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Abstract 27 

This study presents an assessment of projection and uncertainty of drought 28 

characteristics (frequency DF, drought area Da) using three drought indices (Palmer 29 

Drought Severity Index, PDSI; Standardized Precipitation Index, SPI; Standardized 30 

Precipitation Evapotranspiration Index, SPEI) in the humid subtropical Pearl River 31 

basin in southern China during the period 2021-2050. The projection is based on 13 32 

CMIP5 general circulation models (GCMs) under three Representative Concentration 33 

Pathway scenarios (RCP2.6, RCP4.5 and RCP8.5). Specifically, the SPI is derived by 34 

the precipitation simulations of 13 GCMs, whereas the PDSI and SPEI are computed 35 

based on the simulations from the Variable Infiltration Capacity (VIC) model forced by 36 

13 GCMs. The uncertainty of projected drought indices (PDSI, SPI and SPEI) due to 37 

various GCMs and RCPs is quantified by the variance-based sensitivity analysis 38 

approach. The results indicate that the sign and magnitude of the projected changes in 39 

DF and Da are highly dependent on the index definition at the regional scale, and the 40 

SPI tends to underestimate the projected changes in DF compared with PDSI and SPEI. 41 

There is a large model spread in the projected DF changes (especially for SPEI) under 42 

all RCP scenarios, with larger model spread for more extreme drought events. 43 

Uncertainty analysis shows that GCM contributes more than 90% of total uncertainty 44 

in drought indices projections, while the RCP uncertainty is rather limited (< 10%) 45 

compared with GCM. The GCM uncertainty is spatially unevenly distributed and shows 46 

large variability at the interannual scale. This study highlights the sensitivity of drought 47 

projections to the index definition as well as the large spatial-temporal variability of 48 

general sources of uncertainty in drought projections. 49 

 50 

Key words: Drought projection; Drought indices; uncertainty quantification; CMIP5; 51 

RCPs 52 

 53 

1. Introduction 54 

Drought is a stochastic and recurring natural hazard that has devastating impacts on 55 
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economy, society, and ecosystem services around the word (Piao et al., 2010; Dai, 2011a; 56 

Thornton et al., 2014; von Buttlar et al., 2018). The economic loss caused by drought 57 

hazards is enormous, with an annual loss estimate of $6~8 billion at a global scale 58 

(Wilhite, 2000). The Intergovernmental Panel on Climate Change (IPCC)’s 4th and 5th 59 

Assessment Report (AR4 and AR5) indicated that global surface mean temperature (T) 60 

is likely to increase 0.3~4.8°C, accompanied by changes in spatial patterns and intensity 61 

of precipitation (P) by the end of this century (IPCC, 2007; 2013). Global warming is 62 

expected to exacerbate extreme events such as droughts, leading to significant changes 63 

in area and intensity of drought all around the world (Dai, 2013; Cook et al., 2014; 64 

Trenberth et al., 2014; Gudmundsson et al., 2017; Samaniego et al., 2018). Exploring 65 

projected changes in drought intensity and frequency under various emission scenarios 66 

can help prepare for future disaster prevention and mitigation, and support sustainable 67 

development. 68 

 69 

Drought is an abnormal phenomenon that can occur in short periods (days and weeks) 70 

or long periods (months or longer), and can commonly be characterized by drought 71 

monitoring indices. Typically, droughts are classified into four major types: 72 

meteorological drought, hydrological drought, agricultural drought, and socioeconomic 73 

drought (Heim, 2002; AMS, 2004; Hayes et al., 2011; Mishra and Singh, 2011). 74 

Different types of drought have distinct spatiotemporal characteristics, and they vary at 75 

different scales (Peters et al., 2006; Tallaksen et al., 2009). Meteorological drought is 76 

identified by a prolonged lack of P as the main indicator, resulting in total soil moisture 77 

(SM) deficits (i.e., agricultural drought) as well as the decrease of streamflow, 78 

groundwater, reservoir and lake levels (i.e., hydrological drought). Such drought 79 

hazards can also lead to severe consequence of drinking water scarcity, and negatively 80 

impact crop yield and production, and result in economic loss. Socioeconomic 81 

definitions of drought associate the supply and demand of certain economic good with 82 

elements of meteorological, agricultural and hydrological drought (Wilhite and Glantz, 83 

1985). 84 

 85 
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In the past decades, numerous indices have been proposed to quantify the drought and 86 

wet conditions based on different hydroclimatic variables (e.g., T, P, evapotranspiration 87 

ET, SM and runoff RO), of which the most commonly used is the Palmer Drought 88 

Severity Index (PDSI; Palmer, 1965), the Rainfall Anomaly Index (RAI; van Rooy, 89 

1965), the Crop Moisture Index (CMI; Palmer, 1968), the Soil Moisture Drought Index 90 

(SMDI; Hollinger et al., 1993), the Surfacewater Supply Index (SWSI; Shafer and 91 

Dezman, 1982), the Standardized Precipitation Index (SPI; Mckee et al., 1993, 1995), 92 

the Standardized Runoff Index (SRI; Shukla and Wood, 2008), the Standardized 93 

Precipitation Evapotranspiration Index (SPEI; Vicente-Serrano et al., 2010), and the 94 

aridity index (AI; Huang et al., 2016). The use of different types of drought indices 95 

often leads to different spatio-temporal variabilities of drought characteristics, even 96 

though they are calculated using the inputs of hydroclimatic variables generated by the 97 

same modeling system (Burke and Brown, 2008; Ukkola et al., 2018). For example, 98 

PDSI and SPEI can measure the warming effect more explicitly through enhanced ET 99 

than other drought indices based on P alone (e.g., SPI). 100 

 101 

The General Circulation Models (GCMs), released by the Coupled Model 102 

Intercomparison Project (CMIP), are the primary tools for estimating trends and 103 

variability of future climate change (IPCC, 2007; 2013). Based on GCM simulations, 104 

the influence of climate change on droughts have been investigated by numerous studies. 105 

The majority of research indicated an increased drought risks over different regions 106 

globally as the level of greenhouse gas (GHG) emission increases (e.g., Wang, 2005; 107 

Sheffield and Wood, 2008; Li et al., 2012; Dai, 2011b, 2013; Cook et al., 2014; Wang 108 

and Chen, 2014; Rhee and Cho, 2016; Wu et al., 2016; Zhao and Dai, 2017; Ruosteenoja 109 

et al., 2018; Wang et al., 2018; Amnuaylojaroen et al., 2019; Rudd et al., 2019). 110 

Although enormous efforts have been made to project how the drought risk would occur 111 

as the result of GHG emission increase, few studies have assessed and quantified the 112 

source of uncertainty in projecting future drought conditions. This uncertainty is due 113 

mainly that drought is a complex process coupled with multiple meteorological factors 114 

