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Abstract
Global chronic nitrogen (N) deposition to forests can alleviate ecosystem N limitation, with
potentially wide ranging consequences for biodiversity, carbon sequestration, soil and surface
water quality, and greenhouse gas emissions. However, the ability to predict these consequences
requires improved quantification of hard-to-measure N fluxes, particularly N gas loss and soil N
retention. Here we combine a unique set of long-term catchment N budgets in the central Europe
with ecosystem 15N data to reveal fundamental controls over dissolved and gaseous N fluxes in
temperate forests. Stream leaching losses of dissolved N corresponded with nutrient stoichiometry
of the forest floor, with stream N losses increasing as ecosystems progress towards phosphorus
limitation, while soil N storage increased with oxalate extractable iron and aluminium content.
Our estimates of soil gaseous losses based on 15N stocks averaged 2.5± 2.2 kg N ha−1 yr−1 and
comprised 20%± 14% of total N deposition. Gaseous N losses increased with forest floor N:P
ratio and with dissolved N losses. Our relationship between gaseous and dissolved N losses was also
able to explain previous 15N-based N loss rates measured in tropical and subtropical catchments,
suggesting a generalisable response driven by nitrate (NO3

−) abundance and in which the relative
importance of dissolved N over gaseous N losses tended to increase with increasing NO3

− export.
Applying this relationship globally, we extrapolated current gaseous N loss flux from forests to be
8.9 Tg N yr−1, which represent 39% of current N deposition to forests worldwide.

1. Introduction

Nitrogen availability limits net primary productivity
of many terrestrial ecosystems (Vitousek and
Howarth 1991, LeBauer and Treseder 2008). Because
most plant species are adapted to low N availabil-
ity, maintaining high global plant biodiversity largely
relies on the continued scarcity of this essential nutri-
ent (Suding et al 2005, Bobbink et al 2010). Preindus-
trial ecosystemN supplywas sustained by inputs from
natural N deposition and biological nitrogen fixation
(BNF), estimated at 40–290 Tg yr−1 (Cleveland et al
1999, Galloway et al 2004, Vitousek et al 2013). Since

the onset of the industrial and agricultural revolu-
tions, human activities have more than doubled the
rate of reactive N formation (Galloway et al 2008).
Global N emissions are currently estimated to be
115 Tg yr−1, of which 74 Tg yr−1 deposits onto
continental areas (Tan et al 2018), with 23 Tg yr−1

landing on forests (Schwede et al 2018). Deposited
N can be either retained within terrestrial ecosys-
tems, lost by hydrologic pathways (mainly as nitrate,
NO3

− or dissolved organic N, DON), or returned
to atmosphere in gaseous forms (largely as N2 and
the greenhouse gas N2O). Gaseous N losses are typ-
ically estimated either based on steady state mass
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balance calculations, or by spatial extrapolation of
point measurements. Both methods are subject to
measurement difficulties (particularly for the large
and opposing fluxes of BNF and denitrification to
N2) and additional uncertainty is created by the
high spatiotemporal heterogeneity of these fluxes
(Groffman et al 2006). Isotope ratios of ecosystem N
pools provide an alternative, more powerful tool to
informNbalances and net losses, as they integrate the
signals associated with isotope fractionation during
various transformations (Kjønaas et al 1993, Högberg
1997, Gundersen et al 1998b, Templer et al 2007,
Craine et al 2009, Hobbie and Ouimette 2009). The
process of denitrification preferentially consumes the
lighter isotope of N (14N rather than 15N), and so eco-
system 15N natural abundance has been employed to
estimate the fraction of total N losses that are gaseous
(Houlton et al 2006, 2015, Houlton and Bai 2009,
Vitousek et al 2013, Fang et al 2015).

