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SCIENCE FOR SOCIETY Wildfire is an important natural disturbance for many ecosystems, helping to
shape biome distributions and controlling the carbon balance. Major changes in fire activity could also
have a strong impact on human societies. Changes in fire activity are influenced both by climatic changes
and by changes in humandemography via, e.g., population growth and urbanization.We show that in recent
decades, global burned area has actually decreased, especially in central South America andmesic African
savannas. However, our future simulations indicate that future climate and demographic change will
reverse this trend and that burned area is likely to increase due to accelerated high-latitude warming and
tropical and subtropical drying and human ignitions. These projections will inform more detailed, local
work to develop wildfire management strategies and to assess ecological responses to global change,
and will contribute to the discussion of what constitutes a safe upper limit to global warming.
SUMMARY
Wildfires influence terrestrial carbon cycling and represent a safety risk, and yet a process-based under-
standing of their frequency and spatial distributions remains elusive. We combine satellite-based observa-
tions with an enhanced dynamic global vegetation model to make regionally resolved global assessments
of burned area (BA) responses to changing climate, derived from 34 Earth systemmodels and human demo-
graphics for 1860–2100. Limited by climate and socioeconomics, recent BA has decreased, especially in cen-
tral South America and mesic African savannas. However, future simulations predict increasing BA due to
changing climate, rapid population density growth, and urbanization. BA increases are especially notable
at high latitudes, due to accelerated warming, and over the tropics and subtropics, due to drying and human
ignitions. Conversely, rapid urbanization also limits BA via enhanced fire suppression in the immediate vicin-
ity of settlements, offsetting the potential for dramatic future increases, depending on warming extent. Our
analysis provides further insight into regional and global BA trends, highlighting the importance of including
human demographic change in models for wildfire under changing climate.
INTRODUCTION and catastrophic fire events has increased in many regions
Wildfire is a natural and inevitable feature of the environment in

many terrestrial ecosystems and has a strong influence on

biogeography, ecosystem functioning, and land-atmosphere

carbon and energy fluxes.1,2 However, fire also potentially puts

humans at risk from atmospheric pollutants3 and health and

infrastructure hazards.1,4 Overall, global burned area (BA) has

declined significantly (by 24.3% ± 8.8%) over the past 18 years5

and represents the net of differential regional responses. Indeed,

despite overall decreases in fire activity, the incidence of major
One Earth 4, 517–530, A
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with widespread media attention to fires in the Amazon, western

North America, the Mediterranean, and Australia. Unfortunately,

future fire trends remain uncertain, both at the regional scale and

in terms of their spatial distribution;6 indices of climatic fire risk

and fire activity are confidently predicted to exacerbate in a

warmer and often drier world,7–9 whereas human drivers of BA

are instead projected to suppress fires.5,10 Better projections

of future regional BA, incorporating both climate and human ef-

fects on fire extent, are urgently required to enable any appro-

priate adaptation and mitigation planning.
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Climate, particularly temperature (T; �C) and precipitation (P;

mm), is the central determinant of fire activity through its controls

on vegetation productivity (i.e., providing fuel for fires) and fuel

moisture (i.e., influencing the probability of the fire occurrence).11

Vegetation productivity generally increases with rainfall and

thereby provides fuel for fires,12 although the magnitude of

this effect changes across gradients of plant productivity.13Mean-

while, reduced fuelmoisture, due towarming-induced increases in

evaporative demand and decreases in precipitation, accelerates

wildfire activities.14 Seasonality of temperature and precipitation,

related to latitude and to major atmospheric circulation features

such as monsoons and orographic features, also plays a key role

in wildfire dynamics via effects on fuel amount and seasonal fuel

moisture, as in the example of seasonal high temperature and

low precipitation in Australia.15 Wind speed (W; m s�1) plays a

key role in fire spread, but on a global scale, its influence on BA

is limited16 (or at least wind-speed data are of insufficient quality

to evaluate its effects at the global scale). Althoughwarmer climate

and drying fuel are projected to increase future BA across many

regions,8 and notably in some boreal areas,17 empirical analysis

suggests that climatic conditions that should lead to frequent fires

do not always do so10,18, suggesting a role for other, non-climatic

drivers as well.

Beyond climatic conditions, humans have shaped fire regimes

for thousands of years.1,5 The most obvious direct anthropo-

genic impact is by ignition, since humans currently light most

fires in tropical forests, savannas, and agricultural regions.12,19

However, humans can also affect fire behavior via active fire sup-

pression and passive suppression via, e.g., fragmentation.12

Overall, human activities influence fire dynamics in multiple

ways, but those effects can be distilled into three main factors.

These are (1) population density (POP; persons km�2), and

thus number of anthropogenic ignitions; (2) socioeconomic

development, e.g., urbanization, described as the ratio of rural

to total population (RUR) (higher rural population is a major

source of pyrogenic activity with longer contact with flammable

vegetation); and (3) combined fire suppression and manage-

ment, a proxy being the distance to human settlements (cities)

(DIS; km), which is also strongly dependent on urbanization.20

Details of the three variables POP, RUR, and DIS are given in

experimental procedures, while how these human activities influ-

ence BA is described in Note S1. Continued global population

growth could thus potentially increase anthropogenic ignitions21

or alternatively decrease ignitions and suppress fires if people

concentrate in cities, converting wildlands to urban areas and

decreasing rural anthropogenic pyrogenic activity.22

An important manifestation of urbanization in the coupling of

wildfire and human activities is a rapid growth of the wildland-ur-

ban interface (WUI), leading to a shorter DIS. For instance, the

land area of the WUI increased in the United States by 33% be-

tween 1990 and 2010, making it the fastest growing land cover

type and resulting in a significant increase in wildfire risk.23

Worldwide, the WUI is increasing people’s proximity to natural

vegetation, including many protected areas.24 Therefore, the

estimation of global fire risk must account for changes in the

WUI (here, via DIS; see experimental procedures), as this is

crucial for modeling the long-term coexistence of socioeco-

nomic systems and wildfires.4 Urbanization can increase BA,

as increasing numbers of people in cities and accessibility of
518 One Earth 4, 517–530, April 23, 2021
vegetation in the WUI results in an increase in potential human

ignitions.25,26

However, urbanization is potentially a ‘‘double-edged sword’’

in its effects on wildfire dynamics.25 Although urbanization in-

creases potential human ignitions, urbanization also brings set-

tlements into closer proximity to potential wildfires, leading to

more active wildfire suppression and management to avoid risks

to health, homes, and businesses,27 and thus decreases BA.28 In

developed countries, intensive interventions are implemented as

fires approach theWUI and cities, based on aerial observation of

ignitions, followed by deployment of fire retardants.4,29 As the

WUI grows, fire suppression expenditures are at an all-time

high (e.g., >$1 billion annually in the United States30). Elsewhere,

preventive measures in the form of firebreaks or managed fires

are often preferred, especially where expensive interventions

may not be possible, such as for much of Africa.31 Such preven-

tive measures have a particularly long history, for example, they

are known to have been employed in the pre-Columbian

Amazon.32 In the future, Latin American and African countries

are planning to implement more extensive government-

controlled fire suppression, already underway in Brazil.33,34

The net effects of these changes in human demographic pro-

cesses for fire distributions are not well understood. Recent

known trends in urbanization and suppression methods provide

an opportunity to test the capacity of fire models to respond to

human drivers. Models should replicate both combined fire sup-

pression and management activities that shorten potential fire

duration near settlements and effects of human populations on

ignitions. Human forcings do not operate in isolation and may

depend on complex interactions between human societies,

climate, and vegetation5,35, such that characterizing interactions

is critical for understanding how humans affect fire regimes.

