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Title: Using demand mapping to assess the benefits of urban green and blue space in cities 1 

from four continents. 2 

 3 

Abstract:  4 

The benefits of urban green and blue infrastructure (UGI) are widely discussed, but rarely take 5 

into account local conditions or contexts. Although assessments increasingly consider the 6 

demand for the ecosystem services that UGI provides, they tend to only map the spatial 7 

pattern of pressures such as heat, or air pollution, and lack a wider understanding of where 8 

the beneficiaries are located and who will benefit most. We assess UGI in five cities from four 9 

continents with contrasting climate, socio-political context, and size. For three example 10 

services (air pollution removal, heat mitigation, accessible greenspace), we run an 11 

assessment that takes into account spatial patterns in the socio-economic demand for 12 

ecosystem services and develops metrics that reflect local context, drawing on the principles 13 

of vulnerability assessment. Despite similar overall levels of UGI (from 35 to 50 % of urban 14 

footprint), the amount of service provided differs substantially between cities. Aggregate 15 

cooling ranged from 0.44 °C (Leicester) to 0.98 °C (Medellin), while pollution removal ranged 16 

from 488 kg PM2.5/yr (Zomba) to 48,400 kg PM2.5/yr (Dhaka). Percentage population with 17 

access to nearby greenspace ranged from 82% (Dhaka) to 100% (Zomba). The spatial 18 

patterns of pressure, of ecosystem service, and of maximum benefit within a city do not 19 

necessarily match, and this has implications for planning optimum locations for UGI in cities.  20 

 21 

Keywords: Urban Green and Blue Space, Natural Capital, Ecosystem Services, Urban 22 

Planning, nature-based solutions (NBS). 23 

 24 

 25 
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 27 

Introduction 28 

Approximately half of the world population currently live in cities, with this proportion projected 29 

to reach 60% by 2030 (Montgomery, 2007). As the urban fabric struggles to accommodate 30 

this influx, towns and cities expand and/or densify. By-products of these increases in urban 31 

population are increased air, water and noise pollution (e.g. from traffic, domestic waste and 32 

industry), increased anthropogenic heat outputs, as well as increased absorption of solar 33 

radiation and decreased emission of longwave energy (i.e. Urban Heat Island, UHI, effects - 34 

Mirzaei, 2015). With space at a premium, urban green and blue space, also termed urban 35 

green and blue infrastructure (UGI), typically makes way for man-made infrastructure, such 36 

as buildings and transport networks (e.g. through densification processes; Haaland et al., 37 

2015). In turn, this reduction in UGI undermines the urban system’s ability to regulate 38 

pressures such as heat, noise, air pollution and flooding (Foley et al., 2005; Derkzen et al., 39 

2015), compounding the effects of urbanisation. Impacts of these pressures at an individual 40 

level often lead directly to poor health and declines in well-being. 41 

The direct and indirect effects of these pressures on people are varied. PM2.5 is the most 42 

damaging component of urban air pollution, with elevated PM2.5 concentrations associated 43 

with negative health impacts such as premature death, lung cancer, pulmonary inflammation, 44 

altered cardiac function, and acute stroke mortality (Hong et al., 2002; Pope et al., 2002; Pope 45 

et al., 2004). High temperatures can place significant stress on the human body, with extremes 46 

leading to heat syncope, cardiovascular stress, thermal exhaustion or heat stroke 47 

(Kleerekoper et al., 2012). The severity of these conditions range from discomfort, impairment 48 

of physical and cognitive functions, to increases in morbidity and mortality rates. High 49 

temperatures in urban areas, in combination with air pollution, can also lead to increased 50 

ground-level ozone, which can have an antagonistic effect on cardio-respiratory conditions 51 
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(WHO, 2004). Increased incidence of psychosis and clinical depression, and decreased life 52 

satisfaction have all been connected to high levels of urbanisation, high population density 53 

and low levels of local-area urban green space (Sundquist et al., 2004; Chen et al., 2015; Cox 54 

et al., 2018; Houlden et al., 2018).  55 

The United Nations Sustainable Development Goals (SDGs) include an emphasis on the 56 

importance of inclusive, accessible, multi-functional green spaces in urban settings, to provide 57 

a variety of benefits, including health and well-being to residents, especially target 11.7 of the 58 

UN Sustainable Development Goals (UN, 2017). UGI can have a significant cooling effect 59 

(Bowler et al., 2010a; Manteghi et al., 2015; Reis & Lopes, 2019), and vegetation removes 60 

particulate matter from the air column (Bealey et al., 2007; Chen et al., 2019). Exercise, or 61 

other physical activity in green or natural surroundings provides both short-term and long-term 62 

positive health outcomes (Barton & Pretty, 2010) and a number of studies have found links 63 

between availability of green spaces, the amount of exercise people take and physical health 64 

(e.g. Japan - Takano et al., 2002; Canada – Villeneuve et al., 2012). Many recent studies have 65 

identified associations between mental well-being and access/proximity to green space (e.g. 66 

Houlden et al. 2019). However, access to UGI, and the associated benefits, are often 67 

influenced by socio-economic status (e.g. Jenerette et al. 2011; Rutt & Gulsrud, 2016).  68 

People in lower income neighbourhoods are typically at higher risk of exposure to, and lack 69 

the means to respond or adapt to, a number of these urbanisation-related pressures 70 

(Rosenthal, 2010; Pearce, 2013; Macintyre et al., 2018). For example, Neidell (2004) observed 71 

both greater exposure and greater effects of air pollution on asthmatic children of lower socio-72 

economic status (SES) in California, USA (the authors cite affordability of living in areas with 73 

cleaner air as an impediment to lower SES families responding to/avoiding higher exposure). 74 

Children are particularly vulnerable and their exposure to these pressures can result in life-75 

long impacts (Salthammer et al., 2016), not only in terms of health and well-being (Gauderman 76 

et al., 2005; McConnell et al., 2010), but also in terms of socio-economic mobility (Wargocki 77 

