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Abstract: Traditional applications of Interferometric Synthetic Aperture Radar (InSAR) data involved
inverting an interferogram stack to determine the average displacement velocity. While this approach
has useful applications in continuously deforming regions, much information is lost by simply
fitting a line through the time series. Thanks to regular acquisitions across most of the the world
by the ESA Sentinel-1 satellite constellation, we are now in a position to explore opportunities
for near-real time deformation monitoring. In this paper we present a statistical approach for
detecting offsets and gradient changes in InSAR time series. Our key assumption is that 5 years of
Sentinel-1 data is sufficient to calculate the population standard deviation of the detection variables.
Our offset detector identifies statistically significant peaks in the first, second and third difference
series. The gradient change detector identifies statistically significant movements in the second
derivative series. We exploit the high spatial resolution of Sentinel-1 data and the spatial continuity
of geophysical deformation signals to filter out false positive detections that arise due to signal
noise. When combined with near-real time processing of InSAR data these detectors, particularly the
gradient change, could be used to detect incipient ground deformation associated with geophysical
phenomena, for example from landslides or volcanic eruptions.

Keywords: InSAR; time series; change detection; early warning

1. Introduction

Interferometric Synthetic Aperture Radar (InSAR) is now an established technique
for monitoring ground deformation [1]. Repeat data collection from satellite missions has
enabled the combination of multiple sets of interferograms, in various network approaches,
to create time series of ground displacements (see review by Minh et al. [2]). While some
researchers are beginning to interrogate the variations in line-of-sight displacement time
series (e.g., [3–9]), most simply plot a best-fit through the time series to get the average
line-of-sight displacement rate. This approach undermines the true strength of InSAR
time series analysis, particularly in the context of missions such as Sentinel-1 that are
committed to providing consistent data for the next few decades at a greater temporal
resolution than previous SAR missions. While the average deformation rate is a useful
measure for some applications, to determine linear subsidence rates for example [10,11],
much information is lost by simply fitting a line through the time series, which makes
identifying abrupt changes more difficult. Indeed, depending on the underlying processes,
ground deformation is rarely linear in time. For example, volcanoes may remain dormant
for many years before a sudden or gradual onset of ground deformation preceding an
eruption, or ground subsidence may continue slowly at the same rate for many years before
suddenly accelerating. Each of these produce distinct deformation patterns that can be
detected in InSAR time series.

The consistency in data collection by the Sentinel-1 satellite constellation and its short
revisit time (12 day repeats for most of the world and 6 day repeats over Europe), provides
an opportunity to develop a near-real time early warning system that can monitor and
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detect changes in ground motion and provide alerts to responsible authorities that changes
are occurring at their site of interest. For example, at volcanoes where 1 in 3 active volcanoes
now have InSAR measurements [12], or at a mining site where incipient motion could be
a precursor to tailings collapse [13]. In this paper, we describe a new methodology that
exploits the existing archive and continuous data collection from the Sentinel-1 satellite to
detect anomalous ground motions statistically.

Time series change detection is not new. There are many existing methods from
Bayesian change point detection, CUMSUM, segmentation and machine learning methods
(see Aminikhanghahi and Cook [14] for a review). These are used extensively in the
technology sector, e.g., by streaming services to monitor spikes in complaints, and by
analysts to monitor changes in stock markets [15,16]. These methods are designed to
accurately detect changes in a single, albeit long, time series. Most of these methods are not
suitable for InSAR time series where in any one scene we may have hundreds of thousands
if not millions of pixels, each with its own deformation history. The computational costs of
applying complex methods to InSAR time series is therefore prohibitive.

There are generally two approaches for automatic time series change detection, offline
methods and online methods. Offline methods determine changes in an existing series,
where data exists before and after a change point. This is relatively easier and prone to
fewer detection errors. These methods have already been applied to InSAR to determine
change points. For example Berti et al. [17] used the Bayesian Information Criterion (BIC)
to determine break points considering the whole time series for a given pixel. However, for
near-real time analysis we require online detection methods where only information pre-
ceding a data point can be used to check for changes. This enables continuous monitoring
as new data are added to the time series.

