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Abstract

Most studies into the effects of climate change have headline results in the form
of a global change in mean temperature. More useful for businesses and govern-
ments, however, are measures of the localized impact, and also of extremes rather
than averages. We have addressed this by examining the change in frequency of
exceeding a daily mean temperature threshold, defined as ‘disruption days’, as
it is often this exceedance which has the most dramatic impacts on personal or
economic behaviour. Our exceedance analysis tackles the resolution of climate
change both geographically and temporally, the latter specifically to address the
5- to 20-year time horizon which can be recognized in business planning.

We apply bias correction with quantile mapping to meteorological reanalysis
data from ECMWF ERAS5 and output from CMIP5 climate model simulations.
By determining the daily frequency at which a mean temperature threshold is
exceeded in this bias-corrected dataset, we can compare predicted and historic
frequencies to estimate the change in the number of disruption days. Further-
more, by combining results from 18 different climate models, we can estimate the
likelihood of more extreme events, taking into account model variations. This is
useful for worst-case scenario planning.

Taking the city of Chicago as an example, the expected frequency of years with
40 or more disruption days above the 25°C threshold rises by a factor of four
for a time period centred on 2040, compared with a period centred on 2000.
Alternately, looking at the change in the number of days at a given likelihood, an
example is Shenzhen, where the number of disruption days in a once-per-decade
event exceeding the 25°C or 30°C threshold is expected to rise by a factor of four.
In a future stage, superimposing these results onto maps of, for instance, GDP
sensitivity or production days lost, will provide more accurate and targeted
conclusions for future impacts of climate change. This method of quantifying
costs on business-relevant timescales will enable businesses and governments
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1 | INTRODUCTION

Human-induced climate change has resulted in over 1.0°C
of global warming to-date, when compared with pre-
industrial levels (IPCC, 2021). The impacts of this warm-
ing trend on human and natural systems are already being
felt around the world, in part through an increase in the
likelihood of extreme weather events such as heatwaves
(Ciavarella et al., 2021; Seneviratne et al., 2021). For exam-
ple, the recent Siberian heatwave of summer 2020 has been
shown to be at least 600 times more likely as a result of
human-induced climate change (Ciavarella et al., 2021),
while the probability of the conditions occurring that led
to the 2019/2020 Australian bushfires is estimated to have
increased by at least 30% since 1900, due to anthropogenic
climate change (van Oldenborgh et al., 2020). These risks
will increase with future warming.

The acute impact of climate change on business and
society can be directly observed through changes to the
tails of climatic distributions, as extreme events become
more likely or more severe. But they are much harder
to infer from apparently small changes in central statis-
tics like the rise in the annual global average tempera-
ture. Extreme weather events can have adverse financial
impacts on businesses through damage to physical assets,
disruption or reduction in productivity of operations and
supply chains, and impacts to market demand for products
and services (Handmer et al., 2012).

These risks are of growing concern for businesses, and
many corporations are trying to understand how present
and future changes in extreme weather risk are likely
to affect them. Organizations are under pressure to take
action to address environmental, social and corporate gov-
ernance demands, and for strategic and competitive rea-
sons, as well as address regulatory requirements or other
liabilities they may face. Mapping the geographical over-
lap of extreme weather events and business systems is key
to providing insight to global corporates of the exposure of
their entire value chains to physical climate change risk.

These needs are framed by the recommendations of
the Task Force for Climate-related Financial Disclosures

properly include risks associated with facilities, plan mitigating actions and make
accurate provisions. It can also, for example, inform their disclosure of physical
risks under the framework of the Task Force on Climate-related Financial Dis-
closures. This approach is equally applicable to other weather-related, localized
phenomena likely to be impacted by climate change.

bias, climate, correction, disruption, economic, exceedance, temperature

(TCFD), which has been voluntarily adopted by more than
2,600 global organizations as of September 2021, and mul-
tiple nations around the world are now introducing leg-
islation for official TCFD-aligned reporting requirements
(Quarles, 2021). Investors are mobilizing to pressure com-
panies to respond to the TCFD recommendations and dis-
close climate-related risks, with the threat that they will
be less inclined to invest in companies that fail to do so
(Eccles & Krzus, 2018). Companies that comply with the
recommendations will have better strategies to adapt to cli-
mate change and may be more able to harness any poten-
tial opportunities that climate change presents.

