bartonian–Priabonian (phase 3) depositional 

package. In both cases, this reflects a fall in relative sea level. The mechanisms most commonly 

considered for falls in base level are eustasy, climate and tectonism (including mantle processes). 
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Inspection of Figure 27 shows that the Mid-Eocene (T2d) unconformity does not appear to 

coincide with a significant eustatic or glacio-eustatic fall in sea level, though the precise 

placement of the Mid-Eocene boundary remains to be confirmed. The absolute timing of the 

Bartonian–Priabonian phase of incision is also uncertain, though there are indications of a 

fluctuating eustatic curve. Although, eustatic/glacio-eustatic falls in sea level cannot be 

discounted in terms of accentuating relative sea-level change, the following observations might 

support tectonic processes as having the primary control on the stratigraphic architecture 

preserved in the Faroe–Shetland region: 

 The deposition of the Munkagrunnur Ridge Delta has been directly linked to contemporary 

uplift of the Munkagrunnur Ridge (Ólavsdóttir et al., 2010).  

 Uplift over a wider area, possibly including the late Ypresian/early Lutetian formation of 

the Judd and Westray anticlines (Smallwood, 2004; Ritchie et al., 2008; Johnson et al., 

2012) (Figure 27) and intra-Lutetian uplift of the Flett High (Robinson et al., 2004), may 

be a regional response to compression associated with the development of the Mid-Eocene 

(T2d) unconformity. BGS borehole 99/3, which cored the axial region of the Judd 

anticline, proved a subaerial erosion surface on this boundary (Leslie et al., 2010), whereas 

major incisions associated with the Mid-Eocene (T2d) unconformity are developed above 

the Flett High, whose positive relief at this time influenced the trend of the incisions. The 

extent of the Mid-Eocene (T2d) unconformity at this time remains unclear, though the 

above noted areas of uplift incorporate (at least) Quadrants 6006, 6005, 6004/204 and 205 

(Figure 22). 

 The prograding shelf-margin deposits of unit E, which overlie the early Bartonian Base-

slope-apron (T2c) unconformity, appear to be part of a well-defined shelf and slope apron 

that extends (at least) from Quadrant 204 in the SW, to Quadrant 208 in the NE (Figures 25 

and 26). A late Lutetian–Bartonian phase of compression associated with the Judd and 

Westray anticlines has been reported by Smallwood (2004), Ritchie et al. (2008) and 

Johnson et al. (2012), which coincides approximately with the change in sedimentation 

pattern from phase 2 to phase 3 (Figure 27). However, the palaeogeographic reconstruction 

of the relatively broad shelf margin for the T98–T99 interval (Figures 25 and 26) might be 

indicative of regional uplift of the West Shetland region. By way of contrast, inspection of 

Figure 8 also reveals that unit E comprises several cycles of progradation manifest by the 

interdigitating relationship between the slope apron and the submarine fan deposits; and it 

is this unit that preserves the stacked series of incised channels on the adjacent shelf. Thus, 

a link to the eustatic/glacio-eustatic curve in Figure 27, which shows several lowstands in 

the Bartonian and Priabonian, cannot be discounted. 

 Our study has also inferred a phase of uplift prior to the deposition of unit F, which 

represents depositional phase 4 in the area of Quadrant 204. Johnson et al. (2012) have 

suggested another phase of compression on the Judd Anticline, as well as uplift of the East 

Faroe High and the development of a growth syncline in the Guðrun Basin area (Figure 6), 

at this time.     

It remains uncertain as to whether or not the potential intra-Eocene tectonism that we are 

inferring was restricted primarily to the eastern and southern part of the Faroe–Shetland region. 

According to Andersen et al. (2000), the Faroe Platform – as a positive feature – was formed at 

the end of the Eocene, and did not have any significant sedimentary input into the Faroe-

Shetland Basin until the Oligocene. However, inspection of Figure 7b reveals a number of SE-

dipping and converging reflectors within the Eocene succession on the Fugloy Ridge, which 

might represent south-easterly progradation but, without regional mapping, it is difficult to 

assess this issue. The north-westerly extent of these internal reflectors is clearly terminated at the 

boundary with the overlying Neogene–Quaternary succession. Other areas in the Faroe–Shetland 

region where Eocene tectonism has influenced deposition include: 1) the Wyville-Thomson 

Ridge, where small deltaic units derived from the ridge are preserved on its northern slope; and, 
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2) the Munkur Basin (Figure 6), which is interpreted to have formed as a response to Mid-

Eocene inversion (Sørensen, 2003). 