Recently, machine learning approaches have been used to search through large vol-
umes of InSAR images to detect patterns that may be related to geological hazards [18–20].
These methods generally require large volumes of training data and have mostly been
applied to detect volcanic deformation in radar interferograms or InSAR time series [8,21].

Our method, detailed in this paper, uses a hybrid offline-online statistical approach
that is parallelised and vectorised for computational efficiency in order to deal with the
large data volumes associated with InSAR time series. Therefore it is not constrained to
detecting deformation from any specific geophysical process. Additionally, we exploit the
spatial correlation of deformation signals to reduce the false positives in our detections.

We apply and test our method to an InSAR time series dataset generated over Hatfield
Moors (Yorkshire, UK) (Figure 1). Hatfield Moors along with Thorne, Goole and Crowle
Moors make up the Humberhead Peatlands, the largest raised bog wilderness in lowland
Britain covering a total of 2887 hectares [22,23]. This remnant of a large wetland is a
Natural England nature reserve that overlies a former hydrocarbon reservoir where gas
was extracted between 1986 to the late 1990s. Since 2000, this site has been used as a
gas storage facility run by Scottish Power [24]. Natural Gas is compressed and pumped
into the natural underground sandstone reservoir for storage and then extracted when
needed. 4.1 billion cubic tonnes of gas can be stored here. As part of the SENSE project [25],
the British Geological Survey is monitoring the ground stability conditions at this site
as an analogue for Carbon Capture and Storage (CCS) sites. It is hoped that monitoring
potential ground motion related to the injection and extraction of stored gas will allow the
development of InSAR based techniques to monitor on-land CCS sites in the future.
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Figure 1. Location of the Hatfield Moors test site. The main figure is the land cover classification
for the area using Sentinel-2 satellite imagery [22], which shows the study site is mostly peatbog
surrounded by agricultural fields. The south and western edges of the site are bounded by lakes
and ponds.

2. Methods
2.1. InSAR Processing and Time Series Analysis

We downloaded 257 Sentinel-1 single look complex (SLC) images from descending
track 81 acquired between January 2015 and May 2020 over the Hatfield Moors test site
in the UK (Longitude, latitude: −1.01, 53.58), and performed initial InSAR processing by
forming interferograms with every 2 consecutive pairs of images using the Interferometric
synthetic aperture radar Scientific Computing Environment (ISCE) software [26,27]. To
improve the signal-to-noise ratio we multilooked each image by 9 pixels in range and 3
pixels in azimuth giving pixel sizes of approximately 50 m.

We processed the resulting 509 small baseline interferogram stack using the Miami
INsar Time-series software in PYthon (MintPy) [28,29] to produce a geocoded line-of-sight
displacement time series for every pixel in the dataset. The average spatial coherence his-
tory of the interferograms shows a clear annual signal with generally poor coherence during
the summer months (Figure 2). This is probably due to decorrelation from atmospheric
signals, surface water in the peat and actively growing vegetation, which incoherently
scatters the radar waves. We therefore removed interferograms with an average coherence
less than 0.45, unless it was required to maintain network connectivity, which resulted in
the removal of 85 interferograms. We applied corrections for atmospheric noise using ERA5
reanalysis weather model data according to the method of Jolivet et al. [30], and used the
SRTM 30m digital elevation model [31] to estimate the topographic error. Additionally we
remove a ramp from each interferogram to remove any remaining long wavelength trends.
Mintpy does not apply any spatial filters but uses snaphu connected components as a guide
for the time series inversion [28,32]. We estimate and correct unwrapping errors in the
interferograms using the bridging and phase closure method functionality in MintPy [28].
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Figure 2. (a) The average spatial coherence of all initial interferograms represented as a bar centred
on the middle of the primary and secondary acquisition dates. The coherence history shows a clear
annual cyclicity between a maximum of about 0.8 and a minimum of about 0.4. (b) Baseline-time
plot for the interferograms formed in this study. Each line represents an interferogram, colour coded
with the average spatial coherence of that image. The dashed red lines are interferograms with
average coherence below the threshold value of 0.45 and so were discarded unless they were needed
to maintain network connectivity (solid red lines).