The TCFD includes a recommendation to describe the
impacts of acute (i.e. extreme) weather events, causing
physical risks on an organization over three time hori-
zons, typically below 5 years, 5-10 years and beyond 10
years. Organizations’ energies are typically more focussed
on short time-frames that they use to conduct operational,
financial, strategic and capital planning (TCFD, 2020).
However, the currently available data and model projec-
tions of future changes in extreme weather risk often do
not suit the requirements of businesses. Organizations are
struggling to reconcile the long-term projections of the
consequences of a warmer planet in several decades’ time
with changes in the frequency, severity and geography of
extreme weather events that are already having financial
impacts on their businesses.

Economic productivity is particularly sensitive to
extreme heat and associated hazards, which can affect
large regions simultaneously to produce widespread
impacts and economic loss (Garcia-Le6n et al., 2021;
Handmer et al., 2012). These impacts are variable across
sectors, and particularly affect those relying on labour-
intensive activities such as agriculture, manufacturing
and construction (Simpson et al., 2021; Zuo et al., 2015).
Human output is impacted through time loss resulting
from the heat-induced health outcomes, or ‘absenteeism’,
as well as reductions in work productivity and capacity,
termed ‘presenteeism’ (Xia et al., 2018). Infrastructure,
transportation, and energy systems are also vulnerable
to extreme heat, and physical damage or service outages
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can severely disrupt supply chain activities and markets
for products and services (Forzieri et al., 2018). Major
cities, where economic activity is concentrated, are also
subject to an urban heat island effect and so heatwaves are
typically more extreme and can result in large death tolls
and significant economic loss (Mora et al., 2017).

Here we present a geographic resolution of one arc
degree grid squares as a starting point for risk assessment
of global business activity, namely supply chains, trans-
portation routes and retail distribution, and to demonstrate
a methodology that can be refined and improved. This res-
olution corresponds to approximately a 110-km square at
the equator, and a 110 km by 78 km rectangle at a temper-
ate latitude of 45°.

2 | DATA AND METHODS

We use climate model outputs from the Coupled Model
Intercomparison Project Phase 5 (CMIP5) to quantify
future changes in extreme temperatures for the period
2020-2059, combined with recent historical data from the
European Centre for Medium-Range Weather Forecasts
(ECMWF) Re-Analysis (ERA5) for the period 1979-2018
(Hersbach et al., 2020, p. 5).! The metric used in this paper
is the mean daily temperature. Although daily maximum
or minimum temperatures, midday temperatures or other
measures might be more appropriate for specific tasks
(agricultural yields for instance often depend on minimum
as well as maximum temperatures), the mean daily tem-
perature is a good proxy for others and more represen-
tative of the overall risk, and thus a good starting point
for this generalized study. A subset of 18 of the CMIP5
models is used: Details are given in the Appendix. For all
models, only the RCP4.5 emissions scenarios are used as
there is little divergence between the pathways prior to
2060. By the year 2040, the middle of the 2020-2059 period
examined in this paper, the RCP4.5 scenario corresponds
approximately to a 1.5°C warmer world, compared with
pre-industrial temperatures. Information from the histori-
cal period is used to identify systematic biases between the
climate model simulations and observational data at a local
scale and this is used to produce a transfer function to bias-
correct future projections.

