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Abstract 57 

Carbon dioxide (CO2) emissions to the atmosphere from running waters are estimated to be 58 

four times greater than the total carbon (C) flux to the oceans. However, these fluxes remain 59 

poorly constrained because of substantial spatial and temporal variability in dissolved CO2 60 

concentrations. Using a global compilation of high frequency CO2 measurements, we 61 

demonstrate that nocturnal CO2 emissions are on average of 27% (0.9 g C m-2 d-1) greater 62 

than those estimated from diurnal concentrations alone. Constraints on light availability due 63 

to canopy shading or water colour are the principal controls on observed diel (24 hr) variation, 64 

suggesting this nocturnal increase arises from daytime fixation of CO2 by photosynthesis. 65 

Because current global estimates of CO2 emissions to the atmosphere from running waters 66 

(0.65 – 1.8 Pg C yr-1) rely primarily on discrete measurements of dissolved CO2 obtained 67 

during the day, they substantially underestimate the magnitude of this flux. Accounting for 68 

night-time CO2 emissions may elevate global estimates from running waters to the 69 

atmosphere by 0.20-0.55 Pg C yr-1.  70 



Carbon dioxide (CO2) emission from inland waters to the atmosphere is a major flux in the 71 

global carbon (C) cycle, and four-fold larger than the lateral C export to oceans1. Streams and 72 

rivers are hotspots for this flux, accounting for ~85% of inland water CO2 emissions despite 73 

covering <20% of the freshwater surface area2. However, the magnitude of global CO2 74 

emissions from streams and rivers remains highly uncertain with estimates updated over the 75 

past decade from 0.6 to 3.48 Pg C yr-1 (2,3). This revision follows improvements in the spatial 76 

resolution for upscaling emissions2,4, as well as new studies from previously underrepresented 77 

areas such as the Congo5, Amazon6,7, and global mountains8. Despite recent studies using 78 

continuous measurements to show large day-night changes in stream and river water CO2 79 

concentrations9–13, the global significance of sub-daily variation on overall CO2 emissions 80 

remains unexplored.  81 

Diurnal cycles in solar radiation impose a well-known periodicity on stream biogeochemical 82 

processes, creating diel (i.e., 24-hr period lengths) patterns for many solutes and gases, 83 

including nutrients, dissolved organic matter, and dissolved oxygen (O2)14. Indeed, diel 84 

variation in O2 arising from photosynthetic activity is the signal from which whole-system 85 

metabolic fluxes are estimated15. Photosynthetic production of O2 is stoichiometrically linked 86 

to the day-time assimilation of dissolved inorganic carbon (principally dissolved CO2), 87 

lowering CO2 concentrations during the day. The resulting diel variation, with higher night-88 

time CO2 concentrations when respiration reactions dominate, implies increased emissions at 89 

night. Despite the obvious connection between photosynthesis and CO2 consumption, the 90 

implications for total aquatic CO2 emissions has been neglected, most likely due to the lack of 91 

sub-daily measurements of CO2 in water16. Other processes can also vary at sub-daily time 92 

scales and could thus similarly drive diel changes in CO2 emissions from streams, including 93 

interactions with the carbonate system17, photo-chemical oxidation of organic matter18, as 94 

well as diel changes in discharge and subsequently lateral CO2 inputs from terrestrial 95 



environments19. Regardless of the driving forces, the overall magnitude, direction, and 96 

significance of diel changes in CO2 emissions remain largely unknown at a global scale.  97 

Current global estimates of CO2 emissions from running waters2,4 rely almost exclusively on 98 

manually collected samples that fail to incorporate sub-daily variability. Here, we assess 99 

whether widespread reliance on discrete day-time sampling creates a strong temporal bias that 100 

underestimates CO2 emissions from running waters. We use the most widely used global river 101 

chemistry database (GLORICH20) and leverage recent technological advances in continuous, 102 

sensor-based dissolved CO2 monitoring16 to ask if this sampling bias is concurrent with 103 

consistent day-night differences in CO2 emissions. We compiled high-resolution CO2 time 104 

series representing a total of 52 years of continuous data from 66 streams worldwide 105 

