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Abstract. Water resource management (WRM) practices,
such as groundwater and surface water abstractions and ef-
fluent discharges, may impact baseflow. Here the CAMELS-
GB large-sample hydrology dataset is used to assess the im-
pacts of such practices on Baseflow Index (BFI) using sta-
tistical models of 429 catchments from Great Britain. Two
complementary modelling schemes, multiple linear regres-
sion (LR) and machine learning (random forests, RF), are
used to investigate the relationship between BFI and two sets
of covariates (natural covariates only and a combined set of
natural and WRM covariates). The LR and RF models show
good agreement between explanatory covariates. In all mod-
els, the extent of fractured aquifers, clay soils, non-aquifers,
and crop cover in catchments, catchment topography, and
aridity are significant or important natural covariates in ex-
plaining BFI. When WRM terms are included, groundwa-
ter abstraction is significant or the most important WRM co-
variate in both modelling schemes, and effluent discharge to
rivers is also identified as significant or influential, although
natural covariates still provide the main explanatory power
of the models. Surface water abstraction is a significant co-
variate in the LR model but of only minor importance in the
RF model. Reservoir storage covariates are not significant or
are unimportant in both the LR and RF models for this large-
sample analysis. Inclusion of WRM terms improves the per-
formance of some models in specific catchments. The LR
models of high BFI catchments with relatively high levels
of groundwater abstraction show the greatest improvements,
and there is some evidence of improvement in LR models of

catchments with moderate to high effluent discharges. How-
ever, there is no evidence that the inclusion of the WRM co-
variates improves the performance of LR models for catch-
ments with high surface water abstraction or that they im-
prove the performance of the RF models. These observa-
tions are discussed within a conceptual framework for base-
flow generation that incorporates WRM practices. A wide
range of schemes and measures are used to manage water
resources in the UK. These include conjunctive-use and low-
flow alleviation schemes and hands-off flow measures. Sys-
tematic information on such schemes is currently unavailable
in CAMELS-GB, and their specific effects on BFI cannot
be constrained by the current study. Given the significance
or importance of WRM terms in the models, it is recom-
mended that information on WRM, particularly groundwa-
ter abstraction, should be included where possible in future
large-sample hydrological datasets and in the analysis and
prediction of BFI and other measures of baseflow.

1 Introduction

Baseflow, defined as streamflow fed from the deep subsur-
face and shallow subsurface storage between precipitation
and/or snowmelt events (Tallaksen, 1995; Price, 2011; Zhang
et al., 2017; Singh et al., 2019; Gnann et al., 2019), is
a hydrological phenomenon that represents a whole catch-
ment response to meteorological and other environmental
signals (Bloomfield et al., 2011). It is important as it sus-
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tains surface flows particularly during relatively dry periods
and droughts (Smakhtin, 2001; Miller et al., 2016) because it
supports ecological flows and ecosystem functioning (Poff et
al., 1997; Boulton, 2003) and is a factor in regulating stream-
flow quality and temperature (Jordan et al., 1997; Gomez-
Velez et al., 2015; Hare et al., 2021). It integrates the out-
comes of a wide range of natural and human-influenced sur-
face and subsurface catchment processes (Price et al., 2011;
Gnann et al., 2019) that include geomorphological controls
related to surface topography (Santhi et al., 2008) and soil
processes (Vivoni et al., 2007; Price et al., 2011; Singh et
al., 2019; Yao et al., 2021) and (hydro)geological processes
that control baseflow (Longobardi and Villani, 2008; Bloom-
field et al., 2009; Kuentz et al., 2017; Carlier et al., 2018).
Land use and land cover (LULC) change may also have pro-
found effects on baseflow generation (Zhang and Schilling,
2006; Wang et al., 2014), including effects of changing for-
est cover and agriculture (Juckem et al., 2008; Ahiablame et
al., 2017; Zhang et al., 2017) and urbanization (Simmons and
Reynolds, 1982; Chang, 2007; Dow, 2007; McGrane, 2016).
Through these processes, the dynamics of baseflow genera-
tion is modulated by meteorological variability over a range
of spatial and temporal scales (Beck et al., 2013; Van Loon
and Laaha, 2015; Longobardi and Van Loon, 2018) including
large-scale circulation patterns (Cheng et al., 2021). There
is also growing evidence for the potential impact of climate
change on baseflow across a variety of climate and catchment
settings (Wang et al., 2014; Ficklin et al., 2016; Ahiabalme et
al., 2017; Zhang et al., 2019), and it has been proposed that
this should be viewed in the context of increasing sensitivity
of changes in droughts and low flows to wider anthropogenic
influences (Van Loon et al., 2016; Sankarasubramanian et al.,
2020).

Despite this extensive work on baseflow generation dy-
namics, Gnann et al. (2019) observed that there is still no
general theory to explain variations in baseflow between
catchments despite the strong evidence that it is largely con-
trolled by the interaction of climate and landscape processes.
They explored the role of climate in baseflow generation us-
ing baseflow data from the United States of America (USA)
and the United Kingdom (UK) and found that in humid set-
tings baseflow can be highly variable due to variations in
catchment storage and wetting potential, whereas in more
arid settings baseflow has much lower variability and is pri-
marily controlled by vaporization limits. In a complementary
study of 435 catchments across the contiguous US and the
UK, Yao et al. (2021) found that soil water storage capacity
is an important control on baseflow and that generally, BFI
increases with storage capacity for a given a climate condi-
tion and decreases with aridity for a given storage capacity.

In addition to climate and catchment controls on base-
flow, there is evidence that baseflow may be impacted by
water resource management (WRM) practices. Here “WRM
practices” is a loosely defined term that encompasses a wide
range of activities related to the management of groundwa-

ter and surface water resources that are specifically distinct
from wider “human influences” or “human activities” (Zhang
et al., 2019; Mo et al., 2021) that affect LULC, such as
urbanization, deforestation, and land-management practices.
Wang and Kai (2009) referred to WRM practice as “direct
human interferences”. Some examples of WRM practices in-
clude abstraction and discharge, changes in conveyance of
streams due to changes in channel structure, for example, for
damming, flow regulation and flood management, and de-
velopment of structures for water storage within catchments
including dams and artificial wetlands.

Using a baseflow recession analysis, Wittenberg (2003)
identified reduced baseflow resulting from abstraction for
summer irrigation in a catchment in Turkey but only saw a
limited effect of abstractions for agricultural irrigation on
baseflow in a catchment in Germany. The latter was at-
tributed to the location of the abstractions within the catch-
ment (abstractions were primarily near the watershed) and to
the fact that the abstracted groundwater was not entirely lost
to the groundwater balance (with lowered evapotranspiration
stress, relative to the Turkish case study, associated with the
irrigation contributing to recharge). Using an empirical anal-
ysis of baseflow recession, Wang and Cai (2009) modelled
the impact of abstraction and effluent returns on streamflow
in a catchment in Illinois, USA. They found that the WRM
practices significantly altered recession process and low-flow
hydrograph characteristics (compared with land-use change
processes that affected both the rising and falling limbs of
the hydrograph and peak flows) and showed that effluent re-
turns caused a significant increase in low-flow (Q5) mag-
nitude but a decreased low-flow variability. In a statistical
analysis of trends in baseflow in a catchment in Florida,
USA, Weber and Perry (2006) documented a long-term de-
cline in baseflow and spring flows. They assessed the pos-
sible effects of changes in rainfall, LULC, and groundwa-
ter abstraction but concluded that the primary cause of de-
cline in baseflow and spring flow was over-abstraction of
groundwater. Thomas et al. (2013) emphasized the impor-
tance of taking “human interference” into account when es-
timating the baseflow recession constant after documenting
higher baseflow recession constants associated with ground-
water withdrawals from catchments in New Jersey, USA.
They also noted that the location, size, and degree of con-
finement of abstractions effected the degree to which stream-
flow was impacted. Large abstractions of groundwater close
to streams resulted in larger impacts on streamflow than
smaller abstractions from more distant locations, and ab-
stractions from unconfined aquifers had larger impacts than
from confined aquifers. A number of modelling studies have
simulated the impact of abstraction and other WRM prac-
tices on baseflow (Kirk and Herbert, 2002; Parkin et al.,
2007; Sanz et al., 2011; de Graaf et al., 2014). For example,
de Graaf et al. (2014) calibrated the PCR-GLOBWB model
with a dynamic allocation scheme to simulate surface water
and groundwater abstractions and corresponding feedbacks.
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They found that impacts of WRM were experienced during
periods of low flows when the contribution of groundwater
through baseflow is the largest and that return flows changed
the timing and duration of the low-flow periods, causing
baseflow to be maintained for longer. In summary, as with
natural controls on baseflow (Gnann et al., 2019), there is as
yet no general theory to explain the effects of WRM prac-
tices on baseflow, and the effect of a given WRM practice
on baseflow may be contingent on a range of factors includ-
ing climate, (hydro)geological setting, location, and timing
of the activity.

