
1. Introduction
The outer electron radiation belt is highly variable with electron energies reaching up to well over several MeV 
(Baker et al., 2012). Their behavior is governed by a range of physical processes that when combined give rise 
to complex spatial and temporal behavior. Whistler mode chorus waves (Horne, Thorne, Glauert, et al., 2005; 
Horne, Thorne, Shprits, et  al.,  2005; Glauert & Horne,  2005; Horne et  al.,  2013; Tsurutani & Smith,  1974; 
Tsurutani & Smith, 1977) and ultra-low frequency wave (Brautigam & Albert, 2000; Schulz & Lanzerotti, 1974) 
can accelerate seed population electrons (a few hundreds of keV) up to MeV energies on hour to day timescales 
(Horne, Thorne, Glauert, et al., 2005). Under quiet conditions, the resulting MeV population is observed to decay 
on a day to week timescale (Pinto et al., 2019), and therefore, due to its longevity, can pose a significant risk to 
satellites within the outer radiation belt (Baker et al., 2018).

Theoretical studies have shown that EMIC waves are important for losses of relativistic electrons at L > 4 (Ker-
sten et al., 2014; Lyons & Thorne, 1972; Ma et al., 2015; Thorne & Kennel, 1971). Shprits et al. (2016) suggest-
ed that EMIC waves were important for electron losses at lower L shells of the slow decaying ultra relativistic 
storage ring (Baker et al., 2012), although plasmaspheric hiss may also play a significant role (Pinto et al., 2019; 
Thorne et al., 2013).

Abstract The interactions between electromagnetic ion cyclotron (EMIC) waves and relativistic electrons 
are influential in diffusing radiation belt electrons into the loss code from which the electrons are lost into the 
atmosphere. These wave-particle interactions between EMIC waves and electrons with energies of a few MeV 
or more depend strongly on wave spectra and plasma properties. Here we study the variability in wave spectra 
and plasma properties as a function of L* found during Van Allen Probe EMIC observations. These results 
are used to calculate statistical bounce and drift average diffusion coefficients that include the variation in 
wave spectra and plasma density as a function of L* and activity by averaging observation-specific diffusion 
coefficients. The diffusion coefficients are included in global radiation belt simulations and the effect of the 
EMIC waves is explored. The distribution in the plasma frequency to electron gyrofrequency ratio decreases to 
lower values as L* decreases. As a result, few EMIC waves are able to resonate with 2–3 MeV electrons at L* 
≤ 3.75 while electrons of the same energy at larger L* are diffused by EMIC waves in high density regions. In 
comparison, a sufficient number of EMIC waves are able to resonate with higher energy electrons, 𝐴𝐴 ≥ 4.2 MeV, 
at L* ≥ 3.25 to significantly affect the decay in electron flux. EMIC wave parametrisations of electron diffusion 
by EMIC waves are compared and solar wind dynamic pressure is found to give the best agreement with Van 
Allen Probe observations.

Plain Language Summary In recent years there has been an increasing number of satellites 
operating in or traversing the Earth's radiation belts. These belts are composed of charged particles that are 
largely confined by the Earth's magnetic field, although waves can accelerate and scatter these particles. In 
the outer belt, electrons can be accelerated up to relativistic energies and pose a threat to satellites. Diffusion-
based models are used to simulate the electron population, incorporating the statistical effects of waves on 
the electrons. Electromagnetic ion cyclotron waves are of particular importance for the relativistic population, 
effectively scattering them into the atmosphere and removing them from the belts. By following a new approach 
that captures the variation in the wave-particle interactions, we explore the contributions of electromagnetic ion 
cyclotron waves to electron loss as functions of electron energy and location in the radiation belts.
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EMIC wave activity is known to be an activity, L, magnetic local time (MLT), and magnetic latitude dependent. 
Analysis of CRRES EMIC observations found that occurrence rates in the inner magnetosphere were enhanced 
in the afternoon sector during geomagnetically disturbed conditions (AE > 300 nT) (Meredith et al., 2014), con-
sistent with the theoretical picture of favorable EMIC excitation and growth where anisotropic ring current ions 
overlap with the high density plasmasphere. Due to the limited duration of the CRRES mission, the prenoon sec-
tor had a noticeable gap in data coverage. Analysis using the Van Allen Probes satellites found similar enhanced 
occurrence rates in the afternoon sector during geomagnetically disturbed conditions, but also a peak during 
quiet times in the prenoon sector (Saikin et al., 2016; Wang et al., 2016). Day side magnetospheric compressions 
are also found to be correlated to EMIC wave occurrence rates; enhanced rates are found during high solar wind 
pressure and positive Dst (Anderson et al., 1992; Usanova et al., 2012). Shabansky orbits can be formed during 
compression which can result in anisotropic ion populations that generate off equatorial EMIC waves (Shaban-
sky, 1971). While solar wind pressure is low, EMIC waves are observed across all MLT sectors with peak occur-
rence rates found at prenoon (Saikin et al., 2016). Contrastingly, during high pressure, the peak rates shifts into 
the afternoon sector (Gamayunov et al., 2020; Saikin et al., 2016).

Statistical studies have found a distinction in density dependence between the EMIC bands. Helium band waves 
are more prevalent in higher density regions inside the plasmasphere and plasmaspheric drainage plume, whereas 
hydrogen band waves are largely found in lower density regions outside the plasmasphere (Anderson et al., 1992; 
Zhang et al., 2016). Such a distinction is consistent with theoretical growth rates (Horne & Thorne, 1994). The 
range of electron energies and pitch-angles that EMIC waves interact with depends on the cold plasma density 
and the wave spectrum through the resonance condition (Meredith et al., 2003; Summers et al., 2007). Waves 
closer to their upper bounding gyrofrequency in high density regions are able to resonate with lower energy and 
larger pitch-angled electrons. The resonant interactions lead to electron diffusion in pitch-angle, resulting in elec-
tron losses from the belts. Therefore, the decay of relativistic and ultrarelativistic electrons in the radiation belts 
depends on the plasma properties and the wave spectra of the EMIC waves.

The effect of magnetospheric waves on radiation belt electrons is included in global radiation belt models via 
bounce and drift averaged diffusion coefficients. Recent studies have highlighted the importance of including the 
variability in plasma properties and wave spectra in radiation belt modeling, for EMIC waves (Ross et al., 2020) 
as well as whistler-mode waves (Watt et al., 2019, 2021) and Ultra Low-Frequency wave (Thompson et al., 2020). 
Ross et al. (2020) developed a new approach for calculating electron diffusion coefficients by averaging observa-
tion specific diffusion coefficients (each calculated using the wave spectra and plasma density of each individual 
EMIC wave observation), rather than averaging the wave spectra and density measurements before calculating 
diffusion coefficients (e.g., Kersten et al. [2014]). This approach, applied to CRRES EMIC observations, sig-
nificantly improved the agreement between global radiation belt models and Van Allen Probe observations of 
relativistic and ultra-relativistic electron flux compared to EMIC diffusion models using average wave spectra 
and plasma density. In particular, higher pitch-angled particles are diffused by the waves, removing a greater 
proportion of the electron population.

The CRRES EMIC observations, used in Ross et al. (2020), are limited to L* ≥ 4.0 due to the magnetometer 
switching to a lower sensitivity mode at lower L* (Meredith et al., 2003). However, EMIC waves have been ob-
served by the Van Allen probes at lower L* (Gamayunov et al., 2020; Qin et al., 2019). Furthermore, the majority 
of EMIC observations during storms by the CRRES mission were in the storm main phase (Halford et al., 2010), 
while Saikin et al. (2016) reported more storm-time EMIC observations during the recovery phase during the 
early years of the Van Allen Probes mission. Additionally, Saikin et al. (2016) noted that EMIC observations 
observed by the Van Allen Probes have an activity distribution significantly different from those observed by 
CRRES. The CRRES mission coincided with a considerably more active solar cycle than the Van Allen Probes 
mission and therefore observed EMIC activity under different solar activity (Wang et al., 2016).

In this paper, we build on the work from Ross et al. (2020) to calculate statistical EMIC diffusion coefficients, 
by applying a similar approach which includes the variation in wave spectra and plasma properties, by using 
the more extensive Van Allen Probes data set allowing us to improve the statistics and extend our modeling to 
lower L*. The method presented in Ross et al. (2020) for calculating the diffusion coefficients is computationally 
expensive for extensive wave observation datasets due to the calculation of diffusion coefficients for each ob-
servation individually. In this paper, we present an approximate method that reduces the number of calculations 
necessary while agreeing well with the full calculation. A similar method may be used for modeling electron 
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diffusion by other wave modes in the radiation belts. These EMIC diffusion 
coefficients are then included in global radiation belt simulations to explore 
the effects of EMIC waves on ultrarelativistic electrons.

Our identification and analysis of the Van Allen Probes EMIC wave obser-
vations is presented in Section 2, with a focus toward the variation in wave 
spectra and plasma density and the implication for resonant energies. In 
Section 3 we calculate statistical bounce and drift averaged EMIC diffusion 
coefficients by averaging observation-specific diffusion coefficients param-
eterized by Pdyn, Dst and Kp. In Section 4 we include these matrices into a 
global radiation belt model to asses the importance of EMIC waves and to 
compare the EMIC parameterizations. The results are discussed in Section 5 
and our conclusions are presented in Section 6.

