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S U M M A R Y
The 2016–2017 central Italy earthquake sequence began with the first main shock near the town
of Amatrice on August 24 (Mw 6.0), and was followed by two subsequent large events near
Visso on October 26 (Mw 5.9) and Norcia on October 30 (Mw 6.5), plus a cluster of four events
with Mw > 5.0 within few hours on 18 January 2017. The affected area had been monitored
before the sequence started by the permanent Italian National Seismic Network (RSNC), and
was enhanced during the sequence by temporary stations deployed by the National Institute of
Geophysics and Volcanology and the British Geological Survey. By the middle of September,
there was a dense network of 155 stations, with a mean separation in the epicentral area of
6–10 km, comparable to the most likely earthquake depth range in the region. This network
configuration was kept stable for an entire year, producing 2.5 TB of continuous waveform
recordings.
Here we describe how this data was used to develop a large and comprehensive earthquake
catalogue using the Complete Automatic Seismic Processor (CASP) procedure. This procedure
detected more than 450 000 events in the year following the first main shock, and determined
their phase arrival times through an advanced picker engine (RSNI-Picker2), producing a set
of about 7 million P- and 10 million S-wave arrival times. These were then used to locate the
events using a non-linear location (NLL) algorithm, a 1-D velocity model calibrated for the
area, and station corrections and then to compute their local magnitudes (ML). The procedure
was validated by comparison of the derived data for phase picks and earthquake parameters
with a handpicked reference catalogue (hereinafter referred to as ‘RefCat’). The automated
procedure takes less than 12 hr on an Intel Core-i7 workstation to analyse the primary waveform
data and to detect and locate 3000 events on the most seismically active day of the sequence.
This proves the concept that the CASP algorithm can provide effectively real-time data for
input into daily operational earthquake forecasts,
The results show that there have been significant improvements compared to RefCat obtained
in the same period using manual phase picks. The number of detected and located events is
higher (from 84 401 to 450 000), the magnitude of completeness is lower (from ML 1.4 to 0.6),
and also the number of phase picks is greater with an average number of 72 picked arrival for
a ML = 1.4 compared with 30 phases for RefCat using manual phase picking. These propagate
into formal uncertainties of ±0.9 km in epicentral location and ±1.5 km in depth for the
enhanced catalogue for the vast majority of the events. Together, these provide a significant
improvement in the resolution of fine structures such as local planar structures and clusters, in
particular the identification of shallow events occurring in parts of the crust previously thought
to be inactive. The lower completeness magnitude provides a rich data set for development and
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testing of analysis techniques of seismic sequences evolution, including real-time, operational
monitoring of b-value, time-dependent hazard evaluation and aftershock forecasting.

Key words: Time-series analysis; Computational seismology; Seismicity and tectonics;
Crustal imaging.

1 I N T RO D U C T I O N

On the 24 August 2016, a Mw 6.0 earthquake occurred in Cen-
tral Italy near the town of Amatrice, starting a seismic sequence
characterized by a cascade of moderate extensional earthquakes.
Two months later, a Mw 5.9 earthquake occurred, on 26 October
2016, near the village of Visso (Fig. 1). This activated the northern
edge of the fault system, and was followed 4 d later by the largest
earthquake in the sequence, Mw 6.5 on 30 October, near the town
of Norcia. After a further month, four moderate magnitude earth-
quakes of 5.0 ≤ Mw ≤ 5.5 occurred on the 18 January 2017 near
Campotosto, at the southern edge of the Amatrice fault system.

The total length of the normal fault system activated by the 2016–
2017 seismic sequence is 70 km. This is a very seismically active
section of the regional Central-Northern Apennines fault system,
where large historical and instrumental earthquakes with Mw ≥ 6.0
have occurred in the past. These include events dated from the
13th century C.E. (Rovida et al. 2016) up to the last 30 yr, as well
as the 1997 Colfiorito (Chiaraluce et al. 2003) and 2009 L’Aquila
(Valoroso et al. 2013) sequences. The Norcia-Amatrice sequence
reactivated the area in between these two earlier sequences.

The permanent RSNC network of seismic stations, operated
by the Italian National Institute of Geophysics and Volcanology
(INGV) for the surveillance of the Italian seismic activity, has a
mean minimum detection magnitude of ML ≈ 0 and a completeness
magnitude of ML = 1.4 in the considered period (ISIDe Working
Group 2007). Fig. 1 shows the permanent seismic network before
the Amatrice earthquake, together with the seismic activity recorded
in the 5 yr prior to the Amatrice sequence (ISIDe Working Group
2007). Fig. 1 also shows the location and focal mechanisms of
the earlier Colfiorito 1997 sequence to the north and the L’Aquila
2009 sequence to the south (in conventional black and white in
Fig. 1), and the two Mw > 6.0 events that occurred during the
2016–2017 sequence (red/white in Fig. 1). These four events are
the only earthquakes with Mw > 6.0 in the last 30 yr. All the fo-
cal solutions (TDMT—Time Domain Moment Tensor Catalogue;
http://cnt.rm.ingv.it/tdmt) display clear extensional fault movement
displayed along NW-trending normal faults, roughly parallel to the
strikes and dips of the mapped fault breaks.

Immediately after the Amatrice main shock, the emergency team
of National Institute of Geophysics and Volcanology began to install
22 seismic stations to complement the permanent ones. Then, sci-
entists from the British Geological Survey, with the support of the
NERC Geophysical Equipment Facility and SEIS-UK, deployed an
additional 24 broad-band stations within the next few days, result-
ing in a dense network of 155 stations, with a mean separation in the
epicentral area of 6–10 km. This dense seismic network produced
over 2.5 terabytes of data in 1 yr, too much to handle by manual
phase picking techniques used in preparing the RefCat from RSNC
data by manual phase picking. Accordingly, we used automatic
processing of the continuous recordings to generate a more com-
prehensive earthquake catalogue with better locations and improved
detection of events below the previous magnitude of completeness.
Such automatic procedures have commonly been used to analyse