A summary of the five-stage approach used is given
below, followed by a more detailed description of each
step:

! Data were accessed through the Centre for Environmental Data Anal-
ysis (CEDA), which makes the data available on JASMIN: https://help.
ceda.ac.uk/article/4465-cmip5-data; Copernicus Climate Data
Store, available from: https://cds.climate.copernicus.eu/#!/search?
text=ERAS5&type=dataset

1. ERA5 and CMIP5 data are first interpolated onto a com-
mon spatial grid.

2. For each of the models used, at each location, a bias
correction to the raw data is calculated based on the
observational data. This defines a transfer function that
is then used on model predictions to bias-correct each
model’s future output.

3. Using the bias-corrected daily mean temperature pre-
dictions with specified temperature thresholds, the
annual number of days that the mean daily temperature
exceeds a defined threshold (the number of ‘disruption
days’) is quantified.

4. The distribution of the number of disruption days is cal-
culated over a 40-year period for each model at each
location.

5. Combining outputs from all models gives an estimate
of the likely number of disruption days, for a given tem-
perature threshold, at each location for a specified time
period.

2.1 | Re-gridding

ERAS reanalysis and CMIP5 model outputs are interpo-
lated onto a common spatial grid, a necessity given that
different models use different grids. The grid is centred
on squares one arc degree wide, between 70°S and 70°N,
over landmass. This area is chosen since the majority
of economic activity takes place over land mass away
from the poles. For coastal locations, the centre of the
cell used is the centroid of the land mass, to minimize
the influence of the ocean. This results in data being
obtained for approximately 18,000 geographic locations.
While this resolution is high enough for many economic
activities, any localized temperature influences (includ-
ing topographic or urban heat island effect) may be
under-represented.

2.2 | Bias correction
Statistical bias correction is a widely adopted post-
processing procedure applied to climate model simulation
outputs to produce location-specific future projections for
impact modelling (e.g. Hawkins et al., 2013). This aims to
remove the bias arising from model deficiencies and unre-
solved physical processes in an individual climate model.
The application of bias correction is particularly important
when aiming to capture extreme event features in climate
model output, as is the focus of this study.

One assumption made with this bias-correcting method
is that the biases are time-independent. It is possible that
global climate systems show high non-linearities in biases,
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for instance if a ‘tipping point’ is reached. We hope in the
future to improve on the methods described here. Until
then, these results should be taken as a best estimate. By
including multiple independent models in the analysis, it
is believed that this risk is mitigated to a degree. How-
ever, it is possible that future measurements could differ
markedly from the results described in this paper through
inherent uncertainty in our understanding of complex cli-
mate systems.

In this work, we adopt the quantile mapping method
for bias correction, a popular distribution correction
technique that has been found to outperform simpler bias
correction methods that only account for the mean, or
mean and variance of the climate variable (Gudmundsson
et al.,, 2012). Quantile mapping is particularly effective
in correcting the tails of a distribution, which is an
important consideration in this work concerning extreme
events.

It has been shown that applying quantile mapping to
raw data can artificially alter the trends which can weaken
the credibility of the resulting projection, and it has been
argued that the climate change signal simulated by the
model should be preserved (Haerter et al., 2011; Maraun,
2013). Therefore, we detrend the timeseries as a pre-
processing step, and subsequently reintroduce the future
model trend after applying quantile mapping. This encour-
ages bias correction to account for daily variability without
the long-term trend corrupting the overall distribution. We
use a 31-day sliding window over the calendar year to avoid
climatological discontinuity and use a linear regression to
fit a trend for each window in order to capture the long-
term signal that may depend on the time of year, as demon-
strated by Hempel et al. (2013). A second-order polynomial
is used to capture any acceleration in the future climate
change signal, which was found to be more robust than a
single linear fit (not shown). As with any statistical proce-
dure, bias correction comes with a set of assumptions that
are discussed extensively (e.g. Maraun & Widmann, 2018;
Maraun et al., 2017).