Here we project global and regional trends in BA in response to

simultaneous climate change and changing human demography

using a modeling approach. To do this, we used the Lund-Pots-

dam-Jena dynamic global vegetation model (LPJ-DGVM)36 modi-

fiedto includeaprocess-basedSocio-EconomicandnaturalVege-

tationExpeRimental global firemodel (SEVER-FIRE).26 LPJ-DGVM

uses monthly climate data and an annual atmospheric CO2 con-

centration as input and simulates the growth of vegetation based

on an explicit description of a coupled photosynthesis-water bal-

ance scheme, with further allocation of carbohydrates to plant tis-

sues. The model determines the competition between individuals

of different vegetation typesand includesaccounting for plantmor-

tality and establishment. Necromass enters the litter pool and can

be either decomposed or consumed by wildfire depending on tis-

sue dryness and surface temperature. LPJ-DGVM is considered

to be one of the top state-of-the-art DGVMs and was successfully

applied at global and regional scales to simulate vegetation distri-

bution36 and related terrestrial carbon and water cycles.37–39

SEVER-FIRE provides a quantitative and spatially resolved global

evaluation of recent historical and climate-change-driven BA

trends for terrestrial ecosystems globally. SEVER-FIRE is a global

fire model operating at a daily time step (here interpolated from

monthly climate input within LPJ), derived from the first process-

based large-scale Regional FIRe Model (Reg-FIRM).20 SEVER-

FIRE simulates all stages of wildfire development, namely: (1) fire

weather risk, which depends on input climate, fuel availability,

and its type (data obtained either fromobservationsor as anoutput



Table 1. Experimental scenarios

Scenario CO2 emission scenario

Socioeconomic scenario

POP RUR DIS

S1 RCP2.6 SSP2 (middle) SSP3 (slow) SSP3 (slow) 3 coef

S2 RCP4.5 SSP5 (slow) SSP2 (middle) SSP2 (middle) 3 coef

S3 RCP6.0 SSP2 (middle) SSP2 (middle) SSP2 (middle) 3 coef

S4 RCP8.5 SSP3 (rapid) SSP5 (rapid) SSP5 (rapid) 3 coef

Overview of the experimental CO2 emission and socioeconomic scenarios used in this study.

coef, ratio of urban area growth rate to urban population growth rate. Slow, middle, and rapid under POPmean the general levels of population growth

rate, while under RUR and DIS, they mean urbanization rate.
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of aDGVM), threecharacteristics that jointly determine fire season-

ality; (2a) lightning ignition, which is determined by atmospheric

convection extent and fuel type, and/or (2b) human ignition, which

depends on human POP, wealth status, rural/urban ratio, and fuel

type, provided as an input (see the detailed description of the influ-

ence of human factors on BA in Note S1); (3) fire spread, which is

determined by climate data and fuel amount and its moisture sta-

tus, as provided from observations or from a DGVM; (4) fire termi-

nation due to rainy conditions or to suppression because of prox-

imity to human settlement (see the detailed description of the

influence of human factors on BA in Note S1); and finally (5) fire

vegetationmortality andcarbonemissionsestimatedbyvegetation

type, again available either from observations or from a DGVM.

SEVER-FIRE simulates the number of fires, theBA, and fire-related

vegetation mortality and carbon emissions, which can be further

used by feeding back into a DGVM or an Earth system model

(ESM).Themodelwasextensively validatedat regional (e.g., Spain,

Canada, and Africa) and global scales using fire statistics and

remote-sensing data for both number of fires and BA.26

We first ran LPJ-DGVM–SEVER-FIRE (LPJ-SEVER), forced

with observed climatology, over the 20th century to evaluate

model performance in reproducing present-day trends in BA.

We then coupled LPJ-SEVER to a computationally efficient

climate emulator called IntegratedModel Of Global Effects of cli-

matic aNomalies (IMOGEN).40 IMOGEN40 is a computationally

efficient climate emulator based on a pattern-scaling approach.

Here a unique pattern (i.e., a gridded map of change in climate

variables per unit global temperature change) is derived for

each near-surface climate variable andESM.Global temperature

change, in turn, is modeled as a function of changing historical

and future levels of atmospheric greenhouse gas (GHG) concen-

trations, and again calibrated against ESMs. IMOGEN can then

be used for any set of CO2 concentration or emissions scenarios

(the latter including climate-carbon cycle feedbacks), to generate

climate forcing for the host vegetation model (e.g., LPJ-SEVER).

In this framework, wildfire-induced changes in terrestrial carbon

storage can feed back to climate itself via updated atmospheric

CO2 concentration. The pattern scaling and the global warming

response to rising GHGs are calibrated against 34 different

ESMs (see experimental procedures) in theCoupledModel Inter-

comparison Project Phase 5 (CMIP5) ensemble. IMOGEN also

maps from ESMs onto a common spatial grid of resolution

3.75� longitude 3 2.5� latitude. Furthermore, IMOGEN predicts

changes in climate, i.e., anomalies, and these are added to the

University of East Anglia Climate Research Unit (CRU) clima-

tology,41 thus also bias-correcting ESM offsets. IMOGEN takes
inmonthly data andgivesmonthly data to LPJ-SEVER,whichdis-