(Extended Data Fig. 1a; Table S1), spanning a wide range of drainage sizes (Extended Data 106 

Fig. 1b), climate conditions, land cover, and stream physicochemical properties (Table S2). 107 

We evaluated the generality of diurnal stream CO2 variation, quantified the significance of 108 

these signals for CO2 emissions, and identified the main landscape factors that control diurnal 109 

variation. Finally, we evaluated the potential bias in global estimates that arises from 110 

neglecting nocturnal CO2 emissions. 111 

 112 

Results and Discussion 113 

Magnitude and bias of diel changes in CO2 emissions 114 

Water samples compiled in the GLORICH database20 were primarily taken during the day, 115 

with 90% of observations between 08:10 and 15:55 and a median sampling time of 11:25 116 

(Figure 1a). Comparing this time window of manual sampling with sensor data synthesized in 117 

this study, we found that only 10% of days had maximum CO2 emissions within these hours, 118 

and there was a consistent pattern of higher emission rates during night than day (Figure 1b). 119 



Nocturnal emission rates were on average 27% greater than daytime rates across all sites, with 120 

differences ranging from −12 to 193 % (Table S3). This overall pattern was globally 121 

consistent, with 56 of 66 (85%) of sites showing higher average nocturnal CO2 emission rates 122 

(Figure 2a and Table S3). However, the observed ranges in diel change varied among biomes 123 

(Figure 2b). Specifically, streams with the largest diel change in emissions drained temperate 124 

forests, followed by montane grasslands; yet these biomes also had the largest internal 125 

variation. We observed generally smaller diel changes, and less internal variability, for boreal 126 

and tropical/sub-tropical systems. Despite such differences, the large variation observed 127 

within most biomes suggests that controls on diel CO2 emissions operate at finer spatial 128 

scales10. Further, because the GLORICH database – the foundation of current global estimates 129 

of CO2 emissions from inland waters2 – relies primarily on discrete samples with a strong 130 

daytime sampling bias, the geographically widespread diel variation in CO2 emissions 131 

introduces a systematic and potentially large error in estimates of aggregate flux rates.  132 

 133 

Drivers of diel changes in CO2 emissions 134 

Diel patterns in stream CO2 emissions result from a dynamic interplay between 135 

biogeochemical and hydrological processes. These diel drivers include aquatic primary 136 

production10,12, biological21 and photolytic oxidation of organic C18, and terrestrial import of 137 

CO2 from soil respiration and mineral weathering19. Additionally, diel changes in water 138 

temperature can affect CO2 emissions through its effect on the physical exchange rate 139 

between air and water (kCO2)22. An initial exploration of our continuous data suggest that 140 

aquatic processes generate considerable temporal variation in the magnitude of diel variation 141 

in emissions (Figure 3). Specifically, for sites with annual records, the largest diel amplitudes 142 

were consistently observed during summer, and in open canopy reaches (median = 0.76 g C 143 



m-2 d-1). Markedly reduced amplitudes were observed in streams with closed canopies 144 

(median = 0.09 g C m-2 d-1), while intermediate amplitudes were evident at partially covered 145 

sites (median=0.37 g C m-2 d-1). Overall, these observations are consistent with greater levels 146 

of daytime CO2 uptake in open canopy streams during summer, when warm temperatures and 147 

greater incident light23,24 support elevated rates of photosynthesis10. By contrast, wintertime 148 

diel changes in stream CO2 emissions were more similar across canopy cover categories, 149 

suggesting reduced aquatic photosynthesis.  150 

We used structural equation modeling (SEM) to further resolve factors and causal 151 

combinations that underpin variation in summertime diel emissions, the time-period for which 152 

we have the most complete data set (Figure S1; Table S1). Our structural model consisted of 153 

two levels of factor interaction, or metamodels (see method section for a more detailed 154 

description of the SEM). First, we considered whether diel CO2 emission patterns arise from 155 

parallel variation in kCO2 and stream water pCO2, the two main factors determining aquatic 156 