The period 1979 to 2018 inclusive, comprising 40 years of
daily data, for which we have overlapping ERA5 measure-
ments and predictions from each CMIP5 model, is used
to calibrate the bias-correcting transfer function. This is
then applied to the future model simulations for the years
2020 to 2059 inclusive to obtain bias-corrected future pro-
jections. Transfer functions are derived for each model for
every location, a total of approximately 330,000. Figure 1
illustrates an example for one location (Chicago) and one
model (HadGEM2-CC): the summer daily mean tempera-
ture distribution of HadGEM2-CC output and correspond-
ing ERAS data, illustrating the discrepancy between them
(top), and a timeseries of HadGEM2-CC, ERA5 and bias-
corrected projection (bottom).

Chicago daily mean temperature distribution (JJA, 1980-2019)

0.14 —— Model (HadGEM2-CC)
—— Observational (ERAS5)

10 15 20 25 30 35
Daily mean temperature (degrees C)

Demonstration of bias correction (Chicago)

60| == Model (HadGEM2-CC)
= Observation (ERA5)
- Bias corrected projection

o 3 8

1
N
o

Daily mean temperature (degrees C)

1990 2000 2010 2020 2030 2040 2050 2060
Time

FIGURE 1
summer (JJA) daily mean temperature distributions between raw
model output (HadGEM2-CC) and ERAS5 in Chicago (top);
demonstration of bias correction as a timeseries of raw model
output (HadGEM2-CC), observational data (ERA5) and
bias-corrected output (bottom)

Demonstrating the bias correction: comparison of

2.3 | Distribution of future temperature
disruption days

The analysis of the bias-corrected data examines the 40-
year period 2020-2059 and makes statistical predictions
for the number of days with temperatures above a defined
threshold in this period. This is what we refer to as the
number of ‘disruption days’.

Counting the number of disruption days in each year
during the period gives a distribution of 40 points. This can
be visualized as an exceedance plot (i.e. 1 - CDF, the cumu-
lative distribution function), showing, for a given proba-
bility, how many days are expected to be above a particu-
lar temperature. Given that the results have been analysed
over a 40-year period, these results can be interpreted as
the best estimate for a period centred on 2040, the mid-
point of the analysis (although there is a long-term trend
in temperatures over this period).

Given the relatively low granularity of the output (only
40 data points), kernel density estimation (KDE) is used
to better visualize the underlying statistical process. The
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FIGURE 2 Exceedance plot of the
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KDE bandwidth used is varied for each location and tem-
perature and corresponds to 6.7% of the 90%-10% days:
Best practice for a Gaussian distribution would be approx-
imately 15% (Silverman, B.W., 1986), but the authors feel
that the long tails in this distribution justify a tighter band-
width.

3 | RESULTS

3.1 | Interpretation of a single location
Figure 2 shows outputs for a single model (HadGEM2-CC,
red line, centred on 2040) for nine example locations from
our global analysis, with up to three temperature thresh-
olds (25°C, 30°C and 35°C), and compared with the ERA5
historic measurements (blue line, centred on 2000). The
nearest city locations to the actual analysed points are
given in Table 1. These nine example locations were chosen
in order to represent a broad geographic spread of locations
across all continents (excluding Antarctica).

The disruption days metric is based on specified mean
daily temperature thresholds (25°C, 30°C and 35°C in this
case), and the probability of a threshold being exceeded
in any given year. This is shown on the vertical axes in
Figure 2: for example, 10% exceedance probability corre-
sponds to a once-per-decade event, or 1% corresponds to a

TABLE 1 Nearest cities and the exact locations used in the
analysis
Latitude,

Nearest city Country longitude
Paris France 48.5N,25E
Chicago USA 415N, 87.5W
Djibouti Djibouti 11.5N,42.5E
Sydney Australia 33.48S,151.25E
Tokyo Japan 355N,1395E
Kolkata India 225N, 88.5E
Kinshasa D R Congo 458,155E
Shenzhen P R China 22.74N,114.42 E
Santo Domingo Ecuador 0.5S,79.5W

once-per-century event. These thresholds and exceedance
probabilities can be adapted according to the business
assets in question, to match with the acceptable level of
risk to the asset operator or to reflect the relevant regional
context.