aggregates to daily steps (i.e., the coupled model was operated

34 times to emulate the same number of ESMs), but all on the

common IMOGEN spatial resolution of 3.75� longitude 3 2.5�

latitude for the period 1860–2100. We performed 343 4 coupled

model runs in the future under four different CO2-socioeconomic

scenarios (i.e., 34 ESMs emulated3 4 scenario simulations; see

experimental procedures). The four scenarioswerebasedon four

standard Intergovernmental Panel on Climate Change Fifth

Assessment Report (IPCC AR5) Representative Concentration

Pathways (RCPs)42 of potential scenarios of atmospheric GHG

emissions in combination with three demographic Shared Socio-

economic Pathways (SSPs)43 (i.e., each RCP scenario is initially

aligned to a specific SSP combination; Table 1, and experimental

procedures). The observed CO2 emission and human drivers

were used for the historical period (i.e., 1860–2005), before diver-

gence from present day to the end of the 21st century, due to

different ESM-based estimates of climate change and different

RCPs and SSPs. Validation of the model was conducted in two

steps (see experimental procedures). First, we evaluated the abil-

ity of the model to reproduce recent trends in both global and

regional BA against two satellite-based BA products. The first

product is the Global Fire Emissions Database version 4 product

including small fires (GFED4s), which is a hybrid approach

combining both satellite and modeling. GFED4s was primarily

produced from the Moderate Resolution Imaging Spectroradi-

ometer (MODIS) Collection 5.1 MCD64A1 BA product and active

fire data. A ‘‘small-fire boost’’ algorithmwas used to estimate the

small-fire BA fromMODIS active fire detections, but thismethod-

ology may cause significant errors.44 These measures provide

global monthly BA, including the impact of small fires, at 0.25�

spatial resolution from year 1997 onward.3 The second product

is the European Space Agency Climate Change Initiative BA

product version 5.1 (FireCCI51), which was generated from the

MODIS satellite imagery. FireCCI51 provides monthly global BA

at a degraded resolution of 0.25�, starting from year 2001.45 Sec-

ond, we performed a comprehensive validation of the underlying

dynamic global vegetation model itself using the International

Land Model Benchmarking (ILAMB) system. ILAMB tested the

LPJ model for a wide range of land carbon and hydrology cycle

variables and climate forcings, all against in situ, remote-sensing,

and reanalysis datasets.46 In addition, we evaluated the simu-

lated vegetation distribution by LPJ model with the latest

remote-sensing-based land-cover map.47

We explored the dominant limiting factors, including interactive

effects, on the present-day BA trend for the period 1987–2016
One Earth 4, 517–530, April 23, 2021 519



Figure 1. Present-day global BA trends

(A–D) (A) Global BA andBA trends over the period 2000–2013.Model means the global BA simulated by SEVER-FIRE driven by CRU/NCEP-observed climatology

(see experimental procedures), GFED4s means GFED4s-observed BA product, and FireCCI51 means FireCCI51-observed BA product. The asterisks in this and

subsequent figures indicate whether the BA trend is statistically significant (Mann-Kendall test; ***p < 0.01, **p < 0.05). rGFED4s/FireCCI51 and pGFED4s/FireCCI51 in this

and subsequent figures represent the Pearson correlation coefficient and the p value between the simulation and the GFED4s/FireCCI51 products, respectively.

The BA from FireCCI51 starts from year (yr) 2002. Spatial patterns of BA trends over the period 2002–2013 observed from (B) GFED4s and (C) FireCCI51 and

simulated by (D) SEVER-FIRE are shown. Regions labeled with black dots in this and subsequent figures indicate trends that are statistically significant (Mann-

Kendall test; p < 0.05).
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usingmodel factorial simulations. Factorial simulations can isolate

the impact of individual factors by fixing one variable at a time

(either a climatic variable, T, P, and W, or a socioeconomic vari-

able, POP, RUR, and DIS). These six factorial historical runs

enabled mapping of the limiting extent of each factor and calcu-

lating its importance as the sum of the number of grid cells with

the same dominant limiting factor divided by the total number of

global burned land grid cells. We also projected the future global

BA trends over the period 2014–2100 and analyzed simulated

spatial patterns and drivers using a partial derivatives approach

by varying one driver at a time, yielding six runs over the last 30

years of the 21st century (see experimental procedures). Finally,

to clarify the relative importance of future human impacts on BA

dynamics, a sensitivity analysis was performed exploring all com-

binations of population growth and urbanization rates, where the

latter determined the evolution of DIS and RUR.

RESULTS

Present-day global BA trend
Fire dynamics simulated in ‘‘offlinemode’’ were validated against

satellite-basedGFED4s and FireCCI51 observations, suggesting
520 One Earth 4, 517–530, April 23, 2021
a reasonable match between modeled and observed temporal

trends in recent global BA (Pearson correlation analysis, r =

0.88, p < 0.01 and r = 0.64, p < 0.05, respectively; Figure 1A).

Overall, when driven by observed climatology, SEVER-FIRE

yielded decreasing BA at a rate of �4.85 Mha year�2 over the

period 2000–2013 (Mann-Kendall test, p < 0.05), thus success-

fully reproducing recent negative global BA trends of �6.18

Mha year�2 in GFED4s and �3.25 Mha year�2 in FireCCI51

(Mann-Kendall test, p < 0.01, p = 0.45, respectively; note that

FireCCI51 covers only 2002–2013). Regional evaluation in

observed against simulated recent BA trends, mean annual BA,

temporal correlation, and spatial correlation of grid-cell-based

BA dynamics showed that our model broadly captured the major

pattern of the observed BA (Note S2). Generally, the simulated

spatial pattern of the trends in BA compared well with the satel-

lite-based GFED4s and FireCCI51 products (Figures 1B–1D).

The model captured observed negative trends across central

SouthAmerica,mesicAfrican savannas, Southeast Asia,western

Europe, and the northern Australia and positive trends around

western Canada, California, parts of northern Eurasia, and South

Asia over the period 2002–2013. However, there are still large un-

certainties and biases in recent simulated-against-observed BA



Figure 2. Attribution of dominant limiting fac-

tors of spatial patterns of present-day BA

trend over the period 1987–2016

Bar plots (right) indicate the fraction of global

burned land grid cells (%) where changes in BA

trend are attributed to different dominant limiting

factors. The legend is provided as a set of rectan-

gular labels at the bottom. The prefix ‘‘+’’ means that

a change in a limiting factor has a positive impact on

BA trend, whereas ‘‘�’’ means that a change in a

limiting factor has a negative impact on BA trend. T,

temperature; P, precipitation; W, wind speed; POP,

population density; RUR, ratio of rural to total pop-

ulation; and DIS, average distance from the near-

est city.
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trends (Note S2), even between GFED4s and FireCCI51 (see,

e.g., diverging trends in eastern China and the Brazilian Cerrado

and Caatinga). Comprehensive validation of LPJ-SEVER using

the ILAMB system, including an assessment of the global vege-

tation distribution, is provided in Note S3.

Limiting factors of present-day BA trend
Recent BA changes were influenced by a range of factors.48

Although these interacted, factorial simulations can nevertheless

help to attribute the dominant limiting factors to BA trends.49 At a

global scale, over the period 1987–2016, factorial simulations

suggest that present-day BA trend was predominantly limited

by DIS (km) on 40% of global burned land grid cells, followed

by climate factors, including P (mm) (35%), T (�C) (12%), and

W (m s�1) (2%), with 11%attribution to other socioeconomic fac-

tors (POP [persons km�2] and RUR) (see Figure 2). Overall,

climate (as the sum of T, P, and W) and human activity (as the

sum of DIS, POP, and RUR) were equally limiting to present-

day fire activity (49% and 51% of the global burned land grid

cells, respectively; Table S5). The effects of DIS, representing

combined human fire suppression and management, were

most limiting of trends in areas with frequent fires in South Amer-

ica, central Africa, Alaska, Southeast Asia, and northeast China.

Climate, in particular T and P, was most limiting in Northern

Hemisphere high-latitude areas and in places that are already

heavily urbanized (where additional urbanization is unlikely to

affect trends), including Europe and the eastern United States.