2.2. Changes in Displacement Time Series

For most geophysical applications there are two types of changes in deformation
time series that are of interest: offsets and changes in displacement gradients. Note that
our aim is to detect displacement changes in both scenarios, and so regions moving at a
constant displacement rate are not of interest for this study unless there is a change from
steady-state.

In the sections below we describe the two components of the algorithm that detect
each of these changes.

2.2.1. Offset Detection

Offsets in time series take the form of an instantaneous jump (Figure 3). In order to
detect these jumps we look for peaks in the displacement difference time series. For the
difference series of order d:

∇dYk
t = (1− B)dYk

t (1)

where Yt is the displacement at acquisition date t and k is the lag step size. B is the backshift
operator [33]:

BYt = Yt−k (2)

In the case of the first difference, the change between consecutive observations in the
original series, k = 1 and d = 1 so that the first difference series is:

∇Yt = Yt −Yt−1 (3)

While the original displacement time series may not be stationary due to the presence
of linear trends and or seasonality, our assumption is that the first, second and third
difference time series are stationary [33], meaning that they will have no predictable
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patterns in the long-term. We test this assumption using an Augmented Dickey-Fuller
(ADF) test [34] on each difference time series, which as the null hypothesis states that a
unit root is present in the series, the principle cause behind non-stationarity. If the p-value
from the ADF test is less than 5% we reject the null hypothesis, meaning the time series
is stationary.

In our tests we find that in all cases the first difference series is stationary. However,
in cases of extreme seasonality the second and third difference series are not stationary.
Differences with longer temporal separations are more likely to be affected by any strong
gradients in the times series (e.g., seasonality), meaning they are less likely to be stationary.
In such cases we take the second order difference, i.e. the difference of the difference with
d = 2 in Equation (1), which results in stationarity (Figure 4). This is a routine procedure in
time series analysis [33,35].
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Figure 3. Two synthetic offset change examples. The top row are displacement time series with
offsets at t = 80 and t = 100 respectively. There are no gradients before and after the offset in the
first example, and different gradients before and after the offset in the second example. There are
numerous change detections (shown in red circles) for each of the difference series. But these are
reduced when we take the intersection of the 1st, 2nd and 3rd difference detections (bottom row).

While gradients, or changes that occur slowly over multiple time steps, are removed
when differencing, offsets are retained in the difference series because they are an instanta-
neous jump in displacement. Offsets in the displacement time series manifest as a peak
in the difference series. The challenge now becomes a question of how to statistically
distinguish these peaks from the noise level. To do this we first need to characterise
the noise level in the difference series using only 90% of the data (between the 5% and
95% quantiles), assuming that the remaining points may contain offsets that will bias the
standard deviation calculation:

yk =
{

yt ∈ ∇dYk
t | Q(0.05) ≤ yt ≤ Q(0.95)

}
(4)
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σk =

√
ΣN

i=1(y
k
t − ȳk)2

N − 1
(5)

where yk is the subset of N observations of the difference series ∇dYk
t that lie between the

5% and 95% quantiles, and σk is the standard deviation of the difference series. For the
online detector our assumption is that the standard deviation remains the same for all new
observations added to the time series.