Despite decades of elevated N deposition, forests
in the temperate zone usually retain the majority
of deposited N, especially in low-fertility ecosystems
with a high elemental ratio of soil C to N (Gundersen
et al 1998a, Lovett et al 2002, Dise et al 2009, Oulehle
et al 2017, Tahovská et al 2020). Nonetheless, accu-
mulation of ecosystem N relative to other nutrients
(C, phosphorus (P), or base cations) should eventu-
ally alleviate N limitation (Rowe et al 2008, Braun
et al 2010, Crowley et al 2012) with consequences for
future trajectory of forests as amajor terrestrial C sink
(Thomas et al 2015, Schulte-Uebbing and De Vries
2018, Wieder et al 2019). Here, we utilised a unique
set of long-term and consistent N budget meas-
urements from forested catchments spanning mois-
ture, fertility and N deposition gradients in managed
forests in temperate central Europe to examine which
environmental controls best predicted ecosystem N
retention and losses by both gaseous and hydrologic
pathways. We tested which soil properties best pre-
dicted soil N storage, and whether ecosystem C:N:P
stoichiometry fundamentally controls total ecosys-
tem N losses. In addition, we combined our results
with published 15N-based N flux estimates to com-
pute the gaseous N flux from global forest ecosys-
tems. Understanding the drivers that control regional
to global N balance presents a critical challenge for
projecting forest carbon sinks, emissions of N2O, and
the avoidance of land and water eutrophication.

2. Methods

2.1. Study sites
The 12 catchments used in this study are located
within the mountain landscapes of the Czech Repub-
lic (table 1). All but two catchments have acidic soils
developed over acidic bedrock; out of 93 soil pits
assessed in this study, 66% were described accord-
ing to the World Reference Base soil classification

as Cambisols, 13% as entic Podzols, 12% as hap-
lic Podzols, 7% as Stagnosols and 2% as gleyic
Stagnosols. Norway spruce dominates the catch-
ment vegetation, but deciduous trees are common
at two catchments, and one catchment is predom-
inantly alpine. Catchment areas ranged from 21
to 254 ha (mean = 102 ha) and mean elevations
ranged from 471 to 1301 m. Calculated runoff to
precipitation ratio (runoff ratio), considered to be
a measure of catchment wetness, varied from 0.08
to 0.84 (mean = 0.38). For the period 1994–2016
total inorganic N deposition (Oulehle et al 2017)
averaged 12 kg N ha−1 yr−1 and ranged from 7 to
17 kg N ha−1 yr−1. The δ15N of inorganic N (both
NO3

− and NH4) in precipitation was collated from
previous studies in the territory of the Czech Repub-
lic (Buzek et al 1998, Novak et al 2016).

2.2. Soil sampling and analysis
Soils were sampled in 2015 using quantitative soil
pits up to 40 cm depth (Huntington et al 1988). Soil
sampleswere taken during the growing season and the
number of soil pits per catchment varied from 5 to
10 according to catchment size. The positions of soil
sampling pits were chosen to characterize topography
and forest vegetation within catchment. At each loc-
ation, soil profiles were sampled in a 0.5 m2 frame as
follows: L (litter) layer; F + H (fermented + humus)
layers combined; and mineral soil in specified depths
of 0–10 cm, 10–20 cm, 20–40 cm (where 0 cm is
the top of the mineral soil layer). All material from
each layer was weighed and sieved in the field (1 cm),
separated into stones, soil <1 cm and coarse roots.
The soil samples were weighed and then returned to
the laboratory where it was sieved after air-drying
(mesh size of 5 mm for organic horizons and 2 mm
for mineral horizons). Soil moisture was determined
gravimetrically by drying at 105 ◦C. Air-dried soil
samples were analysed for total organic C and total
N by dry combustion with a CNS elemental analyser
(Thermo Scientific FLASH 2000). Total P was ana-
lysed in FH horizon after digestion spectrophotomet-
rically, available P was determined in Mehlich extract
by themolybdatemethod. Oxalate-extractable Fe and
Al were determined in 0.2 M ammonium oxalate/
oxalic acid solution at pH 3. The concentrations of
oxalate-extractable Fe and Al (Feo and Alo) in the
extracts were determined by ICP-OES (Thermo Ele-
mental Intrepid II). Total exchangeable acidity (TEA)
was determined by titration of 0.1 M BaCl2 extracts.

