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A Method to Assess the Performance of
SAR-Derived Surface Soil Moisture Products

John Beale , Toby Waine , Jonathan Evans , and Ronald Corstanje

Abstract—Synthetic aperture radar (SAR) is a remote sensing
technique for mapping of soil moisture with high spatial resolution.
C-band SAR can resolve features at field scale, or better, but
responds to moisture only within the top 1 to 2 cm of the soil. When
validating SAR-derived soil moisture products against standard
in situ measurements at 5 to 10 cm depth, the greater moisture
variability at the soil surface may be inaccurately categorized as
measurement error. An alternative method was developed where
the C-band SAR product is validated against soil moisture simu-
lated at 2 cm depth by the HYDRUS-1D model. This reproduces
soil moisture depth profiles from daily meteorological observations,
leaf area index, and soil hydraulic parameters. The model was
fitted at 13 COSMOS-UK sites so that the model output at 10 cm
depth closely reproduced the cosmic ray neutron sensor data. At
ten of the sites studied, there was an improvement of up to 8% in
root-mean-squared difference by validating the Copernicus surface
soil moisture (SSM) product at 2 cm compared to 10 cm. This
suggests that Copernicus SSM and other C-band SAR surface soil
moisture algorithms may be more accurate than have hitherto been
acknowledged.

Index Terms—Land surface, moisture measurement, remote
sensing, soil moisture.

I. INTRODUCTION

SOIL moisture remote sensing is of significant interest to
agriculture, hydrological modeling, and weather forecast-

ing. Satellite active microwave systems have the ability to op-
erate over wide areas in almost all weather conditions, with
C-band synthetic aperture radar (SAR) systems being able to
achieve field-scale resolution or better. Soil moisture estimation
by SAR exploits the dependence of radar backscatter on soil
water content, but there are other dependencies on factors that are
often unknown. These include soil texture, surface roughness,
topography, and the effect of vegetation. A number of advanced
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Fig. 1. Boxplot of soil moisture variability at shallow depths, in a Dark Brown
Chernozemic soil (41% sand, 34% clay) at Lethbridge, Alberta, Canada over
nine days of various wetting and drying regimes, analysis of data from Boisvert
et al. [14]. The whiskers define the extremes of the data, the thick bars the
median, and the box ends represent the first and third quartile values. The
standard deviation σ at each depth is shown on the right, with estimates of
field capacity (FC) [16] and permanent wilting point (PWP) [17] by the method
of Saxton [18] as vertical, dotted lines.

algorithms have been and are being developed to address this
problem.

The quantitative assessment, or validation, of SAR-based
soil moisture retrieval algorithms [1] is commonly undertaken
by statistical comparison to in situ soil moisture measurements.
The instruments used include soil moisture probes [2]–[6] and
Cosmic Ray Neutron Sensors (CRNS) [7]–[9]. A review of
the International Soil Monitoring Network (ISMN) [10] reveals
that probes are generally installed at a nominal depth of at
least 5 cm and have a sample volume extending 5–6 cm in
depth. This measurement depth is appropriate for validation of
L-band SAR-derived soil moisture products, where it matches
the microwave penetration depth [11] in bare soil. CRNS have
an effective measurement depth of at least 10 cm (depending on
soil moisture). Due to the practical problems of measuring soil
moisture with probes at 1–2 cm [12], [13], there is no established
measurement network that matches the penetration depth of
C-band SAR.

Reliable soil moisture measurements very near the surface
can be achieved by soil sampling and laboratory analysis, as in a
previous study by Boisvert et al. [14]. Gravimetric soil moisture
was measured at 1 cm depth increments from the surface to
10 cm depth in various sample plots subjected to a range of irri-
gation and drying profiles. The statistics of these measurements
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(converted to volumetric soil moisture) are summarized in the
box plot of Fig. 1, annotated with the sample standard deviation
(σ). This shows that the variability of soil moisture decreases
significantly with depth. It is very high at the surface where
the soil is subject to rapid wetting and drying due to rainfall,
irrigation, and evaporation [15], while drainage to lower layers
is a much slower process. At deeper levels soil moisture varies
more slowly and over a smaller range. It cannot be assumed that
soil moisture measured at 5 or 10 cm is similar to that at 1 to 2 cm
depth. The consequence of doing as part of a validation process
of any soil moisture estimates derived from C-band SAR has not
previously been quantified.

The speed and range of movement in soil moisture at the sur-
face also challenges the interpretation of soil moisture products
that are published as a dimensionless and relative soil moisture
index (SMI) [19]. An example is the Copernicus surface soil
moisture (SSM) product [20], based on C-band Sentinel-1 data.
For applications, such as irrigation scheduling, absolute soil
moisture values will be derived by site specific scaling. The
field capacity (FC) [16] and permanent wilting point (PWP) [17]
of the soil are commonly used for this purpose, to define the
range of possible soil moisture values. Fig. 1 shows that, while
this may be acceptable at 10 cm depth, FC and PWP do not
define the limits of soil moisture at very shallow depths. This
issue is overlooked in the performance assessment of SMI-
based products using scale-independent metrics, such as the
coefficient of determination (R2). This study uses, for the first
time, alternative scale-sensitive metrics in an assessment of the
Copernicus SSM product. The SMI values are scaled to VWC,
having first identified the van Genuchten model [21] parameters,
saturated water content (θS), and residual water content (θR),
as suitable alternative limits of soil moisture content at the
surface.