To date, there have been no large-sample, data-led analy-
ses of the impacts of WRM practices on baseflow. This is de-
spite new opportunities being offered to investigate and quan-
tify catchment processes through open access, large-sample
hydrology datasets (Addor et al., 2020). Such datasets have
been used to provide insights into catchment processes and
functioning across multiple climate and catchment settings
(Beck et al., 2013; Ochoa-Tocachi et al., 2016; Fouad et al.,
2018; Gnann et al., 2019; Dudley et al., 2020). CAMELS-
GB, a recently published large-sample hydrology dataset
for Great Britain (GB) (Coxon et al., 2020a; b), is un-
usual in that it contains quantitative information on WRM
practices including surface water and groundwater abstrac-
tions, discharges, and reservoir numbers and capacities at
the catchment scale. The aim of the present study is to use
the CAMELS-GB large-sample dataset to identify which,
if any, of these WRM activities influence baseflow; to as-
sess the importance of these activities in the context of
other factors known to influence baseflow, such as meteorol-
ogy, catchment hydrogeology, catchment physiography, and
LULC (Price, 2011); and to investigate if WRM factors are
important in any particular catchment or management set-
tings. More generally, this study also directly addresses the
need to improve understanding of the impact of human activ-
ities on the water cycle in the UK (Wagener et al., 2021).

As Price (2011) has noted, there are four broad approaches
to quantify baseflow, as follows: low-flow event time se-
ries, flow-duration statistics, baseflow recession analysis, and
metrics of the proportion of baseflow to total flow, also
known as baseflow indices. This study takes the last approach
and specifically uses the two measures of Baseflow In-
dex (BFI) reported in CAMELS-GB (Coxon et al., 2020a; b).
BFI is the ratio of baseflow volume to total flow volume ex-
pressed as a fraction (Nathan and McMahon, 1990) and can
be estimated by hydrograph separation using a wide range of
tracer-based and non-tracer methods (Eckhardt, 2008; Gon-
zales et al., 2009; Price et al., 2011). The two measures of
BFI in CAMELS-GB both use non-tracer-based methods,
specifically a digital filter (Lyne and Hollick, 1979) and a
graphical/statistical method (Gustard et al., 1992; Piggott et
al., 2005). The former, although it is not based on the physics
of discharge processes, produces objective and reproducible
estimates of BFI (Cheng et al., 2021), while the latter has

been used previously to characterize BFI across the study
area (Bloomfield et al., 2009).

Two statistical models (multiple linear regression, LR,
and machine learning using random forests, RF) are used
here to investigate the relationships between the two esti-
mates of BFI and WRM and other catchment covariates in
the CAMELS-GB dataset. Although studies of BFI typically
consider multiple baseflow filters to reduce uncertainty in
estimates of BFI (Chen and Teegavarapu, 2020; Kissel and
Schmalz, 2020; Zhang et al., 2020), the present study is de-
signed neither to assess the relative efficacy of the filters used
to estimate BFI, nor to compare the respective efficacy of
the chosen statistical models in estimating baseflow: this is
not a model inter-comparison study (Refsgaard and Knud-
sen, 1996). Instead, the estimates of BFI and the modelling
approaches are designed to provide complementary evidence
for the nature and importance (or not) of WRM practices on
influencing BFI based on the published CAMELS-GB data.

2 Study area and data

2.1 Study area

This study focuses on 429 catchments across GB (Fig. 1)
covering a wide range of climate–landscape–water manage-
ment features (Fig. 2). Catchments in the north and north-
west of the study area tend to have higher mean elevations
than those in the south and south-east (Coxon et al., 2020a).
Meteorology tends to reflect the broad gradient in catch-
ment physiography, with wet and cooler conditions typically
prevalent in the north and west of the study area compared
with relatively dry and warmer conditions in the south-east
(Fig. 2a). The dominant land cover also reflects the prevail-
ing physiographic and meteorological conditions, with grass
cover predominating in the north and west and crop cover in
the south and east, with urban land cover dominant in Lon-
don and the other large cities of central and northern England
(Fig. 2b). High-productivity aquifers are found in the south-
east and east (Fig. 2c; Bloomfield et al., 2009; Marchant and
Bloomfield, 2018), whereas less productive aquifers and non-
aquifers are generally more extensive in the west and north-
west. Catchments in which clay-dominated soils overlie mu-
drock and clay bedrock formations and catchments with ex-
tensive glacial till deposits that are present in central and
eastern areas (Fig. 2d) (Bloomfield et al., 2009; Bricker and
Bloomfield, 2014).

Groundwater is used throughout England and forms on
average about 30 % of the public supply, as well as being
used extensively for agricultural irrigation and industrial sup-
plies (Ascott, 2017). For 2017 (the last year of published ab-
straction data) abstractions from all sources (except tidal) in
England totalled 10 395 M m3 (million cubic metres), with
8350 M m3 from surface waters and 2044 M m3 from ground-
water. Just over half of all these abstractions were used for
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Figure 1. Location of catchments in the study area.

public supply (5332 M m3) (UK Government, 2020). Re-
gionally, groundwater use is more important in southern and
eastern England where groundwater abstraction may con-
tribute 100 % of public supply (Ascott et al., 2020). Conse-
quently, there is a tendency for more extensive surface water
abstraction in the north and more groundwater abstraction in
the south-east (Fig. 2e and f) (Coxon et al., 2020b). Efflu-
ent discharges are generally relatively high in catchments in
and near major urban centres such as London, central Eng-
land, and across parts of the north-west (Fig. 2b and g), while
the highest reservoir capacity is generally associated with
catchments in northern and western parts of the study region
(Fig. 2h).

2.2 Data

The data used in this study have been taken from the
CAMELS-GB large-sample hydrology dataset for Great
Britain (GB) (Coxon et al., 2020a, b), itself part of the
wider CAMELS (Catchment Attributes and MEteorology for
Large-sample Studies) initiative (Newman et al., 2015; Ad-
dor et al., 2017; 2020; Alvarez-Garreton et al., 2018; Cha-
gas et al., 2020). CAMELS-GB is unique in that it contains

human influence attributes for some catchments, and it is
that subset of catchments which is used here. These initially
consisted of 442 catchments for which there are “human in-
fluence attributes” (Coxon et al., 2020a, Table 2). However,
these were further reduced to 429 catchments (Fig. 3) follow-
ing a consideration of the estimates of BFI that are available
for those catchments and the availability of data for the co-
variates of interest, as described below.

BFI is a hydrological signature (Price et al., 2011; McMil-
lan, 2021) that can be estimated using a wide range of tech-
niques. CAMELS-GB contains two estimates of baseflow.
One index, “baseflow_index_ceh” (BFI_CEH) (Fig. 3a), is
derived using a method developed by the UK Centre for
Ecology & Hydrology and has been used in previous stud-
ies of baseflow and flow regimes in Great Britain (Gustard
et al., 1992; World Meteorological Organization, 2008). The
other, “baseflow_index” (BFI_LH) (Fig. 3b), was estimated
by baseflow separation using the Lyne and Hollick digital fil-
ter (Lyne and Hollick, 1979) as implemented by Ladson et
al. (2013). A comparison of the two CAMELS-GB baseflow
indices (Fig. 3c) confirms the common observation that dif-
ferent techniques used for baseflow separation influence the
estimated indices (Nathan and McMahon, 1990; Eckhardt,
2008; Beck et al., 2013; Addor et al., 2017). There are often
large uncertainties in the underlying streamflow data used to
estimate BFI (Coxon et al., 2015), but these are difficult to
characterize across large samples of catchments, and uncer-
tainty estimates are not available for all the CAMELS-GB
catchments (Coxon et al., 2020b). However, BFI typically
has lower uncertainty compared with other hydrological sig-
natures, as it is based on temporal averaging (Westerberg and
McMillan, 2015), and only typically small differences in the
BFI estimates are observed in the present study based on the
two methods of estimate (Fig. 3).