Assuming the noise in the displacement time series is i.i.d. Gaussian, the detection
problem now becomes a matter of calculating the Student’s t-statistic and testing for
statistical significance at a given threshold, here set to 0.95. Since we want to perform an
online test with new incoming data points we use the form of the test statistic for unequal
sample sizes but similar variance [36].

tstat =
∇dYk

t − ȳk√
(n−1)(σk)2+(N−1)(σk)2

n+N−2

√
1
n + 1

N

(6)

We perform a test with each new point one at a time, n = 1. And so the tstat equation
reduces to:

tstat =
∇dYk

t − ȳk

σk
√

1 + 1
N

(7)

ȳk is the mean of the difference series, which we assume remains constant. Since
differencing removes all trends from the displacement time series and assuming noise
in the displacement series is Gaussian and drifts in the series are small, then ȳk is small
compared to the noise in the data. Computationally this is now much more efficient because
the denominator is also a constant, making the tstat calculation a vectorised operation on Yk

t .
Points that pass the significance test at the 95% confidence level are labelled as candidate
change points in the time series.

In order to increase our confidence and reduce false positives in the detections, we
perform this step on the first, second and third difference time series (k = 1, 2, 3 respec-
tively), and take the intersection of points detected by all three series independently as the
confirmed offset change point (Figure 3).

2.2.2. Gradient Change Detection

In this case we are interested in detecting changes in the local displacement gradient
within a given temporal window. Therefore we aim to detect peaks in the second derivative
of the series in local windows. To improve the signal-to-noise ratio of the derivative
calculations we first filter each time series with a rolling mean function over a small
window [37], which should be a fraction of the gradient window size. The gradient window
can be specified depending on the types of potential changes of interest, but must cover at
least 2 data points in time (in order to be able to calculate a gradient). Ideally the window
will cover at least 5 measurement points in time to get a more accurate measurement of the
local gradient.

gt =
d2Y∆t

d∆t2 (8)

where gt is the second derivative series determined by calculating the local second deriva-
tive of the displacement time series in rolling windows of size ∆t (in days), with the result
of the calculation in each window placed in the centre. In practice this involves first de-
termining the slope of all displacement measurements within moving windows of size ∆t
to get the first derivative series. And then repeating this step with the same window size
to get the second derivative series. The choice of window size will determine the types
of gradient changes that can be detected. Larger windows will be able to detect gradient
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changes that occur over a longer time period. Smaller windows are more sensitive to noise
in the time series.
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Figure 4. Stationarity tests on the first and second order difference series. The top row is a synthetic
time series with strong seasonal displacements and an offset at t = 100. We test for stationarity using
the Augmented Dickey-Fuller (ADF) test and reject the null hypothesis (the series is not stationary) if
the ADF p-value is less than 0.05. We show that the synthetic displacement series is not stationary
but the first difference is. The second and third difference fail the stationarity test so we calculate the
second order ‘difference of difference’ series for these, after which they pass the stationarity test.

We perform the same standard deviation estimation and Student’s t-test described in
the offset change detection above but in this case we only do the hypothesis test once on
the second derivative time series. Unlike the offset detections, the gradient change points
represent windows of size ∆t within which a change in gradient has occurred (Figure 5).

2.2.3. Spatial Filtering

A unique strength and challenge of InSAR time series analysis is that not only do we
have a relatively dense sampling in time, we also have a dense pixel sampling in space.
At full resolution (∼5 m in range and ∼15 m in azimuth) a 250 km by 200 km Sentinel-1
radar scene may contain on the order of tens to hundreds of millions of pixels, each with its
own time series that can be treated independently in terms of the change detection method
described above.

Such large quantities of data presents a challenge in terms of efficient data processing.
But it is also an opportunity. Most geophysical signals of interest have a spatial pattern
across multiple pixels. For example, volcanic inflation signal or vertical displacement due
to subsurface fluid injection/extraction may occur over several kilometres, which could
encompass several thousand to tens of thousands of pixels. Even smaller signals from
active landslides will generally include several tens or hundreds of pixels.

If a change point is detected at time t at pixel pij, then there is a strong likelihood that
if the deformation is real then it will be detected at neighbouring pixels too. If there is
no such change point at neighbouring pixels then it is likely that the detected change is a
false positive.
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Therefore, to reduce the occurrence of false positives in the detections we apply a
2-dimensional Gaussian filter to each time step in our time series. Practically this involves
the convolution of a Gaussian kernel of size of ∆x and ∆y with each binary detection image
(0 for no detection and 1 for detection) at every time step. After smoothing, detection
pixels with a value less than 0.5 are discarded. The result of this filtering is the reduction of
spatially isolated detections, which we assume are false positives.
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Figure 5. Two synthetic gradient change examples. The orange line in the top figure is the 15-
day smoothed series. Example one uses a detection window of 20 days while we use 40 days for
example two.