Any consideration of regional controls on stratigraphic development in the Faroe–Shetland 

region must also take account of the wider tectonic setting, notably the development of the 

Eurasian plate boundary to the north and west of the region, as well as deformation associated 

with the Pyrenean orogenic zone to the south. The Faroe–Shetland region flanks the southern 

margin of the oceanic Norwegian Basin (Figures 5b and 6). Whereas conventional kinematic 

models assume that Greenland and Eurasia moved apart as a two-plate system, new regional 

geophysical datasets and quantitative kinematic parameters indicate that this rift system 

underwent several adjustments after its inception, and that additional short-lived plate boundaries 

existed within certain domains (Gaina et al., 2009; Gernigon et al., 2009). The Norwegian Basin 

represents one of these domains, and its development is linked to microplate reorganisation since 

breakup until about 30 Ma (mid-Oligocene) when the Aegir Ridge became extinct, coincident 

with the formation of the Jan Mayen microcontinent in response to rifting and ridge propagation 

from the south-west and the north-east (Figure 5b) (Mosar et al., 2002a; Gaina et al., 2009). 

During the Eocene, two significant phases of extension and fragmentation occurred on the 

southern part of the Jan Mayen microcontinent during chrons C21 and C18 (Figure 27); both 

phases are associated with a change in spreading direction between Greenland and Eurasia, as 

well as a certain amount of counter-clockwise rotation of its southwestern margin as rifting (and 

ultimately ocean spreading) developed between Jan Mayen and Greenland (Figure 5b). This 

rotation has been linked to the fan-shaped spreading development of the Norwegian Basin in its 

later stage, as well as local compression on the eastern side of the Jan Mayen microcontinent and 

the southwestern part of the Norwegian Basin (Gaina et al., 2009). Whether or not these plate 

boundary forces exerted during C21 and C18 times extended into the Faroe–Shetland region 

remains uncertain; however, inspection of Figure 27 might invite speculation concerning a broad 

correlation between these chrons and the timing of development of the Mid-Eocene (T2d) and 

Base-slope-apron (T2c) unconformity surfaces, the two main Eocene growth phases of the Judd 

anticline (latest Ypresian/earliest Lutetian and latest Lutetian times) (Smallwood, 2004), and the 

relative uplift of the Flett High (Robinson et al., 2004). The pre-C21 growth of the 

Munkagrunnur Ridge may be indicative that such plate boundary forcing may have been active 

since breakup and the inception of ocean crust development. Such passive margin tectonic 

forcing has recently been demonstrated from the Rockall Plateau (Stoker et al., 2012).  

Plate boundary deformation was also prevalent in Western Europe, south of the study area, 

during the Mid- to Late Eocene Pyrenean phase of orogenesis (Figure 27), which was driven by 

the collision between Eurasia and Iberia. Compressional deformation and inversion have been 

described from the Iberian, Biscay and southern Rockall margins (Masson et al., 1994; Pereira et 

al., 2011), from the West Alpine Foreland (Sissingh, 2001), and from the area in and around the 

southern British Isles (Hibsch et al., 1995). Whether or not these stresses were transmitted as far 

north as the Faroe–Shetland region is unclear; however, the initiation of spreading to the north 

and west of the Faroe–Shetland region combined with continental collision to the south would 

have placed this developing passive margin and intra-plate region in effective compression.  