CO2 emissions25. The results from the SEM at this first level (r2=0.43; Extended Data Fig. 2 157 

and Table S4) suggest that diel variation in CO2 emissions was mostly driven by variation in 158 

pCO2 (β=0.65), whereas kCO2 exerted a minor influence (β=0.02). Second, we used SEM to 159 

identify significant relationships between environmental variables and diel changes in pCO2. 160 

This second SEM model (r2=0.46; Extended Data Fig. 2 and Table S4) indicated that stream 161 

canopy cover (β=−0.58) was the primary driver of diel variation of pCO2. Together with the 162 

observed seasonal patterns (Figure 3), our model supports the hypothesis that riparian canopy 163 

cover drives diel pCO2 variation by regulating the amount of light reaching the stream surface 164 

and, in turn, daytime rates of stream autotrophic CO2 uptake15,26,27. 165 

Diel patterns in stream CO2 emissions not only varied seasonally but also spatially, increasing 166 

with channel size (Figure 4a). In larger river systems, terrestrial shading is reduced, increasing 167 



the light available for primary producers23, which ultimately explains the general increase in 168 

gross primary production (GPP) with channel size28,29. However, larger rivers with open 169 

canopies in our dataset did not necessarily exhibit significant diel change in CO2 emissions 170 

(Figure 4b). The variability in diel CO2 amplitudes among these larger rivers likely arises 171 

from differences in light-attenuation in the water column, linked to high concentrations of 172 

dissolved organic matter (DOM) or suspended sediments that inhibit GPP30 (Figure 4c; 173 

Extended Data Fig. 3). As such, light attenuation, either by canopy cover along small streams, 174 

or by water colour, turbidity, and depth for larger river systems31, dictates the magnitude of 175 

diel variation in CO2 emissions along river continua. We further explored the influences of 176 

water colour at five sub-tropical Florida sites spanning a large range in DOC (1.0 – 43.4 mg 177 

L-1) and ecosystem size (9 – 66 median discharge; m3 s-1), and for which we have high 178 

frequency CO2 and fluorescent DOM (fDOM) measurements. These data confirm that diel 179 

changes in CO2 emissions are supressed above ca.70 ppb of fDOM (corresponding to ca. 20 180 

mg L-1 DOC), even when incident light is relatively high (Figure 4d). Despite this potential 181 

influence of water colour, more than 95% of the sites in the GLORICH database are below 20 182 

mg L-1 DOC (Extended Data Fig. 4), and thus water colour as a constraint on diel CO2 183 

patterns is likely not operating for most of the monitoring sites from which global estimates of 184 

river CO2 emissions are currently derived. 185 

 186 

The controls on diel variation in CO2 emissions exerted by either canopy cover or water 187 

colour do not follow obvious geographical patterns (Figure 2b). However, the probability that 188 

one or both constraints operate is likely biome-specific, which may aid predictions of which 189 

regions of Earth are more prone to strong bias in upscaling. For example, boreal and tropical 190 

regions are typically characterized by forests with dense canopies and can support aquatic 191 

systems with dark, DOC-rich waters32,33 (Extended Data Fig. 5). Indeed, for these biomes we 192 



observed, on average, a lower diel change in CO2 emissions (Figure 2b). In this context, 193 

observations from the sub-tropical Florida sites (Figure 4d) likely provide insight into the 194 

expected dynamics for dark water systems elsewhere, including tropical rivers that are 195 

otherwise poorly represented in our analysis.  For some biomes (e.g., montane grasslands and 196 

tundra), limited canopy cover and low catchment DOC production make light constraints on 197 

aquatic GPP and diel CO2 emissions less likely, while in other settings (e.g., human 198 