(e.g., P and ET), as well as various geomorphic and topographic characteristics of 115 
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specific regions. These key factors are described differently amongst GCMs, which 116 

form the main source of uncertainty resulting in the lack of consistency between model 117 

projections (Wang et al., 2018; Lee et al., 2019; Xu et al., 2019b; Wu et al., 2021). 118 

 119 

This research focuses on Pearl River as the third longest River in China and composed 120 

of West River, North River, East River, and Pearl River Delta. Pearl River is an 121 

important source of fresh water for large cities in the Guangdong-Hong Kong-Macao 122 

Greater Bay Area, such as Guangzhou, Zhuhai, Hong Kong and Macau (Zhang et al., 123 

2008). The Pearl River basin (PRB) is climatically humid with abundant P, but the 124 

spatiotemporal distribution of P is uneven across the basin, with frequent extreme 125 

weather events, such as floods and droughts. In recent years, the PRB has suffered from 126 

droughts considerably with large severity and prolonged periods of water deficit, 127 

presenting severe droughts events such as in 2004, 2005, 2010 and 2011 (Zhang et al., 128 

2012; Zhang et al., 2015; Wu et al., 2016; Chen et al., 2017; Xu et al., 2019a).  129 

 130 

The temporal and spatial evolution of drought characteristics in the PRB has been 131 

analyzed by several drought metrics (e.g. Zhang et al., 2009; Zhang et al., 2012; Fischer 132 

et al., 2013; Niu et al., 2015; Xiao et al., 2016; Xu et al., 2019a). Recently, several 133 

studies have projected changes in drought characteristics in the PRB under future 134 

climate scenarios using CMIP5 models (Wu et al., 2016; Wang et al., 2018). For 135 

example, Wang et al. (2018) predicted the spatiotemporal changes in future drought in 136 

PRB using the PDSI and CMIP5 GCM simulations, and found that the severity of 137 

drought would likely to be increased in the central and western regions of the PRB. 138 

However, these studies were based solely on one drought index and a few models. 139 

Previous research has reported that the sign and magnitude of projected drought is 140 

highly dependent on the selection of drought index, region, and model ensemble (Burke 141 

and Brown, 2008; Rhee and Cho, 2016; Ahmadalipour et al., 2017; Ukkola et al., 2018; 142 

Lee et al., 2019). More importantly, general sources of uncertainty (e.g., GCMs and 143 

RCP scenarios) in drought projection have not been explored in the PRB, and hence our 144 

knowledge on uncertainties and their spatial and temporal variability in GCM-projected 145 
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drought remains limited at the basin scale. 146 

 147 

To address this gap, our research presents a basin-scale assessment of future drought 148 

characteristics projections in the PRB (including the West River and North River) by 149 

using 13 CMIP5 GCMs, three RCP scenarios (RCP2.6, RCP4.5 and RCP8.5), and three 150 

different drought indices (PDSI, SPI and SPEI). Specifically, an advanced hierarchical 151 

sensitivity analysis is conducted to quantify the uncertainties in the projection of three 152 

drought indices (PDSI, SPI and SPEI) due to three RCP scenarios and 13 GCMs at both 153 

spatial and temporal scales. The objectives of this study are (1) to test the sensitivity of 154 

projection of future drought characteristics with respects to index definition and various 155 

model ensemble members and (2) to explore the spatio-temporal variability of 156 

uncertainties of GCM and RCP, and rank the contribution of each uncertainty to the 157 

projections of drought indices. In Section 2, detailed information on the observed and 158 

modeling datasets for the study area, and the methods for bias correction, hydrological 159 

modeling, drought indices and uncertainty estimation used in this study are provided. 160 

Followed by the results and discussion presented in Sections 3 and 4, respectively. 161 

Finally, the conclusions are drawn in Section 5. 162 

 163 

2. Study area and data source 164 

2.1 Study area 165 

The Pearl River, located in southern China, is the third largest River in drainage basin 166 

area in China (Fig.1). It consists of the West River, North River and East River as well 167 

as the Rivers within the Pearl River delta. The water resources are unevenly distributed 168 

spatially over the PRB and are mainly concentrated in the West River and North River 169 

basins, account for approximately 93.7% of the total area of the PRB (Zhang et al., 170 

2013a). The PRB is characterized by tropical and subtropical climate zones, with mean 171 

annual T ranging from 14 to 22 ℃ and mean annual P of approximately 1525 mm 172 

(Zhang et al. 2012; Wu et al. 2013). The P over the PRB is mainly concentrated in the 173 

flooding season between April and September, covering 80% of the total annual P 174 



7 
 

(Zhang et al. 2012). Due to climate warming, the hydrological cycle has become more 175 

changeable over the PRB in recent years, resulting in an increased risk of extreme 176 

flooding and drought (e.g., droughts in 2004, 2005, 2010, and 2011), influence 177 

significantly on agriculture and ecological environment, and causing disastrous damage 178 

to human lives and social economy. 179 

 180 

2.2 Data sources and processing 181 

2.2.1 Meteorological and hydrological observations 182 

In this study, the observed data of meteorology and hydrology from 1971 to 2000 were 183 

collected for analysis. The daily data of P, maximum/minimum T, and wind speed were 184 

obtained from 57 meteorological stations (Fig.1) over the PRB as provided by the 185 

National Meteorological Information Center (NMIC) of China Meteorological 186 

Administration (http://data.cma.cn). For quality control of the observed data, we 187 

checked any cases of maximum T less than minimum T or P values below 0 mm. The 188 

daily record of the neighboring stations were also cross-compared, which helps to check 189 

the correctness of values and any outliers. In addition, the homogeneity evaluation of 190 

data was carried out and the test indicated that the meteorological data used were free 191 

from severe errors (Wu et al., 2016). Daily runoff observations from the Gaoyao (1980-192 

2000) and Hengshi (1970-2000) hydrological stations, in the West River and North 193 

River basins, were provided by the Hydrology Bureau of Guangdong Province, China. 194 

 195 

2.2.2 GCM simulations 196 

The downscaling results of the multimodel dataset of the 13 CMIP5 GCMs (Table 1) 197 

were provided by the College of Global Change and Earth System Science, Beijing 198 

Normal University. These 13 GCMs were chosen because they demonstrated well 199 

performance in simulating the spatial and temporal variability of T and P over southern 200 

China (Huang et al., 2013; Chen and Frauenfeld, 2014). The downscaling process of 13 201 