Figure 2 illustrates that the modelled future changes
in the number of disruption days vary widely by geo-
graphic location. For example, looking at the example of
Paris in Figure 2(a), we see an increase of between 10 and
20 disruption days at the 25°C threshold (solid line), for
low exceedance probabilities (i.e. 1-in-100- or 1-in-10-year
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Chicago
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100% Historic: 25°
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FIGURE 3
above two mean daily temperature thresholds, for one location,
with example exceedance probabilities of 1%, 5%, 10%, 50% and 90%
(grey dotted lines). The ensemble results from all 18 bias-corrected
models are combined to give statistical measures

Exceedance plot of the number of disruption days

events), but only a small increase of just a few disrup-
tion days at higher exceedance probabilities. In contrast,
for Santo Domingo in Ecuador (Figure 2i), we see a large
increase of over 100 disruption days for the 25°C thresh-
old at all exceedance probabilities. Kinshasa in DR Congo
(Figure 2g) shows similarly large increases in the number
of disruption days at the 25°C threshold. The other loca-
tions in Figure 2 also show increases in the number of
disruption days at the 30°C threshold (dashed line), and
for some (e.g. Kolkata, Figure 2f), the modelled increase
at the 30°C threshold is greater than at the 25°C thresh-
old. For Djibouti (Figure 2c), we see the greatest increase
in the number of disruption days at the 35°C threshold
(dashed-dotted line). Recall that these thresholds illustrate
the mean daily temperature, and the peak daily tempera-
ture will be significantly higher.

3.2 | Combining results from all models

Each of the 18 models used provides a set of results for
each of the approximately 18,000 locations. We combine
the output from the ensemble of all models to give dis-
tributions over the models at each exceedance probability
for each temperature threshold. The ensemble-mean pro-
vides a ‘best-guess’ estimate of the number of disruption
days at a particular exceedance probability, while adding
a number of standard deviations from the mean provides
an indication of a worst case with a known degree of con-
fidence. Figure 3 shows an example for a single location,
the grid cell containing Chicago. The distribution of results
between models allows us to give a measure of the assessed

likely range (+ S std) of the prediction around model risk.
Statements can be made in the format: ‘At location L, in the
period centred on 2040, it is expected that one in N years
will have D days disruption at a mean daily temperature
above T, with S std of confidence’.

For example, referring to the results for Chicago given
in Figure 3, we might be interested in a 1-in-10-year sce-
nario, i.e., an exceedance probability, shown on the verti-
cal axis, of 10%. The measurements show that historically
there have been approximately 40 days per year, shown on
the horizontal axis, where the mean daily temperature has
exceeded 25°C (solid blue line): But with the impact of cli-
mate change, this is expected to rise to approximately 55
days (solid red line). Therefore, we can say: ‘In Chicago for
the period centred on 2040, we expect every decade there
will be one year where 55 days have a mean daily tempera-
ture above 25°C, up from 40 days for the period centred
on 2000.” The uncertainty between different models can
be accounted for by the addition of the following state-
ment: ‘there is a 16% chance that every decade one year
will have 64 days exceeding this threshold’ (corresponding
to +1 std). This is essential for planning worst-case scenar-
ios and takes account of model risk by incorporating an
ensemble of results from different groups.

Although the change in absolute number of days may
be quite small (55 disruption days rather than 40), in a
location which is historically ill-prepared for high tem-
peratures, each day can cause a significant cost and an
increase in the fraction of days lost could be very signifi-
cant. One example might be locations in temperate regions
that generally do not have air conditioning, where the
investment needed to install widespread building cooling
capacity would be very significant.