seismological data from both background seismicity and periods of
enhanced activity during seismic sequences (Di Stefano et al. 2006;
Diehl et al. 2009; Satriano et al. 2011; Lomax et al. 2012; Valoroso
et al. 2013; Spallarossa et al. 2014; Romero et al. 2016; Wollina
et al. 2018). They complement alternative continuous waveform-
based techniques such as template-matching (Gibbons & Ringdal
2006; Shelly et al. 2007; Peng & Zhao 2009) and deep learning
approaches for earthquake phase association (Ross et al. 2018).
All of these must guarantee an appropriate level of reliability in
derived data such as phase arrival times, locations, origin times
and (local) magnitudes comparable to those obtained from man-
ual analyses, and do this for a greater number of events per unit
of computing time. Obtaining this reliability can be challenging
during seismic sequences, where events frequently overlap in time
or occur simultaneously in different parts of a network. There are
three major advantages of having a larger number of events and a
smaller detection threshold in catalogues extracted from automated
processing of waveform data. The first is the better constraint on
earthquake frequency–magnitude parameters used in probabilistic
seismic hazard analysis or operational earthquake forecasting from
the increased bandwidth of data. This increased bandwidth, and the
increased number of events, also has the potential to reduce the
estimated errors in such parameters. The second is the benefit from
from introducing small magnitude events to introduce secondary
triggering effects illustrated by forecast models developed for the
AVN sequence (Mancini et al. 2019). Extending the inclusion of
secondary triggering to smaller magnitudes is now possible using
the high-resolution catalogue. Third, uncovering the smaller events
from high-resolution data may shed new light on important details
of the fault architecture. These advantages demonstrate the im-
portance of decreasing the threshold of detected and characterized
events in improving forecasts. Gulia & Wiemer (2019) investigate
whether observations of b-value variation in time can lead to alarm-
based forecasts but current testing of the method to other sequences
reveals some caveats for the effectiveness of potential warnings
(Dasher-Cousineau et al. 2020)

In this work, we adopted the Complete Automatic Seismic Pro-
cessor procedure (CASP; from Scafidi et al. 2019), to analyse an
entire year of recordings of the 2016–2017 Central Italy seismic
sequence in a consistent way. We chose CASP because it proved not
only to be fast in processing a large amount of seismological data,
but also to detect consistent P- and S-phase arrival times, allowing
the accurate location of events. The other techniques mentioned
above may be able to detect more events and provide accurate rel-
ative locations, but can miss events and/or not always provide the
absolute locations calculated here. The core of CASP is an advanced
automatic wave arrival time detector and location software, based
on a chain of modular procedures constituted by iterative algorithms
(named ‘RSNI-Picker2’, from: Spallarossa et al. 2014; Scafidi et al.
2018). The pragmatic choice of CASP allows us to improve (i) de-
tectability, in terms of number of correctly detected arrivals times
or hit rate, (ii) reliability, in terms of minimizing the rate of false
or imprecise picks and (iii) accuracy of results (Scafidi et al. 2016).
It also allows us to generate catalogues of events quickly (∼12 hr),
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Figure 1. Map of the study area. Black circles represent earthquake epicentre locations in the 5 yr before the Amatrice Main shock (23 August 2011 to the
23 August 2016; from the Italian bulletin). The circle diameter scales with earthquake magnitude in M0.5 steps. The red stars associated with the black/white
focal mechanisms shown are the locations of the two events with Mw > 6.0 that occurred in the area in the last 30 yr (Mw 6.0 Colfiorito 1997 to the north and
Mw 6.1 L’Aquila 2009 to the south). The red stars with red/white focal mechanisms are the locations of the two events with Mw > 6.0 that occurred during the
(Central Italy) sequence studied here. Yellow triangles are the permanent seismic stations of the Italian seismic network managed by INGV.

to the point where operational earthquake forecasts could be made
daily. In this paper we prove this concept, and show that the new
data from the temporary stations, analysed by the CASP algorithm,
can reveal new features of the fault architecture and improved es-
timates of parameters used in probabilistic seismic hazard analysis
and operational earthquake forecasting.

In the Table 1, we list the properties of the RefCat and enhanced
catalogues. The methods used in producing the enhanced catalogue
are described in more detail in the following section.

2 P - A N D S - P H A S E P I C K I N G ,
E A RT H Q UA K E D E T E C T I O N A N D
C H A R A C T E R I Z AT I O N

This section describes the elements of the work flow we used to
retrieve the enhanced earthquake catalogue obtained by the CASP
method on the dense seismic network. The work flow itself is illus-
trated in the flowchart of Fig. 3.

2.1 The seismic network

The area affected by The Amatrice sequence had been regularly
monitored before its onset by the stations of the Italian National
Seismic Network (INGV Seismological Data Centre 2006) and
by additional local and regional seismic networks (respectively
the TABOO–Chiaraluce et al. 2014 and RESIICO–Marzorati et
al. 2016, networks) operated by INGV. This permanent network
was enhanced by the deployment of complementary set of 22 3C-
stations from the INGV emergency network of temporary, portable
stations within the first 10 d of the sequence (Moretti et al. 2016).
An additional 24 broad-band stations that were installed by the
10th of September, by the British Geological Survey (BGS) and
School of Geosciences at the University of Edinburgh, in active
co-operation with INGV to optimise the enhanced network. The
final configuration of the enhanced, dense seismic network con-
tained 155 stations (Fig. 2), bringing the station inter-distance down
to 6–10 km.
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Table 1. Main properties of the RefCat and enhanced catalogues.

Catalogue name RefCat Enhanced

Stations used INGV operated permanent and temporary
networks

INGV/BGS/UK-SEIS enhanced network

Number of station at steady state 109 155
Time window 24 August 2016–31 August 2017 24 August 2016–31 August 2017
Phase picking Manual Automatic
Location method Hypo, Hypo2000, NonLinLoc NonLinLoc
Average number of phases (ML 1.4–1.5 events) 30 72

Figure 2. Final seismic network configuration (left-hand panel), colour-coded by type, and the epicentral area (coloured in yellow) and overlapping, colour-
coded, sub networks defined in the main text (right-hand panel).

Figure 3. Flow-chart of the CASP automatic procedure followed in this work.

This network configuration operated stably from 24 August
2016 to 31 August 2017, producing a massive data set of con-
tinuous waveforms (≈2.5 terabytes). The data set is now freely
available, in standard miniseed format, from the ORFEUS (Obser-
vatories & Research Facilities for European Seismology) and IRIS
(Incorporated Research Institutions for Seismology) web portals
(https://www.orfeus-eu.org/, https://www.iris.edu/hq/).

2.2 P- and S-phase arrival times and earthquake detection

The CASP software analyses the recorded waveforms directly in
the standard miniseed format, organized in daily (24-hr) continuous
time windows as retrieved by the standard seedlink archive format.