GCMs is as follows: first, the monthly outputs of GCMs were interpolated to the sites 202 

over the Pearl River basin by using the bilinear interpolation method, and corrected by 203 
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the observed data. Then the bias-corrected outputs of GCMs were weighted averaged 204 

by the Bayesian model averaging method at the site scale, and were temporally 205 

downscaled to multiple daily simulation samples (30 samples) using the stochastic 206 

weather generation method according to the four categories (hot-wet, hot-dry, cold-wet, 207 

and cold-dry) of the historical weather years. Finally, the daily simulations were 208 

interpolated onto a common 0.25° × 0.25° grid over the Pearl River basin using the 209 

bilinear interpolation method. The detailed information on the statistical downscaling 210 

process of the 13 GCMs can be found in Wu et al. (2014).  211 

 212 

The downscaling simulations of these GCMs were used in this study, mainly because 213 

of their good performance in reproducing daily variability of T and P in the Pearl river 214 

basin (see Figures 4b and 5b in Wu et al., 2014). In addition, the multiple simulation 215 

samples of the 13 GCMs can well represent the uncertainty range of GCMs. The daily 216 

data for the baseline period 1971-2000 and the near future period 2021-2050 with three 217 

different RCPs scenarios (i.e., RCP2.6, RCP4.5 and RCP8.5) are employed. For each 218 

RCP scenario, a total of 30 simulation samples were collected to represent the 219 

uncertainty range of GCMs.  220 

 221 

3. Methodology 222 

3.1 Bias correction and adaptability assessment 223 

Many studies did not use climate model outputs directly for analyzing climate change 224 

impact due to bias in GCM data (Lafon et al., 2013, Wu and Huang, 2016). In this 225 

research, a “delta change” method was adopted to correct bias in T and P data of the 226 

downscaling multi-model ensembles of 13 CMIP5 GCMs (Hay et al., 2000; Sperna 227 

Weiland et al., 2010; Wu and Huang, 2016). For T (in units of ℃), an additive correction 228 

was used: 229 

( ), , , ,, , , , obs i j sim i jcor i j sim i jT T T T= + −                           (1) 230 

For P (in units of mm), a multiplicative correction was applied: 231 
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, ,
, , , ,

, ,

obs i j
cor i j sim i j

sim i j

PP P
P

= ×                             (2) 232 

where ( , ,cor i jT  ) , ,cor i jP   and ( , ,sim i jT  ) , ,sim i jP  are the bias-corrected and simulated thi  233 

daily T (P), respectively, for the thj grid point. , ,obs i jT ( , ,obs i jP ) and , ,sim i jT ( , ,sim i jP ) are 234 

the 30-year averages of the observed and simulated thi  daily T (P), respectively, at 235 

the thj grid point for the baseline period 1971-2000. 236 

 237 

3.2 VIC model 238 

The VIC model is a macro-scale, semi-distributed hydrological model based on a grid-239 

based land surface process scheme (Liang et al., 1994). It has the characteristics of ET 240 

calculation based on physical process, computation of water and energy balances 241 

simultaneously, and consideration of spatial heterogeneity in SM content of the grid 242 

(Liang et al., 1996). More detailed information about VIC model can be found at the 243 

University of Washington’s website 244 

(http://ftp.hydro.washington.edu/Lettenmaier/Models/VIC/). As a typical land surface 245 

model, the VIC model has been successfully applied in the PRB for SM simulation (Niu 246 

et al., 2015) and the impact of climate change on hydrology by coupling with GCMs 247 

(e.g. Wu et al., 2014; Wu et al., 2015; Yan et al., 2015; Wang et al., 2018). 248 

 249 

Here, the latest version VIC 5.0 model (https://vic.readthedocs.io/en/master/) was 250 

adopted to run at a spatial resolution of 0.25˚×0.25˚ over the West and North River 251 

basins. The soil column of the model is divided vertically into three layers (top, middle 252 

and bottom), and the top and middle soil layers were considered for calculating the 253 

PDSI (Wang et al., 2018). The soil parameters were derived from the 1-km spatial 254 

resolution global soil classification and texture dataset provided by the FAO’s 255 

Harmonized World Soil Database (HWSD) (FAO et al., 2009). The soil information 256 

was converted into soil hydraulic parameters based on Saxton and Rawls (2006). The 257 

land cover data were driven from the global 1-km land cover classification of the 258 

https://vic.readthedocs.io/en/master/
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University of Maryland (Hansen et al., 2000; 259 

https://www.geog.umd.edu/landcover/1km-map.html). This dataset includes 260 

vegetation-related parameters such as architectural resistance, leaf-area index, albedo, 261 

minimum stomata resistance, and fraction of root depth of each soil layer. We assumed 262 

that the land cover of the PRB would not change significantly in the future, and the land 263 

cover data of 2000 was used for hydrological simulation over both baseline (1971-2000) 264 

and the future period (2021-2050). The VIC model provides several daily output 265 

variables for surface water fluxes calculation, including ET, PET, SM and runoff (RO). 266 

The daily simulations of VCI model were aggregated into monthly time series to 267 

compute the monthly water balance and drought indices (SPEI and PDSI). 268 

 269 

3.3 Drought indices 270 

3.3.1 SPI and SPEI 271 

The SPI was originally developed to quantify the P deficit at multiple time-scales 272 

(Mckee et al., 1993). Although the SPI considers only P, it has been widely used in 273 

different meteorological, agricultural and hydrological applications thanks to its 274 

simplicity in calculation and general applicability, as well as the consistency over space 275 

and time (Hayes et al., 1999; Mishra et al., 2005; Zhang et al., 2009; Mishra and Singh, 276 

2011; Huang et al., 2014; Zhu et al., 2016; Xu et al., 2019a). For SPI calculation, the 277 

probability distribution is used initially to fit the long-term monthly P, and the 278 

cumulative distribution function (CDF) is then turned into the normal distribution 279 

through equal probabilities. The gamma distribution is used in this research to describe 280 

the probability density function (PDF) of P： 281 

11( )
( )

x

g x x eα β
αβ τ α

−
−=

                              (3) 282 

where α>0 is a shape parameter, β>0 denotes a scale parameter, and τ(α) represents the 283 

ordinary gamma function of α. 284 

 285 

As an extension of the SPI, Vicente-Serrano et al. (2010) proposed the SPEI by 286 

https://www.geog.umd.edu/landcover/1km-map.html
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including both P and potential ET (PET) in identifying drought. Here, the PET was 287 

estimated by the FAO-56 Penman-Monteith (PM) method included in the VIC model 288 

(Allen et al., 1998). The SPEI was derived through the following steps: (1) the 289 

difference between P and PET for the ith month is calculated as: Di = Pi-PETi; (2) the 290 

Di is aggregated at a certain (e.g., 3-month) timescale; and (3) the following log-logistic 291 

probability distribution g(x) is used to fit the Di to calculate SPEI: 292 
2

1( ) ( ) 1 ( )x xf x ϕ ϕϕ γ γ
ψ ψ ψ

−
−  − −

= + 
 

                            (4) 293 

where φ, ψ, and γ are the scale, shape and origin parameters, respectively. The D is in 294 

the range of γ< D ˂ ∞. 295 

 296 

The SPI and SPEI can be used to quantify P deficit at multiple timescales (e.g., 1, 3, 6, 297 