3. Results

We apply and test our method on an InSAR stack processed over Hatfield Moors in
the UK (Figure 1). Since 2000 Scottish Power have been using the natural underground
sandstone reservoir beneath the site as a gas storage facility. The superficial land cover
of the site consists mostly of peatland surrounded by agricultural fields. The south and
western edges of the site are bounded by lakes and ponds.

Of the 509 Sentinel-1 interferograms processed over the Hatfield Moors test site, we
discarded 85 due to poor coherence (Figure 2b). We inverted the remaining 424 interfero-
grams to form a displacement time series over the region spanning 257 dates between 28
March 2015 and 18 May 2020. The average line-of-sight velocity through the time series
is shown in (Figure 6), where negative blue colours represent increase in line-of-sight
displacement rate from the satellite. While most pixels have an average velocity between
±5 mm/yr, there are a few pixels to the east with range increase up to 15 mm/yr.

We apply our change detection algorithm to determine offsets and gradient changes
for each of the pixel time series in this image. For the gradient change detection we chose an
arbitrary window size of 50 days and a smoothing window of 15 days. A random selection
of the results covering the study area are shown in Figure 7, where the black circles are
detected offsets and blue bars represent the window in which we detect a gradient change.
Due to the small region of study, the time series show similar deformation patterns. In
general, upon visual inspection we are able to pick out the main turning points within each
series, particularly the steps in displacement.
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Figure 6. The average line-of-sight velocity for the study region. The white star at (lon lat: −0.966,
53.544) is the reference pixel. Blue colours represent distance increase from the satellite. Clear areas
indicate where no measurements were possible due to poor coherence. The blue squares are the
locations of the pixel time series shown in Figure 7. Points a, c, d, e and h correspond to the Peatbogs
land cover class in Figure 1, point b is on Herbaceous vegetation and point g on Cultivated area.
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Figure 7. Selected pixel time series covering the study region with offset and gradient changes
detected using our algorithm. The location of each pixel is indicated in Figure 6. We chose a window
size of 50 days for the gradient change detection. With our detection method we are able to pick out
most of the turning points within each time series.

We remove isolated pixel detections, which we assume are false positives, using the
method described in Section 2.2.3. We apply the Gaussain blur filter to each 2D detection
map in the time series using a kernel window of approximately 200 m. On average, spatial
filtering resulted in a 26% reduction in the number of detections across the entire stack
(Figure 8).

While the aim of this paper is not to interpret the physical cause behind these patterns,
we suspect that the steps in the time series are related to a combination of groundwater
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level changes within the peat, which is known to follow annual precipitation (e.g., [38,39]),
and periodic gas injection and withdrawal from the sediments in this region. Disentangling
these signals will require further investigation and field studies. These are ongoing as part
of the SENSE research project (https://sense-act.eu).
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Figure 8. An example of how the Gaussian blur filter is able to remove isolated pixel detections,
which we assume are false positives, leaving the spatially continuous detection clusters. Yellow
points are pixels that our algorithm has highlighted as having a change from steady-state (offset or
gradient) at this time (28 July 2018). Purple colours are either NaN pixels or pixels with no changes
in their displacements. (a) Shows the raw detections using our algorithm, and (b) the results after
spatial filtering. (c) are the spatially isolated pixels that were removed by the filter. Axis represent the
rows and columns of the pixels

4. Discussion

Previous InSAR time series detectors relied on machine learning methods to train
an algorithm on specific changes in a time series resulting from ground deformation, for
example volcano inflation (e.g., [8,18,21,40]). The method described in this paper is purely
statistical and therefore process independent, meaning that changes are detected in the
time series regardless of the geophysical cause behind it. While our approach is more
broadly applicable, it does mean that we are more prone to false positives due to signal
noise, but we show that we are able to reduce these by spatial filtering.