2. EMIC Wave Observations
In this study, we use data from the Van Allen Probe satellites that were 
launched on the 30 August 2012 into a near-equatorial (10° inclination) ellip-
tical orbit with a perigee of 1.1RE and apogee of 5.8RE (Mauk et al., 2013). 
For the EMIC wave observations, we use the 64 Hz magnetometer data from 
the Electric and Magnetic Field Instrument Suite and Integrated Science 
(EMFISIS) between 11 September 2012 and 13 October 2019 (Kletzing 
et al., 2013). We do not use data from the Van Allen Probe B as we cannot 
reliably determine if the two sets of measurements are independent; the same 
EMIC waves observed by one instrument may also be observed by the other 
due to the temporal and spatial coherence of the waves (Blum et al., 2017). 
Additionally, the magnetometer data from Van Allen Probe A is generally 
less noisy than that from B, and therefore EMIC wave identification is more 
reliable (Wang et al., 2015).

2.1. Data Analysis and Extraction

The wave spectra are calculated using the magnetic field measurements rotat-
ed into a mean-field-aligned coordinate system where the coordinate trans-
formation is performed based on the method from Jun et al. (2019), using a 
32 s moving average for the background field. The mean-field-aligned ortho-
normal basis is defined by 𝐴𝐴 𝐴𝐴𝐴𝑧𝑧 = �̄�𝑩∕|�̄�𝑩| , the y-component is in the direction 

𝐴𝐴 �̄�𝑩 × 𝒓𝒓 and 𝐴𝐴 𝐴𝐴𝐴𝑥𝑥 completes the right hand system via 𝐴𝐴 𝐴𝐴𝐴𝑥𝑥 = 𝐴𝐴𝐴𝑦𝑦 × 𝐴𝐴𝐴𝑧𝑧 . We apply for a 3rd order Butterworth bandpass 
filter with a lower cut-off of 0.1 Hz and an upper cut-off of 10 Hz along each component (Wang et al., 2015). The 
power spectral density (PSD) of the waves is calculated using a fast Fourier transform applied to each magnetic 
field component with a Hanning time window of 64s with a stepsize of 16s. The wave properties are then cal-
culated from the co-variance matrix in the frequency domain 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖(𝑓𝑓 ) = 𝑋𝑋𝑖𝑖(𝑓𝑓 )𝑋𝑋∗

𝑖𝑖 (𝑓𝑓 ) , where Xi(f) are the Fourier 
transforms of the magnetic field components, following Means (1972). The wave properties are then averaged 
over 4 windows, giving a 64s measurement cadence.

At L* < 3, the proton gyrofrequency increases to ≥10 Hz which becomes comparable to the Nyquist frequency 
of the 64 Hz magnetometer on EMFISIS. We, therefore, limit our analysis to L* > 3, otherwise, we would be 
artificially restricting EMIC wave detections to frequencies significantly lower than the proton gyrofrequency at 
lower L* (Wang et al., 2015).

Wave features are extracted by the following algorithm based on Bortnik et al. (2007). In order to remove ambient 
noise, the rolling 3 min average PSD must exceed 10 times the daily average (Usanova et al., 2012), and therefore 
long lasting background features, likely resulting from the satellite itself, are excluded. For example, the narrow 
band wave power at ∼1.5 Hz (horizontal line in Figure 1a) does not satisfy this criterion and is therefore excluded. 
Occasionally, short-duration bursts of wave power occur which do not correspond to EMIC activity (Usanova 
et al., 2012), we exclude these by imposing the constraint that wave features must persist for a minimum of 5 min. 

Figure 1. An example electromagnetic ion cyclotron (EMIC) observation 
on 31 July 2015 by Van Allen Probe A. Panel (a) shows the power spectrum 
with the hydrogen, helium, and oxygen gyrofrequencies plotted in white. The 
power over the frequency-dependent threshold is shown in panel (b), where 2 
events are identified and illustrated by the red and green shading. The average 
power spectra over the duration of the events, used in the events validation, are 
shown in the inset to panel (b). Panel (c) shows the result of the identification 
when the wave power in the helium band has been removed as it has not been 
classified as EMIC.
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In order to capture most of the wave power of bursty events, shorter duration bursts in wave power that exceeds 
the threshold that is separated by less than 5 min from an existing feature are identified as the same feature (Wang 
et al., 2015), as illustrated in Figure 1b. As we require simultaneous density and spectral measurements for our 
diffusion coefficient calculations, we excluded observations when there is no fpe/fce provided in the Level 4 EM-
FISIS data (Kurth et al., 2015) leaving ∼60% of the Van Allen Probe A data which we analyze.

After performing the feature extraction, we verify that the features are EMIC waves and remove broad band 
signals and magnetosonic waves (Anderson & Hamilton, 1993). For this, we use a combination of visual identi-
fication and supervised machine learning. First, we visually validate the features during 2013 and 2014 and label 
the features appropriately as EMIC or non-EMIC, for each band separately. For each feature, we then average the 
power spectral density over time on a frequency grid normalized by the proton gyrofrequency (see the subplot 
in Figure 1b). A Random Forest is then trained and tested on the average power spectral density profiles and 
validation labels from the visually inspected 2014 and 2013 observations, respectively. The prediction accuracy 
is ∼95%, where the differences in classification are low amplitude EMIC waves that are excluded by the Ran-
dom Forest. The trained Random Forest is then applied to the remaining dataset of candidate features to identify 
the EMIC waves. An example of EMIC wave activity identified by the Random Forest is shown Figure 1c. The 
broadband wave power below the helium gyrofrequency that is picked out by our extraction algorithm is classi-
fied as non-EMIC by the Random Forest method and therefore rejected from the EMIC dataset.

To aid our analysis of the EMIC wave spectra and to only select the most intense harmonic within the band, 
we fit a Gaussian distribution to the power spectral density at each instance in time to each EMIC band. The 
corresponding upper and low cut-off's are determined by the highest and lowest frequency within the band that 
was identified as being above the threshold. Note that each EMIC wave feature will be made up of multiple line 
spectra at different instances in time, resulting in multiple fitted distributions for a given event, each representing 
64 s of the EMIC wave, rather than averaging over the duration of the duration as is often done. For each of the 
spectral profiles, we retain the central Gaussian frequency, fm, the Gaussian width, and the upper and lower cut-
offs. The wave intensity, 𝐴𝐴 𝐴𝐴2

𝑤𝑤(𝑛𝑛𝑛𝑛 2) , is then calculated by integrating the Gaussian distribution between the the 
cut-offs. Additionally, we retain fpe/fce, MLT, the magnetic latitude and L* along with solar wind parameters and 
geomagnetic indices from the OMNI web. For consistency with our previous diffusion coefficient calculations, 
we calculate L* using OP77Q (W. P. Olson & Pfitzer, 1977).

2.2. Activity and Spatial Dependence

The distribution of EMIC waves depends on the solar and geomagnetic activity as well as the spatial location 
in the radiation belts. We, therefore, perform a statistical analysis of the EMIC wave activity which we can use 
to interpret later results. For brevity, we focus on the distributions in MLT and L* parameterized by solar wind 
pressure, Pdyn, as similar statistical studies have been performed before, for example, see Chen et al. (2019), Jun 
et al. (2019), Saikin et al. (2016).

During the weak solar activity, Pdyn ≤ 2 nPa shown in Figure 2 a and b, the occurrence rates of hydrogen and 
helium band EMIC waves peak at ≲1% just prior to noon. In comparison, the helium band waves have a broader 
distribution in MLT with slightly enhanced rates in the afternoon sector and predawn. The occurrence rate in-
creases with increasing L* for both bands. The MLT and L* dependence of the average wave intensity, Figures 3a 
and 3b are well correlated with the occurrence EMIC rate.

At high solar wind activity, Pdyn > 5 nPa shown in Figures 2e and 2f, the EMIC occurrence rates are significantly 
increased from the levels found during weak solar activity. Again the rates increase with L* and by L* ∼ 5, the 
occurrence rates reach 5%–10%, a factor of ∼10 increase compared to during the weak solar activity. There are 
enhanced hydrogen band EMIC occurrence rates at L* ≥ 5 over a broad range of MLT, from 2-19. Contrastingly, 
the wave intensity is peaked in the afternoon sector, Figure 3e. The hydrogen band waves outside of the afternoon 
sector are typically low amplitude, resulting in a lower average power spectral intensity. On the other hand, the 
helium band waves are largely found between 10 and 20 MLT, with few observations in the predawn sector. En-
hanced EMIC wave activity on the dusk side is consistent with previous statistical studies (Meredith et al., 2014; 
Saikin et al., 2015) and self-consistent global models of EMIC wave excitation (Jordanova et al., 2008).