& Wyon, 2007). Additionally, differences in all-cause or selected-cause mortality have not 78 
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been shown to be associated with extent of green space at the city-scale e.g. in the US 79 

(Richardson et al., 2012) and England (Bixby et al., 2015).  This is critical because it suggests 80 

risks/benefits are highly localised, with likely implications for health inequalities. These 81 

concepts are fundamental to the emerging understanding of environmental justice in an urban 82 

context (Langemeyer & Connolly, 2020). 83 

To date, studies of the ecosystem services (ES) provided by UGI in relation to health and well-84 

being are typically focussed on low to medium population density, wealthy countries in North 85 

America, Europe and Asia, with relatively few in what is commonly referred to as the “Global 86 

South” (see Dados & Connell, 2012), i.e., predominantly low-income countries of South 87 

America, the Middle East and Africa (Gupta et al. 2016; Cruz-Garcia et al., 2017). As these 88 

low-income countries are predicted to be at the centre of projected future growth and 89 

urbanisation (Szabo, 2018), they should be the focus of research tackling the negative impacts 90 

of urbanisation and the associated inequality issues.  91 

The majority of studies which attempt to map demand for ecosystem services pick easy 92 

metrics, which focus almost exclusively on mapping the pressure (Baró et al. 2015; Luederitz 93 

et al. 2015). They fail to take account of the location of the beneficiaries, and which 94 

beneficiaries are likely to benefit the most from service provision. An assessment which aims 95 

to tackle inequity issues needs to map and assess those sectors of the population who will 96 

benefit most from the ecosystem services that UGI provides, in combination with where the 97 

pressures are greatest and where the maximum ecosystem service can be delivered. These 98 

three dimensions are unlikely to be maximised in the same place.  99 

In this study, we look at five cities across the world with a diversity of geographical, socio-100 

political, climatic and economic contexts. Since there are relatively few Urban ES assessments 101 

in the Global South, we focus our assessments on four cities in this region, with a single city 102 

in the UK, Europe, for contrast (using the same methods). The aims of this study were firstly 103 

to demonstrate, using freely available open data sources, a means to identify and map urban 104 

green and blue space within a functional definition of urban footprint. We hypothesised that 105 
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there would be variation in the congruence between the urban footprints and the 106 

administrational boundaries of the cities. Using the urban footprint as the basis of spatial 107 

analysis, and drawing on the principles of vulnerability assessment, we then aimed to answer 108 

the following questions: i) how do ES supply and socio-economic demand vary spatially within 109 

the study cities? and ii) what are the implications for calculating the health-related benefits 110 

from UGI in a way that is context-dependent? We select three important ecosystem services 111 

to illustrate this demand-focused approach: air pollution removal by woodland, heat mitigation, 112 

and accessible greenspace as a proxy for physical and mental wellbeing benefits. These 113 

represent important services in an urban context, with strong links to human health, especially 114 

in a global context (WHO 2018). Lastly, we compare and draw out commonalities across the 115 

cities. We hypothesised that the quantities of services provided would not be a simple function 116 

of extent/quantity of UGI; spatial context also being a factor. Further, we predicted that the 117 

highest demand for mitigation would not always be at locations where the pressures are 118 

greatest. 119 

 120 

Methods: 121 

The five case study cities are shown in Fig. 1: Dhaka City is a mega-city in Bangladesh, on 122 

the Ganges river delta, with population of 19,578,000, and extensive low-lying land with a 123 

relatively large area of water bodies. The two cities in Africa are somewhat smaller; Kigali in 124 

Rwanda has population of 1,058,000 and Zomba in Malawi a population of 105,000. Medellin 125 

is a relatively high altitude city in Colombia, with a population of 3,934,000 and very little blue 126 

space. Lastly, Leicester in the UK has a population of 354,000 and is part of a larger 127 

conurbation of urban areas in East Midlands of England. The cities are described in more 128 

detail in Appendix I. 129 

[Fig. 1 here] 130 

Land cover classification 131 
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We used a number of Spectral Indices as the basis for an enhanced land cover classification 132 

to identify urban green and blue space: Normalised Difference Vegetation Index (NDVI), 133 

Normalised Difference Built-up Index (NDBI), Normalised Difference Water Index (NDWI) and 134 

Urban Index (UI). These indices were calculated from cloud-free Sentinel-2a data (see table 135 

S1, in Supplementary Material for details) at a spatial resolution of ≈10 m (resampling to 10m, 136 

where necessary). Whilst NDVI alone is not always a good discriminant of different vegetation 137 

types, e.g. trees and grass, other spectral indices can be (e.g. NDWI, Szabo et al., 2016), and 138 

when multiple indices are combined, broad land cover classes, such as built up land, roads, 139 

grass and trees can be isolated (Duan et al., 2019). 140 

We used unsupervised k-means clustering (kmc) to classify land cover into 10 classes, which 141 

were then assigned to one of four broad categories of urban land cover (after Jones et al., 142 

2019), ‘Built environment’, ‘High green’ (woody, intensive vegetation, i.e. woodland), ‘Low 143 

green’ (non-woody, extensive vegetation, i.e. grass), ‘Blue space’ (water), using the True 144 

Colour Image (Sentinel-2a, TCI) for reference. Road networks and water bodies, including 145 

rivers, were extracted from Open Street Map (OSM), then used to update the classified raster 146 

dataset, in case any of these features were not detected in the satellite data. 147 

 148 

Urban Footprint 149 

Accurate urban extents are difficult to derive from administrative definitions (Balk et al., 2004). 150 

Many studies relating to urban ES use administrative boundaries to delimit the study area. 151 