dominated landscapes) land cover change and nutrient enrichment can amplify diel CO2 199 

variation by stimulating rates of algal photosythesis30. Overall, we suggest that future efforts 200 

to resolve the fine-scale spatial patterns of canopy cover and DOM in running waters are 201 

needed to further refine our understanding of aquatic GPP and its implications for CO2 202 

emissions. 203 

 204 

Implications for global CO2 emissions from running waters 205 

Our analysis reveals important consequences for global estimates of CO2 emissions from 206 

running waters: (1) current estimates based on discrete samples are heavily biased towards 207 

day-time, (2) CO2 emission rates are consistently higher at night-time due to variations in 208 

aquatic pCO2, and (3) this pattern is primarily driven by light availability and is widespread 209 

across biomes and along river continua. To quantify this underestimation of CO2 emissions 210 

we compare the measured total emissions for each site with the emissions estimated 211 

considering only the CO2 concentrations observed between 10:00 and 14:00 (the interquartile 212 

sampling time in the GLORICH database (Figure 1a). Across all 66 sites, CO2 emissions 213 

integrated over a full day were 35% higher than those based on samples taken at midday 214 

(range: −7 – 369 %; 95% confidence interval: 14 – 47 %). Based on the two current global 215 

estimates of stream CO2 emissions of 0.6-1.8 Pg C yr-1 (2,4),  and our estimate of this 216 



proportional bias, we suggest that an additional 0.20 – 0.55 Pg C yr-1 of CO2 may be evaded 217 

from streams globally (95% confidence interval: 0.09 – 0.30; 0.25 – 0.84, respectively). 218 

However, given that the current global estimates of C emissions from running waters are still 219 

highly uncertain and remain unbalanced by global C budgets34, this additional flux of CO2 220 

should be taken with caution as global estimates continue to be refined.   221 

We also emphasize other important sources of uncertainty in the global estimates of emissions 222 

from running waters, upon which our calculations are based. For example, current estimates2,4 223 

are derived from indirect determinations of surface water CO2 from alkalinity and pH, which 224 

can be highly biased35,36. Further, the notoriously variable nature of hydrodynamic factors that 225 

influence CO2 emissions cannot easily be aggregated at large spatial scales37,38. It is also 226 

problematic that current estimates are biased towards observations from mid-to-high latitudes, 227 

even though underrepresented tropical systems may be key contributors to global CO2 228 

emissions5,39. Our study, while covering most biomes and spanning large gradients in canopy 229 

cover and water colour, also suffers from this bias. Despite this, our assessment represents the 230 

first compilation of direct, high-frequency measurements of CO2 in flowing waters from 231 

across the globe, which helps refine global estimates of CO2 emissions from inland waters. 232 

While the magnitude of this global estimate will be improved with further measurements, the 233 

broad consistency and strength of the patterns observed here suggest that nocturnal emissions 234 

of CO2 from streams and rivers are a major unaccounted flux in the global C cycle.  235 
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FIGURE LEGENDS 360 

Figure 1. Magnitude and bias of diel variation in CO2 emission fluxes from global 361 

streams.  362 

a) Distribution of manual sampling times in the GLORICH database20 together with the time 363 

of maximum CO2 emission fluxes from sensor data (this study). b) Relationship between the 364 

median day and night CO2 emission flux (g C m-2 d-1) for all study sites and days. The black 365 

1:1 line indicates that 75.2 % of daily observations exhibit enhanced nocturnal emissions. The 366 

inset illustrates the distribution of observations in the densest region of the graph.  367 

 368 

Figure 2. Geographical distribution of diel variation in stream CO2 emission fluxes. a) 369 