Before we calculate drift and bounce averaged diffusion coefficients, we need to understand the L* and activity 
dependence. We therefore average observations from each MLT and bin by L*, and Pdyn, Kp, and Dst in turn.
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Figures 4a and 4b show that the MLT averaged occurrence rates increase with Pdyn for both hydrogen and helium 
band EMIC waves. The strongest Pdyn dependence is found at larger L*, with the occurrence rate reaching over 
4% for hydrogen and over 3% for helium at L* = 5.25. Contrastingly, while Pdyn < 2 nPa, the occurrence rates 
at all L* are less than 0.5% for each band. However, there are more EMIC wave observations during these quiet 
times than during high solar wind pressure, as shown in Figures 4c and 4d, despite the low occurrence rate as a 
result of longer satellite dwell times. The total duration of the EMIC wave observations increases with L* until 
L* = 5.25. The decrease at L* = 5.75 is due to lower dwell times and that the low-frequency limit of the Butter-
worth band pass filter approaches fcHe in the weaker magnetic field making identification of helium band EMIC 
waves more difficult. The average EMIC wave intensity for both bands, including times with EMIC activity and 
without EMIC waves identified that is, the average wave intensity over all time in the bin, increases significant-
ly with Pdyn even at low L* with 𝐴𝐴 𝐴 𝐴𝐴2

𝑤𝑤(𝑛𝑛𝑛𝑛 2) > for helium bands waves reaching 𝐴𝐴 𝐴 10−2𝑛𝑛𝑛𝑛 2 at L* = 3.75 and 
Pdyn ≥ 5 nPa, compared to ∼10−4 nT2 when Pdyn < 1 nPa. For our activity binning for our diffusion coefficient 
calculations, we want the binning to reflect the changes in the EMIC wave occurrence and wave intensity while 
retaining good statistical coverage. At L* = 4.75 and 5.25, the occurrence rate increases substantially between the 
4 nPa ≤ Pdyn < 5 nPa and Pdyn ≥ 5 nPa bins, and therefore, for our diffusion coefficient calculations, we choose 
5 nPa as the lower threshold for as our largest Pdyn bin. The minimum total observation duration, with or without 
EMIC activity, when Pdyn > 5 nPa within each L* and Pdyn bin is 72 hr, although the duration of the observed 
EMIC activity at L* = 3.25 within this bin is low. For the lower bins, we adopt Pdyn < 1 nPa, 1 nPa ≤ Pdyn < 2 , 
and 2 nPa ≤ Pdyn < 5 nPa, each of which has greater than 650 hr of observations.

Figure 2. Occurrence rates for hydrogen and helium band electromagnetic ion cyclotron waves as a function of magnetic 
local time and L* for Pdyn < 2 nPa, 2 nPa ≤ Pdyn < 5 nPa and Pdyn ≥ 5 nPa. The gray shading indicates that there are at least 
2 hr of observations in a bin.
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Figures 5a and 5b show that the occurrence rates of both hydrogen and helium band EMIC waves increase with 
Kp at all L* between Kp < 1 and 4 ≤ Kp < 5. The dependence is again strongest at larger L*, particularly for 
helium band EMIC, with occurrence rates reaching ∼4% at L* ≥ 4.75 during active conditions. The average wave 
power of both bands shows a strong dependence on Kp at all L* and therefore we take Kp < 2, 2 ≤ Kp < 4 and 
Kp > 4 as our bins for diffusion coefficient modeling. At Kp > 4, each L* bin has greater than 63 hr of observa-
tions while the lower Kp bins have at least ∼630 hr.

Finally, Figures 6a and 6b show that the highest occurrence rates are found when Dst decreases at all L*. At 
L* = 3.25, the majority of the EMIC wave observations are at Dst < −20 nT with few at higher values of Dst, 
Figures 6c and 6d. However, at L* ≥ 4.25, the dependence of EMIC occurrence rates of Dst is significantly weak-
er, particularly at larger L*. The average wave intensity also increases with decreasing Dst at all L*'s although 
the dependence is again stronger at lower L*. We note that there is a substantial difference between the strength 
of the geomagnetic storms with in the −200 nT ≤ Dst < −50 nT and −50 nT ≤ Dst < −20 nT bins, however the 
average wave intensity within these bins are very similar, and therefore we combine them. We discuss this further 
in the discussion. Our activity binning is then Dst < − 20 nT, −20 nT ≤ Dst < 5 nT, and Dst > 5 nT, with each 
bin having more than 350 hr of observations.

Figure 3. Average wave intensity for hydrogen and helium band electromagnetic ion cyclotron waves as a function of 
magnetic local time and L* for Pdyn < 2 nPa, 2 nPa ≤ Pdyn < 5 nPa and Pdyn ≥ 5 nPa. The gray shading indicates that there are 
at least 2 hr of observations in a bin.
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2.3. Variability in Spectral and Plasma Properties

In this section, we discuss the variability of the EMIC wave spectra and plasma density as these two properties 
strongly influence the wave-particle interactions. For this, we map the observations to the equator, as equatorial 
values are necessary for the diffusion coefficient calculations, and diffusion by EMIC waves is dominated by low 
latitude wave-particle interactions (see Section 3.2). For the mapping we assume a dipole magnetic field and that 
the wave power and plasma density remain constant along the field. In an average sense, close to the magnetic 
equator (|MLAT| < 20°) the plasma density deviates little from the equatorial value, for example, see Ozhogin 
et al. (2012) Figure 9.

Figure 4. Panels (a) and (b) show the average occurrence rate for hydrogen and helium band electromagnetic ion cyclotron 
(EMIC) waves as a function of Pdyn with the L* bin indicated by the line plot color. Panels (c) and (d) show the corresponding 
EMIC duration within the Pdyn and L* bins. The average wave intensities are given in (e) and (f). The round brackets indicate 
strict inequality while the square brackets allow for equality for example, 𝐴𝐴 (0, 1) corresponds to 0 nPa ≤ Pdyn < 1 nPa.
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As mentioned above, the resonance between EMIC waves and electrons is sensitive to the wave spectrum and fpe/
fce. This can be seen in Figure 7, when the wave frequency approaches the upper bounding gyrofrequency of the 
band, the minimum resonant energy, Emin, significantly decreases. Similarly, in high-density regions where fpe/fce 
is large, Emin is also decreased. Therefore, knowledge of how the wave spectra and fpe/fce relate to each other and 
vary with L* is necessary for accurately modeling wave-particle interactions.

In order to represent the wave spectra, we can consider the Gaussian central frequency, fm, as this gives an indi-
cation of the frequency at which the EMIC wave power is centered. The distribution of 𝐴𝐴 𝐴𝐴𝑚𝑚∕𝐴𝐴𝑒𝑒𝑒𝑒

𝑐𝑐𝑐𝑐  remained fairly 
constant between L* = 3.2 and 5.7 for both hydrogen and helium band waves, Figures 8a and 8b, with little 
variation in average (crosses) and the 20% and 80% percentiles (black lines). There is a second small population 

Figure 5. Panels (a) and (b) show the average occurrence rate for hydrogen and helium band electromagnetic ion cyclotron 
(EMIC) waves as a function of Kp with the L* bin indicated by the line plot color. Panels (c) and (d) show the corresponding 
EMIC duration within the Kp and L* bins. The average wave intensities are given in (e) and (f). The same notation for the 
brackets is used as in Figure 4.
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of hydrogen band EMIC waves close to the proton gyrofrequency with 𝐴𝐴 𝐴𝐴𝑚𝑚∕𝐴𝐴𝑒𝑒𝑒𝑒
𝑐𝑐𝑐𝑐 > 0.9 found at L* ≥ 4.0 (Teng 

et al., 2019). At L* ≤ 4, the Butterworth upper cut-off frequency may be limiting the hydrogen distribution at high 
frequencies (red line), however, Teng et al. (2019) found that the number of high frequency EMIC waves decrease 
with deceasing L* and few were found at L* ≤ 3.5. The distribution of 𝐴𝐴 𝐴𝐴𝑚𝑚∕𝐴𝐴𝑒𝑒𝑒𝑒

𝑐𝑐𝑐𝑐  for hydrogen band EMIC waves 
is peaked at ∼0.42, consistent with the CRRES EMIC observations (Kersten et al., 2014; Meredith et al., 2014), 
with the 80% of observations with 𝐴𝐴 𝐴𝐴𝑚𝑚∕𝐴𝐴𝑒𝑒𝑒𝑒

𝑐𝑐𝑐𝑐 < 0.45 . The helium band waves have a broader distribution in fm rela-
tive to it's gyrofrequency with a significant number of observations close to the helium frequency. For instance, 
20% of helium EMIC waves have fm above ∼0.75fcHe and ∼20% have fm less than ∼0.5fcHe, while the average value 
is ∼0.65fcHe, allowing helium band waves to resonate with a broad range of electron energies and pitch-angles.