Given that the true BFI for any given catchment is un-
known, catchments for analysis in this study have been se-
lected where there is a reasonable agreement between the
two baseflow indices. A total of 10 catchments were removed
where there is an absolute difference between BFI_CEH
and BFI_LH of greater than 0.14, equivalent to the largest
2.5th percentile of the absolute differences of the popula-
tion. A further three catchments were removed due to miss-
ing covariate data, leaving the 429 catchments for analysis
(Figs. 1 and 3). Coxon et al. (2020b) note that the CAMELS-
GB baseflow indices have been estimated for flow time se-
ries available during water years from 1 October 1970 to
30 September 2015 but that individual time series lengths and
completeness may vary between catchments. On average,
flow records for the 429 catchments are 91 % complete, with
only 48 catchments < 75 % complete. No sites have been
omitted from the analysis based on the length of their flow
records. Figure 3c shows that there is a generally good lin-
ear agreement between the two estimated BFI indices. How-
ever, for BFIs below 0.7, BFI_CEH is systematically lower
than BFI_LH, and for BFIs above 0.7, BFI_CEH is system-

Hydrol. Earth Syst. Sci., 25, 5355–5379, 2021 https://doi.org/10.5194/hess-25-5355-2021



J. P. Bloomfield et al.: How is Baseflow Index (BFI) impacted by water resource management practices? 5359

Figure 2. Selected catchment characteristics from CAMELS-GB.

Figure 3. The distribution of (a) BFI_CEH and (b) BFI_LH and (c) the relationship between the two measures of BFI with a 1 : 1 line for
reference.
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atically higher than BFI_LH. In addition, for sites above a
BFI of about 0.7, the correlation between the two indices is
reduced.

A total of 21 of the CAMELS-GB catchment attributes
(Coxon et al., 2020a) related to catchment physiography, cli-
mate, hydrogeology, land cover, and soils as well as WRM
practices have been selected as covariates for analysis (Ta-
ble A1). The spatial distribution of selected covariates is pro-
vided in Fig. 2 and described in Coxon et al. (2020b). The
21 CAMELS-GB covariates used in this study have been se-
lected to be representative of each of the major components
in a new conceptual model of baseflow generation (Fig. 4)
and are consistent with the recently proposed, broader per-
ceptual hydrological model for GB (Wagener et al., 2021).
Five WRM covariates from the CAMELS-GB dataset have
been selected for analysis: groundwater abstraction (ground-
water_abs), surface water abstraction (surfacewater_abs), ef-
fluent discharges (discharges) to streams, and the number and
capacity of reservoirs within catchments (num_reservoirs
and reservoir_cap). Note that the discharge term only ac-
counts for effluent from sewage treatment works and does
not provide information on other water returns (Coxon et al.,
2020b). Price (2011) presented a conceptual model that il-
lustrated how components of the terrestrial water cycle and
specific catchment processes are related to baseflow based
on stores and flows of water in catchments. It did not, how-
ever, incorporate WRM concepts and how these might in-
fluence or modify baseflow. In addition, it did not include
aspects of catchment physiography as it focussed on catch-
ment inputs, storage, and losses. Figure 4 is a revised con-
ceptual diagram (building on Price et al., 2011) indicating
conceptual relationships between baseflow, catchment com-
partments, and processes that lead to baseflow generation, in-
cluding aspects of WRM. It conceptualizes WRM practices
as simple high-level flows between groundwater, streamflow,
and components of storage. Some flows may be significant
within a given catchment, such as mains leakage (conceptual-
ized in Fig. 4); however these are outside the current analysis
as there is no information for these flows in CAMELS-GB.

3 Modelling methods

Modelling is used in this study not for predictive purposes
but to explore model structures and performance to assess
the evidence for the relative importance (or not) of WRM
practices in influencing BFI. Two complementary modelling
schemes, a multiple linear regression (LR) scheme and a ran-
dom forest scheme (RF), have been applied to two estimates
of BFI (BFI_LH and BFI_CEH) using two sets of covariates
(Set A and Set B). Set A consists of the 16 natural covari-
ates, and Set B consists of all 21 CAMELS-GB covariates,
i.e. the combined natural and human influence covariates (Ta-
ble A1). Consequently, eight models (Models 1 to 8) have
been developed and evaluated. The LR and RF models are

first calibrated for the Set A covariates (Models 1 to 4), then a
second separate calibration is undertaken using Set B covari-
ates (Models 5 to 8). The resulting model structures are in-
vestigated and their performance in estimating observed BFI
compared without and with WRM covariates to understand
the influence of WRM covariates on BFI.

The accuracy of the model estimates has been assessed us-
ing RMSE and by calculating Lin’s concordance coefficient
(Lin, 1989) for the predicted and measured values. Lin’s co-
efficient indicates the degree of similarity between two vari-
ables, where

ρc(x,y)=
2ρ(x,y)

√
var(x)

√
var(y)

var(x)+ var(y)+
(
µx −µy

)2 , (1)

and where ρc(x,y) is Lin’s concordance coefficient for vari-
ables x and y, ρ(x,y) is Pearson’s coefficient for the same
variables, var(x) is the variance of x, and µx in the mean of
x. Lin’s concordance coefficient can take values between −1
and 1. A value of 1 indicates an exact match between the
two variables, and the (µx −µy)2 term means that variables
with different mean values have a small coefficient value in
contrast to standard correlation coefficients for which per-
fectly correlated variables can have vastly different mean val-
ues. Lin’s concordance coefficient is in contrast to a more
standard Pearson correlation coefficient that is an indication
of the explanatory power of a linear relationship between
the two variables. Lin’s concordance coefficient is calculated
both to assess the accuracy of a given model at replicating the
training data and in a 10-fold cross-validation procedure to
explore the model accuracy at locations that were not used in
calibration. If Lin’s coefficient is substantially smaller upon
cross-validation, then this could be an indication that the
model is overfitted.

3.1 Linear regression

Regression is commonly used to model the effect of a given
set of covariates on a variable of primary interest (Fahrmier et
al., 2013). Here generalized linear regression (Dobson, 2002)
is used to investigate the relationship between BFI_LH and
BFI_CEH and the 21 catchment covariates. Logit transfor-
mation was applied to the BFI data, as yi = log(zi/(1− zi)),
where zi is the BFI of catchment i. This is to ensure the fit-
ted, back-transformed BFI values are constrained between 0
and 1.

The model considered in this paper is a linear mixed model
with the following form:

Y =X1β1+ . . . +Xpβp + ε ε ∼N
(

0,σ 2R
)
, (2)

where Y = (y1, . . . yn)′ denotes the column vector of BFI
values from n catchments,Xj = (xj1, . . . , xjn)′, j = 1, . . . ,p
are the column vectors of the covariates (catchment at-
tributes). The column vector ε represents the model residu-
als, which are assumed to follow a normal distribution, with
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Figure 4. Conceptual model of the relationships between the major compartments of the terrestrial water cycle that exert an influence on
baseflow. Baseflow and storm flow components are highlighted in blue, driving climatology, catchment characteristics and compartments are
shaded in green, and human influences within the conceptual model are shaded in orange and grey (the latter outside the scope of this study).
The 21 CAMELS-GB covariates and the two BFI parameters used in this study are listed against their respective compartments within the
conceptual framework.

covariance matrix σ 2R, where R reflects the correlation be-
tween transformed BFI values. The linear sums of covariates
in a linear mixed model are referred to as the fixed effects
and the residual term as the random effects.