The first step of the automatic procedure is the event detection
based on a standard STA/LTA analysis, empirically calibrated for
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each station as a function of the site’s ambient noise and the charac-
teristics of its installed instruments. The main parameters involved
in this calibration are (see Table 2): the low- and high- corner fre-
quencies of the band-pass filter (F Low and F High), the short-
and long-term average constants (STA and LTA), the STA/LTA ratio
threshold (Level), the window length for the STA/LTA ratio cal-
culation (Dur), and the minimum time-interval permitted between
two consecutive triggers (LenMin). These parameters have been
set such that the algorithm is very sensitive to the occurrence of
candidate events, producing a very large number of triggers. This
minimizes the chances of failing to detect ‘true positives’, at the
expense of also producing many ‘false positives’ associated with
non-seismically generated noise. However, the false positives are
then removed on the basis of the location residuals and of the qual-
ity of locations, in the final step of the CASP procedure, which has
been proven to discriminate effectively between true seismic phases
and other signals.

For each trigger detected through the STA/LTA analysis, the final
trigger time is then determined as the minimum of the Akaike In-
formation Criterion (AIC) function (after Akaike 1974) computed
within a signal window around the previous trigger identification.
The use of the AIC-based algorithm allows us to overcome some typ-
ical errors associated with STA/LTA analysis (Scafidi et al. 2019).

The station trigger data were then input in into the CASP event
detection module (see Fig. 3). The detection module is based on a
‘coincident’ system, where a defined number of data channels must
be triggered within a defined time window in order to declare the
(potential) beginning of a candidate event. It has proven to have
strong advantages in detection of events occurring close in time
during a seismic sequence. Event detection was further optimized
by splitting the analysis into sub-networks defined by 11 different
geographical zones defined by the pattern of seismicity (Fig. 2),
allowing the accurate detection of as many events as possible. The
zones overlap, but this is necessary to allow us to recognize identical
events detected by the different networks, and hence to remove
duplicates in the catalogue. Accordingly, we report in Table 3, for
each subnetwork, the name, the number of stations included and
the parameters controlling the event detection, that is the number
of stations which must be triggered within the coincidence window
length.

The seismograms of the potential events are then extracted from
the continuous recordings and converted in standard Seismic Anal-
ysis Code (SAC) format. Each time window has 10 s of pre-trigger
time and a total duration of 45 s. Considering the network density,
for every triggered event we extracted waveforms from all the sta-
tions located within 90 km from the preliminary epicentre of the
possible event. Then, the waveform for the candidate event is anal-
ysed through the advanced automatic picker and location engine,
named RSNI-Picker2 (RSNI-P2 in Fig. 3; from Spallarossa et al.
2014; Scafidi et al. 2016, 2018).

The RSNI-P2 is based on an iterative procedure for the automatic
identification of phase arrival times by calculating AIC functions.
Iterations consist of different steps, separately performed for P- and
S-phases, where arrival time identification is checked and refined
based on a preliminary earthquake location we computed with the
NonLinLoc software (Lomax et al. 2000) and a 1-D velocity model
of the area (De Luca et al. 2009).

Complex seismic sequences are often characterized by the oc-
currence of multiple main shocks within a short time scale going
from seconds to weeks. The likelihood of events occurring closely
spaced in time (even if not necessarily in space) makes the auto-
matic analysis of seismic data, in terms of phase association and

event location, a very difficult task. The waveforms for two, or
more, seismic events occurring almost at the same time could over-
lap, leading to one or more events being missed. However, this will
only occur if the signals from the most distant station for the earlier
event arrive around or later than those from the nearest station for
the later event. RSNI-P2 includes a smart search component for
such nearly contemporary earthquakes. After a first event is de-
tected and located, the procedure dynamically cuts each waveform
to exclude the portions of the signal belonging to the first event.
This waveform cut is done by identifying the end of the seismic
signals belonging to the earlier event, and by evaluating the event
magnitude (i.e. higher magnitude implies longer signals to be cut,
and vice versa) and the hypocentral distance from each station (i.e.
the starting time of each time window is independently selected).
As a consequence, the time windows available for a potential later
event are determined. Then, the system starts a new search analysis
on these waveforms, to check for and detect any missing earthquake.
A similar process is done with the part of the seismograms before
the first detected event, looking for other events that occurred just
before its time window.

RSNI-P2 is also equipped with a tool for identifying out-of-
network events such as teleseisms or regional earthquakes through
an appropriate spectral analysis. This algorithm is able to discrimi-
nate reliably between phase arrival times caused by non-local events
in order to discard them and to have a clean final data set of local
earthquakes (Scafidi et al. 2019).

The final results of the CASP procedure is a data set of P- and
S-phase arrival times and an earthquake catalogue of origin time,
location, depth and magnitude, all linked together. Every phase ar-
rival time is attributed to the earthquake it belongs to, and every
earthquake has the list of arrival times that led to its location. This
provides an important benchmark for future studies based on these
data. Moreover, every single result has its own error estimation,
allowing the possibility to discriminate between different quality
classes. For each set of arrival times, CASP provides quality factors
(qf) that indicate the estimated uncertainty of the automatic detec-
tion in seconds, to clearly define the reliability of each datum. The
earthquake location quality is an output of the location software,
specifically a probabilistic estimation of the error produced within
the NonLinLoc code (Lomax et al. 2000).

3 F I NA L E A RT H Q UA K E C ATA L O G U E
G E N E R AT I O N

3.1 Probabilistic earthquake location with station
corrections

The automatic analysis procedure we used in this study includes
an iterative location phase, designed to identify and optimize the
P- and/or S-arrival times. The final data set of P- and S-phase
arrival times, respectively consisting of 7016 435 P and 10 003 900
S phases. The total number of identified and associated phases with
earthquakes is much greater than in RefCat. In the magnitude range
1.4–1.5 the average number of picked arrival times is 72 and 30
for the enhanced catalogue and RefCat, respectively (see Table 1).
The significantly higher average number of phases of the enhanced
catalogue with respect to the standard one is due to: the higher
number of stations, concentrated in the epicentral area, used for
the enhanced catalogue, and the iterative search procedure of S
phases (see ‘P- and S-phase arrival times and earthquake detection’
paragraph).
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Table 2. Parameters involved in the STA/LTA triggering procedure.

F Low (Hz) F High (Hz) STA LTA Level Dur (s) PostEv (s) LenMin (s)

10.0 30.0 0.8 25.0 2.0 1.5 15.0 60

Table 3. Subnetworks name, configuration and related parameters involved
in the STA/LTA triggering procedure.

Subnetwork
Number of

stations
Coincidence
window (s)

Number of
coincidence triggers
to declare an event

seq1 45 5.0 4
seq2 27 5.0 4
seq3 23 5.0 4
avts 13 5.0 4
mrcc 19 10.0 4
nrcn 15 10.0 4
nord 12 10.0 4
avtn 20 5.0 4
nadr 9 5.0 4
SARD 10 5.0 4
COLF 16 5.0 4

The final data set of arrival travel times was then used as input
to a final optimized relocation run, producing the final list of seis-
mic events with their hypocentral location, depth, origin time and
associated uncertainties. To do this we used the same NonLinLoc
procedure adopted for the picking phase, and the same 1-D propaga-
tion model, derived from De Luca et al. (2009). The main difference
is the introduction of static station correction values, to reduce the
discrepancies between the adopted propagation model and the real
Earth.