Figure 6. Panels (a) and (b) show the average occurrence rate for hydrogen and helium band electromagnetic ion cyclotron 
(EMIC) waves as a function of Dst with the L* bin indicated by the line plot color. Panels (c) and (d) show the corresponding 
EMIC duration within the Dst and L* bins. The average wave intensities are given in (e) and (f). The same notation for the 
brackets is used as in Figure 4.
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For both bands, the average 𝐴𝐴 𝐴𝐴𝑝𝑝𝑝𝑝∕𝐴𝐴𝑝𝑝𝑒𝑒
𝑐𝑐𝑝𝑝  , shown by the crosses in Figures  9a 

and 9b, increases with L* although the increase is much shallower for hydro-
gen band waves. Between the two wave bands, there is a clear distinction in 
distribution in 𝐴𝐴 𝐴𝐴𝑝𝑝𝑝𝑝∕𝐴𝐴𝑝𝑝𝑒𝑒

𝑐𝑐𝑝𝑝  . Helium band EMIC waves are found in predominant-
ly higher density regions, such as a plasmasphere and plasmaspheric plumes, 
while hydrogen band EMIC waves are largely associated with lower density 
regions, such as the plasma trough, where the 80th percentile of hydrogen 
band densities is close to the 20th percentile of helium band densities at L* 
≥ 4.0 (black lines) (Anderson et al., 1992; Horne & Thorne, 1994; Zhang 
et al., 2016). However, there is significant variation in 𝐴𝐴 𝐴𝐴𝑝𝑝𝑝𝑝∕𝐴𝐴𝑝𝑝𝑒𝑒

𝑐𝑐𝑝𝑝  at fixed L* 
with the highest obtained 𝐴𝐴 𝐴𝐴𝑝𝑝𝑝𝑝∕𝐴𝐴𝑝𝑝𝑒𝑒

𝑐𝑐𝑝𝑝  increasing with L*. As a result of the lower 
𝐴𝐴 𝐴𝐴𝑝𝑝𝑝𝑝∕𝐴𝐴𝑝𝑝𝑒𝑒

𝑐𝑐𝑝𝑝  values found at low L*, these EMIC waves will typically resonate 
with higher energies than those at high L*, unless there is wave power very 
close to the upper bounding gyrofrequency, Figure 7. Note that while an elec-
tron drifts around the Earth, at fixed L*, it may interact with EMIC waves in 
a wide range in plasma densities as it changes MLT, this variation must be 
captured when calculating drift averaged diffusion coefficients.

We have over-plotted the L dependent density models from Sheeley 
et al.  (2001) (red dotted line) and Ozhogin et al.  (2012) (blue dotted line) 

in Figure 9, calculated assuming a dipole magnetic field and so L = L*. At L* ≥ 4.0, the L* dependent average 
𝐴𝐴 𝐴𝐴𝑝𝑝𝑝𝑝∕𝐴𝐴𝑝𝑝𝑒𝑒

𝑐𝑐𝑝𝑝  found in the helium band EMIC observations exceeds both plasmaspheric density models and, by L* 
∼ 5.0, 80% of the observations have higher densities than these models. At L* ≤ 3.6, the average 𝐴𝐴 𝐴𝐴𝑝𝑝𝑝𝑝∕𝐴𝐴𝑝𝑝𝑒𝑒

𝑐𝑐𝑝𝑝  for a 
helium band observation drops below the plasmaspheric density models and the majority of the observations 
are at lower densities. For hydrogen band EMIC waves, the L* dependent average 𝐴𝐴 𝐴𝐴𝑝𝑝𝑝𝑝∕𝐴𝐴𝑝𝑝𝑒𝑒

𝑐𝑐𝑝𝑝  lies between the plas-
maspheric models and the Sheeley et al. (2001) plasma trough model (red dash-dot line). Approximately 20% of 
observations are at lower densities than the Sheeley et al. (2001) plasma trough model and ∼20% of observations 
exceed the plasmasphere models. For comparison we have plotted the distributions of 𝐴𝐴 𝐴𝐴𝑝𝑝𝑝𝑝∕𝐴𝐴𝑝𝑝𝑒𝑒

𝑐𝑐𝑝𝑝  at all times, in-
cluding times with EMIC activity and without, in Figure 9c. The average over all times lies close to the statistical 
plasmasphere models of Sheeley et al. (2001) and Ozhogin et al. (2012).

Finally, we show the distribution in 𝐴𝐴 𝐴𝐴𝑚𝑚∕𝐴𝐴𝑒𝑒𝑒𝑒
𝑐𝑐𝑐𝑐  as a function of 𝐴𝐴 𝐴𝐴𝑝𝑝𝑝𝑝∕𝐴𝐴𝑝𝑝𝑒𝑒

𝑐𝑐𝑝𝑝  in Figure 10. From this combination of param-
eters, assuming an ion composition of 94% hydrogen, 5% helium, and 1% oxygen (Kersten et al., 2014) and that 
the EMIC waves are field-aligned, we can calculate the minimum resonant energies which are shown by the black 
contours over-plotted in Figure 10. Note that the wave power of the waves extends to higher and lower frequencies 
as the wave spectra have a nonzero width. There are a considerable number of both hydrogen and helium band 
waves that can resonate with ≲3 MeV electrons but significantly fewer that can resonate with ≲1 MeV electrons, 
and these are largely hydrogen band waves close the proton gyrofrequency, for instance, the high frequency 

Figure 7. Profiles of the minimum resonant energy assuming field-aligned 
waves for various fpe/fce and ion composition of 94% hydrogen, 5% helium, and 
1% oxygen. The red shaded regions give the prohibited frequency ranges used 
in the diffusion coefficient calculation, specified by fup.

Figure 8. The distribution of (a) Hydrogen band and (b) Helium band electromagnetic ion cyclotron waves observations in 
terms of L* and 𝐴𝐴 𝐴𝐴𝑚𝑚∕𝐴𝐴𝑒𝑒𝑒𝑒

𝑐𝑐𝑐𝑐  , where the color indices the number of observations in the corresponding L* and frequency bin.The 
back crosses indicate the mean 𝐴𝐴 𝐴𝐴𝑝𝑝𝑝𝑝∕𝐴𝐴𝑝𝑝𝑒𝑒

𝑐𝑐𝑝𝑝  at a given L*, while the black solid lines are the 20% and 80% percentiles. The red line 
indicates the equatorial cut-off frequency of the Butterworth band pass filter.
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hydrogen population (Teng et al., 2019). Note that the cold plasma dispersion relation, used here, breaks down 
close to the gyrofrequency when the refractive index tends to infinity. As a result, the lowest resonant energies 
(<1 MeV) are likely to be underestimated by this approximation.

3. EMIC Diffusion Coefficients
In order to include electron diffusion by EMIC waves in global radiation belt models, we calculate statistical drift 
and bounce averaged diffusion coefficients, 𝐴𝐴 𝐴 𝐴𝐴𝛼𝛼𝛼𝛼 >𝐴𝐴 , using the PADIE code (Glauert & Horne, 2005). PADIE 
solves the cold plasma dispersion relation and uses quasi-linear theory to calculate the diffusion coefficients. In 

this work, we use a modified version of the PADIE code that takes an arbi-
trary wave power spectral density as an input rather than Gaussian inputs. We 
calculate statistical bounce averaged diffusion coefficients for both hydrogen 
and helium band EMIC waves by averaging observation-specific diffusion 
coefficients (Ross et al., 2020).

3.1. Calculation

The orbit of the Van Allen Probe satellites is inclined with respect to the 
geomagnetic equator, we, therefore, map each of the EMIC observations to 
the magnetic equator assuming a dipole, and that the number density and 
magnetic power spectra do not change with latitude along the magnetic field 
line. The average EMIC wave power observed by the Van Allen probes is 
approximately constant with latitude for absolute magnetic latitudes of ≤17°. 
We use the superscript eq to identify equatorial values and prevent ambigu-
ity. We restrict our diffusion coefficient calculations to magnetic latitudes 
less than 20° assuming that the EMIC wave spectral profile does not vary 
with geomagnetic latitude. Summers et al. (2007) found that electron diffu-
sion, by EMIC waves, at the loss cone is dominated by waves at |λmag| < 20°: 
diffusion at larger equatorial pitch angles is restricted close to the magnetic 
equator. By neglecting wave power at higher magnetic latitudes we under-
estimate diffusion at high energies typically above 10 MeV. We discuss this 
further below in Section 3.2. For our nominal ion abundances, we use 94% 
hydrogen, 5% helium, and 1% oxygen following Kersten et al. (2014). For the 
local upper cut-off, fup, we take a value of 0.97 following Ross et al. (2020) 
to avoid warm plasma effects close to the upper bounding gyrofrequency 

Figure 9. The distribution of (a) Hydrogen band, (b) Helium band electromagnetic ion cyclotron (EMIC) waves in terms 
of L* and 𝐴𝐴 𝐴𝐴𝑝𝑝𝑝𝑝∕𝐴𝐴𝑝𝑝𝑒𝑒

𝑐𝑐𝑝𝑝  . Panel (c) gives the distribution of 𝐴𝐴 𝐴𝐴𝑝𝑝𝑝𝑝∕𝐴𝐴𝑝𝑝𝑒𝑒
𝑐𝑐𝑝𝑝  for all observations, including EMIC and non-EMIC times, the 

number of observations has been divided by 100 to lie on the same color scale. The back crosses indicate the mean 𝐴𝐴 𝐴𝐴𝑝𝑝𝑝𝑝∕𝐴𝐴𝑝𝑝𝑒𝑒
𝑐𝑐𝑝𝑝  

at a given L*, while the black solid lines are the 20% and 80% percentiles. For comparison, the blue dotted line and red 
dotted lines are the 𝐴𝐴 𝐴𝐴𝑝𝑝𝑝𝑝∕𝐴𝐴𝑝𝑝𝑒𝑒

𝑐𝑐𝑝𝑝  values calculated using the Ozhogin et al. (2012) plasmaspheric electron density model, Sheeley 
et al. (2001) plasmaspheric electron density model. The Sheeley et al. (2001) plasma trough model is given by the red dash-
dot line. The maximum value of 𝐴𝐴 𝐴𝐴𝑝𝑝𝑝𝑝∕𝐴𝐴𝑝𝑝𝑒𝑒

𝑐𝑐𝑝𝑝  that can be derived by the electric and magnetic field instrument suite and integrated 
science data using the highest frequency bin of the HRF receiver and the upper hybrid resonance is shown by the solid red 
line.