However, these types of boundaries are of limited suitability for the purpose of assessing 152 

urban green and blue space. They are often not representative of the shape or size of the 153 

actual urbanised area, and they typically include large areas of woodland, grassland or 154 

cropland, which lie outside the urban area and are not part of the urban fabric. To undertake 155 

an objective quantitative assessment of urban green and blue space, we used a data-driven 156 
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approach, based on the morphology of the urban fabric to define the urban footprint of our five 157 

case study cities.  158 

We first used ‘focal statistics’, calculating a mean value within a (100 m x 100 m) 159 

neighbourhood region, applied to the ‘Built environment’ land cover class. We reclassified 160 

values of 0.15 and above as Urban. These urban areas were converted from raster into vector 161 

data - this threshold was chosen after sensitivity testing, using the TCI band as a reference. 162 

In order to identify and ‘capture’ green and blue space lying within the urban footprint we 163 

applied the variable positive-buffer and negative-buffer technique of Jones et al. (2019), to 164 

simplify the geometry of these polygons, selecting only polygons with an area greater than 1 165 

km2 and retaining only the geometry defining the overall perimeter of each polygon. The 166 

resulting urban footprint included all areas of green and blue space within the urban 167 

morphology and was used as the study extent for all further analyses. 168 

 169 

Area calculations of land cover classes 170 

Areas (km2) of our land cover classes were calculated using polygon representations of the 171 

raster land cover dataset. Road networks, extracted from OSM, were used as an erase feature 172 

in order to delimit land cover parcels prior to the area calculations of green and blue space. 173 

We also created a combined ‘Green space’ category to aid interpretation, by merging the two 174 

vegetation classes using the dissolve function.  175 

 176 

Data on pressures 177 

In this study, we looked at two key urbanisation-related pressures (heat pressure and PM2.5 178 

pollution), with major health impacts (Jayasooriya et al. 2017; WHO 2018) using the following 179 

data: To estimate land surface temperature, we used Landsat satellite observations 180 

downloaded from USGS hub (https://earthexplorer.usgs.gov/). We used Landsat 8 OLI/TIRS 181 

https://earthexplorer.usgs.gov/
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C1 L1 data and selected only imagery that had less than 10% cloud coverage. We analysed 182 

an 8-day composite from the hottest month of the year (2018) in Google Earth Engine (GEE) 183 

platform. First, we resampled all spectral bands into 30 m resolution, then, calculated land 184 

surface temperature after Sobrino, et al. (2004):  185 

𝐿𝐿𝐿𝐿𝐿𝐿 (°𝐶𝐶) =
ABT

1 + (𝜆𝜆 + 𝐿𝐿/𝜌𝜌)𝑙𝑙𝑙𝑙𝑙𝑙
                                 (1) 186 

Where ABT is the atmosphere brightness temperature, 𝜆𝜆 is a wavelength and 𝜌𝜌 =hc/k (1.438 187 

x 10-2mk), where h is Planck’s constant (6.626 x 10-34J/S), c is a velocity of light, k is Boltzman’s 188 

constant (1.38x10-23 J/K), and 𝑙𝑙 is a surface emissivity (𝑙𝑙 = 0.004 ∗ 𝑃𝑃𝑃𝑃 + 0.989) - in which Pv 189 

is the proportion of vegetation derived from maximum and minimum NDVI values.  190 

For PM2.5 we used the most up-to-date global dataset available at a suitably high resolution, 191 

2016 PM2.5 concentrations from MODIS, MISR and SeaWiFS Aerosol Optical Depth (AOD) 192 

with GWR (van Donkelaar et al., 2018).  193 

 194 

Socio-economic data 195 

The gridded population data for all five cities (people per pixel) are produced using a 196 

dasymetric modelling approach, using a Random Forest estimation technique to redistribute 197 

population count data, described in Stevens et al. (2015).  Data for 2015 were used for all 198 

cities, except Leicester (2011). The data for Leicester was at a spatial resolution of 10 m, 199 

wheras data for other cities were at approximately 100 m (3 arc-seconds). 200 

The gridded poverty data for Dhaka and Zomba (30 arc-second resolution) are created using 201 

Bayesian model-based geo-statistics in combination with high resolution gridded spatial 202 

covariates, applied to 2011 geo-located household survey data (Demographic and Health 203 

Survey, and Living Standards Measurement Study, respectively). The poverty indicator metric 204 

for Dhaka is likelihood of living in poverty (less than $2.50 per day) and the indicator for Zomba 205 

is the proportion of residents living in poverty (less than $2 per day). Poverty data for the other 206 
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three cities were not available in gridded format, so figures are given at city district level (lower 207 

layer super output area, in the case of Leicester). The poverty indicator data for Kigali is the 208 

proportion of the population in poverty (less than 159,375 RWF per year), in 20013-14. For 209 

Medellin, the data are mean monthly income (2018), per city district. The income data were 210 

rescaled from zero to one and then inverted (i.e. 1 minus rescaled data), to represent 211 

prevalence of poverty. For Leicester, the poverty indicator used is the Index of Multiple 212 

Deprivation. 213 

 214 

Quantification of Ecosystem Services (ES) provided by urban green and blue space 215 

Air pollution removed (PM2.5) by UGI was calculated using methods derived by re-analysis of 216 

data from Jones et al. (2017; 2019). A meta-model was created in the form of two regression 217 

equations to calculate quantity of PM2.5 pollution removed by woodland, and the resulting 218 

change in PM2.5 concentration. For the first equation, analysis showed that pollution removal 219 

was linearly related to amount of woodland, but efficiency varied according to PM2.5 220 

concentration. Therefore, we simplified the response variable to pollution removed per hectare 221 

of woodland, resulting in the following equation in which PM2.5 concentration is the only 222 

predictor variable. This calculation can be used to calculate PM2.5 removal rate of any sized 223 

area of woodland: 224 

PM_removal_rate = 1.1664 * PM_conc + 0.4837    (2) 225 

Where PM_removal_rate is quantity of PM2.5 removed per unit area of woodland per year (kg 226 

ha-1 yr-1), and PM_conc is the concentration of PM2.5 (µg m-3) 227 

The second equation calculates the change in PM2.5 concentration that occurs as a result of 228 

pollution removal through dry deposition processes, and is a function of the proportion of 229 

woodland in an area, the initial concentration of PM2.5, and an interaction term between those 230 

two factors. Since a realistic change in pollutant concentration can only be achieved with 231 

vegetation over a large area, this equation is designed to be used at a city scale using average 232 
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PM concentration and overall proportion of woodland. Taking account of spatial location of 233 

beneficiaries and pollutant exposure within a city could be achieved by calculating a 234 

population-weighted average PM2.5 concentration as an input to the equation. In this example, 235 

we used a city average PM2.5 concentration, and percentage of woodland across each city. 236 