Global patterns of night versus day differences in CO2 emission fluxes averaged by stream (in 370 

g C m-2 d-1; see Table S3 for a detailed summary). b) Night-day differences in CO2 emission 371 

fluxes averaged by stream and grouped by biome (in %; see Table S3 for a more detailed 372 

summary). The black point and bar represent the mean and 95% bootstrapped confidence 373 

interval for each biome.  374 

 375 

Figure 3. Seasonal pattern of diel changes in CO2 emission fluxes from streams. Seasonal 376 

variation in the night versus day difference of CO2 emission fluxes (g C m-2 d-1) grouped by 377 

riparian canopy cover category (open = yellow, intermediate = light green and closed = dark 378 

green; 33, 16 and 17 sites and 5780, 3814 and 5130 daily observations, respectively; see 379 

Methods and Table S2). The coloured solid lines are locally weighted regression (LOESS) 380 

model fits for a visual interpretation. Panels at top and bottom show extreme positive and 381 

negative values, respectively (note y-axis breaks and change in scaling). Density plots show 382 

distributions of night vs. day differences of CO2 emission fluxes (g C m-2 d-1) grouped by 383 

canopy cover during summer. Differences between canopy levels were evaluated using the 384 

non-parametric Kruskal–Wallis test.  385 

 386 

Figure 4. Night vs. day differences in CO2 emission fluxes along the river size and colour 387 

continuum. Relationship between the night-day difference of CO2 emission fluxes (%) and 388 

the median annual discharge (m3 s-1) for a) streams (median discharge below 1.5 m3 s-1, 389 

Extended Data Fig. 1) coloured by canopy cover category, and b) larger rivers (median 390 



discharge above 1.5 m3 s-1, Extended Data Fig. 1). Each point represents a monthly average 391 

for each site, except data from the six additional rivers (circles with grey error bars) obtained 392 

from the literature (Table S5). c) Relationship between the night-day difference in CO2 393 

emission fluxes (%) and the mean dissolved organic carbon concentration (DOC, mg L-1) for 394 

streams (circles) and rivers (triangles), coloured by canopy cover category (Extended Data 395 

Fig. 1). d) Relationship between the daily night-day difference of CO2 emission fluxes (%) 396 

and the daily fluorescent organic matter concentration (fDOM, ppb QSE, quinine sulfate 397 

equivalent) for the five rivers in Florida with high-frequency water colour data (Extended 398 

Data Fig. 1 and Table S5), coloured by incident light (as photosynthetic photon flux density, 399 

PPFD).  400 

 401 

Methods 402 

Study sites and data acquisition 403 

We compiled high-frequency dissolved CO2 time-series (median temporal resolution = 39 404 

min; range 5 to 180 min) over at least eight days (median time series duration = 317 days; 405 

range 8 to 1553 days) from 66 headwater streams worldwide (Figure 2a; Table S1). We used 406 

median annual discharge (which covaried with catchment surface area; Extended Data Fig. 5) 407 

as a criterion to select streams (i.e., median annual discharge < 1.5 m3 s-1, catchment area < 408 

246 km2; orders 1 to 340). Selected streams come from multiple biomes, including tropical 409 

forests and savanna, temperate forests, boreal forest and taiga, arctic tundra, high-mountain 410 

forests and grasslands and, accordingly, a wide range of climatic and biogeographic 411 

conditions (Table S2). Sites also encompass a variety of catchment features (e.g., land cover, 412 

altitude, and surface area) and reach-scale hydrological, morphometric, and physicochemical 413 

properties (Table S2).  414 

High-frequency CO2 measurements were obtained from a variety of sources, including 415 

unpublished time-series, monitoring network platforms (e.g., StreamPulse, 416 



https://data.streampulse.org/), and literature datasets8–12,16,41–43 (Table S1). In all cases, CO2 417 

was measured using in-situ automated sensors connected to data loggers (Table S1). The 418 

measurement accuracy of the CO2 sensors ranged from ±1% to ±3%. In addition, water 419 

temperature (in all streams) and discharge (in 57 of 66 streams; continuous discharge derived 420 

from water depth sensor data) were also measured at the same frequency as CO2 using in-situ 421 

automated sensors. Additional datasets13,44–47 were included in this study but not directly used 422 

in the main analysis (only used to construct Figure 4b-d) because they were either from 423 

considerably larger rivers (median discharge above 1.5 m3 s-1, Extended Data Fig. 1), based 424 

on high-frequency but short-term deployments (< 8 days), and/or based in discrete (not high-425 

frequency) measurements of CO2 emissions (Details for these observations are found in Table 426 