2.3. Biomass sampling and analysis
Forest inventory data were measured within forest
plots located in circles (500 m2) with soil pit in the
centre, thus directly related to the soil chemistry.
For each forest plot, three dominant Norway spruce
trees were selected for chemical analysis of foliage
(1st and 2nd needle year) and wood (bulk wood
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core). Chemical analysis consisted of total C, N and
P concentrations. Total above- and belowground bio-
mass pools were calculated according to an allomet-
ric equation derived for Norway spruce (Wirth et al
2004) using measured site DBH.

2.4. StreamN fluxes
Stream N fluxes represented long-term averages
of available measurements, covering 1994–2016 for
NO3

− and 2006–2016 DON losses. Losses of NH4

were negligible and not included (Oulehle et al 2017).
Nitrate (NO3) was measured by high-performance
liquid chromatography (Knauer 1000), DONwas cal-
culated as a difference between total dissolved N
(chemiluminiscence detection after sample combus-
tion; Tekmar-Dohrmann Apollo 9000) and the sum
of NO3

− and NH4
+ (indophenol blue colorimetry

method).

2.5. Stable N isotope analysis
All samples (leaves, soils, and wood) were analysed
for their stable N isotope composition with an iso-
tope ratio mass spectrometer ISOPRIME100 (Iso-
prime, UK) interfaced with a Vario PYRO cube
Elemental Analyzer (Elementar Analysensysteme,
Germany). The system was calibrated by the certi-
fied reference materials with known isotopic ratio
from the International Atomic Energy Agency
(IAEA, Vienna, Austria). δ15N values were refer-
enced to caffeine (IAEA-600) and potassium nitrate
(USGS32) standards. Nitrogen isotope composition
was measured as δ15N (‰) following the formula
δ15N= [(Rsample/Rstandard)− 1]× 1000, where Rsample

is the ratio of 15N:14N in the investigated sample and
Rstandard is the ratio of 15N:14N in atmospheric refer-
ence N2 (purity of 99.999%).

Selected stream water samples from 2018 only
were analysed for their 15/14NO3

− ratio using a dif-
fusion method (Goerges and Dittert 1998). Analysis
of total N and 15N/14N ratio were performed on IR-
MS (Delta X Plus, Finnigan, Germany) connected to
the NC analyser (Elementar analyser FLASH 2000,
Thermo Fisher Sci., Germany). A calculated blank
correction was used (Stark and Hart 1996).

2.6. Denitrification calculation
We applied an isotopic modelling approach (Houlton
et al 2007, Houlton and Bai 2009, Soper et al 2018, Yu
et al 2019) to estimate the proportion (fgas) and flux
of N lost via denitrification across our catchments:

fgas = δ15NTE- δ
15NI + εL/(εL − εD) (1)

in which δ15NTE and δ15NI represent 15N isotopic
ratios of the total ecosystem (soil + vegetation)
and atmospheric N inputs, respectively. For each
site, differences between measured stream δ15NO3

−

and ecosystem δ15N were calculated to estimate the
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Figure 1. Ecosystem nitrogen pools (t N ha−1) across
catchments related to the pool (t ha−1) of oxalate
extractable aluminium (Alo) and iron (Feo). Regression line
(R2 = 0.86, p < 0.001) displayed.

isotope effect (ε) associated with dissolved N leach-
ing (εL, assuming zero effect of δ15N-DON). There-
fore εL represents the combined weighted isotope
effect associated with N-NO3

− + DON leaching
(mean εL = 2.7‰, SE = 1.1‰). We used a range
of assumed denitrification fractionation effects (εD)
between −14 and −18‰ (Houlton and Bai 2009,
Fang et al 2015, Yu et al 2019). Published data (Buzek
et al 1998, 2012, Novak et al 2016) indicate that pre-
cipitation δ15N inputs (δ15NI), including both NH4

and NO3
− average between −4‰ and −8‰, with a

central value of −6‰ and so we used this range to
assess model sensitivity to these inputs.