In this paper, the model parameters β = (β1, . . . ,βp)
′

are estimated using the generalized least-squares estimator
(Dobson, 2002):

β = (X′R−1X)−1X′R−1Y. (3)

These parameter values maximize the likelihood or probabil-
ity that the data would have arisen from the estimated model.
Standard linear regression requires the assumption that the
residuals are independent and identically distributed (iid) and
that the correlation matrix is equal to the identity matrix, I.
Such an assumption can be inappropriate for landscape mea-
surements, as they are not selected according to a random-
ized design and are often correlated in space as a result of
the underlying geology and climate, etc. In particular, the
BFI measurements made from locations closer to each other
are more likely to share some similarity than those a long
distance apart. If this correlation is ignored, then the signifi-
cance of some model terms could be exaggerated.

A further issue is deciding which of the available covari-
ates should be included. If too few covariates are included,
then some of the key drivers of BFI variation might be
missed, and the predictions that result might be imprecise.
If too many covariates are included, then the model might be
overfitted. Some of the terms in an overfitted model replicate
the random variation of the BFI values within the calibration

data rather than generally applicable relationships between
BFI and the covariates. Such a model can accurately predict
the BFI for the sites used in calibration but performs less well
for other data. The addition of a covariate to a model gener-
ally increases the maximized likelihood, even in the absence
of a true relationship between that covariate and the property
of interest. The addition cannot decrease this likelihood be-
cause the original model can be achieved if βp+1 = 0. A sta-
tistical criterion must be used to decide whether the increase
in likelihood upon the addition of a parameter is sufficient to
justify the inclusion of that term.

The modelling procedure consists of three steps. In the
first step, given the candidate covariates, variable selection
is carried out using the stepwise selection routine based on
the Akaike information criterion (AIC; Akaike, 1973). The
AIC is twice the negative log-likelihood of the model minus
2 times the number of model parameters:

AIC=−2log
{
L
(
β,σ 2
;Y
)}
− 2(p+ 1). (4)

The model with the lowest AIC is considered to be the best
compromise between accuracy and complexity. The forwards
selection routine starts with a model containing no covari-
ates. Each candidate covariate is considered in turn, and the
AIC that results from its addition to the model is recorded.
The covariate which leads to the largest decrease in AIC is
added to the model. The iterative procedure continues until
none of the remaining covariates lead to a decrease in AIC.
This procedure is initially conducted assuming independent
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residuals (i.e., R = I ) and is implemented using the “step”
function from the R package “stats”. In the second step,
spatial correlation is assessed by calculating empirical vari-
ograms (Cressie, 1993) of the model residuals using the “var-
iogram” function from the R package “gstat”. The variogram
indicates how the expected squared difference between a pair
of residuals varies according to their distance apart. Finally,
a model including spatial correlation in the residuals is es-
timated when inspection of the variogram indicates that this
is necessary. Specifically, the spatial correlation is reflected
by the non-zero off-diagonal elements in the correlation ma-
trix, R, which correspond to the values from an exponential
correlation function (i.e., r(dij )= exp(−dij/ϕ), where dij is
the Euclidean distance between two catchments i and j , and
ϕ is an estimated model parameter). The model with spatial
correlation can be estimated by residual maximum likelihood
(REML; Lark et al., 2006) using the “gls” function from the
R package “nlme”. The statistical significance of each co-
variate included in the model (i.e. whether the correspond-
ing regression coefficient is significantly different to zero) is
recorded for p values of 0.1, 0.05, and 0.001.

3.2 Machine learning

LR models require assumptions about the nature of baseflow
variation that can restrict the patterns of variation which the
model can represent. In the past few decades, machine learn-
ing (ML) methodologies have become increasingly popular
for representing complex environmental variation (e.g. Hengl
et al., 2018; Lange and Sippel, 2020; Nearing et al., 2020).
ML algorithms lead to considerably more flexible relation-
ships between environmental variables. For example, regres-
sion trees recursively partition observation locations accord-
ing to a series of binary tests on their covariate values. Each
location enters the tree at the initial decision node and then
follows one of two branches according to the result of the ini-
tial test. Each branch leads to a network of further decision
nodes and tests until the location is allocated to a terminal
node. The predicted value of the environmental variable at
an unobserved location is equal to the average of the training
data that are allocated to the same terminal node. The tests at
each node are optimized so that the total squared error for a
tree of a specified degree of complexity is minimized.

Regression trees can replicate complex non-linear rela-
tionships that include interactions between different covari-
ates, but they are prone to overfitting. A regression tree can
perfectly predict the variable of interest for some training
data if the number of terminal nodes is equal to the num-
ber of training observations, but it cannot be expected to per-
form exactly when predictions are made at other locations.
Overfitting can be reduced by introducing stopping criteria
to the trees (e.g. each terminal node must contain a specified
proportion of the training data) or by using cross-validation
to decide whether a particular decision node should be in-
cluded in the tree. Overfitting might be further reduced by

combining an ensemble of regression trees to form a random
forest (Breiman, 2001). The trees within the ensemble differ
because they are estimated for a different bootstrap sample of
the available data, and a different subset of the candidate co-
variates is considered at each decision node. The prediction
of the variable of interest at a particular location is equal to
the average prediction across all the trees. Addor et al. (2018)
found that the inclusion of 500 trees in a random forest con-
siderably stabilized predictions and smoothed relationships
between their covariates and BFI measurements.

The random forest interprets the available data as if they
were a random sample of the population of interest and does
not account for spatial correlation amongst the observations.
Also, the relationships implied by a random forest model
cannot be stated in a simple parametric form such as Eq. (1),
meaning that it can be a challenge to determine the drivers of
variation. It is possible to assess the importance of each co-
variate by shuffling the values of that covariate amongst the
observation locations and calculating the reduction in predic-
tion accuracy. However, Schmidt et al. (2020) and Wadoux et
al. (2020) advise caution when inferring causal relationships
from random forest models. Wadoux et al. (2020) demon-
strate that photographs of soil scientists projected across their
study area can be utilized by a random forest to accurately
map the soil carbon content. They suggest that knowledge
discovery from ML models requires more than the recogni-
tion of patterns and successful prediction. Instead they rec-
ommend the preselection of relevant environmental covari-
ates and the posterior interpretation and evaluation of the
recognized patterns: this is the approach taken here with the
selection of 21 covariates representative of the conceptual
framework being analysed (Fig. 4).

Random forests are calibrated using the MATLAB “Tree-
bagger” function with each forest containing 500 trees (con-
sistent with Addor et al., 2018), the with-replacement boot-
strap sample for each tree being of the same size as the set of
available data and one-third of the covariates being consid-
ered at each decision node. The Treebagger function defines
the importance of a covariate in a random forest to be equal
to the increase in the mean squared error of all predictions
averaged over all trees in the ensemble upon shuffling of the
covariate values divided by the standard deviation of the pre-
dictions taken over the trees.

4 Results

4.1 Linear regression model structures

Regression models were developed for both BFI_LH and
BFI_CEH, with covariates from Set A (Models 1 and 2) and
from Set B (Models 5 and 6). For all four models the vari-
ograms of the residuals indicated substantial spatial correla-
tion. Therefore, the models were re-estimated by REML and
included spatial correlation parameterized by an exponential
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function. Note that although the inclusion of the residual cor-
relation structure does not alter signs of the estimated co-
efficients, the significance of the model covariates changed.
Some covariates were no longer significant after accounting
for the spatial correlations. This could imply that part of the
variation in BFI that was previously explained by certain co-
variates in the iid model may have been a result of spatial
correlation. The full LR models are listed in Table A2, and
the distribution of residuals for the LR models is illustrated
in Fig. A1.

Figure 5 shows the covariates identified as significant as
well as the sign of the covariates. In this analysis, topog-
raphy (“dpsbar”), climate (“aridity”), and the spatial cover-
age of fractured aquifers (“frac_high_perc”), of crop cover-
age (“crop_perc”), and of clay soils (“clay_perc”) are highly
significant in all four LR models, and the spatial coverage of
areas with no active groundwater systems (“no_gw_perc”)
is also a significant covariate in all four models to different
levels of significance (Fig. 5). In the LR models using Set B
(Models 5 and 6), surface and groundwater abstractions and
effluent discharges are all highly significant in explaining the
variations in the BFI_LH and BFI_CEH, although the num-
ber (“num_reservoirs”) and capacity of reservoirs (“reser-
voir_cap”) are not significant covariates. Urban land cover
(“urban_perc”), previously noted as potentially influencing
BFI in the Thames Basin in southern England (Bloomfield
et al., 2009), is not a significant covariate in the LR models
using covariate Set A once spatial correlation in the covari-
ates has been accounted for and is not significant at all when
WRM covariates are included in the LR models.