Modeling is an alternative to in situ measurement of soil mois-
ture where the latter is impractical. HYDRUS-1D (v4.17) [22] is
a model that has been successfully used in previous work [23],
[24] to simulate soil moisture profiles near the surface. It is
a finite-element model which simulates the 1-D movement of
water in porous media by numerically solving the Richards
equation [25] for water flow. Soil hydraulic parameters are key
inputs to the model, but they are not static and vary with soil
texture, land use, and management. Values obtained previously
by laboratory measurements or indirectly from soil maps may
not reflect contemporary conditions or local heterogeneity. They
need to be optimized by an iterative process using in situ mea-
surements of soil moisture as the benchmark.

The aim of this study was to establish, for the first time,
a scalable method for generating soil moisture time-series at
2 cm depth or less, that may be used for objective assessment
of C-band SAR-derived surface soil moisture data. The study
evaluates the impact of this on the apparent performance as-
sessments of an example product, compared to assessment at a
greater depth of measurement. Having identified new limits on
soil moisture variability at the surface, the additional errors due
to scaling were estimated, contrasting the use of the new limits
with the common choice of FC and PWP.

Fig. 2. Locations of the subset of COSMOS-UK sites selected for this study.
The labels are the site identifiers.

II. STUDY SITES AND TIME PERIOD

The COSMOS-UK network [9] comprises a total of 50 soil
moisture monitoring stations across the U.K., operated by the
U.K. Centre for Ecology and Hydrology (UKCEH). The primary
soil moisture sensor at each site is a CRNS [7], which has a
measurement footprint of approximately 200 metres in diame-
ter [26]. By mitigating against the spatial heterogeneity of soil
hydraulic properties, CRNS data are more suited to validation
of remotely sensed soil moisture products without having to
upscale the measurements from a densely spaced network of
point sensors.

The COSMOS-UK sites are also instrumented to mea-
sure a range of meteorological and environmental parameters.
COSMOS-UK sites were selected for this study for their ability
to supply high quality daily time-series measurements of soil
moisture from the CRNS sensor, with colocated measurements
of potential evapotranspiration and rainfall.

Thirteen sites were selected for this study, as shown in Fig. 2.
They represent agricultural sites as opposed to forested sites
where the vegetation canopy would be too dense for C-band
SAR to be able to sense soil moisture. The land uses are per-
manent grass, ley grass, and arable crops, where farmers and
agronomists would hope that SAR remote sensing would be of
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TABLE I
SUBSET OF COSMOS-UK SITES SELECTED FOR THIS STUDY

benefit to them in monitoring soil moisture. The chosen sites
also vary in soil textures, as shown by Table I.

During 2018, the U.K. experienced a very cold and wet spring
followed by a prolonged heatwave and drought. Using this year
in the study made it probable that the soil moisture would vary
between the wettest and driest conditions—well outside the
range between FC and PWP—posing the greatest challenge to
fit the model to in situ data.

III. DATA

The HYDRUS-1D model requires a number of input parame-
ters and time series data in order to predict soil moisture profiles
over time, and in situ soil moisture measurements for model
fitting.

A. CRNS Soil Moisture

CRNS soil moisture measurements were obtained from the
COSMOS-UK network for model fitting. The effective measure-
ment depth of a CRNS sensor is defined by its 86% cumulative
sensitivity depth, D86(θ, r) [27] where θ is the soil moisture
and r is the radius from the sensor. It may be calculated by
the methods proposed by Kohli et al. [28] who also define a
sensitivity weighting as a function of depth

W (d, θ, r) ∝ e−2 d/D86(θ,r) (1)

where d is the soil depth in cm. A cumulative sensitivity depth
function S(d, θ, r) can be derived by integrating this function
and setting the constant value so that S(d∞, θ, r) = 1

S(d, θ, r) = 1− e−2 d/D86(θ,r). (2)

To find the depth equivalent to 50% of the cumulative response,
setting S(d50, θ, r) = 0.5

d50(θ, r) = −0.5.D86(θ, r).ln(0.5) = 0.3466.D86(θ, r). (3)

Values of d50(θ, r) were calculated for each daily COSMOS-
UK CRNS measurement of soil moisture, θ, for 2018 at all 13
sites for r = (1, 5, 25, and 75 m). They were then weighted by
the factors w = (1.89E+05, 2.45E+04, 8.22E+03, 4.90E+03),

Fig. 3. Boxplot representing the variation in the 50% cumulative sensitivity
depth d50 (weighted by radius) during 2018 at the COSMOS-UK sites used
in this study. The whiskers define the extremes of the data, the thick bars the
median, and the box ends represent the first and third quartile values. The mean
for each site is plotted as the white diamond. The box colors represent the site
soil classification for the surface layer.

respectively, these weightings used by the COSMOS-UK team
based on [28]. Fig. 3 summarizes the statistics of d50 in the form
of a boxplot. For most sites, the mean of d50 is close to 10 cm and
the mean across all sites is 10.27 cm. This result agrees with a
recent study in China [29], that found that CRNS measurements
were more highly correlated with soil moisture at 10 cm from
the surface than at any other depth.