Future BA trend projection
We projected future global BA trends, represented as ensemble

means across 34 ESM-based IMOGEN-LPJ-SEVER simulations

(i.e., an integrated BA after 34 independent runs), under four

experimental scenarios, S1 to S4 (Table 1). These four ensemble

means corresponded to the period 2014–2100. The strong miti-

gation scenario S1 resulted in a slightly negative BA trend (�0.03

Mha year�2) via low emissions, intermediate population growth,

and slow urbanization; the typical mitigation scenario S2 in a

large negative BA trend (�1.69 Mha year�2; Mann-Kendall test,

p < 0.01) via slow population growth; and the intermediate miti-

gation scenario S3 in a smaller negative trend (�0.58 Mha

year�2; Mann-Kendall test, p < 0.01) via intermediate population

growth. However, we found a significant increase in BA in

response to S4, currently the ‘‘business-as-usual’’ scenario

with high emissions, rapid population growth, and rapid urbani-

zation (0.88Mha year�2; Mann-Kendall test, p < 0.01) (Figure 3A).
To understand climate and human factors limiting future BA

change, we conducted a set of factorial analyses using the S3

scenario for three ESMs covering a range of future global P

changes for the period 1860–2100 (see experimental procedures

and Note S4). Combined anthropogenic fire suppression and

management (via proximity to city settlements, DIS) was a major

factor limiting potential growth of global BA driven mainly by

exponential population growth (Note S4). To illustrate, under

the intermediate mitigation scenario, a constant DIS (set to the

size of the DIS in 1950) would result in a BA at the end of 21st

century almost three times larger than that projected with real-

istic change in the DIS; this demonstrates the strong suppressive

effect of urbanization on BA (Figure 3B). A sensitivity analysis us-

ing the RCP6.0 CO2 emission scenario (Table 1) covering the

range of possibilities in population growth/urbanization rates

showed that, for a rapidly growing population, urbanization

tended to decrease global BA (Figure 3C).

The spatial patterns of ensemble mean BA trends across 34

ESM-based IMOGEN-LPJ-SEVER simulations for four sce-

narios, S1 to S4 (Table 1), over the period 2071–2100 are shown

in Figure 4. The results show large differences among the sce-

narios. Scenario S1 resulted in a significant negative trend glob-

ally (�1.78Mha year�2; Mann-Kendall test, p < 0.01; inset of Fig-

ure 4A), with large declines in BA in the Amazon, mesic African

savannas, Siberia, and South Asia. Scenario S2 also showed a

significant negative trend globally (�2.39 Mha year�2; Mann-

Kendall test, p < 0.01; inset of Figure 4B), but with positive trends

in North America (excluding Alaska) and western Europe

compared with S1 (Figure 4B versus 4A). Scenario S3 showed

patterns similar to S1 and S2, except that BA was projected to

increase across the Amazon, and Siberia was relatively un-

changed (Figure 4C; overall global BA trend of �0.59 Mha

year�2; Mann-Kendall test, p < 0.05). Scenario S4 instead

showed a significant positive trend globally (2.18 Mha year�2;

Mann-Kendall test, p < 0.01; inset of Figure 4D), focused across

the Amazon, northwest Eurasia, and Southeast Asia (Figure 4D).

Drivers of future BA trend
We estimated the contributions of three climatic (T, P, and W)

and three socioeconomic factors (POP, RUR, and DIS) to BA

trends for 2071–2100 by fixing all but one factor at a time. The

dominant drivers of regional BA trends in the future were climate

change and changes in POP, with the magnitude of their contri-

butions varying with emission-socioeconomic scenario (Figure 5

and S10). For scenario S1 (lowest emissions, middle population
One Earth 4, 517–530, April 23, 2021 521



Figure 3. Projected global BA trends

(A) Future BA trends over the period 2014–2100 using four experimental

scenarios (Table 1). The shaded areas represent the standard deviation for the

results of 34 runs. ***p < 0.01 (Mann-Kendall test).

(B) Factorial analysis on long-term global BA in the S3 scenario (Table 1) over

the period 1860–2100. The shaded areas represent the standard deviation for

the results of three ESMs (see experimental procedures). T, P, W, POP, RUR,

and DIS are the same as those in Figure 2.

(C) Sensitivity analysis under RCP6.0 CO2 emission scenario by exploring all

combinations of population growth rate (pop) and urbanization rate (urb) from

SSPs. ‘‘mid’’ represents ‘‘middle’’ in Table 1 and ‘‘S3’’ represents the S3

scenario in Table 1.
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growth, and slow urbanization), climate change was mild, and

POP was the dominant driver of changes in BA in most tropical

and subtropical regions, and BA changes in northwestern Russia

were dominantly driven by urbanization (Figures 5A and S10A).

For scenario S2 (second lowest emissions, slow population

growth, and medium urbanization), regional BA changes tracked

decreasing population trajectories in South America, tropical Af-

rica, Southeast Asia, and Russia, with increasing BA tracking

population increases in Europe and North America. Changes in

geographic BA trend distribution were explained mainly by the

SSP5 demographic scenario.50 Climate effects (mainly of tem-

perature) were concentrated in high latitudes and mountain

areas (Figures 5B and S10B). For scenario S3 (second highest

emissions, medium population growth, and medium urbaniza-

tion), climate change was more severe, and therefore the influ-

ence of climate drivers (sum of T, P, and W) on global BA trends

also increased (globally, 47% of global burned land grid cells
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were dominated by climate drivers in scenario S3 compared

with only 29% for scenario S2; Figures 5B and 5C). Climate ef-

fects due to temperature were no longer restricted to Russia,

Scandinavia, and North America (where population change

wasminimal), but extended also into the Amazon and East Africa

due to changes in precipitation (Figure 5C). Finally, for the most

extreme scenario, S4 (highest emissions, rapid population

growth, and rapid urbanization), although human-induced fires

were important over the tropics and subtropics, climate deter-

mined 52% of the global BA trend, due to high latitude warming

(in, e.g., Russia and Canada) and to tropical and subtropical dry-

ing (Figures 5D and S10D). Regionally, changes in BA over the

Amazon rainforest were driven predominantly by population

growth and precipitation changes. Generally, decreasing precip-

itation across the Amazon over the last 30 years of this century

increased BA (Figure S11), although some years with increased

precipitation also contributed (Figure 5D). This demonstrates

how increased precipitation can operate in two competing

ways, by increasing BA due to increased vegetation growth

and thus more fuel or, alternatively, by decreasing BA through

increasing moisture levels in fuel. In addition, there existed

possible compensatory effects going from the local scale to

the global,51 i.e., although globally, changing population distri-

butions remain important (Figure 5 and Note S4), climate change

compensates locally (Figure S10).

DISCUSSION

Here, we present results of a global fire model that reproduced a

negativeglobalBA trendobserved inGFED4sandFireCCI51over

the recent historical period,5 which suggests a reasonable repre-

sentation of fire responses to climate and human activity in

SEVER-FIRE.26 Effects of human activity are themajor innovation

of the model, with mechanisms based primarily on fire termina-

tion (using DIS as a proxy for speed of suppression) and ignitions

(dependent onPOPand ratio of rural population). Spatial patterns

of simulated trends in BA were generally consistent with studies

showing recent declines in BA in the tropical savannas of South

America52 andAfrica.5,7,53 In ourmodel, declinesaredrivenby ru-

ral-urban transformation (included explicitly) and by agricultural

commercialization, diversification of economic activities, and in-

crease in property size (implied in model mechanisms). Although

economic transitions and associated land-use and land-cover

change are not formally modeled, key aspects are implied via

changes to wildfire activity in both urban and rural areas as wild-

land is urbanized.54 The model assumption that wealth is not

changing in abandoned rural areas leads to increases in the sizes

of individual land owners’ properties, similar to the conceptual

model of Andela et al.5 This has the effect of causing decreases

in ignition activities related to a smaller number of ignition agents

and changes in the timing of pyrogenic activities, both of which

result in a decrease in BA. However, the model underestimates

BA in North America; total BA may be underestimated because

of either issues with estimating lightning ignitions2 or some

aspect of fire duration and extinction12 (a known limitation of

fire models generally).