Figure 10. 2D histogram of hydrogen and helium electromagnetic ion 
cyclotron observations binned by 𝐴𝐴 𝐴𝐴𝑚𝑚∕𝐴𝐴𝑒𝑒𝑒𝑒

𝑐𝑐𝑐𝑐  and 𝐴𝐴 𝐴𝐴𝑝𝑝𝑝𝑝∕𝐴𝐴𝑝𝑝𝑒𝑒
𝑐𝑐𝑝𝑝  . The corresponding 

electron minimum resonance energy is over-plotted in black and the helium 
gyrofrequency is shown by the horizontal black line.
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where the refractive index tends to infinity in the cold plasma approximation 
for oblique propagation. We discuss the sensitivity to this choice in the dis-
cussion section.

Jun et al. (2021) performed a comprehensive analysis of EMIC wave normal 
angles using both Van Allen Probe and Arase data. They found that the ma-
jority of hydrogen and helium band EMIC wave modes have wave normal 
angles of <30◦ . More oblique waves are detected near dawn at L > 8 (Ander-
son et al., 1992; Jun et al., 2021; Min et al., 2012). EMIC waves are thought to 
become more oblique as they propagate to higher latitudes from the equator 
(Anderson et al., 1992; Horne & Thorne, 1994). Gamayunov et al. (2018) 
noted a discrepancy between observations at low L and theory, they sug-
gested that the superposition of multiple waves can lead to underestimation 
in the wavenormal angle when calculated using Fast Fourier Transforms. Ni 
et al. (2015) investigated the sensitivity of electron diffusion to EMIC wave 
normal angle and found that at L ≤ 5.5 the decay timescales were nearly inde-
pendent of the wave normal angle model at E ≥ 2 MeV unless a very oblique 
wave is adopted over all latitudes. We performed calculations using the lat-
itudinal varying wave normal angle model from Ni et al. (2015) and found 
minimal difference in the diffusion coefficients in the domain of interest to 

the fixed wave normal angle model used by Kersten et al. (2014) and Ross et al. (2020). Therefore we assume that 
the waves have a Gaussian distribution in X, X = tan ψ, where ψ is the wave normal angle, centered on ψ = 0 with a 
width Xw = tan 15°. The cut-off in X is taken to be 2Xw. With this wave normal angle prescription, we are omitting 
the contribution from oblique waves near dawn in the outer magnetosphere, however, the average EMIC wave 
intensity is generally much lower in this region compared to the noon and the afternoon sectors (Figures 2–5).

Ross et  al.  (2020) demonstrated a new method of calculating diffusion coefficients for electron diffusion by 
EMIC waves. In these calculations, observation-specific diffusion coefficients are calculated for each observation 
using the observed wave spectra and plasma frequency to electron gyrofrequency ratio. The drift and bounce av-
eraged diffusion coefficients were then calculated by averaging the bounce averaged diffusion coefficients within 
an L* and activity bin. In this way, the full range of wave particle interactions resulting from the variability of the 
plasma environment was captured in the diffusion coefficients. However, their method is numerically expensive 
on large datasets as it requires the calculation of bounce averaged diffusion coefficients for each observation. 
Here we approximate the method from Ross et al. (2020) by binning the observations in 𝐴𝐴 𝐴𝐴𝑝𝑝𝑝𝑝∕𝐴𝐴𝑝𝑝𝑒𝑒

𝑐𝑐𝑝𝑝  and L* allow-
ing multiple observations to be combined into one diffusion coefficient calculation while retaining the spectral 
information from each observation. The EMIC observations presented in the previous section are first binned by 
activity (which in this study is either Pdyn, Kp, or Dst) and L* (adopting the bin centered L* value for all obser-
vations in the bin). Within each bin, we further bin the results by 𝐴𝐴 𝐴𝐴𝑝𝑝𝑝𝑝∕𝐴𝐴𝑝𝑝𝑒𝑒

𝑐𝑐𝑝𝑝  , again assigning the central bin value 
to 𝐴𝐴 𝐴𝐴𝑝𝑝𝑝𝑝∕𝐴𝐴𝑝𝑝𝑒𝑒

𝑐𝑐𝑝𝑝  . Given that we have point measurements, we make the assumption that the latitudinal variation of the 
wave is the same for each observation. As a result, the observations within a 𝐴𝐴 𝐴𝐴𝑝𝑝𝑝𝑝∕𝐴𝐴𝑝𝑝𝑒𝑒

𝑐𝑐𝑝𝑝  , activity and L* bin only 
differ through their equatorial spectra. For each observation, we reconstruct the EMIC power spectral density 
using the Gaussian parameters and cut-offs determined from the observations (see Section 2.1). We can add the 
power spectral densities of each measurement in a bin and calculate the bounce averaged diffusion coefficients 
using this summed profile. Note that this summed profile is rarely a Gaussian but has multiple peaks, coming 
from individual observations. The resulting diffusion coefficients are then a close approximation of the sum of 
the bounce averaged diffusion coefficients calculated from the observation specific diffusion coefficients within 
the 𝐴𝐴 𝐴𝐴𝑝𝑝𝑝𝑝∕𝐴𝐴𝑝𝑝𝑒𝑒

𝑐𝑐𝑝𝑝  , activity and L* bin. Finally, after summing the diffusion coefficients over the 𝐴𝐴 𝐴𝐴𝑝𝑝𝑝𝑝∕𝐴𝐴𝑝𝑝𝑒𝑒
𝑐𝑐𝑝𝑝  bins, while still 

retaining the L* and activity binning, and dividing by the number of observations within the L* and activity bin, 
including those with no EMIC observed activity, we have an approximation of the average observation specific 
diffusion coefficient. A more formal description is given Appendix A.

The error in the approximation is dependent on the granularity of the L* and x binning, with smaller bins giving 
better agreement and in the limit of infinitely small bin sizes is exact. After exploring different bin sizes, we adopt 
L* bins of width 0.5 L* and 𝐴𝐴 𝐴𝐴𝑝𝑝𝑝𝑝∕𝐴𝐴𝑝𝑝𝑒𝑒

𝑐𝑐𝑝𝑝  bin widths of 2.5, which give very good agreement with the full calculation 
(Figure 11).

Figure 11. Comparison of full method (average of observation specific 
diffusion coefficients) and reduced method (wave spectra of observations 
summed within 𝐴𝐴 𝐴𝐴𝑝𝑝𝑝𝑝∕𝐴𝐴𝑝𝑝𝑒𝑒

𝑐𝑐𝑝𝑝  bins before calculating the diffusion coefficients in 
each bin and summing over bins, normalized by the number of observations) 
for helium band electromagnetic ion cyclotron waves at |λm| < 5° for 
Pdyn > 5 nPa and L* = 4.75.
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3.2. Results

Here we present our diffusion coefficients parameterized by Pdyn, our results for the other parameterizations are 
somewhat similar and so are not shown here.

The bounce and drift averaged pitch-angle diffusion coefficients parameterized by Pdyn are shown in Figure 12. 
Electron pitch-angle diffusion by EMIC waves dominates over the energy and cross term diffusion (Glauert & 
Horne, 2005) and therefore we focus on pitch-angle diffusion here. Diffusion increases with increasing solar wind 
pressure at all energies. When Pdyn < 1 nPa at L* = 3.75, there is rapid drop off in pitch-angle diffusion below 
5.6 MeV, Figure 12a, even at 10 MeV diffusion is limited to αeq ≤ 60° and therefore can not remove higher pitch-an-
gled electrons. At high solar wind pressures, electrons with lower energies and higher αeq are diffused. The diffusion 
coefficients increase with increasing L* and extend to larger αeq. For instance, at L* = 3.75 when 2 nPa ≤ Pdyn < 5 nPa 
(Figure 12b), diffusion of 1.78 MeV electrons (orange line) is limited to αeq ≤ 40° but at L* = 4.75 (Figure 12e) 
diffusion occurs up to near 90°, allowing for near equatorially mirroring particles to be removed from the belt.

The pitch-angle profiles of the diffusion coefficients look more irregular in profile than those calculated using 
average spectra which assume a single-peaked, Gaussian power distribution. This is because, in our model, there 
are contributions from many EMIC wave spectra, giving rise to more complex diffusion coefficient profiles.

In Section 3.1, we discussed the restricted latitude range used in this study and the rapid decrease in contribution 
with increasing latitude. Figure 13 shows that the diffusion coefficients decrease with latitude and the mini-
mum resonant energy increases. The electron energies that resonate with the EMIC waves increase with increas-
ing latitude as a result of the decreasing local wave frequency to proton gyrofrequency and plasma to electron 
gyrofrequency ratios, Figure 7. Additionally, the increased local pitch-angle of the particle at higher latitudes 
further increases the resonant energies.