A proxy of the best station corrections can be obtained from the
mean residuals obtained for a set of located events. In order to reduce
the trade-off between residual reduction and changes in location, a
sub-set of events with very stable locations and a redundant number
of phases was selected for a benchmark test. Moreover, in order
to reduce the possible impact of a non-uniform sampling of the
investigated area, events were selected by imposing a regular grid
(size 5 km) on the hypocentral volume of the sequence, and by
choosing a maximum of 10 events for each grid element showing
the highest number of phases. In this way, we avoid oversampling
the ray paths in the volumes with the highest number of events and
stations. Thus, a sub-set of about 3600 events was selected from the
data set of preliminary locations.

The relevant phases were picked by in a recursive procedure, in
which the mean station residuals of the previous location iteration
were used as station correction for the following iteration. The
cumulative root mean square of residuals tended to stabilize after
three iterations, and the mean station residuals at this point were
adopted as station corrections for the final location. Corrections
were used only for stations showing a hit count larger than 50.
A representation of the obtained station corrections is shown in
Fig. 4. In general, the corrections in the epicentral area defined by
the cloud of seismicity in Fig. 1 are rather small, confirming the
validity of the adopted 1-D velocity model. Conversely, stations in
the Adriatic foreland (on the eastern side of the area studied), show
systematically positive station corrections. This is consistent with
relatively low velocities being present at the surface and in the upper
crustal layers in this area, as proposed independently by Carannante
et al. (2013) in their tomographic study.

Obviously this complete procedure of station correction would
not be possible in a near real-time application of the method; how-
ever a good estimate of station corrections would be available for
the permanent part of the network from background seismicity.
Corrections for the temporary stations would be obtained with an
increasing accuracy during the evolution of the sequence, but, as al-
ready stated, their contribution is less critical with respect to stations
in the Adriatic foreland, mainly permanent ones.

We show in Fig. 5(a) map view of the 440 697 relocated events
making up the final enhanced earthquake catalogue. For compar-
ison, we also report in Fig. 6 the number of events per day of
the obtained catalogue (in red) versus those present in the RefCat
(ISIDe Working Group 2007). Our procedure significantly increases
the number of retrieved events by a factor varying from four to more
than five during the sequence, with an overall mean ratio of 5.22.
This holds even during the phases of very high event rate asso-
ciated with the major destructive events—at the beginning of the
sequence, during the period 26–30 October 2016 and soon after the
17 January 2017. This confirms the efficiency of the detection and
picking algorithms, even for seismic events that are closely spaced
in space and time. In a recent work, Zhang et al. (2019) associate
and locate about 3300 events for a subset of 5 d of the sequence
(14–18 October 2016) using the Rapid Earthquake Association and
Location algorithm (REAL). For the same period, our automatic
database includes more than 4300 well-located events.

After the final relocation step, we performed a final ‘cleaning’ of
the derived data set for P- and S-wave arrival times to remove redun-
dant entries and to ensure consistency of outputs in the catalogue. As
a result, only those phases contributing to the final location are in-
cluded in the final catalogue containing the dataset of arrival times.
In particular, P and S arrival times with residuals greater than 2 s or
with a zero weight in the location were discarded. Nevertheless, all
the events contained in the final earthquake catalogue have at least
six P and S phases.

Prior to the cleaning procedure, some 4 per cent of the loca-
tions (18 945 events) had (unphysical) negative depths. Within those
events, there were 899 events in the A-class for quality (5 per cent),
2888 events in the B-class (15 per cent), 4782 events in the C-class
(25 per cent) and 10 376 events in the D-class (55 per cent). For
the definition of the adopted quality classes, see Section 3.3. We
decided to keep only the events whose depth is positive in the final
catalogue, that is its elevation is below the local topographic height.
As a result, we excluded 11 871 events, 88 per cent of those in the C
and D classes of poorly located events. The final dataset of arrival
times contained entries for 6871 990 P and 9941 649 S phases.

The number of detected and validated P and S arrival times per
day for the whole analysed year is shown in Fig. 7(a). The number
of S phases is always slightly higher than the P ones; this is due
in part to the fact that the search for S phases is always driven by
a trial location that is already reliably known from the P-phases.
In addition, mainly for small events, very often the signal to noise
ratio of S waves (with respect to P coda) on horizontal components
is higher than the SNR of P waves (with respect to pre-event noise)
on the vertical component. A typical example is reported in Fig. 8,
(two stations of event 170 315 000 204, Ml 0.17). Station ED19 has
a good P- and S-picking. For the temporary station T1256, automatic
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Figure 4. Representation of the static stations corrections for P (left-hand panel) and S waves (right-hand panel) as colour coded circles (grey and white for
negative/positive corrections, respectively), containing the station name and the correction value (in seconds); the circle size is scaled with the correction value.

Figure 5. Map view of the seismicity distribution comprising all the 440 697
events retrieved by this study by analysing 1 yr of recorded data, with focal
mechanisms as indicated. Colour coding is the same as for Fig. 1.

P-picking was not possible due to the low SNR, nevertheless the S
arrival was correctly recognized.

In the most seismically active single day, on the end of October
2016, more than 75 000 P arrival times and 110 000 S arrival times
were detected and correctly assigned to more than 3500 events. The
distribution of the automatic quality estimation of both P and S

phases is also reported in Figs 7(b) and (c). The average value of
the estimated errors in the arrival times is ±0.05 s for the P phases
and ±0.13 s for the S phases. More than 90 per cent of arrival times
had estimated errors below 0.1 and 0.25 s, respectively, for the P
and S waves.

3.2 Validation of results

In order to evaluate the effectiveness and accuracy of the automated
phase picking algorithm, we analysed a subset of the data where
we were confident in the phase data obtained by manual phase
picking methods. We chose a day with a number of events close
to the long-term average and without any particular clustering, so
that the space, time and magnitude distribution of this subset can be
assumed to be representative of the whole data set. We selected the
7 January from 00:00 UTC to 06:00 UTC and hand-picked phases
for all the events recognized by the detection procedure, resulting in
345 events with both a good quality location based on the manual
picks, and a corresponding event in the automatic data set. It was
then straightforward to compare the phase and catalogue parameters
for these two independently generated data sets.