3. Results

3.1. EcosystemN stock
Total ecosystem N content in 12 intensively studied
Czech catchments varied from 4.4 to 7.9 t N ha−1

across catchments, with soil N comprising the largest
N pool (averaging 82% of total ecosystem N, range
72%–96%) (table 1). Total mineral soil N content
increased with the amount of oxalate extractable alu-
minium and iron (Alo and Feo; p < 0.001, r = 0.92;
figure 1). That is, mineral soil physicochemical prop-
erties largely determined the whole-ecosystem N
stock. This relationship was independent of fine soil
mass and reflected greater contributions of Spodosols
(entic Podzols and haplic Podzols) at catchments with
larger mineral N pools.

3.2. Dissolved N losses
Stream total dissolved N (TDN) losses were strongly
negatively correlated with forest floor C:N ratio
(p = 0.005, r = −0.75, figure 2(a)) and posit-
ively with forest floor N:Pavailable ratio (p < 0.001,
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Figure 2.Measured dissolved N losses (a), (b) and calculated gaseous N losses (c), (d) related to forest floor C:N and N:Pavailable
ratios. Regression lines and confidence bands (α= 0.05) displayed.

r = 0.94, figure 2(b)). Nitrate (NO3) stream fluxes
dominated over DON fluxes at the majority of
catchments (table 1), with an average N-NO3/TDN
ratio of 0.6. TDN losses were unrelated to foliar
C:N, but increased significantly with foliar N:P ratio
(p = 0.004, r = 0.76). Measured TDN runoff fluxes
averaged 2.9 ± 2.3 kg N ha−1 yr−1 and accounted
for 23%± 17% of measured N deposition across our
catchments (table 1).

Additional examination of factors that pre-
dict forest floor stoichiometry revealed that forest
floor C:N decreased (p < 0.001, r = −0.83) and
N:Pavailable increased (p < 0.001, r = 0.88) with
increasing catchment wetness (here, as runoff ratio),
while the ratio of N:Ptot in forest floor was unre-
lated to catchment wetness (supplementary table 1
(available online at stacks.iop.org/ERL/16/064025/
mmedia)). Canopy N properties correlated signi-
ficantly with only one environmental variable, as
foliar N concentration increased with N depos-
ition (p = 0.025, r = 0.64). Foliar N:P ratio closely
related to forest floor N:Pavailable ratio (p = 0.002,
r = 0.80) suggesting that canopy enrichment of N
over P strengthened with the increasing imbalance of
forest floor N relative to available P (supplemetary
figure 1).

3.3. Gaseous N losses
Whole-ecosystem δ15N signature averaged 0‰
(range from −1.7 to +2.9 ‰), and increased signi-
ficantly with stream TDN losses (p= 0.001, r = 0.81;
supplementary figure 2(A)) and consequently with
catchment wetness (p = 0.002, r = 0.78; supple-
mentary figure 2(B)). On average, TDN leaching
was isotopically heavier than N remaining in the
ecosystem (fractionation effect of leaching, εL, of
+2.7‰), thus ecosystem 15N enrichment likely arose
as consequence not from leaching but from a highly
fractionating process such as denitrification. Iso-
topic estimates of denitrification fluxes across our
catchments were sensitive to the values assigned to
denitrification fractionation effect (εD) and precip-
itation δ15N (supplementary figure 3). When the
εD value was set to −16‰ and the precipitation
input δ15N was set at −6‰ (see section 2), aver-
age gaseous N loss was estimated to be 47% of total N
loss (range= 38%–62%). Alternatively, using the εD
of −48‰ calculated for soils incubated under labor-
atory conditions (Wang et al 2018) estimated gaseous
N loss amounted to only 17% of total loss. Precisely
measured hydrologic losses of N for the study sites
(averaging 2.9 ± 2.3 kg N ha−1 yr−1), allow transla-
tion of fractional N losses to an average calculated