It is interesting to note that the three main clastic progradational phases of the Faroe–Shetland 

region are largely correlatable with established sandstone members of the Stronsay Group in the 

North Sea Basin (Figures 2 and 27). The influx of these clastic deposits has been attributed by 

Jones and Milton (1994) and Mudge and Bujak (1994) to uplift of the western margin of the 

North Sea Basin. The coincidence in timing of clastic influx between the two basins, together 

with the depositional symmetry across the Orkney-Shetland High might be indicative of repeated 

uplift of this platform area. This „broad‟ uplift contrasts with the more specific, localised, 

compressional structures, such as the Judd and Westray anticlines in parts of the Faroe–Shetland 

region. Whilst this suggests that uplift may have occurred at a variety of scales, it also implies 

that its impact was regional; the apparent synchroneity of the tectonostratigraphic events testifies 

towards a common geodynamic cause.   
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5.2 IMPLICATIONS FOR PRE-STRONSAY GROUP (SYN-RIFT) UPLIFT 

Immediately before the onset of sea-floor spreading in the Faroe-Shetland area, the widespread 

unconformity that formed within the earliest Eocene Moray Group can be linked to the 

development of a dendritic network of deep channels incised into the underlying Lamba 

Formation.  In the southern part of the Faroe-Shetland Basin, this unconformity defines the base 

of biozone T45 (= base of the Upper Flett Formation), and the preceding uplift has been widely 

explained as a distant effect of the Iceland mantle plume (Smallwood and Gill, 2002; Shaw 

Champion et al., 2008; Rudge et al., 2008; Hartley et al., 2011). However, the stratigraphic 

evolution of the Stronsay Group, with its history of fluctuating shelf development, 

unconformities and channel incisions, has many features in common with the development of the 

Moray Group. It is significant that interpretations of seismic reflection data that aim to 

reconstruct the tectonic history of the Moray Group on the southern flanks of the Faroe-Shetland 

Basin, must first remove the effects of later Cenozoic deformation in the same area, by using 

seismic flattening software to restore Moray Group coal horizons to their original horizontal 

disposition. That this restoration is necessary highlights the fact that the Late Paleocene, Eocene 

and later Cenozoic deformations are co-extensive and spatially linked to the southern margin of 

the Faroe-Shetland Basin (Figure 9). This observation provides some support for a common 

tectonic origin of these features; by the end of the Eocene, however, the North Atlantic Ocean 

was probably up to 600 kilometres wide, and its axial mantle plume is unlikely to provide a 

consistent explanation for these repeated episodes of localised deformation. Indeed, the uplift of 

the Flett High and associated channel incision appears to coincide with a minimum in the 

influence of the proto-Iceland hotpspot (Kimbell et al., 2005) (Figure 27). 
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6 Conclusions 

A provisional stratigraphic framework has been established for the Eocene Stronsay Group 

succession in the Faroe–Shetland region. The stratigraphic architecture reveals a punctuated 

record of shelf-margin development and progradation, which we interpret as predominantly 

reflecting the passive margin response to early ocean spreading. On the basis of this framework 

our key conclusions are as follows: 

 Four main depositional phases are provisionally recognised with sedimentary input – based 

on available data – mainly from the south and east of the study area. The following pattern 

of shelf-margin development is proposed: 

1. An initial Ypresian–early Lutetian (T60–lower T93) phase of upwards-coarsening 

deposition that included the build-out of the Munkagrunnur Ridge Delta into the 

southern part of the area, as well as an eastern depocentre in the Quadrant 205/208/214 

area. Contemporary uplift is manifested by the growth of the Munkagrunnur Ridge. 

This phase was terminated by the development of the Mid-Eocene (T2d) unconformity, 

probably a regional response to compression and uplift over a wider area, including the 

initiation of the Judd and Westray anticlines and uplift of the Flett High. 

2. Major incision and erosion of the Ypresian–early Lutetian shelf deposits in Quadrant 

205, and the concomitant deposition of the Lutetian–early Bartonian phase 2 basin-

floor-fan sediments extending between Quadrants 205, 213 and 214. Channel incision 

and initial fan development may have been instigated in T93 times, and largely 

culminated in the accumulation of the Portree, Strachan and Caledonia fans by T96 

times, though the Caledonia fan may have persisted into T97 times. Uplift of the Flett 

High and growth of the Judd and Westray anticlines continued throughout this interval. 

This phase of deposition was terminated by the development of the Base-slope-apron 

(T2c) unconformity. 