A depth of 10 cm is within the upper mineral soil layer (A
horizon) for all of the sites chosen for this study. According to
a recent review [30], the coefficient of variation of clay content
in a typical A horizon is low (8%). This allows us to assume
that the soil hydraulic properties are approximately the same at
10 and 2 cm, and to perform the model fitting at 10 cm against
COSMOS-UK data using a single layer model. A multilayer
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TABLE II
HYDRUS-1D INITIAL SOIL HYDRAULIC PROPERTIES OBTAINED FROM

LANDIS HORIZON HYDRAULICS DATA [34] FOR THE 13 STUDY SITES. THESE

ARE PARAMETERS OF THE VAN GENUCHTEN–MUALEM MODEL [21], [31];
WATER CONTENT AT QUASI-SATURATION (θS ), RESIDUAL WATER CONTENT

(θR), SATURATED HYDRAULIC CONDUCTIVITY (Ks), AND MODEL FITTING

PARAMETERS (n, α)

configuration of the model would have been impractical to
optimize due to the number of variables this would introduce.

B. Soil Hydraulic Properties

The soil hydraulic properties required by HYDRUS-1D are
the water retention parameters of the van Genuchten–Mualem
model [21], [31]; water content at quasi-saturation (θS), residual
water content (θR), saturated hydraulic conductivity (Ks), and
model fitting parameters (n,α). Initial values were obtained from
the National Soil Map of England and Wales (NATMAP) [32]. At
each site, the dominant soil series was identified by overlaying
the 200 m radius footprint of the CRNS sensor over the soil
map. The main land use within the 200 m radius was categorized
by inspection of phenocam images and site metadata as either
permanent grass (PG), ley grass (LE), arable (AR), or other
(OT). The depth of the upper soil horizon, its soil texture,
and bulk density were obtained from the LANDIS Horizon
Fundamentals [33], [34] table, by looking up the appropriate soil
series and land use. In the same way, the soil hydraulic properties
were obtained from the LANDIS Horizon Hydraulics table [34],
[35]; these are summarized in Table II. For the Cwm Garw site,
which has a very peaty soil, the initial soil hydraulics parameters
were taken from a previous study of a site with peat soil by
Fields et al. [36]. An alternative set of van Genuchten–Mualem
model water retention parameters may be estimated using the
Rosetta Lite v1.1 [37] pedotransfer function provided within
the HYDRUS-1D model, by supplying it with the soil texture
and bulk density.

C. Vegetation Properties

The drying mechanisms of the soil near the surface are
drainage to a lower soil layer, direct evaporation, EE , and
transpiration through plant roots ET . The drainage element is

TABLE III
CANDIDATE WET AND DRY REFERENCES FOR THE SURFACE SOIL LAYER AT

COSMOS-UK SITES USED IN THIS STUDY, BASED ON LANDIS HORIZON
HYDRAULICS DATA. OPTIMIZED VALUES θSX & θRX DERIVED FROM MODEL

FITTING ARE SHOWN IN TABLE IV. VALUES ARE IN VOLUMETRIC WATER

CONTENT (VOL.%)

modeled by HYDRUS-1D, but the aggregate of the other two
is dependent on weather conditions. This is the potential evapo-
transpiration (E0 = EE + ET ) and is a standard component of
the COSMOS-UK site data. The HYDRUS-1D model requires
E0 to be partitioned intoEE andET ; this is driven by the state of
the vegetation. A common approximation is to assume that areas
of bare soil are subject only to evaporation and areas covered by
vegetation subject only to transpiration. Leaf area index (LAI) is
a vegetation parameter that is inversely related to the proportion
of bare soil, so a form of Beer’s law [38], [39], may be used for
the partitioning: EE = E0e

−αLAI where the default extinction
coefficient, α = 0.463. HYDRUS-1D includes the option to
perform this calculation automatically if daily time series of
E0 and LAI are supplied.

For this study, LAI data were obtained from the MODIS
optical instrument on the Terra and Aqua satellites. The MODIS
data (MCD15A3H V6 level 4) [40] suffer, especially over the
U.K., from unreliable data due to cloud cover. To minimise the
impact of this, the 4-day time series was smoothed by weighting
according to the confidence values (“SCF_QC” bits) provided
with the product, by the following:

LAIi+1 = LAIi +Δi+1/(1 + Ci+1) (4)

where LAIi, LAIi+1 represent the time series of LAI, C is
the confidence level (0 = High to 4 = No Data), and Δ is the
change in the LAI value between the previous time-step and
the MODIS measurement. The data were then aligned to the
COSMOS-UK data time-series by linear interpolation.