Figure 12. Bounce and drift averaged pitch-angle diffusion coefficients parameterized by Pdyn including both hydrogen and 
helium band waves.

Figure 13. Contributions by magnetic latitude to the bounce and drift averaged pitch-angle diffusion coefficients 
parameterized by Pdyn for helium band waves at L* = 4.75 and Pdyn ≥ 5 nPa.
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4. Long Term Global Radiation Belt Simulations
In this section, we explore the effect of these new diffusion coefficients on the relativistic and ultra-relativistic 
populations using year long global radiation belt simulations. The interval between 1 March 2015 and 1 March 
2016 is chosen as it exhibits a range of dynamics including multiple active periods where there is significant ac-
celeration up to ultra-relativistic energies followed by quiescent periods with gradual decay, allowing us to study 
the effects of EMIC activity during a range of magnetospheric conditions.

4.1. Method

We perform 3D simulations of the Earth's radiation belts using the British Antarctic Survey Radiation Belt 
Model (BAS-RBM) (Glauert et al., 2014a, 2014b) which solves the phase-averaged Fokker-Plank equation that 
calculates the evolution of the electron phase space density. The evolution of the phase space density, f, is given 
in terms of equatorial pitch-angle, αeq, Roederer L* and energy, E.
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𝑔𝑔(𝛼𝛼) = 𝑇𝑇 (𝛼𝛼)sin2𝛼𝛼 (2)

𝐴𝐴(𝐸𝐸) = (𝐸𝐸 + 𝐸𝐸0)(𝐸𝐸(𝐸𝐸 + 2𝐸𝐸0))1∕2 (3)

𝑇𝑇 (𝛼𝛼) = (1.3802 − 0.3198(sin𝛼𝛼 + sin1∕2𝛼𝛼)). (4)

Where E0 is the electron rest mass, τc and τM are the timescales of electron loss into the atmosphere and to the 
magnetopause, respectively. Here, μ = p2  sin2α/(2meB0) and J = ∮ p‖ds are the first and second adiabatic invari-
ants (Schulz & Lanzerotti, 1974), where me is the electron rest mass, B0 is the mean value of the geomagnetic field 
at the Earth's surface and p's the electron's momentum.

The fundamental equations solved by BAS-RBM are similar to other global radiation belt models such as VERB 
(Shprits et al., 2009), DREAM (Reeves et al., 2012), and SALAMBO (Beutier & Boscher, 1995). The models differ 
through their modeling of the wave-particle interactions by diffusion coefficients. Each of the global radiation belts 
models uses statistical models of the average wave and plasma properties to calculate the diffusion coefficients. 
The EMIC wave diffusion coefficients presented here are calculated in a significantly different manner where the 
variation in observed wave-spectra and plasma properties are included in the diffusion coefficient calculations. This 
is a necessary extension as the operation of calculating the diffusion coefficients and the process of averaging do 
not commute that is, the electron diffusion by an average wave is not equal to the average diffusion by waves (Watt 
et al., 2019, 2021). By taking our approach a more representative effect of electrons on the radiation belts is included.

In all of the runs below, we include hiss diffusion coefficients from Glauert et al. (2014a) which are parameter-
ized AE*, defined as the maximum AE over the previous 3 hr, and restricted to inside the plasmapause. Chorus 
wave diffusion coefficients are parameterized by AE (Horne et al., 2013) and are restricted to outside the plas-
mapause. The plasmapause location is given by Carpenter and Anderson (1992). For radial diffusion, we use the 
Kp-driven magnetic component of the Brautigam and Albert (2000) formalism. The location of the last closed 
drift shell is calculated following the method of Glauert et al. (2014b) and effects included in the simulations.

Van Allen Probe A and B background corrected MagEIS electron flux (Claudepierre et al., 2015) and REPT elec-
tron flux (Baker et al., 2012) are used for both the initial condition and the boundary conditions at Lmin, Lmax, and 
Emin. The inner L* boundary is set to be inside the slot region at 2.5, and the outer L* boundary to 5.3 which is the 
largest L* consistently sampled throughout the simulation period. The minimum energy boundary is determined 
by assuming constant first adiabatic invariant with E = 150 keV at the outer L* boundary in order to exclude low-
er electron energies that are influenced by physics not accounted for in the model. Note that BAS-RBM assumes 
a dipole magnetic field configuration internally as is usual for all global radiation belt models.
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4.2. Contributions to Relativistic Electron Flux Decay

Both plasmaspheric hiss waves (Meredith et al., 2007; Pinto et al., 2019; Thorne et al., 2013) and EMIC waves 
(Drozdov et al., 2017; Kersten et al., 2014; Ma et al., 2015; Shprits et al., 2016; Usanova et al., 2014) are believed 
to be important for the decay of relativistic and ultrarelativistic electrons. Additionally, Wang and Shprits (2019) 
showed that chorus waves at high latitude can also contribute to the loss of 0.9 MeV MeV electrons. In order to 
assess the relative importance of these waves as a function of L* and electron energy, we compare three simula-
tions with the following combinations of EMIC and plasmaspheric hiss diffusion coefficients: EMIC and plas-
maspheric hiss; EMIC and no plasmaspheric hiss; plasmaspheric hiss and no EMIC. Note that radial diffusion 
and chorus waves are included in each of these simulations. For these runs, we use our Pdyn parameterized EMIC 
wave diffusion coefficients. We focus on the near equatorially mirroring electron flux for the comparison as the 
decay of this flux is dependent on electron diffusion at lower pitch-angles and therefore requires an accurate mod-
el of diffusion at all pitch-angles. For BAS-RBM we take the αeq = 85° and for the Van Allen Probe observations 
the central pitch-angle bin.

Figure 14 shows the results for 4.2 MeV electron flux. For L* ≥ 4.25, losses due to EMIC and hiss waves (red 
curve) and EMIC waves alone (green) are much higher than losses due to hiss alone (blue). This indicates that 
hiss is not very effective in removing electrons at these energies. At L* = 3.75 losses due to hiss and EMIC (red) 
remain very effective whereas losses due to hiss alone (blue) or EMIC waves alone (green) are far less effective. 

Figure 14. Panels (a)–(d) compare the modeled British Antarctic Survey Radiation Belt Model 85° 4.2 MeV electron 
flux against the 90° Van Allen Probe observations (blue dots) at L* = 3.25, 3.75, 4.25, and 4.75. The Van Allen Probe 
observations within 0.1 L* of the specified value are hourly averaged. In the legend, EPdyn corresponds to the solar wind 
dynamics pressure parameterized EMIC diffusion coefficients, while H, C, and R refer to hiss waves, chorus waves, and 
radial diffusion respectively. Panels (e) and (f) show Kp, the plasmapause location (Lpp), Dst, and Pdyn during the period.
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This indicates that the combination of the two waves modes is very important for removing electrons at large 
pitch angles in this region, as suggested earlier by the width of the pitch angle distribution in Figure 12. Hiss 
provides diffusion at pitch-angle close to 90° while EMIC waves diffuse the particles at lower pitch-angles. At 
L* = 3.25 initially, the best agreement between the data and the model is for hiss and EMIC (red) which give the 
largest losses for the whole period compared to those wave modes on their own. Between 1 March and the mid-
dle of August the combined hiss and EMIC model does better than the other two models, but after that, all three 
models show several rapid increases in flux whereas there is a large reduction and drop out in the data in early 
September followed by a more gradual increase that is not reproduced. It is interesting to note that the data show 
a significant increase in flux at L* = 3.75 compared to a reduction at 3.25. Since EMIC and hiss waves contribute 
mainly to electron loss and not acceleration, the increase in flux in the model is due to inward radial diffusion as 
shown in the discussion. This suggests that the radial diffusion coefficients used in this model, and in many other 
global models, needs to be substantially improved for low L*. Note that the divergence of the model from the 
observation does not correspond to the largest Kp when DLL is at its largest. We return to this in the discussion.

Figure 15 shows the results for 2.6 MeV. At L* = 4.75 the model results for EMIC and hiss (red) and EMIC alone 
(green) are very similar and reproduce the flux variations quite well indicating that EMIC waves are the most 
important in this region. In contrast, hiss alone (blue) is able to reproduce some but not all of the decay. A similar 
result is obtained at L* = 4.25. However at lower L* ≤ 3.75 the EMIC and hiss model performs the best and the 
model for EMIC waves alone (green) does not capture the decay. The results illustrate that EMIC waves acting 
alone are not very effective at causing loss at energies of a few MeV, rather the combined action of hiss waves 
and EMIC waves is necessary to explain the observed decay.

Figure 15. The same as Figure 14 but for 2.6 MeV electrons.
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4.2.1. Activity Parameterization

As described in Section 3, we have calculated 3 separate EMIC diffusion coefficients, parameterized by Pdyn (as 
used in the previous section), Kp and Dst. Here we compare these parameterizations and their agreement with 
Van Allen Probe observations to determine which parameterizations work the best. In the previous section, we 
found that the impact of EMIC waves is easily identifiable at 4.2 MeV and L* ≥ 3.25, in which case we focus our 
analysis of the EMIC driving parameter on this energy channel.