3. Renewed shelf-margin build-out characterises the Bartonian–Priabonian phase 3 

depositional package, with large-scale clinoforms prograding north-westwards from the 

West Shetland margin. It is not clear whether this reflects regional or local uplift of this 

margin. The clinoforms interdigitate with submarine fan deposits at the base of the 

slope apron. Contemporary incision of phase 3 shelf deposits indicates falling relative 

sea level, which may or may not relate to eustatic/glacio-eustatic fluctuations. 

4. A localised debris flow deposit that characterises the Late Priabonian phase 3 sediment 

package at the southern margin of the Faroe–Shetland Basin may be one of a number of 

responses to renewed uplift of the basin margin, as well as localised uplift of intra-

regional highs concomitant with the development of growth synclines elsewhere in the 

region (Johnson et al., 2012). The influence of eustatic/glacio-eustatic fluctuations 

cannot be discounted. 

 On a wider scale, the boundaries separating phases 1 to 3 (i.e. the Mid-Eocene (T2d) and 

the Base-slope-apron (T2c) unconformities) appear to broadly correlate with important 

plate reorganisation events linked to the Jan Mayen micro-continent in the adjacent 

Norway Basin, as well as general NE Atlantic changes in spreading direction and rates. 

Moreover, a link to, or interaction with, phases of compressional deformation associated 

with orogenesis along the southern boundary of the Eurasian plate cannot be discounted. 

Our phases of shelf-margin progradation also broadly correlate with key phases of clastic 

input into the North Sea Basin. On this basis, we would suggest that our provisional 

tectonostratigraphic framework is consistent with a predominantly tectonic control on 

sedimentation. 
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Appendix 1 Stratigraphic-range chart 

This appendix presents a stratigraphic-range chart for the Eocene Stronsay Group (Figure A1: 

back pocket) that places the commercial well data, BGS and DSDP boreholes, and seabed dredge 

sites used in this study into a temporal context. The main source of stratigraphical data was 

provided by released well-logs, supplemented with biostratigraphic information from Ichron 

Limited (2010a, b), CDA and Jarðfeingi (Table 1). Log information for DSDP site 336 is mainly 

from Talwani et al. (1976), whereas information for seabed dredge sites in Quadrants 6009 and 

6105 is based on Jones and Ramsay (1982) and Waagstein and Heilmann-Clausen (1995), 

respectively. The Ichron Limited T-sequence scheme was used primarily for correlation 

purposes, although BGS, DSDP and dredge site data are linked into the standard Palaeogene 

calcareous nannofossil (NP) biozones. Additional information includes: 1) general lithological 

and thickness information; 2) the age and lithostratigraphy (where known) of the sub- and post-

Stronsay Group rocks; 3) occasional explanatory notes addressing site-specific issues; and, 4) the 

provisional subdivision of the Stronsay Group arising out of this study. 