S5).  427 

 428 

Time-series processing  429 

We standardized each time-series to an hourly time step by resampling higher frequency 430 

measurements and interpolating lower frequency measurements. We also normalized CO2 431 

concentrations to CO2 partial pressures (pCO2, ppm), corrected for temperature and pressure 432 

variation, and removed obvious measurement errors (pCO2 < 0 ppm. In total, the high-433 

frequency dataset used for analysis included 457,637 hourly CO2, temperature and discharge 434 

observations. 32 time series covered at least one complete year, 7 covered more than 200 days 435 

while the remaining 27 covered between 8 and 198 days, mostly during the summer (Fig. S1).  436 

 437 

Compilation of ancillary variables 438 

Stream reach canopy cover was determined by visually inspecting orthophotos of the study 439 

sites. High-resolution orthophotos from Google Earth imagery were downloaded at the 440 



highest resolution possible using the “ggmap” package in R (version 3.0.0), and classified in 441 

three categories of “no cover” (0), “partly covered” (1), or “fully covered” (2). The “no 442 

cover” category was selected when it was possible to see the full extent of the stream channel, 443 

“partly covered” when some parts of the stream were visible, and “fully covered” when it was 444 

not possible to detect the presence of a stream based on an orthophoto (Fig. S2).  445 

Stream channel slope was determined by measuring the difference in elevation between the 446 

sampling location and 300 meters upstream following the channel. To do this, we downloaded 447 

digital elevation models (DEM) at resolutions ranging between 1.9 – 14 m (depending on the 448 

location) using the “elevatr” package in R (version 0.2.0). Then, for each site a raster of the 449 

flow-accumulation was produced using the “whitebox” package in R (version 0.5.0), after 450 

initially breaching depressions for hydrological correctness. By combining the flow-451 

accumulation raster with the DEM, we extracted the stream path and the elevation at the site 452 

and 300 m upstream (in QGIS 3.2.1).   453 

Land cover was determined using the Global Land Cover Maps (100m resolution; Copernicus 454 

Global Land Service) and the catchment boundaries delineated using a high resolution DEMs 455 

(2x2m) in QGIS 3.2.1. Biome classifications were performed according to Olson et al. 456 

(2001)48. 457 

 Mean annual concentrations (not flow-weighted) of dissolved organic carbon (DOC), nitrate 458 

(NO3
-), ammonium (NH2+), pH and conductivity for the study streams were obtained from 459 

unpublished sources or extracted from the literature. Mean annual stream discharge, as well as 460 

water temperature, were computed from continuous time series. 461 

 462 



Determination of CO2 emissions 463 

We estimated CO2 emissions as the product of the gas transfer velocity (kCO2) and the 464 

concentration of dissolved CO2 relative to atmospheric equilibrium25. A standardized gas 465 

transfer velocity (k600) was obtained based on the stream energy dissipation (eD)49, defined as 466 

the product of channel slope (S; m m-1), water velocity (V; m s-1) and acceleration due to 467 

gravity (g; 9.8 m s-2). We then calculated k600 as k600 = e(3.1 + 0.35×log(eD)) for eD < 0.02 m-2 s-3; 468 

and as k600 = e(6.43 + 1.18×log(eD)) for eD > 0.02 m-2 s-3. Water velocity was modelled using a 469 

power-law relationship with discharge25; in 4 streams discharge data were not available and 470 

we used a constant velocity of 0.2 m s-1, the average velocity of the other sites. The k600 was 471 