Figure 16 shows the 4.2 MeV electron flux with EMIC waves parameterized by Pdyn (red), Kp (blue), and Dst 
(green). At L* ≥ 4.25, all three simulations perform well and there is little difference between the parameterizations, 
although the simulation Kp driven EMIC waves typically under estimates the peak electron flux by a greater 
amount than the other simulations. At lower L* ≤ 3.75 (Figures 16a and 16b) the Kp and Pdyn parameterizations 
perform significantly better than the Dst parameterization, with the Dst parameterization systematically overes-
timating the flux. The Pdyn and Kp driven models at L* = 3.75 agree fairly well with the observations. Again, 
at L* = 3.25, there is good agreement between the Pdyn and Kp model runs compared to the observations until 
August 2015, with decay rates consistent with those observed.

4.3. Metrics

In order to asses the EMIC models, we make use of the metrics from Morley et al. (2018) and Glauert et al. (2018), 
namely, the median symmetric accuracy (MSA) and the symmetric signed bias (SSPB). Both of these metrics are 

Figure 16. The 85° 4.2 MeV electron flux was calculated by the British Antarctic Survey Radiation Belt Model at L* = 3.25, 
3.75, 4.25, and 4.75 compared against the 90° Van Allen Probe observations (blue). The red, blue, and green lines are from 
the simulations with electromagnetic ion cyclotron waves parameterized by Pdyn, Kp, and Dst, respectively.
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straight-forward to interpret, symmetric when penalizing under and over prediction, and robust to outliers. The 
median symmetric accuracy is given by

MSA = 100[exp(Median {|ln𝑄𝑄𝑖𝑖|}) − 1] (5)

with Qi = Xi/Yi with Yi denoting the model value and Xi the observation. It is informative to note that 50% of 
results are with a factor 𝐴𝐴 exp(Median {|ln𝑄𝑄𝑖𝑖|}) = 1 +MSA∕100 of the data, referred to as the median error factor. 
The SSPB gives the percentage overestimate or underestimate by the given percentage of the median error and 
is defined as

SSPB = 100sgn(Median {|ln��|}) exp(Median {|ln��|} − 1). (6)

The metrics are applied to near equatorially mirroring electron flux, namely, the differential αeq = 85° electron 
flux modeled by BAS-RBM is compared to the 90° flux measurement observed by the Van Allen Probes.

Figures 17a and 17b show that the median error factors and SSPBs for 2.6 MeV electrons at L* ≤ 3.75 are small-
est when hiss waves are included (blue crosses) compared to when they are omitted (orange dots). In contrast, 
including EMIC waves has little effect on the metrics (blue crosses compared to green dots). At larger L*, both 
EMIC waves and hiss waves are important with the smallest errors when both waves are included (blue crosses 
compared to orange and green dots). For 4.2 MeV electrons, Figures 17c and 17d, including EMIC waves sig-
nificantly improve the metrics at L* ≤ 3.75 (blue crosses compared to green dots), although hiss waves are also 
very important for reducing the errors and biases (blue crosses compared to orange dots). At L* ≥ 4.25, omitting 
hiss waves (orange dots) has minimal effect on the metrics and achieves similar scores to an identical simulation 
where they are included (blue crosses), while if EMIC waves are left out (green dots) the errors and bias are much 
greater. The importance of both EMIC waves and hiss waves for the decay of multi-MeV electron fluxes is con-
sistent with the conclusions of Drozdov et al. (2020) based on long-term simulations, with the EMIC waves pro-
viding rapid losses close to the loss cone and hiss waves contributing to electron diffusion at larger pitch-angles.

At L* ≥ 4.25, the simulations with EMIC waves parameterized with Pdyn (blue crosses), Kp (red crosses), and Dst 
(purple crosses) perform comparably well, although Kp has a significant negative SSPB for 4.2 MeV electrons 
at L* = 4.25 which is related to the lower flux shown by the blue line in Figure 16d. At L* ≤ 3.75, the Pdyn and 
Kp simulations perform better than the Dst simulation with substantially lower median error factors and SSPBs.

Figure 17. Median error factors and signed symmetric percentage bias for the British Antarctic Survey Radiation Belt 
Model model runs compared to Van Allen Probe data. Note that the Pdyn no hiss simulation at L* ≤ 3.75 is off the scale in the 
positive direction in each plot and is omitted for clarity.
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5. Discussion
Figure 9 clearly shows EMIC waves are organized by plasma density, with hydrogen band waves in low density 
regions such as the plasma trough while helium band waves are in high-density regions such as the plasmasphere 
and plasma plumes (Anderson et al., 1992; Zhang et al., 2016). However, we do not parameterize the waves 
by density, instead, we parameterize by solar or geomagnetic activity, and the spread in plasma environment is 
captured in the model, due to the way we calculate our drift-averaged DC from observations specific diffusion 
coefficients which sample from all MLTs, which is not captured in previous average statistical models.

Results from numerical diffusion experiments (Watt et  al.,  2021) indicate that averaging observation-specif-
ic diffusion coefficients may be appropriate if the wave activity varies sufficiently rapidly, even given a large 
amount of variability in observations of wave intensity and plasma conditions and no further parameterization. 
The parameterizations investigated here remove some sources of variability and can be used to construct more 
accurate models. Further investigations into the temporal and spatial variability of diffusion coefficients for 
EMIC waves using the observations shown here and results from for example, Blum et al. (2017) would also 
confirm whether the averaging strategy used here is most accurate. There is no denying that the creation of a 
deterministic model of averaged diffusion coefficients is much more tractable and appealing than using multiple 
stochastic parameterizations (Watt et al., 2021) to capture all variability in the wave-particle interactions impor-
tant to Earth's radiation belts.

EMIC waves that approach their upper bounding gyrofrequency are affected by warm plasma. Cold plasma 
theory, as used in this study, breaks down in this limit as the refractive index tends to infinity when the wave 
frequency approaches the gyrofrequency. To avoid invalidating the approximation, we have set the upper cut-off 
to be fup = 0.97fci. However, the exact threshold at which cold plasma theory breaks down depends on the plasma 
properties. We, therefore, test the sensitivity of our results to the imposed threshold and perform an identical set 
of diffusion coefficient calculations parameterized by Pdyn with fup = 0.95fci. There is a negligible difference be-
tween the two model results (not shown) giving us confidence that results robust to this assumption.

Shprits et al. (2013) considered the energy range of electrons that interact with whistler mode waves compared 
to EMIC waves during a long lasting third radiation belt in September 2012. They concluded that at L ∼ 3.3 
whistler mode waves were able to resonate with electrons at relativistic energies (<2 MeV) and but were unable 
to do so with ultrarelativistic electrons (>2 MeV) near the equator. Instead, they suggested that EMIC waves are 
important for the decay of the third belt at ultrarelativistic energies (Shprits et al., 2016, 2018). Our results here 
are consistent with Shprits et al. (2013) at L ∼ 3.3, but also show that the electron energy range that are signifi-
cantly affected by EMIC waves depends on L* as a result of the increasing fpe/fce with L*, allowing for substantial 
electron diffusion at ≲2 MeV and L* ≥ 4.0.

The global radiation belt simulations with EMIC waves parameterized by Kp underestimate peak electron flux 
more than when Dst and Pdyn are used. This may be due to overestimating EMIC losses outside of the plasmas-
phere, removing the electrons that are being accelerated by chorus waves and radial diffusion. Kp is typically 
enhanced for longer than Pdyn while Dst recovers more quickly. Therefore EMIC waves in the Kp driven simu-
lation are able to counteract electron acceleration by chorus waves and radial diffusion for longer, suppressing 
the build-up of relativistic electrons. Alternatively, as the chorus diffusion model does not include variability in 
plasma density, other than through variation in the MLT, acceleration up to MeV energies may be under repre-
sented (Allison et al., 2021).

At L* ≤ 3.75, the Dst simulation performs significantly worse than the other 2 simulations, while the Kp simu-
lation performs the best (Figure 17). The greater overestimation of the flux in the Dst simulation is likely partly 
due to the larger reservoir of flux at higher L*, compared to the Kp and Pdyn simulations, that is diffused inward. 
In Figure 6 we showed that Dst is a weaker indicator of EMIC wave activity, and hence electron diffusion, than 
both Kp and Pdyn, particularly at L* ≥ 4.25. The weaker dependence of EMIC wave activity on Dst may be related 
to the inability of the Dst index to capture high-speed-stream-driven geomagnetic storms (Borovsky & Den-
ton, 2010; Borovsky & Shprits, 2017) which can drive enhanced EMIC activity (Gamayunov et al., 2020) and are 
associated with a daylong increase in solar wind pressure at storm onset. Furthermore, Borovsky (2017) found 
that the correlation between radiation belt flux and Kp is much stronger than the correlation with Dst suggesting 
that the Dst index is insufficient to characterize the radiation belts.
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We obtain good agreement with observations in our long-term simulations with EMIC waves parameterized 
by Pdyn. Drozdov et al. (2017) performed long-term Fokker-Planck simulations of the radiation belts using the 
VERB code comparing EMIC waves parameterized by Kp, Dst, and AE indices, solar wind velocity, and solar 
wind pressure. In their study, they used a representative EMIC spectral profile and an average plasma density for 
their EMIC diffusion coefficient calculations. They minimized the absolute mean error by optimizing the wave 
amplitude and activity threshold for the presence of EMIC waves. They found that solar wind dynamic pressure 
provides the best parameterization of EMIC waves. Our Van Allen Probe EMIC data set shows significantly in-
creased EMIC activity during magnetospheric compression (Figure 4), consistent with previous statistical results 
(Anderson & Hamilton, 1993; J. V. Olson & Lee, 1983; Saikin et al., 2016; Usanova et al., 2012). Furthermore, 
the average wave intensity increases with solar wind pressure, even at L* < 4, which in turn leads to faster rates 
of electron diffusion. EMIC waves at low L*s have previously been linked with magnetospheric compressions; 
Qin et al. (2019) found EMIC waves at 1.9 < L* < 3.2 during extreme magnetospheric compression on 22 June 
2015. However, it is unlikely that solar wind pressure can generally directly lead to EMIC waves at L* < 4.0 as 
moderate magnetospheric compression will only affect the outer magnetosphere. Rather, it is likely that solar 
wind pressure is correlated with geomagnetic conditions which are favorable for EMIC wave activity at lower L*