HYDRUS-1D uses rooting depth and the root density profile
to calculate the transpiration profile with depth. For the purposes
of this study, these parameters were set the same for each site,
with the root density decreasing linearly with depth over the
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Fig. 4. Block diagram of the method for model fitting of HYDRUS-1D and using the fitted model to generate a time series of soil moisture at 2 cm soil depth.

upper 15 cm only. This is an estimate typical of many grass
species, and will be suitable for many of the sites used in this
study. For others, this assumption could introduce a small error
in the model fitting.

D. SAR-Derived Soil Moisture

To illustrate the effectiveness of the method through a case
study, a remote sensing soil moisture product based on C-
band Sentinel-1 SAR data, Copernicus SSM [20], was selected.
This product estimates soil moisture by the change detection
method [41], and presents it as an SMI value between 0% and
100% relative to the range of historically observed values at each
geospatial location. The spatial resolution of the Copernicus
SSM product is nominally 1 km, and the temporal resolution
is governed by the orbital coverage of Sentinel-1, being approx-
imately once every 2–6 days within the U.K. A time series was
obtained by averaging the SMI values of the pixels overlapping
the CRNS 200 m radius footprint (weighted by their intersection)
at each of the 13 monitoring stations selected. For the purposes of
comparison to the HYDRUS model output, the predicted values
(Pi) are the remote sensing predictions and the HYDRUS-1D
modeled soil moisture at 2 cm are the independent observations
(Oi). Prior to analysis, the remotely sensed soil moisture values
(Si) were converted from an SMI to volumetric water content
(VWC) by scaling, as shown in (5), where θwet and θdry are the
selected wet and dry soil moisture references as determined in
Section IV.B

Pi = θdry + Si(θwet − θdry). (5)

IV. METHODS

A. Simulating Soil Moisture at Shallow Depth

The method for generating a soil moisture time series at 2 cm
is depicted in Fig. 4. The HYDRUS-1D model was configured

for a single soil layer the same thickness as the upper horizon
using the initial soil hydraulic properties derived from LANDIS
data [34]. Excess water at the surface was set to run off and free
drainage to a lower soil layer was defined at the lower interface.
The daily time series of potential evapotranspiration, rainfall,
and LAI were imported into the HYDRUS-1D model as time-
varying boundary conditions.

The soil hydraulic parameters were optimized by iteration
until the model predictions at 10 cm depth (Pi) matched in situ
soil moisture observations, (Oi) from the COSMOS-UK CRNS,
as closely as possible. The approach of Harmel et al. [42] was
used; selecting an index of agreement based on the Willmott
index [43], d, which quantifies the relative covariability of the
predictions about the mean of the observations. The refined
version dr [44] is reported to be less sensitive to extreme
values and better suited for model evaluation than R2 [45].
It is a dimensionless number, calculated according to (6) and
(7) that varies between −1 (no fit) and +1 (ideal fit) and is
particularly suitable where a 1:1 relationship between prediction
and observation is expected. The root-mean-squared difference
(RMSD), as defined by (8), was also calculated. According to
the recommendation of Harmel et al. [42], the optimization
sought to maximize dr but without allowing RMSD to increase
significantly

dr = 1−

n∑
i=1

|Pi −Oi|

2

n∑
i=1

|Oi −O|
,when

n∑
i=1

|Pi −Oi|

≤ 2
n∑

i=1

|Oi −O| (6)
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dr =

2

n∑
i=1

|Oi −O|
n∑

i=1

|Pi −Oi|
− 1,when

n∑
i=1

|Pi −Oi|

> 2
n∑

i=1

|Oi −O| (7)

RMSD =

√∑n

i=1
(Pi −Oi)

2

n
. (8)

To optimize the fit of the HYDRUS-1D model to CRNS
data, dr and RMSD were calculated as a function of each soil
hydraulic parameter (θR, θS , α, n, Ks) to locate a value close to
a maximum in dr and a minimum in RMSD. Some interdepen-
dence between the parameters was evident, so the whole process
was repeated several times for each study site until no further
improvement could be achieved. Having established an optimum
set of values of the soil hydraulic parameters that appear to
describe the local soil properties well, the HYDRUS-1D model
output at the desired simulation depth of 2 cm was then obtained
using these values.

B. Identifying Soil Moisture Limits at the Surface

A review was conducted to identify soil moisture parameters
that are candidates for natural limits on the movement of soil
moisture due to drying or wetting processes. These are all related
to soil physics or attributes of the drying mechanisms. Starting
at the highest value of soil moisture are the following.

1) Porosity (P ) defines the total pore space available to be
filled with water and sets an effective upper limit for soil
water content, probably achieved only if the soil surface
is under water for some time.

2) Water content at quasi-saturation (θS) is one of the van
Genuchten model [21] parameters, and is typically 5%–
15% below P , due to entrapment of air during wetting.
Soil is unlikely to wet above this value, excess water will
run off. After wetting to this point, the soil will dry rapidly
due to drainage (mostly) and evapotranspiration.