https://sense-act.eu
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Currently most machine learning-based detection methods are trained using defor-
mation on volcanoes, so are only applicable to detecting volcanic unrest signals in InSAR
data. Progress is being made to train an algorithm to detect deformation in the built
environment [20]. However, in this paper we show that a statistical approach is simpler
and also able to detect changes in InSAR time series, without the need for a large training
dataset, the main requirement for a machine learning algorithm.

Raspini et al. [41] did not use a machine learning-based method but instead detected
gradient changes in the last 150 days of an InSAR time series by calculating the average
velocity (gradient) in the final 150 day window of the series and comparing it to the average
velocity of the remaining time series, identified as the ’historical’ velocity. If the difference
is > 10 mm/yr then a gradient change is flagged. However this approach will fail if the
’historical’ portion of the time series has non-linear trends. Our method using the Student’s
t-test on the second derivative series is more robust with respect to detecting gradient
changes, even with a non-linear ’historical’ time series. Additionally our method does not
rely on the choice of an arbitrary threshold velocity.

Our assumption that the standard deviation of test statistics remains the same for
new data points shortens the time required to test new data for the online detections.
However some investment in time is required to calculate this standard deviation from the
existing 5 years of data. Our test case over Hatfield Moors with nearly 3 million pixels and
over 250 time steps completed the offline detection and standard deviation calculations
in approximately 3 hours. However the online detections for new incoming data points
were completed in less than 15 minutes. In fact, interferogram formation and the addition
of new images to the time series (1–2 h) is much more time consuming, and therefore
the rate-limiting step when it comes to using InSAR for early warning. These times are
of course, dependent on the quality and type of the processing machine the software is
running on. Our tests used a 16 core (32 thread) Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz
linux server with 186GB of RAM.

The choice of window size will determine the types of gradient changes that can be
detected (Figure 9). Larger windows will be able to detect gradient changes that occur over
a longer time period while shorter windows are more sensitive to noise. However larger
windows may detect a gradient change too late to be of any use, unless it is a slow onset
process. The window parameter therefore must be set based on the expected wavelength
of the gradient changes we are trying to detect. A future improvement on the method
could be to tune the gradient window through an iterative test to the application of interest
in a specific region. Or to search for changes in several window sizes in order to capture
different mechanisms at work.

While the purpose of our method is rapid online detections with the aim of providing
alerts for anomalous ground deformation, an additional benefit is that the algorithm works
as an offline detector as well. This means that the method can be used to look for anomalous
changes that have happened in the past given an existing InSAR time series (Figure 7).

Although we attempt to correct for signals caused by tropospheric delays, no currently
available method can remove all of this noise, especially delays arising from the turbulent
component of the atmosphere [42–44]. Previous studies have shown that in general,
weather-model derived corrections can reduce the noise by 2–16% [45] resulting in an
RMSE of around 2-3 cm [42] in individual interferograms. Atmospheric noise is generally
uncorrelated in time [46]. These are seen as noisy peaks in the time series, and are the
source of most of the variability in the displacement time series. The purpose of using a
long 5 year displacement time series is to characterise the dispersion in the test statistic
arising mostly due to this noise. Atmospheric noise-induced peaks in the time series are
the main source of false positives in our offset detector. The gradient detector is less prone
to these as long as the detection window is sufficiently large (Figure 9).
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Figure 9. Gradient detections using window sizes of 150 days, 100 days, 50 days and 30 days (top to
bottom panels respectively). Our algorithm should detect two changes in the displacement gradient
between 06-2017 and 09-2017. In all cases we do detect these two changes. However the smaller
window size of 30 days is more prone to being affected by noise. For example, the noisy point
at 06-2017 indicated on the top panel is detected by the smaller 30 day window, while the larger
windows are less sensitive to this.