The models that reproduced historical BA trends also enabled

predictions of future BA trajectories. For milder atmospheric

GHG emissions scenarios (scenarios S1–S3 in Figure 3A), our



Figure 4. Spatial patterns of future BA trends

Shown are the ensemble mean BA trends across 34

ESM-based IMOGEN-LPJ-SEVER simulations over

the period 2071–2100 for the four scenarios listed in

Table 1. (A) S1, (B) S2, (C) S3, and (D) S4. Line plots

(inset) indicate global BA trends for the same period,

and the shaded areas represent the standard devi-

ation for the results of 34 runs. ***p < 0.01, **p < 0.05

(Mann-Kendall test).
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model predicted declining global BA. By contrast, with the high-

est emissions and rapid population growth and urbanization

(scenario S4 in Figure 3A), global BA instead increased, driven

by population growth and by drying in tropical and subtropical

areas and warming and drying over high latitudes and moun-

tainous areas. The largest difference in BA trends among sce-

narios occurred during the period 2071–2100 across central

South America, including the Amazon, and in northern Eurasia,

including Siberia (Figures 4A–4D). Rapid population growth

and precipitation changes were projected to lead the Amazon

to change into a fire-prone ecosystem, whereas warming alone

led to increases in BA across northern Eurasia (Figure 5D). Under

scenario S4, warming, drying, and population growth combined

to dramatically increase BA globally (see also Knorr et al.10). The

effects of climate were particularly obvious across high-latitude

regions, where temperature was a dominant driver across 36%

and 38% of global burned land grid cells under scenarios S3

and S4, respectively (Figure 5).14,55,56 Future research could

include millennium-scale analyses, capturing longer time scales
of global temperature responses to emis-

sions. For instance, even if emissions

reduce to zero after year 2100, global tem-

peratures will continue to be raised for

many centuries (e.g., Eby et al.57). Long-

term warmer, and possibly drier, condi-

tions may lower fuel availability in tropics/

subtropics due to the associated decrease

in vegetation productivity and readjust-

ment of spatial patterns of vegetation dis-

tribution. Therefore, while an increase in

BA is seen under scenario S4 in the last

30 years of the century, global and regional

BAs may start to decrease in a long-term

period after 2100. In addition, carbon cy-

cle/vegetation cover may also be slow,

with transient dynamics that dominate in

the near term, approaching a new equilib-

rium after 2100.37,58

Drivers of BA trends are likely to change

substantially in the future, but whether they

affect the BA response will also depend on

the other limiting factors operating at any

given time. The overall BA trends were

also strongly limited by proximity to human

settlements (DIS) across 47%–54% of

global burned land grid cells in all four sce-

narios (Table S5 and FigureS12), consistent

with the idea that the intensity of fire sup-
pression and management increases with proximity to settle-

ments.10 Our sensitivity analysis covered the range of possibilities

in population growth and urbanization and suggested that, where

population growth is rapid, faster urbanization will decrease BA

(Figure 3C). Urbanization thereby offsets potential dramatic in-

creases in global BA resulting from changing climate and popula-

tiongrowth (Figure3BandNoteS4).However,despite the appear-

ance of new frontiers of fire suppression near new and growing

cities, anenhancedwildfire-human settlement interfacewas insuf-

ficient to fully offset other climate and socioeconomic factors, as

evidenced by the fact that, despite urbanization, extreme CO2

emissions scenarios led to general increases in BA. Moreover,

rapidly developing countries (e.g., Brazil, Russia, India, and China)

wereprojected tobemajorcontributors to futureglobalBA forboth

climatic and anthropogenic reasons (Figures 4 and 5); future

changes in fire suppression and management in these countries

could strongly influence global BA trends.59–61

Our results highlight the global importance of fire suppres-

sion for recent and future fire regimes and suggest how the
One Earth 4, 517–530, April 23, 2021 523



Figure 5. Attribution of dominant drivers of

spatial patterns of future BA trends over the

period 2071–2100

Shown are the four scenarios listed in Table 1. (A)

S1, (B) S2, (C) S3, and (D) S4. Bar plots (right) indi-

cate the fraction of global burned land grid cells (%)

where changes in BA trend are attributed to different

dominant drivers. The legend is provided as a set of

rectangular labels at the bottom. The prefix ‘‘+’’

means that a change in a driver has a positive

impact on BA trend, whereas ‘‘�’’ means that a

change in a driver has a negative impact on BA

trend. T, P, W, POP, RUR, and DIS are the same as

those in Figure 2.
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human aspects of fire regimes (including fire management)

can sometimes change historical fire-weather relationships.

For instance, in southern France, starting in the 1990s, fire

suppression decreased the number of fires ignited by the

same weather conditions.62,63 However, the probability of

strong winds has concurrently increased, resulting in fire ac-

tivity that is dominated by hot, windy weather, instead of by

fuel moisture. Thus, despite fire suppression, BA is predicted

to increase by 30% by the end of the century (2071–2100) in

the Mediterranean under the RCP8.5 scenario,64 a prediction

that parallels scenario S4 in our study. This interaction of

fire suppression with weather is not included in our model,

however, and may potentially exacerbate predictions: de-

clines in BA for the low emissions scenarios (S1–S3) may be

stronger than projected, whereas increases in BA in the high

emissions scenario S4 may be even amplified, if the interac-

tion of weather and fire suppression leads to larger fires.64

The next generation of global fire models incorporated into

DGVMs/ESMs should account for the impacts of fire suppres-

sion on the observed relationship between fire and weather.62

New fire models should also capture the existence of ecolog-

ically or economically optimal fire suppression strategies

proven to be effective65,66 and should also account for condi-

tions leading to extreme but rare ‘‘firestorms’’ that contribute

substantially to BA. All of these factors will enable more accu-

rate estimates of global and regional dynamics of BA.
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In the fire modeling literature, the issue

of BA trends and their drivers remains

controversial.6,7,9,10,67 Here our results

provide potential insights into why pub-

lished models diverge in their predictions:

they stem mainly from regional differences

in BA trends and the alternative represen-

tation of mechanisms of fire occurrence,

spread, and termination within fire models.

Most studies suggest an increasing BA

trend7–9, especially in the last three de-

cades of 21st century6,67, consistent with

our finding that, under severe climate

change and population growth scenarios,

BA is likely to increase, especially in places

subject to intense warming and drying.