3) FC or θFC [16] is the point below which soil will no longer
drain to a lower layer under gravity. Further drying is by
evapotranspiration only.

4) PWP or θPWP [17] is a point at which transpiration by
plants falls to zero and evaporation becomes the only
drying mechanism.

5) Hygroscopic coefficient (θHC), or natural air-dried mois-
ture value, defines the water content of soil that has dried
by evaporation then allowed to reach equilibrium in a
saturated atmosphere. Most of the pore water has been
removed. Further drying is possible in very hot conditions
by evaporating some capillary water, but this requires
significantly more energy. When the temperature falls, the
soil moisture will tend to return to this value naturally,
without rainfall, provided there is sufficient humidity in
the air.

6) Residual water content (θR) is another of the van
Genuchten model [21] parameters, and is an approximate
lower limit of the soil drying process in natural conditions
rather than at the much higher temperature of an oven.

To identify which, if any, of these candidates are suitable as
wet or dry reference points, values of P , θS , θFC , θPWP , and
θR were obtained from the LANDIS Horizon data for each of
the 13 COSMOS-UK sites, as shown in Table III . θHC was
calculated using the van Genuchten model [21], (9), where h =
3100 kPa and n andmwere obtained initially from the LANDIS
Horizon Hydraulics data [34]. The HYDRUS-1D model fitting
process also generated optimized values for θS and θR which
will be referred to as θSX and θRX , respectively

θHC = θR +
(θS − θR)

(1 + (αh)n)m
. (9)

Pairs of candidate references were evaluated by using them
to scale the remotely sensed SMI time series of the Copernicus
SSM product to VWC. The results were compared to the 2 cm
depth soil moisture simulation of the model. As previously dis-
cussed, scale-independent statistical measures of accuracy, such
as the coefficient of determination (R2), are inappropriate as they
are not sensitive to scaling errors introduced in the conversion of
SMI to VWC. Scale-dependent measures, such as RMSD (8) are
also unsuitable because the scaling process serves to amplify or
attenuate any systematic noise in the time-series, affecting the
RMSD value independently of the trend. Alternative metrics
were identified based on range and offset. Linear regression was
used to find the best-fit straight line to describe the relationship
between the calibrated volumetric soil moisture from remote
sensing (y) and the model output at 2 cm (x). This line was
expected to be of the form y = a+ bx where a is the offset and
b is the slope. Since the ideal scaling has no offset (a = 0) and
unity slope (b = 1), metrics in the form of |a| and |1− b| were
used, in addition to dr and RMSD, to find the most effective
combinations of candidate references for each site.

V. CASE STUDY

To assess the relative benefits of validating a C-band SAR
derived surface soil moisture product against the simulated soil
moisture at 2 cm, a limited performance assessment of the
Copernicus SSM product [20] was undertaken. This product
is based on data from ESA’s Sentinel-1 satellites [46] and
processed with a change detection algorithm [41]. Using the
methods described earlier, daily soil moisture predictions for
2018 were generated at 2, 5, 10, and 15 cm soil depth for each of
the study sites. SSM-derived VWC was obtained by calibrating
the SMI values against wet and dry soil moisture references, θwet

and θdry, respectively. As the SSM data do not provide a daily
time series at any particular location, values for the days within
the SSM time series were paired with the equivalent days in the
model output for comparison.

Inspection of the SSM data showed that it was characterized
by significant, apparently random, errors, that were much larger
in magnitude than the soil moisture variation. To mitigate this,
a simple exponential filter, defined by (10) was implemented.
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TABLE IV
OPTIMIZED VAN GENUCHTEN–MUALEM SOIL HYDRAULIC PARAMETERS AND MODEL FIT STATISTICS (HYDRUS-1D AT 10 CM VERSUS CRNS) FOR 2018 AT 13
COSMOS-UK SITES. θSX IS THE WATER CONTENT AT SATURATION AND θRX IS THE RESIDUAL WATER CONTENT. α AND n ARE PARAMETERS OF THE WATER

RETENTION FUNCTION AND Ks IS THE SATURATED (VERTICAL) HYDRAULIC CONDUCTIVITY. THE MODEL FIT STATISTICS ARE THE

WILLMOTT INDEX, dr , AND RMSD

The decay constant αi is a function of the time interval between
measurements in days ΔT = Ti − Ti−1, according to (11). The
values of α0 = 0.8 and λ = 0.1 were chosen to reduce the noise
level without significantly reducing the data sensitivity to short
term changes in soil moisture. The time constant of this filter
is λ−1 = 10 days, which is similar to the 12-day repeat cycle
of each Sentinel-1 satellites. A significant component of the
noise that the filter is attenuating may be artefacts of multi-
ple platforms and overlapping orbit image footprints that are
otherwise beneficial in enabling more frequent measurements.
A full optimization of such a filter, or an alternative mitigation
strategy is outside the scope of this study, and is not necessary
to achieving the objectives

P ′
i = (1− αi)Pi + αiPi−1 (10)

αi = α0e
λ(1−ΔT ) where α0 = 0.8, λ = 0.1. (11)

The performance of the SSM derived VWC was assessed
against the HYDRUS-1D simulations using the refined Wilmott
index of agreement,dr [44], RMSD, linear regression slope error
(|1− b|), and offset (|a|). For the purpose of calculating dr,
the HYDRUS-1D simulation provides the observations against
which to test the predictions from the SSM product. A good level
of performance is characterized by a high value of dr, and low
values of RMSD, |1− b|, and |a|.