Caveats and Limitations

An important assumption in our method is that a sufficiently long time series already
exists from which we can calculate the variance for our test statistic. Since the launch of
Sentinel-1B in 2016 we now have an image every 6 days over Europe and every 12 days
over the rest of the world. We assume that 90% of the existing time series (5 years of data
for Sentinel-1) is sufficient to characterise the standard deviation of the difference series
and the second derivative series, and this dispersion remains the same for new data points
for online detections.

While SAR data collection by the Sentinel-1 constellation are now regular and con-
sistent not all images might make it to the final time series. Occasionally, although this is
now rare, an image might be corrupted or have missing bursts and so will not be usable in
the time series analysis. In these cases there may be irregular gaps in the time series. This
would not be a problem for offset detections as the difference calculations simply calculate
the difference with previous measurements regardless of how far back that measurement
was made. For the gradient change detection, each detection window requires a minimum
of 2 measurements (preferably at least 5). So if there are large gaps in the time series
there will be some null windows. Therefore large gaps are more of a problem for gradient
change detections.
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Unwrapping errors result in offsets in the time series. In our dataset we use the phase
closure and bridging technique to correct unwrapping errors [28] in the interferograms. But
this method cannot correct all errors, especially those in interferograms that do not undergo
phase closure where unwrapping errors are harder to detect. For example the large jump
in the middle of 2016 seen in all the pixel time series shown in Figure 7 is likely due to
an unwrapping error. These errors could be minimised by including interferograms with
longer temporal baselines that span across the times when low coherence is prevalent (e.g.,
the summer months), but how to do this in an automated way requires further research. In
order to use our algorithm as the basis for a deformation early-warning system all attempts
must be made to either correct unwrapping errors or remove interferograms that contain
them before inverting the stack. Inversely, our method could be used to detect incorrectly
unwrapped pixels. However more robust methods already exist in order to detect and
correct these errors (e.g. [28,45]).

We show that by using a Gaussian blur we are able to filter out isolated detections,
which we assume are false positives. The strength of this filter and the size of the kernel
over which it is applied is context dependent. For example, if we are aiming to detect
deformation that might precede landslide motion then the filter kernel window might need
be smaller than the 200 m used in our case study. On the other hand, if we are interested
in monitoring small sites with only few InSAR pixels (for example a bridge) then filtering
will not be appropriate. In these cases the filter step can be skipped.

5. Conclusions

In this paper we present a statistical approach for detecting offsets and gradient
changes in InSAR time series. A key requirement for both our offset and the gradient
change detectors is that a sufficiently long time series already exists from which the stan-
dard deviation can be calculated. Over 5 years of data is now available from the Sentinel-1
satellite constellation. We believe that this is sufficient to determine the population standard
deviation of the detection variables. We assume that this dispersion level remains the same
for new additions to the time series, which enables online detection. Our offset detector
assumes that the first, second and third difference series are stationary and identifies statis-
tically significant peaks in these series. The gradient change detector uses rolling windows
to identify statistically significant moments in the second derivative series. We exploit
the high spatial resolution of Sentinel-1 data (approximate 5 by 15 m pixel size) and the
spatial continuity of geophysical deformation signals to reduce false detections. Assuming
that spatially isolated detections are false positives, we reduce these by using a Gaussian
blur filter. In our test data stack over Hatfield Moors in the UK this resulted in an average
reduction of 26% in the number of change detections. When combined with near-real time
processing of InSAR data these detectors, particularly the gradient change, could be used to
detect incipient ground deformation that precede dangerous geophysical phenomena, for
example from landslides or volcanic eruptions. Alternatively it could be used to monitor
for changes resulting from subsurface fluid injection/withdrawal processes.

Author Contributions: Conceptualization, E.H. and A.N.; methodology, E.H.; software, E.H. and
A.N.; validation, A.N., L.B.; formal analysis, E.H.; investigation, E.H., L.B.; resources, C.J.; data
curation, E.H., A.N.; writing—original draft preparation, E.H.; writing—review and editing, E.H.,
A.N., C.J., L.B.; visualization, E.H.; supervision, C.J.; project administration, E.H..; funding acquisition,
E.H., A.N. All authors have read and agreed to the published version of the manuscript.