6
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denitrification flux of 2.5 ± 2.2 kg N ha−1 yr−1

(table 1), amounting to 20% ± 14% of measured
N deposition. Calculated gaseous N fluxes thus
increased with increasing TDN fluxes (p < 0.001,
R2 = 0.88), and the magnitudes of both N losses were
associated with forest floor C:N and N:Pavailable ratios
(figure 2), both ofwhich providemetrics of ecosystem
N saturation.

3.4. EcosystemNmass balance
Measured average N deposition across our
catchments over the period 1994–2016 was
12 kg N ha−1 yr−1, and ranged from 7.3 to
17 kg N ha−1 yr−1 (table 1). Based on our mass
balances, catchment N retention (i.e. N deposition—
stream TDN—gaseous N loss) was relatively high
(mean = 6.3 kg N ha−1 yr−1 or 57% of N depos-
ition) but with striking variation from 0% to 97%.
In contrast to dissolved and gaseous losses, N reten-
tion was significantly correlated only with forest floor
C:Pavailable (p = 0.019, r = −0.66) and N:Pavailable
(p = 0.014, r = −0.68) but not with forest floor C:N
ratio, suggesting a dominant role of soil available P in
determining ecosystem N retention (supplementary
figure 4).

3.5. Global estimates of N losses in forests
We sought to test whether the tight relationship
between measured stream TDN losses and estim-
ated gaseous N losses was consistent across forested
biomes worldwide. We identified 11 additional for-
ested catchments where stream inorganic N export
was measured alongside N gaseous estimates based
on the soil 15N isotopic balance method, spanning
a broad ecological and climatic range (four tropical
(Fang et al 2015, Soper et al 2018), five subtropical
(Yu et al 2019), and two temperate (Fang et al 2015)).
Thus our dataset more than doubles the total num-
ber of catchments globally for which a full isotopic
mass balance is possible. Based on the combined data-
set, we observed a remarkably consistent relation-
ship between streamNO3

− export and denitrification
flux, spanning environmentally diverse forest ecosys-
tems (with annual air temperature range from 3 ◦C
to 26 ◦C and precipitation range from 615 mm to
3220 mm) and variations in N flux of 2–3 orders of
magnitude (figure 3). Based on this apparently gen-
eral relationship, gaseous N flux (in kg N ha−1 yr−1)
is predictable from stream NO3

− flux using a power
function ( f(x) = axb, where a = 1.74 and b = 0.62;
figure 3). The relationship also shows that gaseous
N loss dominates over dissolved inorganic N loss
when N losses are low, and the relative importance of
gaseous loss decreases with increasing NO3

− export
and with overall N loss.

Extrapolating this cross-biome relationship glob-
ally, we calculated the global forest denitrification flux
based on published NO3 stream exports from 100
catchments covering tropical (n = 28), subtropical

Figure 3. Calculated gaseous N fluxes based on soil 15N/14N
enrichment model (Houlton and Bai 2009) related to
measured NO3

− stream export. Data comprised results
from temperate zone (this study—black circles),
subtropical zone in China (Yu et al 2019) (white
diamonds), temperate and tropical zone in Japan and
China (Fang et al 2015) (grey squares) and one lowland
tropical catchment in Costa Rica (Soper et al 2018, grey
triangle). Linear regression line (R2 = 0.84), confidence
band (α= 0.05) and 1:1 line displayed.