12, 24 and 36 months). The short time scale SPI/SPEI (e.g., 1-month) reflects short-298 

term dryness and wetness conditions and are sensitive to P short-term changes in 299 

general. Whereas, the long timescale SPI/SPEI (e.g., 24-month) reflects the long-term 300 

(small) variation of dryness and wetness (WMO, 2016). In this study, the 3-month scale 301 

is used to compute the SPI and SPEI (i.e., SPI3 and SPEI3) because it reflects seasonal 302 

variation of dryness and wetness conditions. The SPI is calculated based on the P from 303 

the GCMs outputs, and the SPEI is calculated based on the P from GCMs and PET 304 

simulated by the VIC model forced by the GCM outputs. The drought classifications 305 

based on the SPI and SPEI are shown in Table 2. 306 

 307 

3.3.2 PDSI 308 

The PDSI is based on the concept of climatically appropriate for existing conditions 309 

(CAFEC) proposed by Palmer (1965). It can be used to describe the degree of water 310 

deficit in a specific region less than the appropriate moisture content of the local climate. 311 

In this study, the P from the GCM outputs, and the PET, ET, SM (the top two soil layers) 312 

and RO simulated by the VIC model forced by the GCM outputs are used to estimate 313 

recharge to soils (R), water loss to soil layers (L), potential recharge (PR), potential 314 

runoff (PRO), and potential loss (PL) to derive CAFEC at the monthly scale. Then the 315 
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PDSI is computed based on the difference between P and CAFEC. The CAFEC 316 

represents the amount of P required to keep a normal SM level for a given time, which 317 

is defined as: 318 

i i i iCAFEC PET PR PRO PLα β γ δ= + + −                         (5) 319 

where i indicates the calendar month of a year (from 1 to 12). iα , iβ , iγ  and iδ  are 320 

climatological coefficients expressed as: 321 

i
i

i

ET
PET

α =   
i

i
i

R
PR

β =   
i

i
i

RO
PRO

γ =   
i

i
i

L
PL

δ =                       (6) 322 

The difference between P and CAFEC for a particular month is the moisture departure 323 

( d P CAFEC= −  ). The climatological standardization process aims to use d as a 324 

standardized drought index, considering local climate and drought duration, and the 325 

self-calibrating procedure (Wells et al., 2004): 326 

1 2

1 1

-1

i

i i i

Z K K d
X qZ
X pX qZ

= × ×
 =
 = +

                                 (7) 327 

where Z is the moisture anomaly index for the ith month; K1 denotes the temporal 328 

correction weight; K2 represents the spatial correction weight; p and q are duration 329 

factors; and Xi-1 is the PDSI for the previous month. For more information on the 330 

calculation of K1, K2, p and q, please refer to Wells et al. (2004). Table 2 shows the 331 

classification of drought in accordance to the PDSI definition. 332 

 333 

3.3.3 Drought area and frequency  334 

Based on the classification definition of drought (Table 2), a threshold value of -1 (-0.5) 335 

for PDSI (SPI/SPEI) is used to identify the occurrence of drought. Drought area is 336 

defined as: 337 

1 100
n
i a

a
a

d
D

n
== ×∑                             (8) 338 

where Da is the percentage of drought area (%), da is the number of grid points with 339 

PDSI ≤ -1 (SPI/SPEI ≤ -0.5), and na is total number of grid points. 340 
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100m
F

m

nD
N

= ×                              (9) 341 

where DF is the drought frequency (%), nm and Nm are the number of drought months 342 

and the total number of months, respectively. 343 

 344 

3.4 Variance-based sensitivity analysis framework 345 

In this study, the variance-based two-layer sensitivity analysis framework was used to 346 

quantify the uncertainty of GCMs and RCP scenarios in the projection of future drought 347 

indices (Dai et al., 2017; Xu et al., 2019b). In this framework, the model with a form of 348 

1( )= ( , , )kf fθ θ θ∆ =   is a set of uncertain model inputs, with total variance (V(Δ)) 349 

being decomposed as: 350 

i i i i
( ) ( ( | )) ( ( | ))i iV V E E Vθ θ θ θθ θ∆ = ∆ + ∆

 
                       (10) 351 

where ∆   is the objective function of the model output and { }1= , , kθ θ θ  . 352 

i i
( ( | ))iV Eθ θ θ∆


  is the partial variance contributed by θi, while 

i i
( ( | ))iE Vθ θ θ∆


353 

represents the partial variance caused by model inputs apart from θi and interactions 354 

amongst all inputs (Dai and Ye, 2015; Dai et al., 2017). 355 

 356 

Based on Eq. (10), the total variance (V(Δ)) is decomposed as: 357 

| |( ) ( | ) ( | )
     

  
    = ( ) ( )

V E V V E
V V

∆ = ∆ + ∆

+
R S R R S RR R
S R

                      (11) 358 

where R is the set of multiple RCP scenarios, and S is the set of multiple GCMs. The 359 

subscript |S R indicates the change of GCMs under particular RCP scenario. The terms 360 

in Eq. (11) refer to variances from RCP scenarios and GCMs uncertainty, respectively. 361 

The sensitivity of RCPs ( SR ) and GCMs ( SS ) can then be determined as follows: 362 

 

( | ) ( )
( ) ( )
( | ) ( )
( ) ( )

V E VS
V V

E V VS
V V

∆
= =

∆ ∆
∆

= =
∆ ∆

R S|R

R S|R

S,R R

S,R S

R

S

                           (12) 363 
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For each drought index (PDSI, SPI3 and SPEI3), the mean and variance of outputs with 364 

respects to uncertainty from GCMs under certain RCP scenario are calculated, and the 365 

mean and variance of RCP scenarios are quantified. Assume that there are k alternative 366 

RCP scenarios and n plausible GCMs for each RCP scenario, the uncertainty of GCMs 367 

is estimated as: 368 

( ) ( ) ( )
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2

1 1

( ) ( | )

1 1         = | |
n n

i k i k kk
i i

V E V

S R S R P R
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                (13) 369 

where ( )kP R   is the weight of RCP scenario, subject to ( ) 1kk
P R =∑  , and the 370 

uncertainty of RCP scenarios is deduced as: 371 
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 373 

4. Results 374 

4.1 Evaluation of GCM and VIC simulations 375 

Fig. 2 shows the comparison between the observed and bias-corrected monthly average 376 

T and P of 30 simulation samples of 13-GCM ensembles in the West River (Fig. 2a, 2c) 377 

and North River (Fig. 2b, 2d) basins for the baseline period 1971-2000. As shown in 378 