VI. RESULTS

A. Model Fitting

Results of the model fitting at 10 cm depth to the CRNS data
for all 13 selected COSMOS-UK sites and the whole of 2018
are presented in Table IV. This shows the final values of the soil
hydraulic parameters after optimization and the values of dr

and RMSD achieved. The Cwm Garw site (CGARW) is a slight
outlier, but here the soil depth is relatively shallow so the free
drainage assumption for the bottom of the A horizon may not be
valid. The models used may also not work as well for peat soils
with a high organic matter content. Across the other sites the
dr value ranges from 0.774 to 0.862 and the RMSD from 2.52
to 5.78 vol.%. An example of the time series fit at the Fincham
(FINCH) site is shown in Appendix A; the optimization process
is very effective in matching the prediction to the observations.
Remaining variance may be due, to some degree, to the effective
measurement depth of the CNRS sensor, which is a function of
soil moisture.

Having established an optimized set of soil hydraulic proper-
ties for each site, the candidates for use as reference soil moisture
values (θwet and θdry) for converting SMI’s to VWC may be
revised also.

B. Predicting Soil Moisture at 2 Cm

The HYDRUS-1D model with its optimized soil hydraulic
parameters were used to simulate soil moisture at each of the 13
selected COSMOS-UK sites, for the whole of 2018. Observation
nodes were set at soil depths of 2, 5, 10, and 15 cm from the
surface. An example of the prediction at the Chimney Meadows
(CHIMN) site is shown in Fig. 5, which plots about four months
of data in the summer, which was a drought and heatwave period.
In such conditions, the profile of soil moisture is expected to vary
significantly with depth. The time series demonstrates this, with
the prediction at 2 cm showing the greatest range of soil moisture
values and the prediction at 15 cm showing the least. The 2 cm
data are reacting well to the short rainfall events and longer dry
spells.
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TABLE V
RECOMMENDED CHOICES OF WET AND DRY REFERENCE PARAMETERS FOR CONVERSION OF COPERNICUS SSM SMI TO VWC AT 13 COSMOS-UK SITES, BASED

ON 2018 DATA, AND COMPARISON WITH HYDRUS-1D PREDICTIONS AT 2 CM DEPTH OF SOIL. THE ADDITIONAL ERROR ESTIMATE FOR USING 2ND CHOICE

OVER 1ST CHOICE OR FC/PWP IS THE MEAN OF THE DIFFERENCES BETWEEN THE PAIRS OF WET/DRY REFERENCES REFERENCES AT EACH SITE

Fig. 5. HYDRUS-1D [47] simulation of soil moisture at the Chimney Mead-
ows COSMOS-UK site at various depths from the surface.

C. Identifying Wet and Dry Reference Values for Converting
SMI to Absolute VWC

For each of the 13 selected COSMOS-UK sites, a best fit
straight line between the SSM-derived VWC and the HYDRUS-
1D prediction at 2 cm soil depth was found by linear regres-
sion in R. The slope error (|1− b|) and offset (|a|) relative
to the expected y = x relationship are tabulated in Appendix
B. Analysis of this data yield recommendations of first and
second choices for wet and dry references, as shown in Table V.
The additional error estimate for using second choice over first
choice reference recommendations was calculated as the mean
of the differences between the first and second choice references
at each site. In most cases, this is less than 5 vol.% except
for LOTDN, HYBRY, and SPENF sites where the error is up
to 10 vol.%. A similar estimate was calculated for using the

common choice of FC and PWP as references compared to the
first choice recommendations. The error in this case is generally
larger. It should be noted that these are estimates of the average
error, the actual error will be soil moisture dependents and will
be greatest toward the extremes of the range, where the error
could be up to 20 vol.%.

D. Case Study—Assessment of the Copernicus SSM-Derived
VWC

Fig. 6 illustrates, for one site, the beneficial impact of the
exponential smoothing filter that was applied to the Copernicus
SSM derived soil moisture data. The remotely sensed time series
in Fig. 6(b) is much better matched to the HYDRUS-1D simu-
lations, but retains a similar dynamic range and responsiveness
to soil moisture changes. The maximum deviation is between
May and July, which may be due to vegetation effects in the
remotely sensed data, and is currently subject to further study
by the authors.

Appendix B summarizes the performance metrics for the
SSM-derived volumetric soil moisture assessed against simu-
lated soil moisture at 2 and 10 cm, at all 13 of the selected
COSMOS-UK sites. The assessment was repeated for SSM data
with and without the smoothing by exponential filter.