(n = 9), temperate (n = 31) and boreal (n = 32)
forest biomes (supplementary table 2). Weighted by
biome area, our calculated current stream TDN flux
from global forests is 13.5 Tg N yr−1 (table 2).
Calculated area-weighted N gaseous losses increased
in order boreal (0.7 kg N ha−1 yr−1) < temper-
ate (2.7 kg N ha−1 yr−1) < tropical/subtropical
(3.3 kg N ha−1 yr−1) forests, resulting in total
annual flux of 8.9 Tg N yr−1 (table 2). This ana-
lysis predicts that total dissolved and gaseous N losses
(22.4 Tg N yr−1) nearly balance N deposition to
global forests (23.1 Tg N yr−1), that do also receive
uncertain amounts of N input from N fixation.
Gaseous losses comprised 40% of the total N loss.

4. Discussion

Assessments of the consequences of forest N retention
and loss at both regional to global scales have long
been hampered by the difficulty of measuring N gas
losses and N retention in soil. This analysis, based on
detailed ecosystem N and δ15N measurements across
a dozen well-studied catchments in central Europe,
provides novel insights into the mineralogical and
stoichiometric controls on soil N retention and loss
fluxes. Combining these results with those from
forests from other biomes suggests a globally con-
sistent relationship between N gas and NO3

− leach-
ing losses. This relationship likely reflectsmechanistic
drivers depending on nitrate surplus in ecosystems,
and enables broader extrapolation to estimate N gas
losses from forests worldwide.
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Table 2. Calculated nitrogen fluxes in global forests. The contemporary N deposition fluxes were derived from Schwede et al (2018),
current stream N fluxes were calculated according literature search (supplementary table 2) and gaseous N fluxes according to this study.
N fixation also contributes N to forests. Its fluxes are highly uncertain and are not included here.

Area
Deposition Stream TDN Stream NO3 Denitrification

Forest biome Million km2 kg N ha−1 yr−1 (Tg yr−1)

Boreal 4.6 1.2 (0.6) 1.6 (0.7) 0.2 (0.1) 0.7 (0.3)
Temperate 7.2 7.3 (5.3) 2.9 (2.1) 2.0 (1.4) 2.7 (1.9)
Tropical/Subtropical 20.4 8.5 (17.3) 5.3 (10.7) 2.8 (5.7) 3.3 (6.6)
Total forests 32.2 7.2 (23.1) 4.2 (13.5) 2.2 (7.2) 2.8 (8.9)

4.1. Forest soils are important long-termN sink
Soils comprised the largest N store within all of
our study catchments, as is typical of most forests
(Vesterdal et al 2008, Cremer et al 2016). Storage
capacity for N in the mineral soil appears to be con-
trolled by soil physicochemical properties, particu-
larly aluminium- and iron-oxyhydroxides, which also
have been shown to predict soil carbon stocks across
the U.S. and to immobilise dissolved organic mat-
ter within mineral soil horizons (Kalbitz et al 2000,
Bingham and Cotrufo 2016). Our results (figure 1)
suggest that organic matter was preferentially pro-
tected in spodic horizons by interaction with poorly
crystalline minerals represented by the oxalate sol-
uble Al and Fe fraction (Kleber et al 2005, Spielvogel
et al 2008). The occurrence of Spodosols gener-
ally increases with elevation across our catchments
(Chuman et al 2021), and so do Alo + Feo stocks.
Thus, catchment soils with high rates of mineral
weathering, e.g. those with more water availability
and dissolved organic matter leaching, are predis-
posed to accumulate relatively large quantities of
organic N due to the development of soils with high
sorption capacities in spodic horizons.