Change_PM_conc = - 0.0318 * PM_conc - 0.1112 * Log10WoodPC - 0.054 * 237 

PMxLogWood + 0.0832       (3) 238 

Where Change_PM_conc is the change in PM2.5 concentration (µg m-3), PM_conc is the initial 239 

PM2.5 concentration (µg m-3), Log10WoodPC is the Log10 of the percentage of woodland 240 

(percentage +1%, to avoid very low values) in the relevant area, and PMxLogWood is 241 

PM_conc multiplied by Log10WoodPC. 242 

We used our “high green” land cover classification to represent woodland, and PM2.5 243 

concentrations (spatial mean within the urban footprint) were taken from the global dataset 244 

(van Donkelaar et al., 2018), with a spatial resolution of 0.01 decimal degrees (approx. 1 km 245 

at the equator).  246 

Cooling effects were estimated by applying the methods of eftec et al. (2017), calculating 247 

relative coverage of each land cover type, multiplying by the respective land cover cooling 248 

coefficients and then summing all three values. We adjusted our cooling coefficients for high 249 

green land cover, proportionately, to mirror the climate effects observed by Morakinyo et al. 250 

(2017), assigning Dhaka and Zomba as ‘hot humid’ climate type, Kigali and Medellin as ‘warm 251 

humid’ climate type, and Leicester as ‘temperate’ climate type. 252 

Due to the growing body of evidence supporting the positive relationship between access to 253 

green space and physical and mental health and well-being (H&W), we used ‘access to green 254 

space’ as a surrogate measure for the H&W benefit of urban green space. A number of metrics 255 

are used to quantify access to public spaces (e.g. Natural England, 2010; Wolch et al., 2011; 256 

Dadvand et al., 2012; Amoly et al., 2014; Bertram & Rehdanz, 2015; WHO, 2016). We used 257 

the indicator adopted by WHO which quantifies the population within a defined region living 258 
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within 300 m radius (straight-line distance) of an open space of minimum size 0.5 ha (WHO, 259 

2016). In our study, we applied a 300 m buffer to merged green space polygons with final 260 

minimum areas of ≥0.5 ha, counting the number of people within that buffer. Population data 261 

was derived from population distribution grids (see table S2 in Supplementary Material for 262 

details). 263 

 264 

Mapping weighted demand, reflecting socio-economic context 265 

The conceptual approach for calculating demand is shown in Fig. 2 and represents the 266 

principles that: more people equals greater impact, higher prevalence of poverty equals 267 

greater impact, and higher pressure equals greater impact. This draws on Vulnerability 268 

assessment, where the population (number of people in an area) is equivalent to exposure, 269 

and social factors such as poverty or age bracket represent sensitivity. Adaptive capacity is 270 

not represented in this context since that should cover both social and environmental 271 

adaptation. Therefore, weighted demand was calculated by multiplying rescaled population 272 

and poverty data by the rescaled pressure data, to give an equally-weighted output. In the 273 

scaling procedure, PM2.5 and heat pressure data were rescaled (i.e. values of 0-1, based on 274 

min and max values in raw data within the urban footprint). The same procedure was applied 275 

to population and the poverty data (or equivalent indicator - see table S2). As there were no 276 

suitable pressure datasets for H&W, we combined the standardised population and 277 

prevalence of poverty data to represent a weighted demand, on the basis that higher 278 

prevalence of poverty is associated with lower health and well-being.  279 

[Fig.2 here] 280 

 281 

Mapping of ES supply 282 

ES supply was calculated, e.g. the amount of pollution removed, the cooling provided using 283 

the methods described above, and based on the location of the relevant UGI (i.e. that which 284 
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is providing the service). Focal statistics were used to characterise the area surrounding each 285 

raster cell to identify areas potentially benefitting from each service. For PM2.5 removal, we 286 

applied a neighbourhood of 500m radius, based on other PM air pollution-related studies (e.g. 287 

Lei et al., 2018; Vivanco-Hidalgo et al., 2018; Wu et al., 2018; Chen et al., 2019). For cooling, 288 

supply was calculated as a proportion of the maximum possible (i.e. 100% high green cover) 289 

within a neighbourhood of radius 500 m (for consistency with PM removal). A number of the 290 

health and well-being benefits of green space involve being physically located at, or near to, 291 

the green spaces in question. For consistency with the WHO definition for accessible 292 

greenspace, we quantified the proportion of green land cover within a circular neighbourhood 293 

of radius 300 m.  294 

 295 

Results 296 

Urban footprints 297 

For all cities, the derived urban footprint based on urban morphology is substantially smaller 298 

than the administrative boundary (Table 1 and Fig. 3).  Large areas of green space 299 

surrounding the built-up ‘urban’ core of the cities (mainly comprising farmland, forest and 300 

scrub) are excluded from the analysis, which is focussed on urban green and blue spaces. It 301 

is also worth noting that the area of non-urban greenspace beyond the urban footprint varies 302 

considerably between cities, with the urban footprint occupying between 21% for Kigali and 303 

98% for Leicester. Most of the urban footprints have multiple parts (a maximum of seven - 304 