(Note: Figure A.1 is located in the back-pocket) 
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provided by Ichron (Ichron Limited 2010a, b) for the purpose of this project. Ichron have placed the top of their sequences T85, T97 and 
T98 at the stage boundaries, and it has been assumed that the T60, T70 and T94 sequences are equivalent to the BP sequences. The 
chronostratigraphic placement of the intervening Ichron sequences has been interpolated from the biostratigraphic zonation chart 
presented in the Ichron reports. However, it should be noted that the placement of the T40 and 45 sequences differs between the BP and 
Ichron schemes; in the BP scheme, the T40 sequence straddles the Paleocene/Eocene boundary, whereas the Ichron scheme shows T40 to 
lie wholly within the Late Paleocene. According to Ebdon et al. (1995) the T40/45 boundary is associated with the extinction of the 
dinoflagellate cyst Apectodinium augustum, which according to the timescale of Gradstein et al. (2004) postdates the Paleocene/Eocene 
boundary by about one million years (i.e. at 54.8 Ma). Thus, we have adopted the chronostratigraphic placement of the BP T-sequences as 
standard in this report, and have adjusted (where necessary) the Ichron T-sequences accordingly (cf. Passey and Hitchen, 2011, p. 216, for 
further discussion on this issue).      
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Figure 5   Palinspastic maps for a) the Late Paleocene to Early Eocene interval and b) the Late Eocene to Oligocene interval (modified from 
Stoker and Varming, 2011). Palaeo-position of Jan Mayen microcontinent based on Mosar et al. (2002a) and Gaina et al. (2009). 
Abbreviations: ADS, Anton Dohrn Seamount; FSB, Faroe-Shetland Basin; GSR, Greenland-Scotland Ridge; HB, Hatton Basin; HTS, 
Hebrides Terrace Seamount; IB, Iceland Basin; IRB, Irminger Basin; JMFZ, Jan Mayen Fracture Zone; KB, Kangerlussuaq Basin; MB, Møre 
Basin; NB, Norwegian Basin; NERB, North East Rockall Basin; NRB, North Rockall Basin; NSB, North Sea Basin; PB, Porcupine Basin; 
RB, Rockall Basin; RBS, Rosemary Bank Seamount; SRB, Southern Rockall Basin; VB, Vøring Basin.
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lithology colours are calibrated with the stratigraphic-range chart (Figure A1): for greater clarity of colour registration at 
specific well sites please refer to the PDF version of this report. See Figure 1 for sample site identification.
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well lithology colours are calibrated with the stratigraphic-range chart (Figure A1): for greater clarity of colour registration at 
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Figure 19   T91 timeslice map: Mid-Eocene, Stronsay Group
with the stratigraphic-range chart (Figure A1): for greater clarity of colour registration at specific well sites please refer to the 
PDF version of this report. See Figure 1 for sample site identification.
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Figure 20   T93 timeslice map: Mid-Eocene, Stronsay Group, including location of unit D
lithology colours are calibrated with the stratigraphic-range chart (Figure A1): for greater clarity of colour registration at 
specific well sites please refer to the PDF version of this report. See Figure 1 for sample site identification.
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Figure 21   Composite T91-T93 isopach map of early Mid-Eocene, Stronsay Group, based on well data (see text for details).
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Figure 22   T94 timeslice map:  Mid-Eocene, Stronsay Group, including  location of unit D
lithology colours are calibrated with the stratigraphic-range chart (Figure A1): for greater clarity of colour registration at 
specific well sites please refer to the PDF version of this report. See Figure 1 for sample site identification.
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Figure 23   T96 timeslice map:  Mid-Eocene, Stronsay Group, including location of units C and  D
well lithology colours are calibrated with the stratigraphic-range chart (Figure A1): for greater clarity of colour registration at 
specific well sites please refer to the PDF version of this report. See Figure 1 for sample site identification.
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Figure 24   T97 timeslice map:  Mid-Eocene, Stronsay Group, including location of units C and  D
well lithology colours are calibrated with the stratigraphic-range chart (Figure A1): for greater clarity of colour registration at 
specific well sites please refer to the PDF version of this report. See Figure 1 for sample site identification.
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Block Well Block Well
202 202/4-1+ 209 209/4-1A

204 204/22-1+ 209/6-1

BGS 99/3 209/12-1

205 205/8-1 213 213/23-1

205/9-1 214 214/4-1

205/10-1A 214/9-1

205/10-2 214/17-1

205/10-3 214/19-1

205/10-4 214/24-1

205/10-5A 214/26-1

205/12-1 214/27-1

205/14-1 214/27-2

205/14-2 214/27a-3

205/14-3 214/27a-4

206 206/1-1A 214/28-1

206/1-2 214/29-1

206/1-3 214/30-1

206/2-1A 219 219/27-1+

206/3-1 219/28-2,2Z+

206/5-1 6004 6004/12-1*

206/11-1 6004/16-1Z*

206/12-1 6004/17-1*

207 207/1-1 6005 6005/13-1A*

208 208/15-1A 6005/15-1*

208/17-1 BGS 99/6

208/17-2 6009 Dredges S1, S3

208/19-1 6105 Dredges 145, 157

208/21-1 158, 161

208/22-1 6307 DSDP 336

208/26-1

208/27-2

Table 1   Commercial wells, BGS boreholes, dredge and DSDP sites used in this study.

Biostratigraphic data provided by Ichron for all wells, except: + CDA; * Jardfeingi
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