In the LR models, the signs of the significant natural co-
variates in Fig. 5 (Models 1 and 2) are consistent with current
process-based understanding of the generation of baseflow
(Price et al., 2011; Gnann et al., 2019; Yao et al., 2021) as
represented in the revised conceptual model (Fig. 4) and with
previous regression models of BFI in the study area (Bloom-
field et al., 2009). For example, there is a significant inverse
relationship between BFI and the fraction of clay soils within
catchments, the fraction of catchments underlain by rocks
with essentially no groundwater, and the aridity of catch-
ments. Conversely, all LR models indicate a significant pos-
itive correlation between BFI and the fraction of catchments
underlain by fractured aquifers.

In all four LR models, Lin’s concordance coefficients be-
tween the fixed- effect predictions and the observed BFI are
similar upon training and validation, indicating that the mod-
els are not overfitted (Table 1). The coefficients for the mod-
els using Set A (Models 1 and 2) to predict BFI_LH and
BFI_CEH are 0.75 and 0.81 respectively. There are moderate
negative correlations between the residuals from these mod-
els and the surface water and groundwater abstractions and
effluent discharges from Set B covariates (Table 2). There are
negligible correlations between the residuals and the number
and capacity of reservoirs covariates. When the WRM co-
variates are added to the model (Models 5 and 6), Lin’s con-

cordance coefficients increase to 0.82 and 0.85 for BFI_LH
and BFI_CEH respectively (Table 1).

In summary, when spatial correlation effects are taken into
account, the LR models do not appear to be overfitted, show
a consistent though moderate improvement in explanatory
power with the addition of the WRM covariates, and indicate
that groundwater and surface water abstraction and effluent
discharges are all significant in explaining the variations in
both the estimates of BFI.

4.2 Machine learning model structures

The relative importance of the covariates with respect to es-
timates of BFI are listed in Table 3 and illustrated in Fig. 5
for the RF Set A models (Models 3 and 4) and Set B models
(Models 7 and 8). Lin’s concordance coefficients on training
data are larger for the RF predictions than for the LR mod-
els (Table 1). However, upon cross-validation, the RF coef-
ficients decrease and are comparable to the LR model val-
ues. This could be an indication of overfitted RFs, perhaps
because the spatial correlation previously identified amongst
the data (see LR results above) has not been accounted for
in the RF models. The most important covariates in the RF
models using Set A covariates (Models 3 and 4) are consis-
tent for both BFI_LH and BFI_CEH and are, in descending
order of importance, the fraction of catchments underlain by
fractured aquifers (frac_high_perc), clay soils (clay_perc),
extent of catchments underlain by rocks with essentially
no groundwater (no_gw_perc), and crop and grass coverage
(crop_perc, “grass_perc”) (Table 3 and Fig. 5).

The residuals from the RF models are moderately and neg-
atively correlated for the surface water and groundwater ab-
straction covariates (Table 2). The groundwater abstraction
covariate has high importance in both RF models of Set B co-
variates (Models 7 and 8; Table 3 and Fig. 5). The discharge
covariate has a moderate importance in the RF models, but
the relative importance of the surface water abstraction co-
variate and the covariates for the number of reservoirs and
for their total capacity is low (Table 3 and Fig. 5).

In summary, RF models show that the majority of the
power to explain variations in BFI is due to the natural co-
variates and when WRM covariates are included in the mod-
els, groundwater abstraction is the most important and ef-
fluent discharges of moderate importance in explaining both
estimates of BFI.

4.3 Consistency between model structures

The results of the models are subject to standard caveats
for such types of analysis. Inclusion of spatial correlation
in the LR models was necessary and led to some other-
wise significant covariates being removed, and the LR mod-
els were unable to represent non-linear relationships between
the covariates. The RF models did not take into account spa-
tial correlation identified in the LR analysis, and there was
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Figure 5. Signs and significance levels of the covariates in the LR models and the relative importance of covariates in the RF models. The
signs of the significant covariates in the LR models are indicated using colour (pink for positive, blue for negative), and the corresponding
significance levels of the covariates are indicated on the x axis with asterisks (∗ for significance level between 0.05 and 0.1, ∗∗ for significance
level between 0.01 and 0.05, ∗∗∗ for significance level below 0.001). Some covariates were only significant prior to accounting for the spatial
correlations. These are marked with asterisks only in the figure at their respective level of significance. Table A1 gives full details of the
regression coefficients. Relative RF importance ranges from zero to 2. Table 3 gives the scores for the relative importance of covariates in
the four RF models.

Table 1. Lin’s concordance coefficients between LR model predictions and the data.

Model Model 1 Model 2 Model 5 Model 6 Model 3 Model 4 Model 7 Model 8
Scheme LR LR LR LR RF RF RF RF

Set A Set A Set B Set B Set A Set A Set B Set B
BFI data BFI_LH BFI_CEH BFI_LH BFI_CEH BFI_LH BFI_CEH BFI_LH BFI_CEH

Training 0.75 0.81 0.82 0.85 0.95 0.96 0.97 0.97
Validation 0.75 0.80 0.82 0.84 0.80 0.82 0.81 0.84

Table 2. Pearson correlation between Set A model residuals and
Set B model covariates.

Model scheme LR LR RF RF
BFI data BFI_LH BFI_CEH BFI_LH BFI_CEH

surfacewater_abs −0.16 −0.17 −0.21 −0.19
groundwater_abs −0.36 −0.31 −0.27 −0.27
discharges −0.27 −0.23 −0.16 −0.13
num_reservoirs −0.02 −0.02 −0.03 −0.02
reservoir_cap −0.01 −0.02 −0.04 −0.03

some evidence of overfitting of the RF models, but they are
able to represent any non-linearities that are present between
the covariates that could not be included in the LR mod-
els. Notwithstanding these observations, the two contrast-
ing modelling approaches, one relatively simple and tractable

(LR modelling) and the other considerably more flexible but
potentially harder to interpret (RF modelling), have resulted
in remarkably similar model structures, with high levels of
consistency between both natural and WRM covariates be-
ing identified as either significant (LR models) or important
(RF models).

The structures of the LR and RF models (Fig. 5) are
broadly insensitive to the BFI being modelled. Although this
is reasonable given the correlation between BFI_LH and
BFI_CEH (Fig. 3), this observation supports the inference
that the models are robust. Importantly for the purposes of
the present study, significant covariates in the LR models and
covariates with relatively large importance in the RF models
are consistent, regardless of whether the models are devel-
oped using BFI_LH or BFI_CEH (Fig. 5).

There is a high level of agreement between the two mod-
elling approaches regarding the significance or importance of
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Table 3. Score of the relative importance of covariates in RF model.

Covariate Model 3 Model 4 Model 7 Model 8

area 0.36 0.43 0.28 0.18
dpsbar 0.59 0.58 0.54 0.62
aridity 0.63 0.64 0.55 0.57
frac_snow 0.20 0.28 0.21 0.22
inter_high_perc 0.43 0.52 0.39 0.44
frac_high_perc 1.81 1.82 1.59 1.62
no_gw_perc 1.14 1.3 1.09 1.16
dwood_perc 0.69 0.59 0.6 0.55
ewood_perc 0.39 0.30 0.34 0.31
grass_perc 0.76 0.67 0.70 0.64
shrub_perc 0.33 0.39 0.30 0.34
crop_perc 1.05 1.07 0.88 1.00
urban_perc 0.63 0.59 0.46 0.58
inwater_perc 0.34 0.27 0.27 0.26
cbares_perc 0.17 0.14 0.12 0.14
clay_perc 1.59 1.53 1.41 1.34
surfacewater_abs 0 0 0.24 0.28
groundwater_abs 0 0 0.96 0.96
discharges 0 0 0.55 0.45
num_reservoirs 0 0 0.15 0.10
reservoir_cap 0 0 0.19 0.21

the natural covariates in Set A. Both the LR and RF models
indicate the primary importance of the presence of fractured
aquifers in controlling BFI. This is consistent with the ob-
servation of Bloomfield et al. (2009), where the percentage
coverage of fractured aquifers in the Thames catchment in
southern GB was found to be an important term in LR mod-
els of BFI. In the present study, in Models 1 to 4 the catch-
ment fraction underlain by fractured aquifers is either a sig-
nificant covariate or the covariate with the largest importance
(Fig. 5), and catchment fraction of clay soils, those underlain
by rocks with essentially no groundwater, and crop coverage
are all significant in the LR models or have large importance
in the RF models (Fig. 5). The two other catchment covari-
ates identified as significant in the LR models (topography
and aridity) also have moderate importance in the RF mod-
els.