Kigali), representing the sometimes discontinuous nature of the urban fabric within the 305 

administrative boundaries.  306 

[Table 1 and Fig. 3 here] 307 

 308 

Relative proportions of land covers 309 
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Despite the large variation in the size (Table 1) and historical development (Appendix I and 310 

Supplementary Material) of the five case study cities, there is relatively little variation in the 311 

proportional coverage of combined green and blue space (~15% variation). Most of the cities 312 

have very small proportions of blue space, although Dhaka with 5% has substantially more 313 

than the others. The two African cities, Kigali and Zomba, maintain noticeably more low green 314 

space than the other cities (between 12% and 15% more than the next highest). Most striking 315 

is the considerably higher proportion of high green coverage in Medellin, which has 13% 316 

coverage by area (a full 10% more than the next highest), despite having the lowest combined 317 

green and blue space coverage (only 35%). 318 

 319 

Urban Green and blue space benefits 320 

Variation in the PM2.5 removal figures are broadly in proportion to ambient atmospheric 321 

concentrations (Table 2), although noticeable deviations from this trend are observed in 322 

Medellin and Zomba, due to their respectively higher and lower proportional urban woodland 323 

cover values – PM2.5 removal being solely attributed to this class of land cover class.  324 

[Table 2 here] 325 

Mean estimated cooling effects of urban green and blue space (Table 2) are similar for Dhaka, 326 

Kigali and Zomba, when averaged across their entire urban footprint, with cooling effects 327 

between 0.6 °C and 0.65 °C. Leicester’s urban green and blue space was estimated to provide 328 

a smaller cooling effect (0.44 °C) due to its temperate climate, in which urban woodland 329 

contributes less to the overall cooling effects. Medellin saw the largest cooling effect from 330 

urban green and blue space, of the five cities. This is because Medellin has a significantly 331 

higher proportion of the most effective land cover class for cooling (high green) relative to the 332 

other cities. 333 

In terms of access to combined green space (i.e. high and low green aggregated, Fig. 4), all 334 

cities score highly, with a minimum of 84% of the urban footprint population (Dhaka) (Fig. 4b) 335 
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and 92% of the total urban footprint (Dhaka and Medellin) (Fig. 4a) within 300 m of a parcel of 336 

green space at least 0.5 ha in area. When looking only at high green space, differences are 337 

more apparent. In Medellin, over 50% of the urban footprint population and 54% of the total 338 

urban footprint have access to high green, whereas the figure for the other cities lies between 339 

17% and 25%.  340 

[Fig. 4 here] 341 

Overall, the differences in the proportion of combined green and blue space vary rather little 342 

between the five cities, by a maximum of a factor 1.5 (Table 1). However, the amount of service 343 

provided by this green and blue space shows much greater differences between cities. The 344 

largest difference is for pollution removal, where the estimated change in concentration due 345 

to vegetation differs by more than a factor of six between Zomba and Dhaka. The other two 346 

services, cooling by green and blue space, and access to greenspace differ by substantially 347 

lower amounts. 348 

 349 

Spatial patterns in pressure, weighted demand, and ES supply  350 

The spatial patterns of pressure, demand, and (potential) supply vary within cities and between 351 

different pressures within a city: 352 

In Dhaka (Fig. 5), there is a strong gradient in PM2.5 pressure, with the highest values in the 353 

North of the city diminishing in a Southerly direction. Heat pressure is more dispersed, with 354 

multiple focal points. For demand, there is an intense hotspot of demand for PM2.5 removal in 355 

the far North of the city, while both H&W and cooling demand are greatest in a relatively small 356 

area in the south of the city. The supply of PM2.5 removal is mainly concentrated in one area 357 

in the north-central region of the urban footprint. This region corresponds with the city airport, 358 

around which there are numerous trees. There are also a number of more intense pockets of 359 

supply in a general north-south band, through the centre of the city. Supply of cooling and of 360 

H&W mirrors the pattern of supply of PM2.5 removal, but H&W values are typically higher. 361 
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In Kigali (Fig. S6), the high values of both PM2.5 and heat pressures are greatest in the centre 362 

of the city, diminishing with distance outwards. Some of the smaller parts of the urban footprint 363 

also have elevated levels of these pressures, particularly those in the east. The demand for 364 

PM2.5 removal, cooling and H&W are all highest around the western districts and are 365 

particularly intense around the nearby intersection of three major roads. Demand for all ES is 366 

lowest around the large green areas in the north of the urban footprint. The supply of PM2.5 367 

and cooling have similar distributions to one another, following the pattern of green space 368 

distribution seen in Fig. 3, with higher values around the north-central part of the main urban 369 

footprint. Supply of H&W benefits are particularly high in the same areas, but also in the 370 

Southern fringes of the main urban footprint, as well as the separate, smaller parts of the urban 371 

footprint. 372 

In Leicester (Fig. S7), PM2.5 and heat pressure distributions follow similar patterns, higher 373 

values in a north-south band following the centrally located river, extreme high values more 374 

common towards the northern and the southern ends. The demand for PM2.5 and cooling share 375 

a similar distributional pattern, broadly following those of the pressures, but these are refined 376 

by the socio-economic data, creating dispersed pockets of intense demand. H&W demand 377 

follows the same pattern, although the pockets of high intensity demand do not diminish with 378 

distance from the central river. The supply of all three ES follow a consistent pattern but vary 379 

in degrees of intensity, with lowest levels of PM2.5 removal supply, increasing up to a maximum 380 

with H&W supply. Higher values are distributed around the periphery of the urban footprint, 381 

with lower values dominating the city centre. 382 

In Medellin (Fig. S8), the pressures of PM2.5 and heat are both highest around the central 383 

transport artery (running from north to south), values diminishing with distance from this central 384 

line - more so to the east, where the terrain becomes steeper towards the edge of the urban 385 

footprint. Since high levels of PM2.5 and heat pressure are fairly evenly distributed, the patterns 386 

of demand are more strongly influenced by the poverty data, which is recorded at district level 387 

and generally shows higher values in the west and the north of the city. PM2.5 removal demand 388 
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and cooling demand are therefore highest in an outer band skirting the centre of the urban 389 

footprint. The distributional pattern of H&W demand follows the same pattern, but higher 390 

values are more prevalent. The supply of all three ES share a similar distributional pattern. 391 