4.2. Soil C:N:P stoichiometry determines N losses
Catchment wetness was also the strongest correl-
ate among environmental variables influencing forest
floor C:N:P stoichiometry, which in turn governed
N losses. Across our environmental gradient, wetter
forests are associated with progressively thicker forest
floor (Oulehle et al 2008) (moder/mor like organic
horizons) and more acidic conditions (table 1).
Increasing exchangeable acidity (Al and H+) pro-
motes stabilization of organic P in the forest floor,
thus negatively affecting P availability (Tahovská
et al 2018). Reduced P availability associated with
increased catchment wetness combined with increas-
ing N deposition to result in surpluses of forest floor
N over C and available P. These responses are con-
sistent with the N saturation hypothesis (Aber et al
1989, 1998) that predicts eventual increases in nitri-
fication and NO3

− loss to surface waters as a result of
chronic N deposition, with new information on soil P
limitation and N gas losses. Our data suggest that dis-
solved N losses in runoff are tightly linked to forest
floor nutrient stoichiometry, with observed increases
in N leaching as forest floor C:N ratio decreases

(Gundersen et al 1998a, Lovett et al 2002, Dise et al
2009) and N:Pavailable ratio increases (figure 2). The
strikingly tight relationship between dissolved NO3

−

losses and forest floor N:Pavailable further suggests that
chronic N enrichment leads to progressive P lim-
itation. This observation is consistent with forest
growth responses fromSwitzerland (Braun et al 2010)
and canopy chemistry from the Adirondack region
in the US (Crowley et al 2012) suggesting shifts
towards P limitation as consequence of increasing N
deposition.

Compared across catchments, total ecosystem 15N
enrichment increased with catchment wetness, which
pointed to the importance of gaseous losses. This eco-
system 15N enrichment could not be produced by N
deposition, which is isotopically lighter than ecosys-
tem N, or by leaching, which is isotopically heavier.
By contrast, gaseous losses usually have large fraction-
ation factors (Mariotti et al 1981, Denk et al 2017),
which enrich the N that remains in the ecosystem.
Denitrification can occur even in well-drained soils,
in low-oxygen microsites or in temporarily or locally
developed episodes (McClain et al 2003, Wexler et al
2014). Denitrification estimates calculated by iso-
topic model approaches (Houlton and Bai 2009, Fang
et al 2015) are challenged by uncertainties associated
with the assumed fractionation effects of the N loss
processes. Across our catchments, the isotopic effect
of dissolved N leaching varied between −1.6 and
10.7‰, with an average of+2.7‰. The large isotope
effect associatedwith denitrification used in our study
(range of −14 to −18‰) and elsewhere (Houlton
and Bai 2009,Wexler et al 2014,Weintraub et al 2016,
Soper et al 2018, Yu et al 2019) resulted in calculated
average gaseous losses of 2.5 ± 2.2 kg N ha−1 yr−1

across our catchments. This assigned εD between−14
and −18‰ is less fractionating than the denitrific-
ation isotope effect calculated for forest soils under
laboratory conditions with an abundant supply of
NO3

− (−48‰ on average; Wang et al 2018). Under-
expression of the εD under field conditions compared
to laboratory conditions is expected to arise from
more effective nitrate consumption (e.g. Högberg
1997, Houlton et al 2006). Nevertheless, a correct
understanding of isotopic fractionation and its vari-
ability during denitrification poses a critical challenge
for further application of the 15N natural abundance
method.
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Combining measured stream TDN fluxes with
isotope-model derived denitrification estimates
(figure 2) suggested non steady state N ecosystem
balance, as the sum of these losses were less than N
deposition inputs, yielding an N retention term by
difference. The long-term accumulation of N in the
soil derived from N deposition with a distinct δ15N
signature (usually negative δ15N) (Bragazza et al 2005,
Solga et al 2006) could impact the isotopic model cal-
culations, leading to underestimates of the propor-
tion of N losses occurring as N gases. Nonetheless,
calculated N retention was strongly related to the
forest floor concentration of available P and its ratios
to total C and N, indicating an important role of P
limitation in the capacity of forest ecosystem to retain
N from deposition.