The same natural covariates that are identified as signif-
icant or of high importance in the LR and RF models in
Set A (Models 1 to 4) are also significant or important in
models using the Set B covariates (Models 5 to 8) (Fig. 5),
and the majority of the variation in BFI is described by the
natural covariates (Table A2). From these observations, it is
taken that WRM practices, rather than being the principle
explanatory factor of variance in BFI, act to modify BFI con-
trolled primarily by natural catchment processes. There are
also similarities in the significant or importance of WRM co-
variates between the Set B models (Models 5 to 8). In both
cases groundwater abstraction is significant or important, ef-
fluent discharges are significant or of moderate importance,
and both reservoir numbers and capacities are either not sig-

nificant or are of low importance. There is however a notable
dissimilarity between the model structures with regard to sur-
face water abstraction: it is a significant covariate in the LR
models (Fig. 5; see Models 5 and 6) but is not important in
the RF model (Table 3 and Fig. 5; see Models 7 and 8).

4.4 Evidence for the impact of water resources
management practices

The observations relating to the effect of WRM on BFI have
been investigated further by considering the extent to which
particular catchment context and management settings influ-
ence the respective model performance. Figure 6 shows that,
particularly for a number of relatively high BFI catchments
in central England and SE England to the north of London
(Fig. 6a), the LR model of BFI_LH using only natural covari-
ates appears to underestimate BFI. Similar observations can
be made with respect to estimates of BFI_CEH (Fig. A2a),
with the additional observation that there are a few catch-
ments in eastern England where the model appears to overes-
timate BFI. Inclusion of WRM covariates leads to some im-
provements in LR model estimates of BFI, with the largest
improvements being in the high BFI catchments (Figs. 7a
and A3a). These improvements are particularly seen in the
relatively high BFI catchments immediately to the north of
London (Fig. 6b). Note, however, that addition of WRM co-
variates to the models does not appear to improve the es-
timates of BFI_CEH in the catchments in eastern England,
where the model still appears to overestimate BFI (Fig. A2b).

To explore further which WRM covariates (groundwa-
ter abstraction, surface water abstraction, and effluent dis-
charges) may be contributing to the improvement of the LR
models, the distribution of differences between model esti-
mates and observed BFI as a function of the magnitude of
the three WRM covariates have been plotted for BFI_LH
(Fig. 8) and for BFI_CEH (Fig. A4). Figure 8 shows that for
LR models using natural covariates Set A (Model 1), under-
estimation of BFI is greater in catchments with higher levels
of groundwater abstraction and, to a lesser extent, with higher
effluent discharges, whereas there is no apparent systematic
association between under- or overestimation of BFI_LH and
levels of surface water abstraction. When the WRM covari-
ates are included in the models (Set B, Model 5), estimates
of BFI_LH are noticeably improved in catchments with high
levels of groundwater abstraction and to a lesser extent mod-
erate to high effluent discharges. Similar patterns are seen
for models of BFI_CEH (Fig. A4). From this it is inferred
that most of the improvement in the LR model performance
when WRM covariates are included in the models is due to
the groundwater abstraction covariate and, to a lesser extent,
to the discharge covariate. Inclusion of the surface water ab-
straction covariate appears to have a negligible influence on
estimates of BFI using LR models.

Compared with the LR models, differences between esti-
mates of BFI from the RF models and observed values of
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Figure 6. Maps of difference between modelled and observed BFI_LH (a–d) and corresponding scatter plots of BFI_LH against fitted
BFI (e–h) for covariate Sets A and B for LR and RF models (Models 1, 5, 3, and 7 respectively).

Figure 7. Scatter plots of improvement in modelled BFI as a function of observed BFI_LH for (a) LR and (b) RF models.

BFI_LH and BFI_CEH using Set A covariates (Models 3
and 4) are small, and there are no clear regional patterns in
model performance across the study area (Figs. 6 and A2).
Figure 8 shows that RF models of BFI_LH using Set A
(Model 3) covariates underestimate BFI in catchments with
the highest levels of groundwater abstraction, but there is
no clear association between the performance of these mod-
els and levels of surface water abstraction or effluent dis-
charges. Inclusion of WRM covariates in the RF model of
BFI_LH (Set B, Model 7) does not appear to improve the
model (Figs. 7 and A3) or change these relationships: BFI is
still underestimated in catchments with the highest levels of

groundwater abstraction, and there is still no clear associa-
tion between model performance and levels of surface water
abstraction or effluent discharges. Similar relationships also
hold for the RF models of BFI_CEH (Fig. A4). There is no
noticeable improvement in the performance of the RF mod-
els with the inclusion of WRM covariates.
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Figure 8. Comparison of observed and modelled BFI_LH for covariate Sets A and B, for LR and RF models and as a function of different
human management categories.

5 Discussion

5.1 Impacts of WRM practices on BFI

Both modelling approaches are broadly consistent in identi-
fying the most influential WRM covariates, namely the im-
portance of groundwater abstraction, the modest effect of ef-
fluent discharges to streams, and the unimportance of reser-
voirs in influencing BFI, while surface water abstraction was
identified as significant in the LR model but unimportant in
the RF model (Fig. 5). In addition, the LR models identi-
fied positive correlations between BFI and groundwater ab-
straction, surface water abstraction, and effluent discharges
(Fig. 5), and the influence of groundwater abstraction on
BFI increases with increased abstraction (Figs. 7 and 8). It
is evident from previous studies (Wittenberg, 2003; Weber

and Perry, 2006; Wang and Cai, 2009; Thomas et al., 2013)
that there is no universal relationship between WRM prac-
tices and baseflow, and the influence of WRM practices on
baseflow is sensitive to climate, the location of abstraction
in a catchment, and the details of abstraction and that in the
context of the present study, the relationship between WRM
practices and BFI is only partly explained in terms of the
conceptual model in Fig. 4.

Assuming the principal uses for abstracted groundwater in
the UK are for public supply (UK Government, 2020) where
losses to evaporation are limited, abstracted groundwater
from up-catchment sites should have a broadly neutral effect
on baseflow. In contrast, groundwater abstracted from down-
catchment or in the immediate vicinity of streams may be
expected to reduce baseflow. However, neither of these sim-
ple conceptualizations of groundwater abstraction explain
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the positive correlation between groundwater abstraction and
increased baseflow in the CAMELS-GB data (Figs. 5, 7,
and 8). Water resources in England have been well-regulated
within the context of the European Water Framework Direc-
tive and Daughter Directives (European Commission, 2000),
and a wide range of sophisticated schemes and measures are
used to manage low flow and drought, including conjunctive-
use schemes, low-flow alleviation schemes, and hands-off
flow measures (Clayton et al., 2008; Shepley et al., 2009; Ag-
new et al., 2000; Hutchinson et al., 2012; Wendt et al., 2020,
2021). Conjunctive-use schemes use combined management
of groundwater and surface water abstractions to maintain
ecological flows, while low-flow alleviation schemes and
hands-off flow measures are used in England to constrain
the amount of water that is abstracted from groundwater
and rivers, with abstractions being reduced or stopped at a
given low-flow trigger level. Unfortunately, the CAMELS-
GB data do not capture the details of any of these schemes
or measures, and the conceptualization of baseflow genera-
tion in Fig. 4 does not capture the temporally and spatially
linked changes in flows associated with these schemes and
measures. In addition, although the analysis presented here
uses BFI data for the period 1970 to 2015, the schemes and
measures have evolved significantly over this period and so
are both temporally and spatially variable. Consequently, al-
though the cumulative, spatio-temporally varying effects of
these schemes and measures may influence the relationship
between WRM terms in the models, because there is no in-
formation on the dynamic management of water resources in
the CAMELS-GB data in response to hydro-meteorological
events (beyond the average terms used in the study; Ta-
ble A1), the effects of the schemes and measures on BFI can-
not be constrained by the present study. The positive corre-
lation between effluent discharges and BFI is consistent with
the conceptualization of baseflow generation in Fig. 4, while
the lack of any significant or important correlation between
the terms associated with reservoirs and BFI (Fig. 5) is con-
sistent with the conceptualization of these as stores of water
that do not contribute to baseflow (Fig. 4).