However, we also projected negative

global BA trends in three of four future sce-
narios, limited primarily by changes in fire suppression and man-

agement associated with urbanization. This is consistent with a

smaller literature arguing that, globally, BA trends are likely to

be heterogeneous8 and to depend on human demographic fac-

tors.10 SEVER-FIRE extends previous analyses10 by improving

descriptions of pyrogenic human behaviors, e.g., prescribing

different timing of ignitions for rural and urban populations.26

We also take into account the feedbacks between vegetation,

humans, wildfires, and the climate system by using a coupled

online framework, extending past work with focused instead of

linear responses.10 This coupled framework allows for a dynamic

response of ecosystems to changing fires and for feedbacks be-

tween changing atmospheric conditions and fire behavior. These

innovations result in a wide divergence of non-linear responses

of global BA to POP and urbanization changes (Figure 3C).

Despite these improvements, however, hereweconsider the ef-

fects of only relatively coarse-grained demographic variables on

fire behavior and BA. In reality, the influences of human activities

on fire dynamics are likely to bemore complicated than this. Their

representation inmodelsmay need to include agricultural produc-

tion, explicit considerationof firemanagement, land-useand land-

cover change,12,21 fragmentation,68 and even complex interac-

tions among social and ecological systems.69 Human activities

can also have complicated seasonality: here, we prescribe the

timing of rural ignitions to align with the timing ofmajor agricultural

seasons (spring and fall), which allows us to simulate how
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agricultural fires escape to influencewildfires (e.g., Spain20). How-

ever, explicitly representing agricultural management fires as

separate from wildfires may be another useful step for future

work. Deliberate agricultural fires account for �10% of global

fires,70but theyhavedifferent seasonality, frequency,and intensity

in comparison with wildfires. Furthermore, Korontzi et al.70 show

that fire regimes for agricultural fires are highly dependent on

regional agricultural practices, types of crops, and yield output.

Thus, the implementation of simulated agricultural fires into

ESMs requires well-developed descriptions of expected pyro-

genic activity of farmers around the globe. Population density

today at a global scale shows a strong negative relationship with

recent BA change largely due to landscape fragmentation and

fuel reduction,21which could be simulated in our coarse resolution

study only implicitly by implementing urbanization. Moreover,

recent BA trends in Africa may have been driven by cropland

expansion over the period 2001–2012;71 we can only peripherally

address this by providing an improvedmapof projected global BA

distributionafter integratingcropland impact (NoteS2),whichcon-

firms thepotential influenceof land-usechangeonBA.However, it

is also clear that human effects on fire regimes merit greater and

more diverse research emphasis, examining land use, especially

crop versus pasture expansion, and abandonment of culturally

traditional burning.72 Other variables, too, may merit examination;

for example, roads and power lines are not represented in most

global models but may play important roles as ignition sources

or firebreaks.22 Their role in global fire regimes now and in the

futurecanbeassessedonlybycoupledmodelswith sophisticated

socioeconomic descriptions. Moreover, the effects of other fac-

tors, like lightning,2 CO2 fertilization
10 (via resprouting of adaptive

trees in semi-arid regions),73 and fuel load and fuel availability,48

on BA changes deserve further study.

In summary, we show that the historical global BA has

decreased, notably for central South America and mesic African

savannas, and formulate a new model that reproduces trends

well, capturing recent climate and human limits on changes in

BA. This model projects divergent trends in the future, depending

on climate and socioeconomic scenario. Under severe climate

change scenarios, fire activity increased, largely due to acceler-

ated high-latitude warming and tropical and subtropical drying.

However, human activities were important even in severe sce-

narios, anddominated theBAsignal inmilderscenarios.Urbaniza-

tion in particular strongly shaped patterns; active and passive fire

suppression in the vicinity of human settlements was important in

offsetting large potential BA increases. Overall, understanding

both the climatic and the human controls on long-term BA trends

is a first, yet critical, step toward better projections of the future of

wildfire in a changing climate.4
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Data and code availability

All data used to evaluate the conclusions of the paper and generate the figures

and tables are available at https://doi.org/10.6084/m9.figshare.14256272. The
Python codes to interpret data and prepare the figures are available on request

from the lead contact. GFED4s is available at http://www.globalfiredata.org/

index.html. FireCCI51 is available at https://geogra.uah.es/fire_cci/firecci51.

php. ILAMB is available at https://www.ilamb.org/. National Centers for Envi-

ronmental Prediction (NCEP) Reanalysis data were provided by the NOAA/

OAR/ESRL PSD, Boulder, Colorado, USA, from their website at https://

www.esrl.noaa.gov/psd/. The IMOGEN model and the latest version are avail-

able from C.H. (contacted at chg@ceh.ac.uk).

Model

LPJ-DGVM–SEVER-FIRE (LPJ-SEVER)

A process-based global fire model (SEVER-FIRE),26 which was developed

from Reg-FIRM,20 used for reproducing and projecting future global BA and

its trends, was coupled to LPJ-DGVM.36 Reg-FIRM was used in previous

regional human-dominated ecosystems: Iberian Peninsula fire regime repro-

duction.20 However, the structure and the parameterization oriented to the

global scale of the fire model have been updated in SEVER-FIRE.26

One of the major novelties of SEVER-FIRE is an implementation of the pyro-

genic behavior of humans (e.g., differential timing of contact with vegetation

within a year), which provides additional spatial and temporal variation in BA

trends due to different fire weather conditions for urban and rural popula-

tion-induced ignitions.26 Overall, increasing numbers of people in cities and

accessibility of vegetation in the WUI may result in an increase in potential hu-

man ignitions,25,26 although under high population densities, fire activity may

decrease due to proximity to suppression resources.28 An additional novel

aspect of our approach is the implementation of a description, in simplified

form, of combined fire suppression and management activity that, together

with weather conditions,26 determines potential fire duration. This is character-

ized and assumed through a proxy quantity, described by an average fire dura-

tion that increases exponentially with distance from the city borders. Based on

climate forcing, external anthropogenic drivers, and LPJ-DGVM-derived vege-

tation (e.g., fuel state set by vegetation dynamics), SEVER-FIRE provides at

the global scale a mechanistic description of major fire characteristics, namely

number of fires, area burned, and fire carbon emissions, which are separated

into human-induced and lightning-induced fires by their ignition sources. The

post-fire conditions then regulate vegetation and ecosystem regeneration,

which acts as a feedback to burning, driving conditions of new fuel load accu-

mulation and the difference in flammability among plant functional types in the

DGVM. BA has been widely used in assessing the effects of fire.1,11,74 More

details of the description of SEVER-FIRE can also be found in Venevsky et al.26

The IMOGEN climate-carbon cycle system

LPJ-SEVER is forced by a common base climatology plus patterns of chang-

ing meteorological conditions fitted against the 34 CMIP5 ESMs (Note S3).

‘‘Pattern scale,’’ which approximates linear relationships found between local

and seasonal meteorological variation and the amount of global warming over

land,75 is used to calculate climate change.40,76,77 An energy balance model

calculates global warming amounts from changes in atmospheric GHGs,

also fitted to the CMIP5 ensemble. This component is coupled to the LPJ-

SEVER with vegetation dynamics, which provides land-atmosphere feedback

via the net biome production flux. This flux is calculated as integrating grid-box

mean values of net primary productionminus heterotrophic respiration and fire

carbon emissions. A simple global oceanic model gives ocean feedback to the

atmosphere by the oceanic drawdown of CO2.
40 This combined impact sys-

tem, IMOGEN, is operated online with a closed carbon cycle and thus forced

with anthropogenic CO2 emissions. Annual CO2 concentrations are updated at

the end of each year based on annual CO2 emissions and changes in global

land and ocean carbon fluxes from LPJ-SEVER and the global ocean model,

respectively.37 Non-CO2 GHG emissions are not considered in this study.