We compare the automatic and manual picks and locations (epi-
centre and depth) in Fig. 9. Fig. 9(a) shows the time differences
for the P phase picks: on the left the whole data set is analysed,
while on the right only the best quality picks are plotted. It is quite
evident that for P phases most picks are either nearly coincident
with the human ones or, in few cases, completely wrong (errors
larger than 1s are all reported in the last bin). Fortunately, these
large errors are recognized as outliers by the location procedure
without any further tuning, and hence are not used for the final
comparison.

After removing these events, the distributions of differences in
arrival time, epicentral location, and depth are even more peaked
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Figure 6. Number of events per day in the enhanced catalogue (black) versus RefCat catalogue (red).

Figure 7. (a) Number of P (blue) and S (green) arrival times per day; (b and c) incremental distribution of P- and S-arrival times estimated errors, respectively,
with cumulative probabilities in yellow.

(and the number of large errors reduced). The estimated system-
atic error in the automated phase picks estimated by the difference
between the high-confidence manual and automated picks is less
than 0.04 s: the level of confidence is 87.0 per cent within this
threshold, and 93.3 per cent within 0.08 s. For S picks, the dis-
tribution appears broader (Fig. 9b, left-hand panel), and is again
skewed towards positive values, implying delayed picking in the
automatic system. If we reduce the analysis to the best quality picks
(estimated errors below 0.08 s, Fig. 9b, right-hand panel) the distri-
bution appears narrower and more symmetric. In this case, 72.6 per
cent of the differences are below the threshold, and 85.2 per cent
below twice this value. For both P and S picks the distribution of
the systematic error is somewhat asymmetric, with a slight skew
to positive values, implying the automatic pick is slightly biased
to be later than the human one. These results confirm that the S
picks are around twice as uncertain in time as the P picks, but
the absolute uncertainty remains small. In most cases, the CASP
procedure is able to furnish a reliable and accurate estimate of

the phase arrival time, and to discriminate reliable results from
outliers.

The locations obtained by the automatic picks in the test period
were then compared with those of the representative sample of the
manual ones. Fig. 9(c) in the top row shows histograms of the depth
difference (automatic minus manual depth), the modulus of differ-
ence in depth distance, and the modulus of difference in epicentral
for events with estimated horizontal errors below 3 km and verti-
cal errors below 5 km. Some 94.1 per cent of the locations show
horizontal distances below the threshold of 3 km, and 95.5 per cent
below the 5 km threshold for the depth error. The depth difference
appears nearly symmetrical, showing that the automatic procedure
does not introduce any systematic bias in the depth estimate.

If we reduce the analysis to the more reliable locations (horizontal
and vertical error <1 km), the distributions become still narrower
(bottom row of Fig. 9c): 92.1 per cent (for the epicentral distance)
and 83.9 per cent (for the depth distance) of the events fall within the
defined thresholds. Overall, within the limits stated in the analysis
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Figure 8. Example of automatic P and S phase picking for two stations. For the temporary station T1256, automatic P-picking was not possible due to the low
SNR, nevertheless the S arrival was correctly recognized.

section, these results provides a firm validation of the accuracy of
the phase picking method in comparison with manual analysis of
the same data for a representative sample of data.

3.3 Quality of earthquake locations

In order to classify the quality of the final earthquake locations,
we applied the procedure proposed by Michele et al. (2019) to the
resulting catalogue. These authors proposed a criterion to assess the
location quality, consisting of the combination of the uncertainty
estimates, properly normalized, provided by the NonLinLoc loca-
tion code (Lomax et al. 2000). The procedure quantifies the location
quality estimate in terms of a unique numeric normalized value the
quality factor which varies between qf = 0 (best quality location)
and qf = 1 (worst quality location). Then, the location obtained
is assigned to a quality class depending on the qf parameter value
according to the following scheme: A-class (0 < qf ≤ 0.25), B-
class (0.25 < qf ≤ 0.50), C-class (0.50 < qf ≤ 0.75) and D-class
(0.75 < qf < 1.00). We report in Fig. 10 the distribution of the loca-
tion parameters, divided into these different quality classes (class:
A in red, B in green, C in blue and D in black). The parameter distri-
butions all show increasing dispersion while moving from the best
(A) to the worst (D) class, with the single exception of the plots for
the number of phases picked, where the distribution narrows with
decreasing quality, and the average number of phases identified also
decreases. These results are not inconsistent with each other—we
would expect better locations and a more variable number of phase
picks in good quality data. We end up with a catalogue of earth-
quake locations, distributed between the quality classes as A-31.8
per cent, B-32.0 per cent, C-18.3 per cent and D-17.9 per cent. The
relationship between the main location parameters as function of
the magnitude is shown in Fig. 11. The reported quality factors qf
are mean values computed in bins of 0.02 of magnitude. The mean
quality factor and the number of phases picked is fairly constant in
the magnitude range 2.0–3.6 (see Figs 11a and b). Each class has
a quality factor that is peaked around a magnitude that increases
systematically with increasing quality. This is consistent also with
the distribution of the number of events in Fig. 11d), where the
higher quality data peaks at a higher magnitude, and the lower qual-
ity data peaks at low magnitudes where the signal to noise ratio

would be the lowest. In turn, this is consistent with a lower-mean
number of phases contributing to the earthquake locations for the
low-quality data. The quality factor is quite constant for different
earthquake magnitudes for all quality classes (Fig. 11e). 4.0. Fi-
nally, for the higher values of magnitude, we observe a degree of
volatility in the mean qf and in the number of phases (see Fig. 11c).
We know that the automatic picks for (the usually small number
of) moderate-to-large earthquakes that occur during one seismic
sequence strongly depend on factors not considered here, for ex-
ample instrument clipping or the presence of a minor event within
the nucleation phase. Thus it may be advisable even with an au-
tomated phase picking method to continue to analyse data for the
relatively few largest events manually for the time being, at least
until automated techniques have been adapted to account for such
effects.

3.4 Local magnitude (ML) computation

The local magnitude (ML; Richter 1935, 1958) is also calculated
automatically, using the complex multithread algorithm embed-
ded inside RSNI-P2. Since ML could be strongly biased by the
signal processing methods adopted to correct for instrument re-
sponse, we also adopted an automatic method to select the best
pre-deconvolution filter parameters on the basis of signal-to-noise
analysis. Specifically, the high-pass corner frequency of the Butter-
worth pre-deconvolution filter is automatically determined, identi-
fying the lowest frequency (in the 0.5–2.0 Hz range), which gives a
signal-to-noise ratio greater than a threshold value (e.g. usually 4.0).
This approach allows the proper consideration of the relatively low
frequencies, around 0.5 Hz, relevant for earthquakes with higher
magnitudes (e.g. ML > 3). This is important to avoid ML underes-
timation for these events. On the other hand, the lower frequencies
are discarded in the case of low-magnitude earthquakes recorded
by broad-band instruments in order to minimize any bias from
microseismic noise. The low-pass corner frequency of the Butter-
worth pre-deconvolution filter is always selected on the basis of the
sampling frequency such that it is always lower than the Nyquist
frequency.