5.2 Impacts of climate and landscape characteristics
on BFI

Both modelling approaches point to the same natural co-
variates (Models 1 to 4) contributing to the majority of
variation in BFI (Fig. 5). These include a climate co-
variate (aridity), a number of catchment characteristics in-
cluding topography (catchment mean drainage path slope,
dpsbar), fractional area of highly productive fractured
aquifer (frac_high_perc), non-aquifer (no_gw), and the clay
fraction in soils (clay_perc), and a land cover characteristic
(fractional area of crop cover, crop_perc). Qualitatively there
is consistency between these covariates and similar covari-
ates identified in previous studies. For example, Mazvimavi
et al. (2005) also found slope to be a significant term in a

regression model of BFI for 52 basins in Zimbabwe, and Ad-
dor et al. (2018) found slope to be an important covariate in
an analysis of the CAMELS data for the USA. Note the ob-
servation in Table A1 that when topographic relief appears to
be more important with respect to mean residence and transit
times, catchment area appears less important. This is consis-
tent with the results in both Fig. 5 and Addor et al. (2018).
Beck et al. (2013) demonstrated that PET (a climate covari-
ate related to aridity) was a significant covariate in a regres-
sion model of BFI based on 3394 global catchments, con-
sistent with the results in Fig. 5. Bloomfield et al. (2009)
previously identified the importance of the fractional area
of high-productivity fractured aquifers and non-aquifers in
controlling BFI in the Thames Basin, a basin within the cur-
rent study area, again consistent with the results in Fig. 5.
Similarly, Addor et al. (2018) and Huang et al. (2021) both
found clay fraction in soils to be important in predicting BFI
when ML techniques were applied to the CAMELS data for
the USA.

However, there are challenges in making direct compar-
isons between different models of BFI. Firstly, there is no
commonly accepted approach to defining covariates used
in such models. Although many of the climate and topo-
graphic catchment characteristics may have common defini-
tions, other important or significant catchment factors, such
as soil and aquifer characteristics, may be quantified quite
differently between studies. The CAMELS family of hy-
drological large-sample datasets seeks to address the issue
of consistency between hydrological datasets by attempt-
ing to publish hydrological data in standardized formats
(Addor et al., 2020). However, even between the different
national CAMELS datasets, there are differences in how
(hydro)geological attributes are characterized (Addor et al.,
2017, 2020; Alvarez-Garreton et al., 2018; Chagas et al.,
2020; Coxon et al., 2020a, b). A second challenge when at-
tempting to compare between studies of the natural controls
on BFI is that studies typically investigate different combi-
nations of covariates. Regardless of the modelling approach
used, for example, stepwise multiple LR (e.g. Mazvimavi et
al., 2005; Bloomfield et al., 2009; Zhang et al., 2013; Aboel-
nour et al., 2021) or ML models (Mazvimavi et al., 2005;
Addor et al., 2018; Huang et al., 2021), the resulting signif-
icant or important covariates reflect the composition of the
original pool of covariates under consideration.

5.3 Implications for future research

There are a couple of implications that arise from this study.
Although the dominant controls on baseflow across the study
area are climate and catchment covariates, there is evidence
that WRM practices, particularly groundwater abstraction,
influence baseflow, but the manner in which they effect base-
flow is inferred to be a function of the specific climate and
catchment settings and WRM practices. Consequently, as
this analysis and the CAMELS-GB data reflect the domi-
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nant WRM practices for GB, it is recommended that the
present study should be extended to test additional WRM at-
tributes and the applicability of the findings in other settings
and WRM regimes. For example, CAMELS-GB does not ex-
plicitly include information about WRM practices associated
with hydropower schemes or seasonal changes in abstraction
(e.g. for irrigation), so the effect of such WRM practices
on BFI has not been assessed. In addition, CAMELS-GB
does not include any information on within- and between-
catchment water transfers (note the absence of these WRM
terms from the conceptual model; Fig. 4). In addition, the
approach to assessing the effect of WRM practices on BFI
could also be applied and tested for relevance in other climate
settings such as semi-arid environments (Mwakalila et al.,
2002) or where snowmelt is an important component of base-
flow generation (Miller et al., 2014; Barnhart et al., 2016;
Huang et al., 2021) once systematic information on WRM
practices is available in those settings.

More broadly, it is important to make data related to WRM
practices much more widely available and for those data
to be included in future large-catchment datasets (Addor et
al., 2020). It is already challenging to develop common ap-
proaches to characterize some important catchment covari-
ates related to soils and (hydro)geology for inclusion in large-
catchment datasets. It is likely to be even more difficult to
provide a consistent approach to capturing WRM practice
data. However, a starting point would be to systematically
conceptualize the major WRM practices across a wide range
of regulatory (unregulated to highly regulated), catchment,
and climatic settings that may influence baseflow and other
hydrological signatures (McMillan, 2021) in order to estab-
lish broad classes of WRM practices against which data can
be reported.

Finally, there is an active debate on the comparative merits
of process-based hydrological modelling and ML in hydro-
logical forecasting. Specifically, questions have been asked
related to the extent to which hydrological processes and our
understanding of the uniqueness of place, as encapsulated in
our conceptual models of the terrestrial water cycle (Wagener
et al., 2021), have a role in hydrological prediction in the “age
of machine learning” (Bevan, 2020; Nearing et al., 2020). For
example, in a recent comparative study of the predictive ac-
curacy of ML and LR models of flooding events in Germany,
Schmidt et al. (2020) demonstrated that although ML meth-
ods had higher predictive accuracy than the LR models, they
were still shown to be susceptible to the problem of equifi-
nality and that this severely restricted their potential for in-
ference. Schmidt et al. (2020) concluded with the observation
that multiple algorithms and multiple methods should ideally
be employed within a framework of model cross-validation
when using ML for inference. Although the purpose of the
present modelling was not to develop models capable of pre-
dicting BFI, it is interesting to note that there have been clear
benefits in applying both simple statistical models (LR mod-
els) and more flexible ML approaches (RF models) to the

same parameter space to explore common model structures
and covariates of interest, and the results have provided ev-
idence to extend current process understanding of baseflow
based beyond individual LR (Bloomfield at al., 2009; Car-
lier et al., 2018; Zhang et al., 2020) and RF (Mazvimavi et
al., 2005; Addor et al., 2018; Huang et al., 2021) studies.
Now that the correlations between WRM covariates and BFI
have been identified, future predictive models of BFI that
take account of WRM practices could be developed using
a refinement of the conceptual model (Fig. 4) to constrain
a combination of multiple targeted statistical (LR) and mul-
tiple knowledge-guided ML models (Shen et al., 2021) de-
ployed with appropriate cross-validation schemes.

6 Conclusions

Variation in BFI is predominantly explained by natural (cli-
matic and catchment) characteristics, with the most impor-
tant being the extent of high-productivity fractured aquifers
within catchments. This latter observation is consistent with
previous analyses of BFI within the study area. Although not
the major control on variation in BFI, there is evidence that
WRM practices systematically modify BFI in the study area.

Groundwater abstraction is the most influential of these
practices, with a positive correlation between abstraction and
baseflow, and this is consistent with the observation that the
effect of groundwater abstraction on BFI is most evident
in groundwater-dominated catchments where there are the
highest levels of abstraction. However, a variety of schemes
and measures are used to manage water resources in the
UK, and systematic information on such schemes is currently
lacking in the CAMELS-GB large sample dataset, so their
specific effects on BFI cannot be constrained by the current
study. Information regarding WRM practices, their tempo-
rally and spatially linked associations, and changes in flows
associated with these schemes and measures should be incor-
porated in future conceptual models of BFI.