VII. DISCUSSION

A. Model Fitting

The optimized soil hydraulic properties model fit in Table IV
is characterized by an RMSD value of less that 5 vol.% in almost
all cases, which is a significant achievement in light of the fact
that the CRNS sensor has a variable depth sensitivity. The results
provided enough confidence in the model to use it at a shallower
soil depth.

Comparing the optimized (see Table IV) to initial (Table II
soil hydraulic properties, the deviation is quite large at some
sites. Generally, the fitted values of θR are lower than the initial
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Fig. 6. HYDRUS-1D [47] Copernicus SSM-derived VWC time series for 2018 compared to the HYDRUS-1D simulation at 2 and 10 cm depths. The site is
Chimney Meadows (CHIMN).

values form the soil maps, in some cases very close to 0% SM.
For some sites the value of θS is much higher than the starting
value (CHIMN, ELMST, LODTN, WRTTL) which might sug-
gest that the soil texture is not as expected from the soil map.
Some of the optimized values of Ks were very different to that
expected from the LANDIS Horizon Hydraulics data (CARDT,
ELMST, FINCH, HADLW, HYBRY, LODTN, RISEH ROTHD,
SPENF, and WRTTL). Possible reasons for this include; local
heterogeneity not represented in the soil map, localized soil
compaction, tillage operations, and fissures and other drainage
channels that have developed.

Where there is an appreciable organic layer overlying the min-
eral soil, the single layer model may not be ideal. HYDRUS-1D
may be configured for two or more layers, but the optimization
of additional soil hydraulic parameters may not be practical.

The methods could be used with alternative soil moisture
sensors where no CRNS is available, provide that measurements
of rainfall and PE can be made. The soil hydraulic parameters
could also be determined direct by soil sampling and laboratory
analysis, but this an expensive and resource intensive process. It
is more scalable to start with values derived from existing soil
maps and adjust them empirically to match field observations.

B. Wet and Dry References for Converting SMIs to VWC

The results of this study, summarized in Table V, confirm that
FC and PWP are not the appropriate references to use when
converting Copernicus SSM SMI values to VWC. For none of
the 13 sites does PWP appear appropriate as a dry reference, and
in only two cases does FC seem an acceptable choice as a wet
reference. In most cases the Van Genuchten model parameters θS
and θR are an appropriate choice for the wet and dry reference.
Where optimized values are available from model fitting, these
give even better results in most cases, as expected. In regions
where values of θS and θR may not be readily available, the
saturation value P , which may be approximately estimated by
the porosity of the soil, would be a better estimate of wet
reference than FC. For the dry reference a value of 0%–5%
could be used, as the values of θRX are generally very low.

This finding may also be relevant to the calibration of other
products presented as SMIs, where the sensing technology is
only sensitive to a shallow surface layer of less than 5 cm. This
may include all products based solely on C- and X-band SAR or
optical remote sensing.

C. Application of the Method

The HYDRUS-1D model has been fitted to the COSMOS-UK
CRNS sensor with a foot print of around 400 m diameter, using
MODIS LAI data at 500 m resolution to partition evapotran-
spiration into evaporation and transpiration. There will be some
uncertainty due to the difference in scale. The HYDRUS-1D
predictions of soil moisture at 2 and 10 cm depth are derived
from, and therefore at the same scale as COSMOS-UK When
using these predictions to validate the Copernicus SSM 1 km
product, a representativeness error [1] may be introduced. For
the purpose of this study, the magnitude of this error is assumed
to be the same when validating at 2 and 10 cm soil depth.

The depth of penetration of C-band SAR depends on the di-
electric constant of the soil, which is a function of soil moisture,
and is in the range of 1–5 cm [11]. This appears as a source
of noise when comparing the SAR-derived soil moisture to any
fixed depth measurement. A depth of 2 cm is close to the average
penetration depth and will minimise the noise compared to 5 or
10 cm where validation is typically undertaken.

The method of validation presented here should also be ap-
plicable to validation of SAR-based soil moisture products at,
for example, X-band, which has an even shallower depth [11] of
penetration than C-band.

D. Case Study Assessment of Copernicus SSM-Derived Soil
Moisture

Fig. 6(a) compares the time series of volumetric soil moisture
derived from remote sensing and the HYDRUS-1D model sim-
ulation at 2 and 10 cm depth. As anticipated, the overall trends
of the remote sensing output and the model simulation match
reasonably well, especially at 2 cm depth, but the SSM-derived-
data appear to have a significant noise element. This varies so
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Fig. 7. HYDRUS-1D model fit at the Fincham COSMOS-UK site, before optimization, for 2018.

rapidly that it cannot be explained by variations in soil moisture,
surface roughness, or vegetation. The source is likely to be a
combination of random noise (speckle), heavy rain, frozen soil,
or the occasional presence of scattering sources such as vehicles.
Alternatively it may be systematic in nature, due to time of day
or orbit geometry. This was the motivation for implementing
the exponential filter in the course of this study. In implementing
such a filter, some caution must be advised, as a similar approach
may be used to estimate soil moisture at greater depths from
surface soil measurements [48]. Soil moisture below the surface
is dependent on the history of rainfall events and evaporation at
the surface, with a time constant dependent on infiltration rates.
When implementing an exponential filter for noise reduction,
care must be taken to avoid damping the signal too much, and
by doing so unwittingly predict soil moisture at a greater depth
than the observations. Other types of filters will be the subject
of further research.