Fig. 2, the majority of model simulations reproduce the intra-annual variability of T 379 

reasonably well (despite a bit underestimation in a few months). Compared with T, 380 

greater uncertainty range is identified in the simulations of P, especially in the flood 381 

season (May-August). Moreover, larger uncertainty range is found in the North River 382 

basin compared to the West River basin. Overall, the bias-corrected model simulations 383 

can simulate the intra-annual variability of P for the two basins, particularly for the dry 384 

season (October-March). 385 

 386 

Fig. 3 demonstrates the comparison of simulated and observed daily discharges at the 387 
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Gaoyao and Hengshi stations for the calibration and validation periods. The daily Nash-388 

Sutcliffe efficiency coefficient (NSE) at the Gaoyao and Hengshi stations are 0.85 and 389 

0.9 (0.89 and 0.9) in the calibration (validation) period, respectively, and the relative 390 

errors (Res) are 7.25% and 2.95% (0.21% and 0.42%), respectively, in the calibration 391 

(validation) period. Overall, the VIC model can reproduce the low discharge accurately 392 

during dry season and the flood peak during flooding season, and the occurrence time 393 

is generally consistent between the observed and simulated ones, indicating that the 394 

VIC model is applicable for subsequent GCM-projections of drought. 395 

 396 

Fig. 4 shows the comparison of the simulated PDSI, SPI3 and SPEI3 with the observed 397 

ones in the West and North River basins during the baseline period 1971-2000. As 398 

witnessed in Fig. 4, the model simulations tend to underestimate the variability of PDSI, 399 

SPI3 and SPEI3, and fail to capture some extreme wet and dry events in wet and dry 400 

years, particularly in the West River basin. Compared with PDSI, the temporal 401 

variability of SPI and SPEI tends to be large for both basins, bringing challenges for the 402 

model to simulate the dryness/wetness conditions characterized by SPI and SPEI. 403 

Overall, the three drought indices are simulated more accurately in the North River 404 

basin than West River basin. 405 

 406 

4.2 Sensitivity of projected Da changes to index definition, GCM 407 

ensemble and RCP 408 

This section focuses on the sensitivity analysis of projected drought area changes to 409 

index definition, GCM ensemble and RCP scenario. Fig. 5 reveals the temporal 410 

evolutions (2021-2050) of the projected changes in Da indicated by the PDSI (≤ -1), 411 

SPI3 (≤ -0.5) and SPEI3 (≤ -0.5) for the future period 2021-2050 (relative to the baseline 412 

period) in the two basins under three RCP scenarios. Clearly, there are obvious 413 

differences in projected Da changes between different indices. However, compared with 414 

PDSI, SPI and SPEI demonstrate more similar and larger temporal variability of the 415 

projected Da changes for both basins. Large GCM spread (uncertainty range) is found 416 
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in projected Da changes, especially in the North River basin, which is significantly 417 

larger than that of drought indices and RCPs. In contrast, there are relatively small 418 

differences in projected Da changes under three RCP scenarios compared with GCMs 419 

and drought indices. 420 

 421 

4.3 Sensitivity of projected DF changes to index definition, GCM 422 

ensemble and RCP 423 

This section focuses on the sensitivity analysis of the projected DF to index definition, 424 

GCM ensemble and RCP scenario. The projected DF changes indicated by the PDSI, 425 

SPI3 and SPEI3 with extreme, severe, moderate and mild drought events for the West 426 

and North River basins during the future period 2021-2050 under three RCP scenarios 427 

were calculated (relative to the baseline period 1971-2000). 428 

 429 

Fig.6 shows the uncertainty range (GCM spread) of the projected DF changes (%) 430 

indicated by three drought indices under three RCP scenarios. From the figure, clearly 431 

there is a large GCM spread in the projected DF changes (especially for that indicated 432 

by SPEI) under all RCP scenarios, with the larger GCM spread in the North River basin 433 

than West River basin. In contrast, the RCP discrepancy in the projected DF changes is 434 

generally smaller compared with GCM. In terms of drought events, larger GCM 435 

uncertainty range is found for the projected changes in extreme drought than other 436 

drought events. There are also large discrepancies in the sign and magnitude of the 437 

projected DF changes amongst three drought indices (especially between SPI and 438 

PDSI/SPEI). The SPI tends to underestimate the projected changes in DF compared 439 

with PDSI and SPEI in the West River basin. 440 

 441 

Fig.6a also reveals the increased DF indicated by the PDSI (SPEI3) is projected for all 442 

drought events (extreme, severe, moderate and mild) in the West River basin, especially 443 

for extreme drought, with the mean increases up to 15% (13.7%), 13% (12.3%) and 444 

13.3% (13%) under RCP2.6, RCP4.5 and RCP8.5, respectively. In comparison, the 445 
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SPI3 detects an increase in extreme drought, with average increase of 10.4%, 10% and 446 

9.1% under RCP2.6, RCP4.5 and RCP8.5, respectively, and a decrease in severe 447 

(moderate) drought, with average decrease of -5.3% (-12%), -5.3% (-12%) and -4.9% 448 

(-11.6%) under RCP2.6, RCP4.5 and RCP8.5, respectively. 449 

 450 

For the North River basin (Fig.6b), the DF of extreme and mild droughts indicated by 451 

three drought indices (PDSI, SPI3 and SPEI3) shows an overall increase under three 452 

RCP scenarios. Particularly, SPI3 detects large mean increase in extreme drought (up 453 

to 10.1%, and 9.1% and 11.7% under RCP2.6, RCP4.5 and RCP8.5, respectively), 454 

whereas SPEI3 detects large mean increase in mild drought (up to 18.3%, and 18.6% 455 

and 17.9% under RCP2.6, RCP4.5 and RCP8.5, respectively). In contrast, the DF of 456 

severe drought indicated by three indices is projected to decrease under all 3 RCP 457 

scenarios, and SPEI3 shows large mean decrease compared with other indices (up to -458 

11.4%, -12.3% and -10.7% under RCP2.6, RCP4.5 and RCP8.5, respectively). For 459 

moderate drought, the projected increases in DF are indicted by PDSI (SPEI3), with 460 

mean increase of 8.4% (1.6%), 8.7% (2.0%) and 8.3% (1.5%) under RCP2.6, RCP4.5 461 

and RCP8.5, respectively. 462 

 463 

4.4 Spatial distributions of the projected DF changes 464 

The spatial distribution of the multi-GCM ensemble mean changes in DF (indicated by 465 

the PDSI, SPI3 and SPEI3) with extreme, severe, moderate and mild drought events for 466 

the future period 2021-2050 (relative to the baseline period 1971-2000) under three 467 

RCP scenarios are displayed in Figs. 7 and 8 for the West River and North River basins, 468 

respectively. Figs. 7 and 8 highlight the sign and magnitude of DF changes, which are 469 

dependent on the index definition, particularly for the North River basin. For a certain 470 

drought index, there are significant spatial variation in model projection for both basins.  471 

 472 

For the West River basin (Figs.7a~c), there are large spatial difference in the projected 473 