Another interpretation is to find the change in frequency
for a given number of disruption days. Referring again to
Figure 3, there is approximately 10% probability (i.e. 1-in-
10-year expectation) of 40 disruption days with a mean
daily temperature above 25°C at the baseline 2000 condi-
tion. Under climate change, for the period centred on 2040
the same number of disruption days is expected with about
38% likelihood, approximately 4-in-10 years. Thus, we can
expect approximately four times the number of years with
this number of disruption days.

This is often a more impactful way to understand the
predictions. Risk and operation managers and senior exec-
utives might be tempted to regard a 1-in-10-year expected
loss as simply a ‘risk of doing business’ which will gener-
ally be smoothed over with preceding and following ‘nor-
mal’ years. If, however, this loss approaches a 1-in-2 fre-
quency, it will need to be addressed, mitigated or pro-
visioned. We believe that this method of presenting the
impacts of climate change is likely to promote meaningful
change from operators and owners of economic assets.
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FIGURE 4 Absolute number of daily mean disruption days per year over the 30°C temperature threshold for the 2020-2059 period, at a

1-year-in-10 exceedance probability

3.3 | Global depiction of results

The examples above demonstrate the presented method-
ology for individual cities, with a moderate tempera-
ture threshold. However, this technique is intended for
a global application to enable risk analysis of the expo-
sures of global activities and value chains: The example of
Chicago above is also applicable to any global location. It
is acknowledged that the use of an absolute temperature
threshold (e.g. 30°C) has been criticized for not taking into
account climate variability (Zuo et al., 2015). However, we
suggest that the application of critical thresholds of disrup-
tion in this way is a useful method to assess global expo-
sures in a systematic way. Differences in the coping capac-
ity of a specific region or locale to extreme heat can be
accounted for through variation of the vulnerability com-
ponent of a risk calculation.

Figure 4 shows a global map of the absolute number of
disruption days over the 30°C threshold for the 2020-2059
period, at a 10% exceedance probability (one year in 10).
For each global location, the mean exceedance from all 18
of the bias-corrected models is used. It is clear from the
map that for large parts of Saharan Africa, the Middle East
and India, in the period centred on 2040, it is expected that
1-in-10 years will have at least 200 disruption days per year
over the 30°C threshold, with some regions experiencing
up to 360 disruption days per year. A large number of dis-
ruption days is also expected in Australia. Some parts of
South America, in particular in the Amazon Basin, also
show a large number of disruption days. In other regions,
including Europe, sub-Saharan Africa and North America,
the absolute number of expected disruption days per year
at the 30°C threshold tends to be lower. However, while the
absolute number of disruption days may seem low in some
regions, the increase in the number of disruption days per
year may still be higher. This is discussed below.

Figure 5 shows global maps of the expected increase in
the number of disruption days from 1979-2018 to 2020-
2059, using the threshold of mean daily temperature
exceeding 25°C, 30°C and 35°C, with a 10% probability
of exceedance (i.e. one year each decade). Differences in
the impact between regions expected as a result of climate
change can easily be seen. For example, Central America
and sub-Saharan Africa have a high increase in daily mean
25°C disruption days, but the greatest impact at 35°C is in
Saharan Africa and the Middle East, which likely are close
to exceeding lower temperature thresholds for most days at
historic conditions (illustrated for the example of Djibouti
in Figure 2c). This distinction is important, as a tempera-
ture threshold that is impactful in one region of the world
may be less relevant in another, demonstrating the need for
regionally specific thresholds.

Maps such as these can be generated for any temperature
or probability threshold, incorporating if necessary a mea-
sure to account for uncertainty between the climate mod-
els, by including a number of standard deviations from the
mean between models at each location, as illustrated for a
single location (Chicago) in Figure 3. This approach can be
readily applied to risk assessment in a variety of domains,
through analysis of the extreme heat hazard against expo-
sures and vulnerabilities of specific sectors, such as agri-
culture (where agricultural risk models are used to cal-
culate production disruption) or manufacturing (e.g. to
assess rates of absenteeism/presenteeism, reduction of out-
put, energy demands and air conditioning loads etc.).