Appendix B shows that, for 10 out of the 13 selected
COSMOS-UK sites, the assessment of the SSM-derived soil
moisture was more favorable overall when compared to
HYDRUS-1D simulations at 2 cm depth than they were com-
pared to HYDRUS-1D simulations at 10 cm depth. This is
based mainly on dr values. At seven sites CHIMN, ELMST,
FINCH, LODTN, RISEH, ROTHD, and SPENF, the benefit of
assessing at 2 cm is unambiguous, with improvements in almost
all metrics. At CARDT, HADLW, and WRTTL, the results are a
little mixed. The anomalous sites include CGARW and HYBRY.
These are reported to have a relatively shallow overall soil depth
over rock and chalk, so the CRNS data may be more strongly
correlated to surface soil moisture at these sites. The results at
RISEH are generally poor, which appears to be due to errors in
setting the wet and/or dry references at this site (indicated by a
large value of |1− b|). At EUSTN, the performance metrics are
similar at 2 and 10 cm. It is likely that rapid drainage due to the
exceptionally high sand content > 73% has caused the whole
10 cm soil layer to have similar soil moisture to the top 2 cm
layer.

The practical implication of the results just presented is that
previous assessments of products such as Copernicus SSM may
have overestimated the error in these products due to validation
at an inconsistent depth and that future analyzes should take

account of this by adopting a similar method to that reported
here.

The RMSD values associated with the Copernicus SSM-
derived soil moisture compared to HYDRUS-1D 2 cm simula-
tions, is in the range of 8.9 to 19.8 vol.% (unsmoothed data) or 7.6
to 18.3 vol.% (exponentially smoothed). The noise reduced by
filtering will be partly random, but also seems to have a periodic
component, which may be due to satellite orbit geometry, that
should be further investigated.

VIII. CONCLUSION

Surface soil moisture products should ideally be assessed for
performance against in situ observations that are consistent with
the penetration depth of the frequency of SAR being used. In
the case of C-band SAR, this is at no greater depth than 2 cm,
where instrumented soil moisture measurements appear to be
rare. As an alternative, the method developed offers a means to
simulate in situ soil measurements at 2 cm or any other depth, by
fitting the HYDRUS-1D model to in situ observations at a much
greater depth. The data required to achieve this is a time series
of soil moisture measurements at (for example) 10 cm, LAI, and
potential evapotranspiration. There is a demonstrable improve-
ment in the apparent performance of soil moisture derived from
Copernicus-SSM between assessment at 2 and 10 cm in 10 out
of 13 COSMOS-UK sites studied.

For many applications, the soil moisture indices (SMI) often
used in remote sensing products, would be much more useful
converted into absolute values of VWC, or plant available water.
We have shown that for the Copernicus-SSM product, to convert
SMI to VWC, the wet and dry references should ideally be the
Van Genuchten model parameters θS and θR and not θFC and
θPWP as commonly used. The potential error in using the latter
is in the range 2 to 10 vol.% on average, but increases up to as
much as 20 vol.% at high or low soil moisture values for some
sites. The use of Van Genuchten model parameters θS and θR
derived from model optimization can further improve accuracy
over those obtained from soil maps, but this is site dependent
and is generally less than a 10 vol.% improvement in average
accuracy.
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Fig. 8. HYDRUS-1D model fit at the Fincham COSMOS-UK site, after optimization, for 2018.

TABLE VI
SSM PERFORMANCE METRICS ASSESSED AGAINST HYDRUS-1D SIMULATIONS OF SOIL MOISTURE AT 2 AND 10 CM SOIL DEPTHS AT 13 COSMOS-UK SITES IN

2018. BEST VALUES ARE SHOWN IN BOLD

APPENDIX A MODEL FITTING RESULTS

An example of the time series fit at the Fincham (FINCH)
site is given in Fig. 7 (before optimization) and Fig. 8 (after
optimization). This demonstrates that the optimization process

has been very effective in matching the prediction to the obser-
vations. The remaining errors may be due, to some degree, to the
effective measurement depth of the CNRS sensor, which varies
with soil moisture.
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APPENDIX B DEPTH INFLUENCE ON ASSESSMENT OF

COPERNICUS SSM-DERIVED SOIL MOISTURE

Table VI summarizes the performance metrics for the SSM-
derived volumetric soil moisture assessed against simulated soil
moisture at 2 and 10 cm, at all 13 of the selected COSMOS-
UK sites. The assessment was repeated for SSM data with and
without the smoothing by exponential filter.
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