DF changes between SPI and PDSI (SPEI), while similar spatial pattern can be found 474 
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between PDSI and SPEI3. The projected DF changes in extreme drought indicated by 475 

the PDSI and SPEI3 tend to be more significant than other drought events. The largest 476 

DF changes in extreme drought indicated by the PDSI (15.9%) and SPEI3 (16.4%) are 477 

concentrated in the downstream reaches of the West basin, while the decreases are 478 

projected mainly in the upstream areas (up to -23.7% and -15.7%, respectively). For 479 

SPI3, the projected DF changes are unevenly distributed in the West River basin, with 480 

the largest increase of 9.5% in extreme DF under RCP8.5 (Fig. 7b). In contrast, the DF 481 

of moderate and mild droughts is projected to decrease in the majority of the West River 482 

basin, particularly under RCP4.5 and RCP8.5 (up to -16.7%). 483 

 484 

For the North River basin (Figs.8a~c), the projected DF changes indicated by three 485 

drought indices are unevenly distributed at the spatial scale. For PDSI, the DF of 486 

moderate and mild droughts shows larger increase compared with other drought events 487 

in major North River basin under three RCP scenarios (Fig. 8a). The DF of mild drought 488 

is increased by 11.3% under RCP2.6, while that of extreme and severe droughts is 489 

decreased, especially for severe drought (up to -7.8%). For SPI3, the DF of extreme 490 

drought is projected to increase in the majority of the North River basin under RCP2.6 491 

and RCP4.5 (up to 8.2%), and decrease in the northern parts of the North River basin 492 

under RCP8.5 (up to -8.2%). For SPEI3, the projected DF changes are spatially 493 

heterogeneous in the North River basin, with the largest increase of 11.8% in DF of 494 

extreme drought under RCP8.5 (Fig. 8c). In contrast, the DF of severe drought is 495 

projected to decrease in most of the North River basin, especially in the northern regions 496 

under RCP2.6 and RCP4.5 (up to -16%). 497 

 498 

4.5 Sensitivity indices for the uncertainty contributions to the drought 499 

indices projections 500 

The sensitivity indices for the uncertainty contribution of GCM and RCP to the 501 

projection of three drought indices (PDSI, SPI and SPEI) were calculated at both spatial 502 

(basin) and temporal (interannual) scales using the variance-based sensitivity analysis 503 
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approach. Fig.9 shows the temporal evolution (2021-2050) of uncertainty contribution 504 

(i.e., sensitivity indices) of GCM and RCP to three drought indices (PDSI, SPI and SPEI) 505 

projections during the period 2021-2050. From the Figure, GCM plays a dominant role 506 

(> 90%) in the projection uncertainty of three drought indices over the entire period for 507 

both basins, whereas the uncertainty of RCP is relatively limited compared with GCM. 508 

The GCM (RCP) uncertainty tends to be larger (smaller) in the West River basin than 509 

the North River basin, while the interannual variability of GCM (RCP) uncertainty is 510 

larger in the North River basin than in the West River basin. Overall, the GCM (RCP) 511 

uncertainty presents similar pattern amongst three drought indices, but tends to be 512 

smaller (larger) in SPI3 than PDSI and SPEI3 projections for both basins. 513 

 514 

Fig.10 demonstrates the spatial distribution of GCMs’ uncertainty contribution to the 515 

projection of PDSI, SPI3 and SPEI3 in the two basins during future three decades (i.e., 516 

2030, 2040 and 2050). As shown in Fig.10, GCM is the leading uncertainty source (> 517 

90%) for the projection of three drought indices for both basins. The uncertainty of 518 

GCM is unevenly distributed but with similar spatial patterns among three drought 519 

indices in the West River basin (Fig.10a). In addition, the uncertainty of GCM tends to 520 

increase (decrease) in the eastern (southwest) regions from 2030 to 2050, while in the 521 

southern regions it decreases first and then increases. For the North River basin 522 

(Fig.10b), the uncertainty of GCM is unevenly distributed and shows large spatial 523 

discrepancies among three drought indices. Overall, the uncertainty of GCM 524 

(particularly for the projection of PDSI and SPEI3) tends to decrease in the majority of 525 

the North River basin from 2030 to 2050, especially in northeast and southern regions 526 

(Fig. 10b). 527 

 528 

Fig.11 reveals the overall uncertainty contributions of GCM and RCP to the projection 529 

of three drought indices (PDSI, SPI3, and SPEI3) for the two basins. Overall, GCM 530 

contributes more than 96% of total uncertainty to the PDSI projection for both basins, 531 

while for the projection of SPI3 and SPEI3, the uncertainty contribution of GCM takes 532 

over 95% for both basins. Compared with GCM, the uncertainty of RCP is rather 533 
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limited and can be omitted in the future period (2021-2050) for both basins. 534 

 535 

5. Discussion  536 

In this research, we present an assessment of projection and uncertainty of DF and Da 537 

in the Pearl River basin during the period 2021-2050 based on downscaling simulations 538 

(a total of 90 samples) of 13 CMIP5 GCMs under three RCP scenarios. Three different 539 

drought indices (i.e., PDSI, SPI3 and SPEI3) are employed to explore the spatio-540 

temporal changes in DF and Da with different (extreme, severe, moderate and mild) 541 

drought events. The uncertainty in the projection of three drought indices derived from 542 

GCMs and RCPs is quantified using variance-based sensitivity analysis approach. 543 

 544 

The results show that the sign and magnitude of the projected changes in drought 545 

characteristics (e.g., DF and Da) are highly dependent on the index definition at both 546 

spatial and temporal scales, generally consistent with the findings from previous studies 547 

(e.g., Burke and Brown, 2008; Mishra and Singh, 2010; Touma et al., 2015; Lee et al., 548 

2019; Yang et al., 2019). This suggests that any single index may suffer from limitations 549 

in considering the different aspects of droughts comprehensively. In particular, the SPI 550 

tends to underestimate the projected changes in DF in both basins compared with PDSI 551 

and SPEI, which might be due to that the SPI considers P deficit alone without taking 552 

into account the impact of ET in the context of climate warming (Jeong et al., 2014; 553 

Rhee and Cho, 2016; Yoo et al., 2016; Ahmadalipour et al., 2017; Huang et al., 2018; 554 

Lee et al., 2019; Haile et al., 2020; Wu et al., 2020).  555 

 556 

The results also highlight a large discrepancy in the projected DF and Da changes 557 

amongst different GCM ensembles (Figs. 4-6), and larger model spread is found in the 558 

projected DF and Da changes of extreme drought than other drought events (Fig.6). This 559 

is in consistency with previous studies showing a large uncertainty among GCMs when 560 

projecting drought events in 21st century using CMIP3 and CMIP5 ensemble (Sheffield 561 

and Wood, 2008; Dai, 2013; Orlowsky and Seneviratne, 2013). The uncertainty analysis 562 
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suggests that the GCM uncertainty, as expected, plays an important role (contribution > 563 