The flowchart of the IMOGEN-LPJ-SEVER framework is shown in Figure S13.

Forcing datasets

Atmospheric composition and climate datasets

For the offline historical simulations, we used observed fields of monthly clima-

tology for the period 1950–2016 from the University of East Anglia CRU grid-

ded dataset,41 supplemented by variables from the NCEP/National Center

for Atmospheric Research (NCAR) Reanalysis dataset78 (e.g., P, convective

P, and W). These climate datasets were aggregated to a resolution of 3.75�

longitude 3 2.5� latitude through the nearest-neighbor interpolation method,
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in keeping with the resolution of the climate patterns of ESMs used in IMOGEN.

Meanwhile, we used annual global atmospheric CO2 concentrations for the

period 1950–2016 based on atmospheric observations during offline historical

simulation.37

For the fully coupled online carbon-cycle simulation, IMOGEN required pre-

scribed fossil fuel CO2 emissions, which were based on historical records over

the period 1860–2005.79 RCP2.6, RCP4.5, RCP6.0, and RCP8.5 emissions

scenarios were used for the period 2006–2100. The interannual varying climate

is necessary for LPJ-SEVER to simulate realistic fire dynamics,37 which is

simulated at daily steps. Therefore, 34 patterns from ESMs were added to a

random sequence of years between 1901 and 1930 from the CRU dataset.80

Hourly surface climate was derived by temporal disaggregation of the monthly

means, including T at 1.5 m, diurnal T range, P, andW, and resultingmonthly T,

maximum/minimum T, P, convective P, and W were used to force LPJ-

SEVER.40 The monthly climate data were interpolated to daily values within

LPJ-DGVM in order to force SEVER-FIRE. However, we assumed that cloud-

iness fluctuation would not change with time, and the constant long-term

means were used to force the model in this study.36 All the data used in the

simulation (including the socioeconomic variables in the next section) was pre-

pared as a spatial resolution of 3.75� longitude3 2.5� latitude, in keeping with

associated patterns of ESMs, and the nearest-neighbor interpolation method

was used if needed.

Socioeconomic scenarios

SEVER-FIRE is also forced by socioeconomic variables, mainly including POP,

RUR, and DIS. Human factors of BA variability (i.e., POP, RUR, and DIS) are

non-linear in time. The relationships between these factors are changing

through time according to socioeconomic scenario. The common global grid-

ded (urban) POP base maps over the period 1950–1959 were derived from the

United Nations Population Division (https://esa.un.org/unpd/wpp/Download/

Standard/Population/). The following years’ POP could be obtained by the

annual average population growth rate multiplied by the common base map.

The annual average (urban) population growth rate (%) was extracted from

the SSP database,43 which described the world’s different levels of challenges

to climate mitigation and adaptation.10 SSP2 represents an intermediate sce-

nario of middle of the road, with middle population growth and middle urban-

ization; SSP3 reflects rapid population growth and slow urbanization, leading

to a high challenge of mitigation and adaptation; SSP5 describes a world with

conventional economic growth and mounting fossil fuel consumption leading

to rapid urbanization but with slower population growth.10 The World Bank

World Development Indicators’ historical population annual average growth

rate was used for the period 1960–2005. For the period 2006–2100, the

SSP2, SSP3, and SSP5 scenarios, which were provided by the NCAR, were

selected to project the potential growth rate of POP based on five different re-

gions with different development levels.43 Similarly, the projection of RUR for

the period 1950–2100 was prepared according to urban POP baseline and ur-

banization speed rate. But the historical records were fromWorld Urbanization

Prospects (WUP2009).

VariableDIS, in our approach, operates as aproxy variable that combines fire

suppression andmanagement and, as expected, is strongly related to levels of

urbanization. An auxiliary role of DIS is in constraining the number of human ig-

nitions due to conversion of wildland to urban territories as the probability of

ignition is set to zero, when DIS is zero in the model. Generally, global urban

areas are expanding on average twice as fast as their populations,81 as was

suggested recently by power scaling relationships in cities that remain valid

over many centuries.82 However, a parameter, coef, defined as the ratio of ur-

ban area growth rate to urban population growth rate, varies geographically

and depending on how diverse development levels are for different regions.83

We assume that theDIS changes at the same rate as the growth of urban areas.

The initial values of DIS for a grid cell (3.75� 3 2.5�) for this study were recalcu-

lated from a dataset with 0.5� 3 0.5� spatial resolution.26 Values are derived as

the distance from the grid cell to the nearest grid cell with a POP exceeding 400

persons km�2, whichwas considered a threshold for an urban system84,85 (see

maps of recent and future DIS in different SSPs from Figure S14). Based on the

‘‘low projection’’ scenario (i.e., assuming constant urban densities) of Tables

6.1 and 6.2 in Angel et al.,83 we calculated the ratios of urban area growth

rate to urban populations (i.e., coef) in five regions. These correspond to the re-

gionsdefined in theSSPs, and thusweobtained the growth rate of DIS andpro-

jected DIS for the historical and future period, years 1950–2100.
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Experimental design

Model initialization

The fully coupled IMOGEN-LPJ-SEVER simulation started from ‘‘bare ground’’

(no plant biomass present) and ‘‘spun up’’ 1,000 years until approximate equi-

librium of carbon pools and vegetation cover was reached.36 A random

sequence of years between 1901 and 1930 from the CRU dataset, the socio-

economic forcing data in the year 1950, and a constant atmospheric CO2 con-

centration at preindustrial were used to force the coupled model. Meanwhile,

CO2 emissions were ‘‘switched off’’ and no feedbacks from land or ocean to

the atmosphere were used during the model initialization.

Offline historical LPJ-SEVER simulation

In the first set of experiments, LPJ-SEVER was run from its preindustrial equi-

librium over the historical period 1950–2016 using observed fields of monthly

climatology CRU datasets, NCEP/NCAR Reanalysis datasets, and historical

annual global atmospheric CO2 concentration, at the ESM grid resolution of

3.75� longitude 3 2.5� latitude. The input soil texture data were the same as

in Sitch et al.36 No land or ocean carbon-cycle feedbacks were included at

this stage.37

Fully coupled IMOGEN-LPJ-SEVER simulation

LPJ-SEVERwas run from its preindustrial equilibrium in 1860 over the historical

and future period 1860–2100 at the spatial resolution of the ESMs’ patterns.

Once the equilibrium state was reached, LPJ-SEVER was run in transient

mode forced by the IMOGEN framework using climate anomalies from 34

ESM patterns (i.e., the couped model was run 34 times depending on different

ESMs). Climate anomalies were added to a random sequence of 30 years of

baseline climatology. This was undertaken for four IPCC AR5 RCP fossil fuel

CO2 emissions scenarios (RCP2.6, RCP4.5, RCP6.0, andRCP8.5).Meanwhile,

three external anthropogenic SSPs (SSP2, SSP3, andSSP5) were added to the

fully coupled simulation (with socioeconomic data of year 1950 also used for

the period 1860–1949 of the transient phase). The experiment scenarios are

shown in Table 1.