Funding: The research for technique development and testing was funded by the Innovation Flexible
Fund (IFF) at the British Geological Survey. The data processing was supported by the ACT-2
SENSE project. SENSE (Assuring integrity of CO2 storage sites through ground surface monitoring)
project No. 299664, has been subsidized through ACT (EC Project no. 691712) by Gassnova, Norway,
United Kingdom Department for Business, Energy and Industrial Strategy, Forschungszentrum
Jülich GMBH, Projektträger Jülich, Germany, The French Agency for the Environment and Energy
Management, The United States Department of Energy and State Research Agency, Spain. Additional



Remote Sens. 2021, 13, 1656 14 of 15

support from Equinor and Quad Geometrics and permission to use data from the Krechba Field by
In Salah Gas JV are appreciated.

Data Availability Statement: Not applicable.

Acknowledgments: We gratefully acknowledge helpful discussions with colleagues during the early
stages of this research, particularly Karsten Spaans at the University of Leeds. Thanks to Piyush
Agram for the tip on using numpy stride tricks to improve efficiency. We would like to thank the
European Space Agency for free provision of the Sentinel-1 radar imagery. The authors publish with
the permission of the Executive Director of the British Geological Survey.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Biggs, J.; Wright, T.J. How satellite InSAR has grown from opportunistic science to routine monitoring over the last decade. Nat.

Commun. 2020, 11, 1–4. [CrossRef] [PubMed]
2. Minh, D.H.T.; Hanssen, R.; Rocca, F. Radar Interferometry: 20 Years of Development in Time Series Techniques and Future

Perspectives. Remote Sens. 2020, 12, 1364. [CrossRef]
3. Ebmeier, S.K. Application of independent component analysis to multitemporal InSAR data with volcanic case studies. J. Geophys.

Res. Solid Earth 2016, 121. [CrossRef]
4. Bonì, R.; Bosino, A.; Meisina, C.; Novellino, A.; Bateson, L.; McCormack, H. A Methodology to Detect and Characterize Uplift

Phenomena in Urban Areas Using Sentinel-1 Data. Remote Sens. 2018, 10, 607. [CrossRef]
5. Gaddes, M.; Hooper, A.; Bagnardi, M.; Inman, H.; Albino, F. Blind signal separation methods for InSAR: The potential to

automatically detect and monitor signals of volcanic deformation. J. Geophys. Res. Solid Earth 2018, 123, 10–226. [CrossRef]
6. Jordan, C.; Bateson, L.; Novellino, A. Environmental baseline monitoring for shale-gas development: Insights for monitoring

ground motion using InSAR analysis. Sci. Total. Environ. 2019, 696, 134075. [CrossRef]
7. van de Kerkhof, B.; Pankratius, V.; Chang, L.; van Swol, R.; Hanssen, R.F. Individual Scatterer Model Learning for Satellite

Interferometry. IEEE Trans. Geosci. Remote Sens. 2020, 58, 1273–1280. [CrossRef]
8. Albino, F.; Biggs, J.; Yu, C.; Li, Z. Automated Methods for Detecting Volcanic Deformation Using Sentinel-1 InSAR Time Series

Illustrated by the 2017–2018 Unrest at Agung, Indonesia. J. Geophys. Res. Solid Earth 2020, 125, e2019JB017908. [CrossRef]
9. Maubant, L.; Pathier, E.; Daout, S.; Radiguet, M.; Doin, M.P.; Kazachkina, E.; Kostoglodov, V.; Cotte, N.; Walpersdorf, A.

Independent component analysis and parametric approach for source separation in InSAR time series at regional scale: application
to the 2017–2018 Slow Slip Event in Guerrero (Mexico). J. Geophys. Res. Solid Earth 2020, 125, e2019JB018187. [CrossRef]
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