90%) in the projections of drought indices in both basins, while the uncertainty of RCP 564 

is generally limited compared with GCM (Figs. 9 and 11). This is supported by Figs. 5 565 

and 6, showing that there are larger discrepancies in projected Da and DF among GCM 566 

ensembles than RCPs. Such finding is also generally consistent with the previous 567 

studies on the projection of meteorological droughts (Wu et al., 2021), extreme 568 

temperatures (Wilby and Harris 2006; Woldemeskel et al., 2016; Xu et al., 2019c), 569 

precipitation (Zhou et al, 2014; Woldemeskel et al., 2016; Hosseinzadehtalaei et al, 570 

2017; Zarekarizi et al., 2018;Xu et al., 2019b; Kim et al., 2020), and floods (Graham et 571 

al., 2007; Kay et al., 2009; Jung et al., 2011; Addor et al, 2014; Giuntoli et al., 2015; 572 

Vetter et al., 2017). All these literatures indicated that the uncertainty caused by GCM 573 

is larger than that of RCP.  574 

 575 

This study also highlights a large spatio-temporal variability of uncertainty in the 576 

regional projection of drought characteristics. At the spatial scale, the uncertainty of 577 

GCM is unevenly distributed and show similar spatial patterns amongst three drought 578 

indices in the West River basin, while in the North River basin the uncertainty of GCM 579 

shows large spatial discrepancies amongst three drought indices (Fig.10). At the 580 

interannual scale, the uncertainty of GCM shows a large variability, and the variability 581 

tends to be larger in the North River basin than in the West River basin (Fig.9). This is 582 

generally consistent with the previous studies (Xu et al., 2019b; Wu et al., 2021), which 583 

indicated that the uncertainty of GCM and RCP in drought prediction has large temporal 584 

and spatial variations at the regional scale. Spatially, GCM has relatively larger 585 

uncertainty in the Southern Hemisphere than the Northern Hemisphere, whereas RCP 586 

has relatively larger uncertainty in the Northern Hemisphere than the Southern 587 

Hemisphere (Wu et al., 2021). At the temporal scale, the GCM uncertainty shows 588 

overall decreasing trends with time (Xu et al., 2019b; Wu et al., 2021). In contrast, the 589 

RCP uncertainty is expected to increase over time until the end of this century, but 590 

remains less than that of GCM at the regional (Xu et al., 2019b) and global (Wu et al., 591 

2021) scales. The spatio-temporal variability of the uncertainties in GCM-based 592 
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drought projection, might be due to the results of disagreement on the magnitude of 593 

warming, as well as the magnitude and sign of P changes at the regional scale 594 

(Trenberth et al., 2014).  595 

 596 

Within this study, we did not consider some other potential sources of uncertainty that 597 

arise not only from the methods but also from the simulations themselves. First, 598 

although the bias-corrected method shows significant improvement in the simulations 599 

of T and P, there are still relatively large errors (especially for P) in few months (see 600 

Fig. 2), which may lead to potential uncertainty. Particularly, the GCM simulations fail 601 

to capture some extreme events in wet/dry years, particularly in the West River basin 602 

(Fig. 4). This means that the bias-corrected method may reduce the variability range of 603 

the GCM simulations, leading to an underestimation of GCM uncertainty in the 604 

projections of drought indices (SPI, PDSI, SPEI) during extreme wet and dry years. 605 

This is supported by Wu et al. (2021), which indicated that the bias-corrected method 606 

can be an important uncertainty source in explaining the model difference in the 607 

projection of meteorological droughts. Second, the definitions of DF and Da are based 608 

only on the threshold of (-1 for PDSI and -0.5 for SPI and SPEI) of drought indices, 609 

without quantifying the drought events statistically. The choice of methods to define 610 

drought characteristics can also lead to model discrepancies in drought projection (Mo, 611 

2008; Sheffield and Wood, 2008; Dai, 2011b). In addition, we only consider one 612 

hydrological model (VIC) in the hydrological simulations. Hydrological models 613 

themselves may be biased due to inadequacies in the modeled physical processes and 614 

parameterizations and because of processes that are not include in the modeling, the 615 

structure of hydrological model can be an important source of uncertainty in climate 616 

change assessment (Graham et al., 2007; Kay et al., 2009; Addor et al, 2014; Eisner et 617 

al., 2017; Su et al., 2017; Vetter et al., 2017; Ju et al., 2021). The PDSI and SPEI were 618 

partly calculated based on hydrological simulations. This means that the uncertainty of 619 

hydrological model is included in the uncertainty of GCM and RCP, which may lead to 620 

the overestimation of the uncertainty of GCM and RCP in the projections of PDSI and 621 

SPEI. In future research, it would be interesting to explore more sources of uncertainty 622 
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(e.g., hydrological model, bias-corrected method, and the definition of drought) with 623 

the consideration of multiple-model ensembles, which are essential for assessing 624 

drought projection reliably in response to climate warming at both regional and basin 625 

scales. 626 

 627 

6. Conclusions 628 

This research assesses the projection and uncertainty of drought characteristics (DF and 629 

Da) in the Pearl River basin during the period 2021-2050 using three different drought 630 

indices (PDSI, SPI and SPEI) based on 13 CMIP5 GCMs under three RCP scenarios. 631 

The SPI is calculated based on the P simulations of 13 GCMs, while the PDSI and SPEI 632 

are computed based on the simulations of the VIC model forced by 13 GCMs. The 633 

uncertainty of projected drought indices (PDSI, SPI and SPEI) due to various GCMs 634 

and RCPs is quantified by the variance-based sensitivity analysis approach.  635 

 636 

The results show that there are large discrepancies in the sign and magnitude of DF and 637 

Da changes amongst three drought indices, and the SPI tends to underestimate the 638 

projected changes in DF in both basins compared with PDSI and SPEI. In terms of a 639 

particular drought index, there are significant spatial variation in the model projection 640 

of DF. There is also a large model spread in the projected DF and Da changes among 641 

different GCM ensembles, and larger model spread is found in the projected extreme 642 

drought than other drought events. Overall, the DF of extreme drought is projected to 643 

increase in the future period (2021-2050) in both basins, especially for the North River 644 

basin.  645 

 646 

The uncertainty analysis results show that GCM is the dominant uncertainty 647 

(contribution > 90%) in the projections of three drought indices, while the uncertainty 648 

of RCP is relatively limited compared with GCM. The uncertainty of GCM and RCP 649 

shows a large interannual variability during the future period, with larger variability in 650 

the North River basin than Wet River basin. At the spatial scale, the uncertainty of GCM 651 
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is unevenly distributed and show similar spatial patterns among three drought indices 652 

in the West River basin, while the uncertainty of GCM in the North River basin shows 653 

large spatial discrepancies amongst three drought indices. By the end of 2050, the 654 

uncertainty of GCM tends to increase in the Eastern regions of the Wet River basin and 655 

decrease in the Northeast and Southern regions of the North River basin. This study 656 

highlights the sensitivity of drought projection to the index definition as well as the 657 

large spatial-temporal variability of general uncertainty sources in drought projections. 658 
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 1018 
Fig.1. Geographical location map of the Pearl River Basin (PRB) as well as the 1019 
distributions of 0.25° grid points and meteorological stations.  1020 
  1021 
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 1022 
Fig.2. Comparisons of the observed (red dotted line) and bias-corrected (grey shadow) 1023 
monthly T and P of 13 CMIP5 GCMs in the West River (a, c) and North River (b, d) 1024 
basins for the baseline period 1971-2000. The grey shadow represents the range of 30 1025 
samples of bias-corrected simulations of the 13 CMIP5 GCMs. R and MARE indicate 1026 
correlation coefficient and mean absolute relatively error, respectively. 1027 
  1028 
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 1029 