Model validation

We validated the model in two steps. Based on ‘‘offline’’ historical simulation,

we first evaluated the model’s ability to reproduce both global and regional BA

trends for the recent historical period (2000–2013) against two satellite-based

BA products. These products were the GFED4s3 and the FireCCI5145 from the

European Space Agency Climate Change Initiative. We then performed a

comprehensive validation of our underpinning dynamic global vegetation

model LPJ. To achieve this, we used the ILAMB system for a wide range of

land carbon and hydrology cycle variables and climate forcings, all against

in situ, remote-sensing, and reanalysis datasets.46 Benchmarking tests were

conducted for all LPJ simulations driven by (1) ‘‘offline’’ observed climatology

and (2) climate forcing from 34 ESMs within the IMOGEN framework, and for

the historical period. The results showed that our model performed well in

simulating most land variables (more details can be accessed from Note

S3). In addition, noting that fire has an important effect on vegetation distribu-

tion86,87, we evaluated our simulated ‘‘offline’’ present-day global vegetation

distribution (i.e., with fire included) by comparing it with the European Space

Agency’s Land Cover Climate Change Initiative dataset47 (Note S3).

Analysis

Present-day and future BA trends projection

Based on the offline historical simulation, the present-day (the period 2000–

2013) global BA and its trends were reproduced and evaluated by the satel-

lite-based long-term BA products (i.e., GFED4s and FireCCI51). The simulated

spatial pattern of present-day BA trends was compared with those from

GFED4s and FireCCI51. A nearest-neighbor interpolation was used to remap

the observed datasets from their original resolutions to 3.75� 3 2.5�. Regional
evaluations of observed-against-simulated present-day BA trends, mean

annual BA, and temporal BA correlations were analyzed in 14 GFED basis re-

gions88 (Note S2). In addition, we used a present-day cropland map to correct

projected BA by masking out BA in cropland, making the assumption that no

fires occur in cropland, to better understand the role of cropland on the spatial

pattern of present-day BA (Note S2). The spatial pattern of the correlation of

grid-cell-based simulated-against-observed temporal BA dynamics was eval-

uated by a Pearson correlation analysis (Note S2). The future global BA trends

were projected in four different scenarios, S1–S4 (Table 1), over the period

2014–2100. We also projected the spatial patterns of BA trends for the last

https://esa.un.org/unpd/wpp/Download/Standard/Population/
https://esa.un.org/unpd/wpp/Download/Standard/Population/
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30 years of the 21st century in different scenarios to explore the spatial differ-

ence of BA trends under different emissions and demographic forcing.

A trend in BA was calculated based on a simple linear regression

(Equation 1):

y = g+ bt + ε; (Equation 1)

where y is the temporal BA, t is the year, and regression coefficients g and b

are obtained through the least-squares fit. ε is the residual of the regression.

b is defined as the linear trend in BA. The Mann-Kendall test was used to es-

timate the statistical significance of the trend.

Limiting factors of present-day BA trend

Human and climatic effects are generally considered the main factors in influ-

encing BA trend.5,10 However, limiting factors and drivers are different. Drivers

can change substantially, but whether they affect the BA response will depend

on the other limiting factors operating at any given time (a schematic illustrating

how limiting factors and drivers were differently defined is Figure S15). Domi-

nant limiting factors were described as the factors that limited most to an in-

crease (or decrease) in BA trend in each grid cell, including interactive effects

among different factors (i.e., we considered the interactions between climatic

and human impacts). We performed six factorial experiments in the offline sce-

nario (Table S5) to evaluate the dominant limiting factors, namely, T, P, W,

POP, RUR, and DIS, on present-day BA trends: F1, fixed T using non-varying

T of the year 1950; F2, fixed P using non-varying P of the year 1950; F3, fixedW

using non-varying W of the year 1950; F4, fixed POP using non-varying POP

values of the year 1950; F5, fixed RUR using non-varying RUR values of the

year 1950; and F6, fixed DIS using non-varying DIS values of the year 1950.

F0 was ‘‘all varying,’’ with all varying factors considered (i.e., the offline histor-

ical simulation). The six formulas (F0–F1, F0–F2, F0–F3, F0–F4, F0–F5, and F0–

F6) were used to evaluate the effects of T, P, W, POP, RUR, and DIS limiting

factors on the BA trend. The limiting factors for a change in present-day BA

trend were explored using offline simulations over the period 1987–2016.

Factorial analysis on the long-term BA-limiting factors

Similar to the factorial experiments F1–F6 in the last section, a second set of

factorial analyses was performed to explore the roles of different limiting fac-

tors in the long-term global BA dynamics over the period 1860–2100 using a

fully coupled framework in the S3 scenario (Table 1). Therefore, here, baseline

CRU climatology was used to replace ‘‘the climate of the year 1950’’ in F1–F3

runs to represent constant climate. This was forced by three ESMs, IPSL-

CM5A-MR, CSIRO-Mk3-6-0, and MIROC-ESM, which projected the

maximum, minimum, and mid-range P, respectively, in the year 2100

(Note S4).

Human impacts on BA dynamics

Population growth and urbanization are the important factors in determining

BA dynamics. However, our study was designed based on only the four exper-

iment scenarios, i.e., specific combinations of future demographic scenarios

with CO2 emission scenarios were used (Table 1). To better understanding

and clarify the priority in sequence of the human impacts on global BA dy-

namics, a sensitivity analysis under the intermediate CO2 emission scenario

(RCP6.0) was performed, exploring all combinations of population growth/ur-

banization rates within SSPs, i.e., nine combinations (3 population growth rate

3 3 urbanization rate) with different levels (slow,middle, and rapid in Table 1) of

population growth and urbanization rates. This coupled run was forced by one

ESM: MIROC-ESM.

Drivers of future BA trends

Different from the definition of dominant limiting factors, dominant drivers of

BA trends were defined as the independent driving factor that contributed

the most to the increase (or decrease) in BA trends in each grid cell without

any interactive effects among factors. We performed a third set of factorial

analysis (including seven runs): M1, varying T only; M2, varying P only; M3,

varying W only; M4, varying POP only; M5, varying RUR only; and M6, varying

DIS only. M0 was the ‘‘control experiment’’ with socioeconomic factors con-

stant to the values at the year 1950 and climatic factors constant to the base-

line CRU climatology. The six formulas (M1–M0, M2–M0, M3–M0, M4–M0,

M5–M0, and M6–M0) were used to evaluate the drivers of T, P, W, POP,

RUR, and DIS to the BA trend. The fraction of global burned land grid cells

(%) where a change in BA trend was attributed to different dominant drivers

was obtained by summing the number of grid cells with the same dominant
driver and dividing by the total number of global burned land grid cells. Burned

land grid cells were defined as the land grid cells with simulated mean annual

BA larger than zero. The future projected drivers of BA trend were based on

GISS-E2-R-CC ESM simulation over the last 30 years of the 21st century.
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