converted to a gas- and temperature-specific gas transfer velocity kCO2, using the temperature-472 

dependent Schmidt numbers for CO2 
25. Potential day-night differences in gas exchange 473 

required separate night and day kCO2 calculations with time-of-day specific velocity and 474 

temperature values. The CO2 disequilibrium relative to the atmosphere was calculated as the 475 

difference in water and air pCO2, converted to molar CO2 concentrations using the 476 

temperature-specific Henry’s constant. Atmospheric pCO2 was assigned monthly to each site 477 

from the global average measured by the Global Monitoring Laboratory of NOAA 478 

(https://www.esrl.noaa.gov/gmd/ccgg/trends/global.html), which contains measurements 479 

between 2007 to 2020 that spatially align with our study. We assessed the importance of sub-480 

daily changes in atmospheric concentrations by examining atmospheric measurements of 481 

pCO2 from 14 streams and 77 ecosystem flux towers of globally. We concluded that day-482 

night changes in atmospheric pCO2 are small and inconsistent, and therefore poorly 483 

constrained for extrapolation to other stream sites (See Supplementary Text 1). 484 

Finally, to assess whether a day-time sampling bias exists, we determined the distribution of 485 

sampling time in the GLORICH database20. From the database, we filtered all sampling 486 

occasions where both CO2 (calculated from alkalinity and pH) and the time of sampling were 487 



available (n = 733,977, from 8,520 locations), we then extracted summary statistics such as 488 

the median, 90% range, and the interquartile range to compare with sensor measurements.  489 

 490 

Statistical analyses 491 

We examined a variety of metrics to characterize sub-daily and between-day variation. To 492 

quantify the underestimation in CO2 emissions due to a day-time bias, we compared total CO2 493 

emissions estimated using hourly measurements with total emissions estimated from the 494 

average measurements between 10:00 and 14:00, the interquartile range of the observations in 495 

the GLORICH database. Given the non-normality of results among sites, we present 496 

uncertainty as normal bootstrapped intervals using the “boot” package in R (version 1.3-24), 497 

with 10,000 replications. We quantified median CO2 emissions (g C m-2 d-1) during the day 498 

(between 12:00 and 17:00), median CO2 emissions during the night (between 00:00 and 499 

05:00), the absolute difference between day and night CO2 emissions, and the relative 500 

difference in CO2 concentrations between day and night (in %; ((CO2, NIGHT – CO2, DAY)/ CO2, 501 

DAY )×100). Also, to evaluate differences between canopy levels we used the non-parametric 502 

Kruskal–Wallis test. 503 

We explored temporal patterns of day-night CO2 emission differences to test the influence of 504 

seasonality, local canopy cover, and their interaction. We used piecewise structural equation 505 

modelling (SEM) to evaluate causal and directional links between physical and biological 506 

parameters operating at the reach-scale (Table S2) and variance in daily day-night differences 507 

in CO2 emissions. SEM is a theory-oriented multivariate statistical approach capable of 508 

testing a network of causal hypotheses by allowing evaluation of simultaneous influences 509 

rather than individual (bivariate) causes50. We first devised a metamodel (or metamodels) 510 

based on a priori theoretical knowledge and known mechanisms (see above and Figure 3). 511 



The metamodel was fitted and tested using the function psem() in the piecewiseSEM  R 512 

Package (version 2.1). To evaluate the effect sizes of each relationship (or path) within 513 

metamodels, the psem() model output provides estimates of individual (standardized) path 514 

coefficients (β). The evaluation of goodness of fit and associated uncertainty is performed 515 

through the coefficient of determination (r2) and the residual standard error (RSE), 516 

respectively. Compared with traditional variance-covariance based SEM, piecewise SEM 517 

allows for fitting of models to different distributions through a generalized linear model 518 

(GLM). SEM modelling was conducted using summer data only, which is when most of the 519 

sites are represented (see Fig. S1).   520 
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