Large-sample datasets are increasingly being used to un-
derstand and predict the functioning of hydrological systems
at scales above the individual catchment (Addor et al., 2020).
Given the importance of understanding the effects of WRM
practices on baseflow and a range of other hydrological sig-
natures, there is a need to incorporate information about such
practices in large-sample datasets. If such datasets are to be
comparable, there is also the need to systematize how WRM
practices, in all their diversity, are described and recorded.
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Appendix A

Table A1. Description of the CAMELS-GB covariates used in the modelling and analysis.

Covariate CAMELS-GB Details of CAMELS-GB covariate Context
class covariate

Catchment area Catchment area (km2) based on date Catchment area is commonly identified
physiography from UKCEH’s Integrated Hydrological as an important factor in explaining

DTM (Morris and Flavin, 1990). variability in low flows (Price et al.,
2011). However, it less important with
respect to mean residence and transit
times, where topographic relief appears
to be more important (McGlynn et al.,
2003; Asano and Uchida, 2012; Muñoz-
Villers et al., 2016).

dpsbar Catchment mean drainage slope path Mean drainage path slope (Bayliss,
(m km−1). 1999) is an index of catchment

steepness and is estimated as the mean
of all inter-nodal slopes from UKCEH’s
Integrated Hydrological DTM for a
given catchment (Morris and Flavin,
1990).

Climate aridity Aridity (–). Aridity in CAMELS-GB, as The primary input to the catchment
indices with the other CAMELS datasets, is water balance and hence to baseflow

calculated as the ratio of mean daily generation is precipitation minus
potential evapotranspiration to mean evapotranspiration (Price, 2011, Fig. 1).
daily precipitation (Addor et al., 2017;
Coxon et al., 2020b). In the present study
it has been reformulated as usually
estimated (Joint Research Centre, 2019).

frac_snow Fraction of precipitation falling as snow Barnhart et al. (2016) demonstrated a
(for days colder than 0 ◦C) was estimated strong correlation between snowmelt
by Coxon et al. (2020b). rate and baseflow efficiency for

catchments from western USA.

Hydrogeology inter_high_perc Percentage of catchment designated as As Price (2011) notes, catchment
classes being underlain by rock with geology is a primary control on the

intergranular flow and high productivity baseflow-generating process. Three of
(%). (Hydrogeological attributes for each the nine CAMELS-GB hydrogeological
catchment were derived from the UK attributes have been selected as
bedrock hydrogeological maps, British covariates; these include the two high
Geological Survey, 2019.) groundwater productivity attributes and

fract_high_perc Percentage of catchment designated as the attribute that denotes essentially no
being underlain by rock with flow groundwater. Bloomfield et al. (2009)
through fractures and high productivity had previously explained 97 % of the
(%). variance in BFI for 44 catchments in the

no_gw_perc Percentage of catchment designated as Thames Basin, UK, using a model that
being underlain by rocks with essentially regressed four hydrogeological classes,
no groundwater (%). including two high-productivity and two

low-productivity classes, on BFI.
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Table A1. Continued.

Covariate CAMELS-GB Details of CAMELS-GB covariate Context
class covariate

Land cover dwood_perc Percentage of catchment designated as Processes associated with the
deciduous woodland coverage (%). transformation of the hydrological
(Attributes for each catchment were inputs, in forests and shrubby
derived from the UK Land Cover Map vegetation, such as interception,
2015 produced by UKCEH, Rowland et throughflow, and stem flow, at the
al., 2017.) ground surface, such as ponding and

ewood_perc Percentage of catchment designated as infiltration, and in the soil, such as deep
evergreen woodland coverage (%). drainage and recharge (Price, 2011)

grass_perc Percentage of catchment designated as depend on the nature of land use and
grass and pasture coverage (%). land cover.

shrub_perc Percentage of catchment designated as
medium-scale vegetation (shrubs)
coverage (%).

crop_perc Percentage of catchment designated as
crop coverage (%).

urban_perc Percentage of catchment designated as
suburban and urban coverage (%).

interwater_perc Percentage of catchment designated as
inland water coverage (%).

bares_perc Percentage of catchment designated as
bare soil and rock coverage (%).

Soil clay_perc Percentage clay content of soil (%). Soil Using data from over 600 catchments in
attributes for each catchment were based the CAMELS-US dataset, Addor et al.
on the European Soil Database Derived (2018) used ML to compare the
data product (Hiederer, 2013). influence of catchment attributes on a

variety of hydraulic signatures
including BFI_LH. Soil clay fraction
was the most negatively correlated
attribute with BFI_LH (Addor et al.,
2018, Fig. 4).

Water surfacewater_abs Mean surface water abstraction (mm d−1). Wittenberg (2003), Wang and Cai
resource Mean surface water and (2009), Weber and Perry (2006), and
management groundwater abstraction and discharge Thomas et al. (2013) have all previously

data were estimated by Coxon et al. identified changes in features of
(2020a) based on monthly actual baseflow in catchments subject to
abstractions and returns for the period groundwater abstraction or due to
January 1999–December 2014. return flows.

groundwater_abs Mean groundwater abstraction (mm d−1).

discharges Mean discharges (mm d−1). Discharge
data consist of daily discharges into
water courses from water companies and
other discharge permit holders who reported
to the Environment Agency from
1 January 2005 to 31 December 2015.

num_reservoirs Number of reservoirs in the catchment
(–). Reservoir attributes were taken from
an open-source UK reservoir inventory
(Durant and Counsell, 2018).

reservoir_cap Total storage capacity of reservoirs in
the catchment (ML).
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Table A2. Coefficients of the four LR models and associated spatial structural parameters and summary statistics for the models.

Model 1 Model 2 Model 3 Model 4
Set A Set B Set A Set B

BFI_LH BFI_CEH BFI_LH BFI_CEH

intercept 1.3652 1.4068 1.1372 1.2137
dpsbar 0.0029∗∗ 0.0056∗∗∗ 0.0034∗∗∗ 0.0063∗∗∗

aridity −0.2182∗∗∗ −0.3220∗∗∗ 0.238∗∗∗ −0.4002
inter_high_perc (−0.0031∗∗∗)
frac_high_perc 0.0107∗∗∗ 0.0194∗∗∗ 0.0105∗∗∗ 0.0031∗∗∗

no_gw_perc −0.0028∗∗ −0.0035∗ −0.0018∗ −0.0021∗∗∗

crop_perc 0.0096∗∗∗ 0.0157∗∗∗ 0.0089∗∗∗ 0.0149∗∗∗

urban_perc (0.0027∗∗∗) (0.0032∗∗∗)
inwater_perc (0.0850∗∗∗)
clay_perc −0.0412∗∗∗ −0.0538∗∗∗ −0.0350∗∗∗ −0.0476∗∗∗

surfacewater_abs 0.3278∗∗∗ 0.5239∗∗∗

groundwater_abs 1.3861∗∗∗ 1.8737∗∗∗

discharges 0.7099∗∗∗ 0.7285∗∗∗

Spatial structure parameters

Range 0.504 0.446 0.473 0.426
Nugget 0.408 0.383 0.496 0.387

Summary of models

MSPE 0.117 0.360 0.138 0.289
Residual SD 0.435 0.642 0.388 0.581
R2 (iid model) 0.627 0.669 0.703 0.732

∗ for significance level between 0.05 and 0.1, ∗∗ for significance level between 0.01 and 0.05, and ∗∗∗ for
significance level below 0.001.

Figure A1. Distribution of residuals for LR models (Models 1 to 4).
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Figure A2. Maps of difference between modelled and observed BFI_CEH (a–d) and corresponding scatter plots of BFI_CEH against
modelled BFI (e–h) for covariate Sets A and B for LR and RF models (Models 2, 4, 6, and 8). (Note this is the same as Fig. 6 but for
BFI_CEH.)

Figure A3. Scatter plots of improvement in modelled BFI as a function of observed BFI_CEH for (a) LR and (b) RF models. (Note this is
the same as Fig. 7 but for BFI_CEH.)
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Figure A4. Comparison of observed and modelled BFI_ CEH for covariate Sets A and B, for LR and RF models and as a function of different
human management categories. (Note this is the same as Fig. 8 but for BFI_CEH.)
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