 1030 
Fig.3. Comparisons of the simulated and observed daily discharges at the Gaoyao 1031 
(Wet River basin) and Hengshi (North River basin) stations for the calibration and 1032 
validation periods. 1033 
  1034 
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 1035 

 1036 
Fig.4. Comparisons of the simulated PDSI, SPI3 and SPEI3 (grey shadow) with the 1037 
observed ones (red dotted line) in the West River (a) and North River (b) basins during 1038 
the baseline period 1971-2000. The grey shadow indicates the range of 30 simulation 1039 
samples of PDSI, SPI3 and SPEI3, and the red dotted lines denotes the observed ones. 1040 
  1041 
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 1043 
Fig.5. Monthly time series of Da (%) indicated by PDSI (≤-1), SPI3 (≤-0.5) and SPEI3 1044 
(≤-0.5) under RCP2.6 (green), RCP4.5 (blue) and RCP8.5 (red) scenarios for the future 1045 
period 2021-2050 (relative to the baseline period 1971-2000) in the West River (a) and 1046 
North River (b) basins. The shadow denotes the range of 30 simulation of 13 CMIP5 1047 
models, and the black lines denotes the ensemble mean of model simulations. 1048 
  1049 
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 1050 

 1051 

Fig.6. Box plots of relative change (%) in DF indicated by PDSI (≤-1), SPI3 (≤-0.5) and 1052 
SPEI3 (≤-0.5) under 3 RCP (RCP2.6, RCP4.5 and RCP8.5) scenarios for the future 1053 
period 2021-2050 (relative to the baseline period 1971-2000) in the West River (a) and 1054 
North River (b) basins. Boxes indicate the interquartile model spread (25th and 75th 1055 
quantiles) with the red horizontal line indicating the ensemble median and the whiskers 1056 
showing the extreme range of the 30 simulation samples of the 13 CMIP5 GCMs. Black 1057 
circles denote the average of the multi-model ensembles. 1058 
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 1062 
Fig.7. Spatial distributions of DF (%) indicated by PDSI (a), SPI3 (b) and SPEI3 (c) 1063 
with extreme, severe, moderate and mild droughts in the future period 2021-2050 1064 
(relative to baseline period 1971-2000) under RCP2.6, RCP4.5 and RCP8.5 scenarios 1065 
in the West River basin. 1066 
  1067 
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 1070 
Fig.8. Same as Fig. 7 but for the North River basin. 1071 
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 1073 
Fig.9. Time series of relative contribution of GCM (blue) and RCP (yellow) to the 1074 
projection uncertainty of PDSI, SPI3 and SPEI3 in the West and North River basins in 1075 
the future period 2021-2050. The blue solid line indicates the linear trend of GCM 1076 
uncertainty. 1077 
  1078 
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 1079 

 1080 
Fig.10. Spatial distributions of the uncertainty contribution GCM to the projections of 1081 
PDSI, SPI3 and SPEI3 in the West River (a) and North River (b) basins in 2030, 2040 1082 
and 2050. 1083 
  1084 
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 1085 
Fig.11. Relative contribution rate (%) of GCM and RCP to the projection 1086 
uncertainty of PDSI, SPI3 and SPEI3 in the West and North River basins. 1087 
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Table 1 Information on the 13 general circulation models used in the present analysis 1089 

Model Institution Country Resolutio
n 

BCC-CSM1.1 Beijing Climate Center (BCC), China Meteorology 
Administration, China China 128×64 

BNU-ESM Beijing Climate Center College of Global Change and 
Earth System Science,Beijing Normal University, China China 128×64 

CNRM-CM5 
Centre National de Recherches Meteorologiques and 

Centre Europeen de Recherches et de Formation Avancee 
en Calcul Scientifique 

France 256×128 

GFDL-CM3 National Oceanic and Atmospheric Administration 
(NOAA) Geophysical Fluid Dynamics Laboratory America 144×90 

GFDL-ESM2G National Oceanic and Atmospheric Administration 
(NOAA) Geophysical Fluid Dynamics Laboratory America 144×90 

GISS-E2-R NASA Goddard Institure for Space Studies America 144×90 

HadGEM2-ES Met Office Hadley Centre United 
Kingdom 192×145 

MIROC5 

Atmosphere and Ocean Research Institute (The 
University of Tokyo), National Institute for Environment 
Studies, and Japan Agency for Marine-Earth Science and 

Technology 

Japan 256×128 

MIROC-ESM-
CHEM 

Japan Agency for Marine-Earth Science and Technology, 
Atmosphere and Ocean Research Institute (The 
University of Tokyo), and National Institute for 

Environment Studies 

Japan 128×64 

MIROC-ESM 

Japan Agency for Marine-Earth Science and Technology, 
Atmosphere and Ocean Research Institute (The 
University of Tokyo), and National Institute for 

Environment Studies 

Japan 128×64 

MPI-ESM-LR Max Planck Institute for Meteorology Germany 192×96 
MRI-CGCM3 Meteorological Research Institute Japan 320×160 
NorESM1-M Norwegian Climate Centre Norway 144×96 
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Table 2 Drought Classification based on PDSI, SPI and SPEI 1091 

Categories PDSI 
classifications 

SPI  
classifications 

SPEI classifications 

Extremely Drought (Ex_D) PDSI≤-4.00 SPI≤-2.0 SPEI≤-2.0 

Severely Drought (Se_D) -3.99≤PDSI≤-

3.00 

-1.99≤SPI≤-1.5 -2.0＜SPEI≤-1.5 

Moderately Drought (Mo_D) -2.99≤PDSI≤-

2.00 

-1.49≤SPI≤-1.0 -1.5＜SPEI≤-1.0 

Mild Drought (Mi_D) -1.99≤PDSI≤-

1.00 

-0.99≤SPI≤-0.5 -1.0＜SPEI≤-0.5 
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