Central areas typically show low levels of supply, with the exception of a centrally located park, 392 

whereas fringes of the urban footprint have higher values - particularly areas in the west of the 393 

city. 394 

In Zomba (Fig. S9), PM2.5 pressure is highest in the north of the city and diminishes in a south-395 

easterly direction, whereas heat pressure is widespread, but with elevated values in the far 396 

west of the city, the south-east of the main part of the urban footprint and the far north east of 397 

the city. The demand for PM2.5 removal and cooling is most intense in the far northeast of the 398 

urban footprint, around a major road. Demand for H&W follows the same pattern as demand 399 

for the other two ES, but with a general greater prevalence of higher values. The supply of 400 

PM2.5 removal and cooling is largely confined to the western end of the eastern part of the 401 

urban footprint. This region comprises a relatively green university campus. The distribution 402 

of the supply of H&W is broadly the inverse of its demand, with lower values around the centre 403 

of the main urban footprint and the smaller eastern part.  404 

As an overall comparison across cities, the amount and distribution of demand and service 405 

supply primarily reflect the combinations of intensity of the pressure, spatial patterns of 406 

demand, and the amount and type of UGI which is able to provide varying levels of ecosystem 407 

service to meet that demand. Each city has its own characteristics, and there is no consistent 408 

separation of the cities of the Global South from Leicester in the UK. 409 

[Fig. 5 here] 410 

 411 

Discussion 412 

Urban Footprint 413 
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We chose to focus on urban green and blue infrastructure, rather than all green and blue 414 

infrastructure within an administrative region, so it was necessary to define the urban footprint 415 

based on the built environment. The difference in area of the administrative boundaries and 416 

their respective urban footprint highlights the importance of defining UGI in an objective way. 417 

The observed range just within these five cities, from 21% - 98% coverage of urban footprint 418 

within the administrative area, suggests that comparisons which only use administrative area 419 

may greatly over-estimate the amount of effective urban greenspace for many cities. This 420 

approach focusing on urban footprint is consistent with the definition of urban used for 421 

calculation of Sustainable Development Goal indicators for urban areas, e.g. SDG 11.7.1 on 422 

accessible open space (UN, 2015). 423 

In this study, the administrative boundary was used to clip the continuous urban footprint for 424 

some cities in order to make best use of associated socio-economic data. Where other urban 425 

areas lie immediately adjacent to the boundary itself, or are continuous beyond that boundary, 426 

this may have two effects related to use and potential supply of ecosystem services lying either 427 

side of the boundary. Firstly, other UGI outside the boundary may benefit some of the 428 

population within the study area, while conversely UGI within the study area may provide 429 

additional benefit to adjacent urban areas. This provides a justification for a joined-up 430 

consultative approach to city planning, particularly where boundaries are strategically 431 

important, otherwise the risk is that fringe areas ‘fall through the gaps’ and are not 432 

appropriately considered in plans.  433 

 434 

Ecosystem service supply 435 

Although the overall proportion of combined UGI varied relatively little between our study 436 

cities, the amount of service that these areas provided showed larger differences. This 437 

illustrates primarily that UGI does not provide the same amount of service in every location, 438 

and therefore a context-specific analysis is required when assessing the benefits that it 439 
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provides, not just a simple look-up table that is applied without discretion in all locations, which 440 

is unfortunately applied rather frequently (Campagne et al. 2020). This analysis shows that a 441 

context-specific analysis is possible with globally available datasets. For the pollution removal, 442 

this is partly because trees become more efficient at removing pollution when concentrations 443 

are higher (Nemitz et al. 2020), but the spatial context to the analysis plays a role in all three 444 

services in determining the level of benefit that can be attained. 445 

 446 

Weighted demand 447 

Our weighted demand metric provides a more useful and tractable representation of demand 448 

for mitigation than simplistic depictions of pressures (e.g. PM2.5 concentrations) as it 449 

incorporates the human element, both in terms of exposure (i.e. number of people) and 450 

sensitivity (i.e. poverty). Similar approaches are now being applied in some cities, for example 451 

to inform performance planning of UGI to meet pre-specified objectives (Cortinovis & Geneletti 452 

2020). Our results highlight that demand for different green intervention types can have 453 

different, and sometimes overlapping, spatial distributions. Differential spatial accessibility of 454 

greenspace has been shown in some studies, e.g. in Wuhan, China, accessibility to woods 455 

and parks differed in central city areas compared with the outskirts (He et al. 2020). 456 

Characterising the spatial pattern of demand is critical for addressing issues of inequity of 457 

access to UGI benefits, as the importance of environmental justice is increasingly recognised 458 

in urban planning (Wolch et al. 2014; Hunter et al. 2019; Langemeyer & Connolly 2020). As a 459 

result, it can help identify optimal locations for interventions, allowing decision makers to 460 

prioritise and obtain more effective outcomes, within a context of competing demands for 461 

budgets. It also allows effective design of interventions and management of trade-offs. For 462 

instance, trees are routinely planted to provide shade, to mitigate against urban heat problems, 463 

and to remove air pollution. However some tree species (e.g. eucalyptus) produce large 464 

quantities of Biogenic Volatile Organic Compounds (BVOCs), including isoprene, which can 465 

enhance the formation of secondary air pollutants, including PM and ozone (Yang et al., 2015). 466 
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Dhaka authority have previously planted Eucalyptus species for shading purposes (Ali, 1996). 467 