After an earthquake is located and seismic signals are filtered
with the above procedure, ML is automatically evaluated using the
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Figure 9. Comparison between automatic and manual picks and locations for the selected representative sample of events. (a) Comparison of P picks times
(automatic—manual). Left-hand panel: whole data set; right-hand panel: estimated picking error <0.04 s. (b) Comparison of S picking times (automatic—
manual). Left-hand panel: whole data set, right-hand panel: estimated picking error <0.08 s. (c) Comparison of automatic and manual locations. Top row:
estimated horizontal location error (erh) <3 km and vertical error (erz) <5 km; bottom row: erh <1 km and erz <1 km. Left-hand panel: depth difference
(automatic—manual, km); central panel: depth distance (km); right-hand panel: epicentral distance (automatic—manual, km), showing incremental and (in
red) cumulative probabilities.

algorithm proposed by Spallarossa et al. (2002). This method con-
sists in generating synthesized Wood–Anderson seismograms from
horizontal component digital recordings and applying a calibrated
attenuation function for the monitored area (Di Bona 2016). ML is
obtained separately for each seismic station and the event magni-
tude is estimated by averaging the data from all available stations.
Only stations with reliable P- or S-phase picks (i.e. with NonLinLoc
associated location weight greater than zero) are used.

After this initial ML calculation, a further quality selection is
performed. At first, to overcome any biased ML computation due

to waveform saturation and/or distortion and possible near-field ef-
fects, seismograms recorded by stations close to the epicentre are
discarded. The procedure checks the data for each hypocentre-to-
station distance, and applies a threshold defined by an empirically
calibrated magnitude-distance relation. After extensive testing, this
distance threshold has been assumed to span between 5 km for earth-
quakes with ML = 1.0 and 50 km for earthquakes with ML > 5.0.
Secondly, potential bias due to recordings with low signal-to-noise
ratio and/or those affected by unknown attenuation effects for large
distances are avoided by discarding data from stations far from the
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Figure 10. Statistical distribution of the location parameters used as input to evaluate the location quality factor.

Figure 11. (a) Mean number of phases (brown) and mean quality factor (purple) as a function of magnitude. (b) Mean number of events versus magnitude,
divided by quality classes. (c) Mean quality factor (qf) versus magnitude, divided by quality classes.

epicentre. Finally, if the number of remaining data values after the
previous selections is greater than a given threshold (e.g. 6), ML

is recomputed also excluding the minimum and maximum single
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station magnitude values to reduce the influence of potential out-
liers. Otherwise, the initially computed ML value remains valid. All
of these steps are automated, reproducible and consistently applied
once the control parameters have been chosen.

4 R E S U LT S

Fig. 12 shows the spatial distribution of all the events contained
in the enhanced earthquake catalogue obtained by the methods de-
scribed in section 2. The plot is divided into four columns, one for
each location class based on the quality factor (qf) defined above
(from class A to class B, C and D). The cross sections are drawn
across the largest events of the sequence. Section A crosses the south
the cluster of four Mw > 5 events of January 18, sections B and C
cut through the Mw 6.0 Amatrice and Mw 6.5 Norcia main shock,
respectively, and the northernmost section D crosses the location of
the Mw 5.9 Visso earthquake.

The enhanced catalogue consists of 440 697 events, with—
1.0 ≤ ML ≤ 5.9, and covers the first year of the Central Italy seismic
sequence, starting from the 24 August 2016 (the date of the first Am-
atrice main shock) to the 31 August 2017 (the date of the removal
of the BGS temporary seismic stations).

Despite the differences in quality, the general pattern of the seis-
micity in the different classes is remarkably consistent in both hor-
izontal and vertical projections (Fig. 12). The locations for the two
best quality classes (A and B), are absolutely comparable to those
based on manual phase picks by Michele et al. (2016), Chiaraluce
et al. (2017) and Improta et al. (2019). The general pattern is also
clearly resolved by the lower quality data (C and D) at the kilometre
scale of the diagram.

In order to quantify the clustering characteristics of the RefCat
and of the new catalogue, we subdivided the whole volume inter-
ested by the sequence in 242 000 cubic cells with 1 km long edges,
and counted the events falling in each cell. For the RefCat, 83 326
events fell in the selected volume and they occupied 12 950 cells
(5.3 per cent of the total); 90 per cent of the earthquakes used just
6201 cells (2.6 per cent of the total). If we select just the A-class
events (qf < 0.25) of our new catalogue, we obtain 140 122 events
in the selected volume and they use 11 369 cells (4.7 per cent); 90
per cent of the events is limited in 4328 cells (1.8 per cent). In
conclusion, even taking into account just the best quality locations,
we obtain a higher number of events in a source volume more re-
duced with respect to those of the RefCat. If we also include the
B-class events (quality factor < 0.50), we obtain 281 017 events,
using 18 671 cells (7.7 per cent); 90 per cent of these are limited to
5717 cells (2.4 per cent). This selection reports a number of events
3.37 times higher than the RefCat and still with a higher clustering
factor. It must be remembered that the RefCat is based on manual
phase pickings, while the high resolution catalogue is fully auto-
matic. If we analyze the whole new catalogue (434 596 events in
the volume), we fill 39 223 cells (16.2 per cent), but the majority
(90 per cent) are in 10 839 of these (4.5 per cent). As expected, and
as evident in the maps and in the cross-sections, the lower quality
events are more dispersed forming a diffuse cloud around the whole
area. Nevertheless, even for the whole catalogue the majority of the
events are concentrated in a limited volume, indicating significant
localization of seismicity—well located small events do not stray
too far from the volumes affected by larger ones.

The quantitative contribution of this dispersed seismicity to our
knowledge of the process is a matter for debate, mainly due to
the low quality of their locations. To investigate their effect, we

extracted category D low-quality events (qf > 0.75) falling in cells
with a minimum distance of 5 km from each cell populated by events
from the A + B catalogue. These events are the most likely to have
poor locations and hence are the most likely to be associated with a
potentially artificial seismic ‘cloud’. We obtain 327 events with this
criterion, 0.07 per cent of the whole catalogue. This means that the
wide cloud of seismicity recognizable in maps and cross-sections
(Fig. 12) of D-quality events is generated by rather few poorly-
located events. Moreover, if we compute the mean quality factor of
this sub-set of events, we obtain a value of 0.97 (qf ranges from 0 for
the best location to 1 for the more unstable ones). It is evident that
this sub-set of events belongs to the tail of our error distribution, and
do not add to our understanding of fault architecture or potential
seismic zoning in the region.