In Figures 14–16 we showed that the modeled >2.6 MeV electron flux at L* ≥ 3.75 agree well with the Van Allen 
Probe observations. However, at L* = 3.25 (e.g., Figure 16a) we obtain sudden increases in >2.6 MeV electron 
flux during August 2015 that are not observed in the Van Allen Probe data. Instead, the observations show a 
gradual increase in flux on a day to week timescale. Contrastingly, observations of lower energy flux (<1 MeV) 
do show a sudden increase in flux (not shown) which agrees well with the modeled flux. This suggests that we 
are missing or poorly capturing the physical processes governing the MeV population during this period. In 
Figure 18a we show results (blue line) from a simulation with radial diffusion reduced by a factor of 100 from 
the 1 August 2015. The flux no longer shows the sudden increases found previously (red line) implying these 
increases are a result of transport by radial diffusion. Similarly, later in the simulation with radial diffusion, there 
are additional increases in the modeled flux L* = 3.25 which are also not observed. Two possibilities explain 
these differences. The radial diffusion model may break down at several MeV energies in this region (Lejosne 
et al., 2013) or losses by local wave-particle interactions during this period are sufficiently strong and localized 
to L* ∼ 3.25 to counter act the flux increase by radial diffusion. The ratio of fpe/fce is generally low at L* ∼ 3.25 
and exceeds 12 only 20% of the time at (Figure 9c) and, therefore, unless there is substantial wave power very 
close to the gyrofrequency, the 2.6 MeV electrons will not be diffused by EMIC waves at these low densities 

Figure 18. The 85° 4.2 MeV electron flux was calculated by British Antarctic Survey Radiation Belt Model at L* = 3.25 and 
4.75 compared against the 90° Van Allen Probe observations (blue). The red lines show the results from the simulation with 
electromagnetic ion cyclotron, hiss and chorus wave, and radial diffusion. The blue lines are from a simulation with radial 
diffusion reduced by a factor of 100 from 1 August 2015.
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(Figure 10). Furthermore, there is no evidence for strong EMIC waves close to an upper bounding gyrofrequency 
during these times. If the differences were due to hiss waves then the increase in flux at lower energies would 
also be reduced. It is therefore more likely the discrepancy is a result of radial diffusion rather than diffusion by 
local wave-particle interactions.

The pitch-angle and energy of the electrons that can resonate with an EMIC wave depend on the cold ion com-
position. Measurements of the cold ion composition are particularly difficult due to satellite charging (Olsen 
et al., 1985) preventing reliable direct measurements. Warm ion measurements can be made but they may differ 
significantly from the cold ion population that dominates the mass. Therefore, we are unable to use the ion 
composition observed during each observation to complement the observation-specific wave spectra and plasma 
density. In this study we have adopted the ion composition from Kersten et al. (2014) however a range of fixed 
values have previously been adopted (Ma et al., 2015; Meredith et al., 2003; Summers & Thorne, 2003). A higher 
He + percentage leads to electron diffusion at lower energies for helium EMIC waves but the converse for hy-
drogen EMIC waves.

By the very nature of a statistical model, we are averaging over many events within an activity and L* bin. In a 
statistical approach parameterized by a geomagnetic activity index or solar wind measurement, we are assuming 
that the index captures the variation and captures the average response of the electron population under those 
conditions. The true state of the system however may not always be well represented by a statistical model. For 
the case of EMIC waves, the growth of the EMIC waves depends on the ion temperature anisotropy and electron 
plasma density. Similarly, the wave-particle interactions depend on electron plasma density and ion composition. 
In turn, the ion population and electron plasma density are affected by the time history of the magnetosphere 
through electric fields and disturbances in the magnetic field. Under different magnetospheric driving, these 
populations will evolve differently leading to different EMIC wave behavior (Gamayunov et al., 2020) which will 
not necessarily be well captured in a statistical model of this form. Coupled ring current—plasmaspheric models 
(Jordanova et al., 2008) provide a means to include these effects more consistently however it is challenging to 
constrain such models due to the number of degrees of freedom.

6. Conclusions
We have analyzed the L* dependence of the wave spectra and the corresponding plasma frequency to electron gy-
rofrequency ratio of EMIC waves observed by the Van Allen Probe A satellite. These observations have then been 
used to calculate bounce and drift averaged EMIC diffusion coefficients from averaging observation specific 
diffusion coefficients. When calculated in this way, the variability in wave spectra and plasma density is included 
in the diffusion coefficients. These have been included in a global radiation belt model, BAS-RBM, and year long 
simulations compared against Van Allen Probe observations to determine at what energies and L*s EMIC waves 
are important and which activity parametrization gives the best agreement. Our principle results are as follows:

1.  For L* > 4 the average plasma frequency to electron gyrofrequency ratio for helium band EMIC waves is 
much higher than statistical plasmaspheric models, while hydrogen band waves are typically in low density 
regions.

2.  EMIC waves do not contribute significantly to the decay of the ultrarelativistic storage ring at 2.6 MeV due to 
the low values of fpe/fce in the region, instead diffusion by hiss waves is the dominant loss process. In compar-
ison, EMIC wave and hiss waves are both necessary for the decay of the 4.2 MeV component of the storage 
ring.

3.  At L* ≥ 4.25, electron flux decay is largely controlled by EMIC waves at ≥4.2 MeV, but a combination of hiss 
waves and EMIC waves determine the electron losses at 2.6 MeV.

Appendix A: Reduced Diffusion Coefficient Method
For observation i, let the bounce averaged diffusion coefficients be denoted by

𝐷𝐷𝑖𝑖 = 𝐷𝐷(𝐿𝐿∗
𝑖𝑖 , 𝑥𝑥𝑖𝑖, (𝐵𝐵𝑒𝑒𝑒𝑒

𝑤𝑤,𝑖𝑖)
2) (A1)
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where we have dropped the α, E assumed dependence and we have defined 𝐴𝐴 𝐴𝐴𝑖𝑖 = 𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑖𝑖∕𝑓𝑓𝑝𝑝𝑒𝑒
𝑐𝑐𝑝𝑝𝑝𝑖𝑖 for brevity. D is the 

bounce average diffusion operator assuming that ion composition is constant between observations and that the 
latitudinal variation of the wave normal angle is the same between observations.

Now consider a specific activity bin and L* bin, and label the set of point in this bin as 𝐴𝐴  and 𝐴𝐴  , respectively. The 
average of the observation specific diffusion coefficients within that bin is then given by

𝐷𝐷(, 𝐿𝐿∗) =
∑

𝑖𝑖∈∩
𝐷𝐷𝑖𝑖∕

∑

𝑖𝑖∈∩
1 (A2)

where the summation includes all observations, even those without observed EMIC waves. Note that calculating 
the numerator involves calculating bounce averaged diffusion coefficients for each observation. For large data-
sets, this becomes computationally heavy and therefore we make a series of approximations to reduce the number 
of calculations that are necessary.

First, we adopt the central L* bin value, 𝐴𝐴 �̄�𝐿∗ , for observations in a L* bin. The bounce average diffusion coefficient 
then only depends on xi and 𝐴𝐴 (𝐵𝐵𝑒𝑒𝑒𝑒

𝑤𝑤𝑤𝑤𝑤)
2 . Furthermore, if the observations are now binned by x, into bins labeled 𝐴𝐴 𝑘𝑘 , 

and the bin center values, 𝐴𝐴 𝐴𝐴𝐴𝑘𝑘 , are adopted for all xi in each 𝐴𝐴 𝑘𝑘 , then the bounce averaged diffusion coefficients 
within that density bin only depend on 𝐴𝐴 (𝐵𝐵𝑒𝑒𝑒𝑒

𝑤𝑤𝑤𝑤𝑤)
2 . We can now use the fact that operator D is directly proportional to 

𝐴𝐴 (𝐵𝐵𝑒𝑒𝑒𝑒
𝑤𝑤𝑤𝑤𝑤)

2 to rewrite the numerator of Equation A2 as
∑

�∈∩
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�∈∩
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 (A3)

Data Availability Statement
The diffusion coefficients shown in this paper can be downloaded from the UK Polar Data Centre (https://doi.
org/10.5285/cc48c65d-5395-45a1-a60a-3a4b987fd673).
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