If they were to plant these trees in the north of the city, where there is elevated demand for 468 

both PM removal and cooling (see Fig. 5, panels A and E), the high output of BVOCs could 469 

potentially exacerbate the PM2.5 problems.  470 

 471 

Differences across cities  472 

Relatively few assessments have been run on cities in the Global South, so the comparison 473 

of service provision among cities and with a European city is instructive. Despite widely 474 

different levels of pressure (e.g. PM2.5 concentrations varying by nearly an order of magnitude) 475 

overall levels of service provision and proportions of UGI are broadly similar among cities. 476 

This suggests that the capacity for UGI to provide a service may be limited, and their 477 

contribution to mitigate extreme levels of pressure can not be considered a sole solution. 478 

Nonetheless, large variations in wealth and the ability to control one’s own living conditions 479 

may mean that UGI in poorer neighbourhoods can achieve much greater benefit than in richer 480 

neighbourhoods where residents can afford to implement technical solutions in their homes to 481 

counter urban pressures such as heat and air pollution (Adegun 2017; de Souza Silva et al. 482 

2018). 483 

 484 

Reflections on the study approach 485 

In this study we used broad classes of UGI, however further disaggregation of vegetation 486 

types would allow more accurate estimates for services that are reliant on the structure or type 487 

of vegetation. For example, cooling is influenced by leaf area index and structure of vegetation, 488 

described as vegetation intensity in some studies (see Morakinyo et al., 2017). Fine resolution 489 

estimates of vegetation canopy (e.g. from LiDAR) would enable calculation of vegetation 490 

height and volume, which would be a major step towards providing the basis for such 491 

disaggregation. Taking into account different vegetation types through additional land cover 492 
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classes would also help improve estimates of air pollution removal which differ between 493 

deciduous trees and evergreen trees (Jones et al. 2017).  494 

We used Sentinel-2a data, with a horizontal resolution of 10m. Although this is relatively fine 495 

resolution, it is still likely to underrepresent tree cover, in particular where trees are sparsely 496 

distributed. The implication of this is that pollution removal, relying entirely on high green land 497 

cover, is under-estimated, but probably not cooling effects because this requires a minimum 498 

threshold area of woodland to be effective (Yu et al., 2020). Rooftop gardening has become 499 

popular in Dhaka city, with approximately 36% of rooftops used for gardening and vegetation 500 

cultivation (Uddin et al., 2016). This form of green space will also likely be underrepresented 501 

in the land cover map, as the continuous area of these types of vegetation are typically much 502 

smaller than 10 m by 10 m.  Further work on detection ability of satellite-derived NDVI would 503 

be highly valuable. 504 

The H&W benefits provided by green space, as a venue for various activities (e.g. physical 505 

exercise, social interactions, etc.), is depend to a large extent upon public access. Regardless 506 

of the spatial resolution of remotely sensed data, public accessibility cannot be detected 507 

(Andries et al. 2019), which means that estimates of H&W based solely on such data must 508 

rely on the broad assumption that all green space is publicly accessible. Such assumptions 509 

will rarely be valid, as areas where the supply of ES are highest are not necessarily accessible. 510 

For instance, in Dhaka, the main hotspot for the supply of all our mapped ES (See Fig. 5 C, F 511 

& H), is a military restricted area that is not accessible to the general public. Other important 512 

factors, such as management and upkeep of these spaces, as well as the presence of 513 

amenities (e.g. cafes, public toilets, water fountains, etc.) are important factors in determining 514 

some components of useability (Wendel et al., 2012). Open spatial data identifying publicly 515 

accesible areas would be a valuable resource for quantifying the benefits of public UGI, as 516 

well as having the potential for increasing these benefits through informing the public of the 517 

availability of such venues. The supply and demand representation presented here could 518 
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provide an effective focal point for local authority engagement by underscoring the multiple 519 

benefits of expanding accessabiity to these resources. 520 

Use of global datasets allows consistent and objective comparisons of study cities, however 521 

they are typically the product of generalisation and may omit more localised, or fine-grain, 522 

patterns. For instance, the PM2.5 dataset used in our study indicates that mean concentrations 523 

for Medellin are relatively low, at around 7 ug/m3, however this is a substantial underestimate 524 

of concentrations experienced on the ground, which are nearer to 25 ug/m3 (del Pilar  et al., 525 

2019). Air quality is often monitored at relatively few sites and may be subject to a number of 526 

sources of bias (e.g. monitoring stations only at locations of high concentration), which limit 527 

their utility in spatial analysis of supply and demand. Socio-economic datasets vary 528 

considerably between countries and cities in terms of which data are publicly available, at what 529 

spatial or administrative resolution, and how up-to-date the datasets are. Of these datasets, 530 

simple population data is arguably the most important, where it is available at census levels 531 

below that of entire city. This is because benefits are experienced by people. Beyond simple 532 

population, further breakdown according to socio-economic groups or proxy measures of 533 

wealth or deprivation, and breakdown according to age groups, both serve as ways to further 534 

differentiate risk among population to different groups. These risks may be different for 535 

particular pressures. For example age is an important risk factor for heat impacts (e.g. 536 

Gasparrini et al., 2012), and deprivation is important for air pollution (e.g. Cesaroni et al., 537 

2013). 538 

 539 

Conclusions 540 

The approach outlined here, which focuses on urban footprint, avoids the inconsistencies 541 

which can arise from using administrative boundaries that include large areas of non-urban 542 

land cover. The approach also takes into account the location of green and blue space, and 543 

the exposure and vulnerability of the population to pressures associated with urbanisation. 544 

Together, this enables more accurate assessments of UGI, providing better information to 545 
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planners and policy-makers. In relation to equity and environmental justice issues, this 546 

specifically allows planners to identify opportunities to redress socio-economic inequities, 547 

which might otherwise be missed – or worse, exacerbated. Thus, the approach outlined here 548 

can help prioritise interventions to improve both health and well-being, and the natural 549 

environment, by understanding the spatial relationships between service supply and demand.  550 