To investigate what these locations represent in more detail, we vi-
sually inspected some of their waveforms. We found a few examples
of real earthquakes located far from the sequence source area (the
true sparse background seismicity), but mainly the cloud is com-
prised of mislocated events, often linked to nearly-contemporaneous
events not correctly managed by the automatic picking procedure.
The cloud is therefore an artefact of poorly located events. This
quality check confirms that the quality factor is a good discriminant
for the reliability of the location. For applications related to the
reconstruction of structure geometries we would thus recommend
using only the best-quality events (low qf) while for a purely sta-
tistical analysis (i.e. b-value analysis), when a mislocation of some
km could be not critical, the whole catalogue may be used.

The enhanced seismicity catalogue provided by the CASP proce-
dure provides a much clearer picture of the activated structures than
before. For example, we observe 1) new geological structures, for
example a fault located in the footwall of the system in section C
not detected in the previous work and 2) shallow (< 5 km of) depth
earthquakes that partly fill portions of the shallower crustal vol-
ume previously characterized by low seismic activity (e.g. sections
B along the Amatrice fault plane (cf. Michele et al. 2016, 2020;
Chiaraluce et al. 2017; Improta et al. 2019).

All the main events with Mw > 5.0 are well located by the CASP
algorithm, with the single exception of the first Amatrice main shock
(Mw = 6.0) which has an estimated depth of 0 km. This was most
likely a consequence of (i) a lower number of stations (at this stage
just the permanent ones were available) and (ii) the low number of
strong motion sensors with non-clipped data. In combination, these
resulted in a non-optimal location, so we excluded it from the final
catalogue.

Our results clearly demonstrate the high performance and ro-
bustness of the automatic CASP procedure (Scafidi et al. 2019) in
retrieving a large number of well-constrained events, along with
better estimates of their location, and a more complete catalogue at
low magnitude. To illustrate the improvement in completeness, the
frequency–magnitude distributions for the RefCat and for the en-
hanced catalogue are shown in Fig. 13. The estimated completeness
magnitude for the enhanced catalogue is close to ML 0.6, indicated
by the upper end of the red line, is almost one magnitude unit better
than that of the RefCat catalogue (ML1.4 indicated by the upper
end of the blue line). The b and a value (see Fig. 13) of the G-R
relationships and their respective uncertainties are computed using
a maximum-likelihood assessment. The b value for the enhanced
catalogue is 0.965 and for the RefCat is 1.110. The significant dif-
ference in the b value and in the cumulative number of events in
the magnitude range 1.4–2.4, apparently complete for both cata-
logues, in our opinion is related to an overestimation of ML induced
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Figure 12. Maps and cross-sections of the events divided by the classes defined in section 3.3.

by the procedure used in the routine INGV analysis for the Ref-
CAT catalogue, particularly for low-magnitude events. Indeed the
adoption, in the CASP method, of a high-pass filter adapted to the
signal-to-noise ratio allows to reduce the possible bias on magni-
tude estimates of the microseismic noise recorded by broad-band
sensors and superimposed to the earthquake signal.

5 D I S C U S S I O N

High-resolution earthquake catalogues will allow us to improve fu-
ture operational earthquake forecasting by extending the retrospec-
tive experiments where the focus is to improve our understanding
for earthquake triggering mechanisms. One of our main motiva-
tions was to prove the concept that CASP would allow us to provide
high-resolution earthquake catalogues in near-real time. In prac-
tice, CASP is able to detect and locate more than 2.8 events per
minute and took less than 12 hr of computation time on a stan-
dard workstation equipped with an Intel Core i7–7700 CPU using
4 parallel threads to analyse 1 d of data containing more than 3000

detected events. Most of this computation time is spent by the Non-
LinLoc location procedure because several iterations of picking and
location for both P and S phases are required to achieve a stable
and reliable result. The 12-hr computational time is critical since
it will allow effectively real time catalogues to be produced, even
for operational aftershocks forecasts updated daily during a large
seismic sequence. The improvement in magnitude of completeness
threshold of the automatic procedure will benefit the current Op-
erational Earthquake Forecast scheme in Italy (Marzocchi et al.
2014) since the predictive power of short-term clustering models
is directly related with the inclusion of small magnitude events en-
hancing secondary earthquake-to-earthquake triggering. We expect
that the benefits from such catalogues will extend to retrospective
efforts investigating the temporal evolution of earthquake sequences
through the estimation of statistical parameters, such as the b-value
of the frequency-magnitude distribution that has been extensively
used in a variety of seismotectonic environments to predict haz-
ardous behaviour through b-value decreases (e.g. Tormann et al.
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Figure 13. Frequency magnitude distributions for the enhanced catalogue
(red) and RefCat (green). The b and a values and their respective uncertain-
ties are computed using a maximum-likelihood assessment

2015 for tracking post-2011 seismicity in Japan). The lower magni-
tude of completeness is one of the major advantage of the enhanced
catalogue, because it provides a broader bandwidth of observations
with which to test the hypothesis of a scale-invariant (power-law)
distribution of source rupture area, seismic moment or energy in-
ferred from the magnitudes. The broader bandwidth of observations
in principle also reduces the uncertainty in a and b (e.g. Main 1996),
both critical parameters in both probabilistic seismic hazard analy-
sis (where they are assumed stationary) and operational earthquake
forecasting (where they may change with time). However, the re-
sults presented here indicate there are some outstanding issues to
address in terms of systematic effects magnitude determination and
scaling before this potential can be realized.

Despite these results, there is still some work to do in order to
increase the resolution power during the busiest time windows (e.g.
hours-days) of aftershock activity associated with the occurrence
of the largest events. As shown in Fig. 14, the mean magnitude of
the events within the CASP catalogue, increases from a background
value around ML 0.5 up to ML 2.5 soon after the occurrence of all
of the Mw > 5 events (indicated by the black vertical lines). This is
particularly evident around the end of October 2016 when two large
events occur within a short interval time, that is the Visso 26th and
Norcia 30th of October shocks. These early aftershock phases are
the only times when the detection capability of the CASP method
becomes almost comparable to that of the Italian seismic monitoring
room.