4.3. Globally consistent gaseous and dissolved
losses alongside increasing N availability gradient
Across forest biomes, denitrification fluxes derived
from ecosystem δ15N values increased with ecosys-
tem NO3

− export (figure 3). The same overall rela-
tionship between N gas and NO3

− leaching loss held
across tropical, subtropical and temperate forests,
indicating a generalized response to increased NO3

−

availability within ecosystems. Moreover, increas-
ing N losses associated with progressive P scarcity
(widening of N/P ratios in both forest floor and
foliage) across our temperate forest gradient are gen-
erally consistent with observed increases of foliar N:P
from high to low latitudes (McGroddy et al 2004) and
increasing N losses towards tropical regions (Hedin
et al 2009). The largest N loss fluxes to dissolved
N and denitrification were calculated for the trop-
ical/subtropical forest biome, followed by temperate
and boreal biomes. The relative importance of dis-
solvedNover gaseousN losses tended to increasewith
increasing NO3

− export, indicating that denitrifica-
tion dominates when N losses are low but that deni-
trification capacity may be exceeded in N saturated
ecosystems (figure 3).

Systematic evidence of increased N losses with
increasing N availability in our regional analysis
of temperate forest catchments match broader eco-
logical observations of decreased N use efficiency
in high-N forests (Vitousek 1982). Contemporary
global average TDN export from catchments across
different forest biomes (supplementary table 2),
ranges from 5.3 kg N ha−1 yr−1 in tropical/subtrop-
ical forests to 1.6 kg N ha−1 yr−1 in boreal forests,
with a global average of 4.2 kg N ha−1 yr−1, i.e.
13.5 Tg N yr−1 (table 2).

N gas losses have long been challenging to con-
strain, as they include the greenhouse gas N2O
produced by both nitrification and denitrifiaiton,
as well as production of elemental N2. Given the
chain of possible N transformations as mineral N

availability increases, including the coupled pro-
cesses of nitrification and denitrification (both asso-
ciated with formation of the greenhouse gas N2O)
it is possible to constrain estimates of gaseous N
losses based on hydrological NO3

− losses, which are
routinely measured as part of catchment monitor-
ing programs. Extrapolating our empirical relation-
ship betweenN gas andNO3

− fluxes to forests world-
wide yields an estimated values of 8.9 Tg N yr−1

(2.8 kg N ha−1 yr−1). This estimate of N gas loss is
much lower than past N-budget-based estimates of
denitrification N losses from non-agricultural soils
worldwide (58 Tg N yr−1) based on N mass balances
that include highly uncertain and widely varying N
fixation fluxes (Van Drecht et al 2003, Seitzinger et al
2006). Bouwman et al (2013) further provided deni-
trification estimate of 28 Tg yr−1 for non-agricultural
soils applying revised (and much lower) estimates for
BNF (Vitousek et al 2013) as N input to their mass
balance calculations. This revised rate of denitrific-
ation recalculated to forest land is then similar to
our independent denitrification estimate for forested
land, thereby supporting the evidence of lower BNF in
natural ecosystems (Vitousek et al 2013, Sullivan et al
2014) compared to earlier assessments (Cleveland
et al 1999, Galloway et al 2004).

5. Conclusions

Wecombined nitrogen flux and isotopemass balances
from a network of intensively studied catchments to
reveal the underpinning role of soil P availability and
N deposition in defining temperate forests N reten-
tion capacity. Increasing excess of soil N over avail-
able P, reflected in foliar N:P ratio, was accompanied
by enhanced dissolved and gaseous N losses. Increas-
ing catchment wetness corresponded to lower avail-
able P concentration in the forest floor, likely because
of effective soil P stabilization due to changing soil
acidity. These limitations on P availability, combined
with N inputs from deposition, resulted in increas-
ing gaseous and dissolved N losses along gradients of
wetness andNdeposition. This pattern is likely attrib-
utable to variation in soil nitrate production driven
by excess N availability over soil C and P availab-
ility. Combining our results with 15N-based N flux
estimates available from other temperate and tropical
forests, we present a surprisingly consistent relation-
ship between N gas loss and nitrate export for forests
across the world, and estimate that N gas loss and
dissolved TDN export counterbalance 39% and 59%
respectively of worldwide N deposition to forests.
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