Whilst the methods described here represent a useful development, further improvements in 551 

land cover classifications and data availability (particularly around public accessibility of land 552 

and socio-economic indicators) would improve the quality of information that can be provided 553 

to planners and policy-makers through this kind of analysis. 554 
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 560 

Appendix 561 

I: Case study city summaries: 562 

Dhaka (population 19,578,000 – UN, 2018). The capital and largest city of Bangladesh, Dhaka 563 

is one of the largest and most densely populated cities in the world. It has a tropical, hot, humid 564 

climate and is located on the flat, low-lying, lower reaches of the Ganges delta, making it 565 

particularly vulnerable to sea level rise and flooding. A mega-city, Dhaka has been inhabited 566 

since the first millennium. It is a city of global strategic importance, which has experienced 567 

rapid population growth since the 1970s; although growth has diminished in more recent 568 

years, it is still very high (37.7% 2019). This persistent growth is driving urbanisation and is 569 

reflected in the city’s continued spatial expansion (Roy et al., 2019). 570 
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Kigali (population 1,058,000 – UN, 2018). The capital and largest city of Rwanda, Kigali has 571 

recently grown beyond 1 million people (with city boundaries expanded). It has a tropical, 572 

warm, humid climate and is located in a hilly landscape sprawling across four ridges, 573 

separated from each other by large valleys. Rapid hydrologic responses from highly urbanised 574 

sub-catchments in the city, in combination with poor drainage infrastructure management and 575 

lack of flood management knowledge, make flooding a major issue. Urban development often 576 

gives rise to dramatic changes in urban land use, where natural green spaces are removed 577 

and replaced with impervious built-up surfaces. There are plans for further development (2040 578 

masterplan) including skyscrapers, pedestrian walkways and green spaces. 579 

Leicester (population 354,000 – ONS, 2017). The UK city of Leicester is the most populous 580 

municipality within the East Midlands region and the 11th most populous in England. It has a 581 

temperate climate and is centred on the banks of the River Soar on flat to gently rolling terrain. 582 

One of the oldest cities in England, with a history going back at least two millennia, Leicester 583 

is a city with a historically moderate rate of population growth that has increased somewhat in 584 

recent decades. 585 

Medellin (population 3,934,000 – UN, 2018): Medellin is the second largest city in Colombia, 586 

after the capital, Bogota. It has a tropical, warm, humid climate and is located within a narrow 587 

valley at approx. 1,500 m.a.s.l (60 km long and 8 to 10 km in its wider part). With its 588 

surrounding area containing nine other cities, the metropolitan area is the second largest 589 

agglomeration of population and economy (nearly four million inhabitants), in Colombia. 590 

Medellin was nominated for ‘most innovative city of the year’ in 2012 and won the award in 591 

2013. Much new development is both planned and ongoing. 592 

Zomba (population 105,000 – NSO, 2018). Zomba was the capital of Malawi until 1974, when 593 

this status was transferred to Lilongwe. It has a tropical, hot, humid climate and is located 594 

along the banks of the Mulunguzi River at the foot of the Zomba Plateau, an escarpment that 595 

rises to some 1800m. Although relatively small, Zomba is steadily growing (1977 - 24k, 2018 596 

- 105k) and is now the fourth largest in Malawi. 597 
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Figure Legends 856 

Figure 1. Locations of the five Case study cities. Images from Google Earth (31 March 2020). 857 

Figure 2. Conceptual approach to deriving ‘weighted demand’ for ES. Higher numbers of people, higher 858 

levels of poverty and higher levels of pressure all lead to increased demand. 859 

Figure 3. Land Cover maps for A) Dhaka City, B) Kigali City, C) Leicester City, D) Medellin City, E) 860 

Zomba City, and F) the true colour satellite imagery for Zomba City (for reference with ‘E’) showing the 861 

administrative boundary and the urban footprint. 862 

Figure 4. Access to green spaces and to high green spaces, of minimum 0.5 ha, calculated as % of 863 

urban footprint (A), and % of population (B), within 300 m. 864 

Figure 5. Dhaka – Mapped pressures, ES supply and weighted demand. Panels depict: A) PM2.5 865 

pressure, B) PM2.5 weighted demand, C) PM2.5 removal service supply, D) Heat pressure, E) Cooling 866 

weighted demand, F) Cooling service supply, G) H&W weighted demand, H) H&W service supply. 867 
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Tables 899 

Table 1. Urban footprint (UF) areas, the percentage they occupy of the administrative boundaries, and 900 

the % land cover types of the UF area, for each of the five cities. 901 

City 
UF 
Area 
(km2) 

UF as 
% of 
Admin 
Area 

High 
green 

Low 
Green 

Blue 
space 

Combined 
Blue/green 
space 

Dhaka 209.2 70.0% 3.1% 32.9% 4.52% 40.6% 
Kigali 156.6 21.5% 2.5% 47.7% 0.13% 50.3% 
Leicester 64.5 97.9% 3.5% 33.6% 0.52% 37.6% 
Medellin 117.8 31.8% 13.1% 21.7% 0.06% 34.9% 
Zomba 16.2 38.7% 2.4% 45.2% 0.03% 47.7% 
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Table 2. Ecosystem service values for PM2.5 removal and cooling provided by urban green and blue 917 

space, for each of the five case study cities. Ambient PM2.5 and maximum daily temperatures for 2018 918 

also provided for information. 919 

City 

PM2.5 removed 
by woodland 
(kg/yr)  

Estimated change 
in PM2.5 due to 
trees (µg/m3) 

Aggregate 
cooling 
effect (°C) 

Ambient 
PM2.5 
(µg/m3)  

Max daily 
Temp (2018) 
(°C) 

 Dhaka 48,402 -4.12 -0.63 63.58 37 
 Kigali 11,368 -1.49 -0.6 24.73 30 
 Leicester 3,265 -0.83 -0.44 12.53 33 
 Medellin 13,164 -0.73 -0.98 7.3 31 
 Zomba 488 -0.62 -0.65 10.6 36 
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