We have highlighted several important outcomes achieved by us-
ing the CASP procedure. Nevertheless, it is also worth remembering
that one of the key controls on resolution is the availability of a large
number of densely spaced 3-component seismic stations. To exem-
plify this, Fig. 15 shows the evolution of the mean quality factor qf
for the hypocentre locations defined in Section 3.3, as a function of
the number of available stations. The number of available stations
ramps up while the temporary network was under installation in
the early days of the sequence, while it winds down when they are
removed towards the end. Overall, there is a clear inverse correla-
tion between the number of stations used in the location and qf. For
example, qf decreases from around 0.65–0.45 when the temporary

network stations have been deployed at the start of the time period
shown, and then increases again to 0.6 when the stations are re-
moved towards the end of the time window. This improvement in
quality with respect to the number of stations is not a surprise, but
Fig. 15 confirms how the impact is significant in this case.

CASP is only one of the innovative techniques currently able to
provide very large earthquake catalogues. Template-matching ap-
proaches (TM; Shelly et al. 2007; Peng & Zhao 2009 among others)
for example, exploit the similarity of earthquake waveforms be-
tween closely-spaced events, allowing the detection of earthquakes
previously hidden in the noise. This approach has successfully been
applied in a number of examples, including induced seismicity en-
vironments (Skoumal et al. 2015). A major disadvantage is that
the method is insensitive to event templates that are absent from
the starting catalogue, such as events occurring in volumes that
were previously inactive. Template matching of itself does not pro-
duce absolute P- and S-arrival times, and hence does not allow the
absolute location of all the newly detected events. Instead, such cat-
alogues often quote relative locations associated with phase shifts
identified in the cross-correlation procedure. As a consequence,
while it is usually possible to improve the number of detected events
by more than a factor of 10, the number of well-located events typ-
ically increases only by a factor of 2–5 (Diehl et al. 2017 and Ross
et al. 2019), compared to a factor 4–5 here with the CASP procedure
(Fig. 6).

More recently, profiting of the dramatic progress made by neural
networks in deep machine learning, new approaches have been
proposed for both phase detection and picking (Ross et al. 2019; Zhu
& Beroza 2019). At the cost of a non-trivial training stage, needed
to teach the system how to recognize body waves arrival times,
the major benefit is to extract a very large number of probability
distributions for the presence of a P wave, S wave and noise in
continuous waveform data. By applying a series of filtering and
decimation operations, these features are automatically extracted
and classified. These new systems seem to be able to work properly
on relatively new data, whose characteristics may differ from those
in the training set. Once the seismic phases have been detected,
there is still the need to generate phase association, a challenging
task given the amount of data collected at a large number of closely
spaced stations during a seismic sequence, and often requiring tuned
with user-defined parameters.

Our approach is able to detect P- and S waves absolute arrival
times, allowing the accurate location and magnitude computation
for hundreds of thousands of both very small events (down to neg-
ative magnitudes) and events occurring in areas and fault portions
previously silent. A first-order comparison of our catalogue with
those generated by both template matching and deep learning ap-
proaches, demonstrates that our approach performs well, at least
in terms of detection rate. Our catalogue covers a small area of
about 7000 km2 for 1 yr of seismic activity, and we compare its
performance to that of the QTM catalogue (Ross et al. 2019), cov-
ering 10 yr (2008–2017) of seismic activity for Southern California
generated by the template matching approach. Ross et al. (2018)
identified about 495 earthquakes per day across the region with an
average time of 174 s between events. Our mean detection rate is
about 1230 per day, with an average time between events of 70 s.
During periods of intense seismicity, with peaks of more than 3000
events per day, the average inter-event time is about 30 s (Fig. 6).
These values are comparable to those obtained by Ross et al. (2019)
using their deep learning approach for the first 12 hr of the 2016
Bombay Beach sequence; resulting in about 1000 events in 12 hr
and an average time between events of about 40 s. In future work,
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Figure 14. Mean local magnitude (ML) in the enhanced catalogue (black) versus mean local magnitude in the RefCat catalogue (red). Dark and light grey
points represent, respectively, the daily maximum and minimum of the local magnitude in the enhanced catalogue; orange and yellow represent the daily
maximum and minimum of the local magnitude in the RefCat catalogue.

Figure 15. Mean quality factor (black) and number of stations (red) versus time for the enhanced catalogue.

we will conduct a benchmark test of the different methods on the
same data, but this preliminary comparison demonstrates that our
approach produces broadly comparable performance to that of other
state-of-the-art techniques, acknowledging the relative advantages
and disadvantages of each.

6 C O N C LU S I O N S

The automated phase-picking method provided by the CASP algo-
rithm, applied to data from a high-resolution seismic network, gen-
erated significant improvements in the number of events located and
the magnitude of completeness in the case of the Norcia-Amatrice
earthquake sequence. The procedure is rapid, taking less than 12 hr
to analyse the primary waveform data and to detect and locate 3000
events during the most seismically active day of the sequence. This
means it can be used to inform decisions that need to be made in near

real time on a time scale of around a day or so, and in principle to
provide a basis for regularly updated operational forecasting of fu-
ture events during a seismic sequence. The procedure was validated
by comparison of the derived data for phase picks and earthquake
parameters with a reference catalogue based on initial manual phase
picking. The results confirm a high degree of accuracy in the auto-
mated procedure, with an average estimated formal error of 0.04 s in
P-phase picks, 0.08 s in S-phase picks, 0.9 km in epicentral location
and 1.5 km in depth, with most events having uncertainties well
within these ranges. The quality of the data is strongly correlated
with respect to the number of available stations and the magnitude
of the events. With the exception of periods with many overlapping
events early in the aftershock sequences of the largest events, the
magnitude of completeness is reduced from 2.5 for the standard
Italian catalogue to around 0.6. Together these provide a significant
improvement in the resolution of fine structures such as local pla-
nar structures and clusters, the identification of shallow events in
a previously inactive part of the crust, and potential improvements
in estimates of statistical parameters used in probabilistic seismic
hazard analysis and operational earthquake forecasting
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DATA A N D R E S O U RC E S

INGV permanent and temporary stations data (network code: IT)
are available at the European Integrated Data Archive (EIDA; ht
tps://www.orfeus-eu.org/data/eida/) while INGV seismic bulletin
produced by the INGV Data Center is available at: http://cnt.rm.ing
v.it/.

Data from temporary stations deployed by British Geological
Survey (Network Code: YR; https://doi.org/10.7914/SN/YR 2016)
are available on the Iris Data Management Center (https://www.iris
.edu/hq/).

The complete earthquake catalogue is available at: https://doi.or
g/10.5281/zenodo.4306165 (here we will provide the exact link to
the catalogue).
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