3.4 | Aggregated global results

Although the primary focus of this paper is on providing
localized estimations of the change in disruption days, it is
also interesting to get a broad measure of the global change
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in disruption days. To do so, we divide the globe into three
zones by latitude: 0° to 23.5° (‘tropical’), 23.5° to 35.5° (‘sub-
tropical’) and 35.5° to 70° (‘temperate’). For each landmass
grid square in each zone and at each temperature thresh-
old, we calculate the mean of the baseline number of dis-
ruption days and the mean of the increase in disruption
days expected from 1979-2018 to 2020-2059. The results are
shown in Table 2.

This averaged analysis, of course, hides a large amount
of local data: Some localities will have a much larger
increase in the number of disruption days and some may

have no increase or even a slight decrease (for example
some regions of Russia and Canada show a decrease in
Figure 5).

Given the wide distribution in the increase in the num-
ber of disruption days, a more informative way to analyse
the data is to ask what fraction of locations in each zone
have more than a given number of days increase. We show
this fraction in Table 3 for the same temperature thresholds
and latitude zones, for 10 and 30 days.

Tropical regions are impacted the most with highest
fraction of locations suffering 30 additional days. For
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TABLE 2 Mean number of disruption days, and mean
increase, for three latitude zones at three temperature thresholds
Mean
Mean increase in
baseline number of
number of disruption
Threshold disruption days from
temp (daily days for 1979-2018 to
mean) Zone 1979-2018 2020-2059
25°C Tropical 237 39
Subtropical 125 20
Temperate 16 8
30°C Tropical 51 26
Subtropical 56 20
Temperate 5 6
35°C Tropical 17 19
Subtropical 19 12
Temperate 13 4.2
TABLE 3 Fractional increase in the number of locations

predicted to have 10 and 30 additional disruption days, for three

latitude zones at three temperature thresholds

Fraction of  Fraction of
locations locations
with more with more
Threshold than 10 than 30
temp (daily disruption disruption
mean) Zone days increase days increase
25°C Tropical 77% 44%
Subtropical 82% 12%
Temperate 20% 1%
30°C Tropical 64% 28%
Subtropical 66% 16%
Temperate 7% 0%
35°C Tropical 24% 12%
Subtropical 29% 7%
Temperate 1% 0%

10 days, subtropical regions are approximately equally
affected, with temperate latitudes the least impacted. It is
worth remembering though that temperate regions may
have the biggest financial sensitivity to the disruption days,
since many locations will be relatively poorly prepared.

4 | DISCUSSION

Although in some cases the absolute increase in the num-
ber of disruption days in the results discussed above is rel-
atively small, we must remember that:

+ This analysis is performed on daily mean temperatures,
so a daily peak temperature will be significantly higher

* Economic processes slow down very rapidly with rising
temperature, so (for instance) the prospect of a threefold
increase in the number of economically unproductive
days would be highly impactful

* The strong variation between locations (illustrated in
Figures 2 and 5) shows that this mean increase includes
many locations with a much higher increase

* Some locations will be less prepared than others. For
example, housing and workspaces in many temperate
locations do not have air cooling. As a result, an increase
in the number of days at even a low temperature thresh-
old could have a higher economic impact than at a sub-
tropical location, where at least there is a higher level of
preparedness to hot days.

4.1 | Localized economic impacts
Extreme climate events are known to cause devastating
damage, both in human lives and in financial assets. The
future ‘climate value at risk’ of global financial assets is
US$2.5 trillion in the ‘business-as-usual’ scenario, while
the 99th percentile of the possible outcomes gives the value
of approximately US$24.2 trillion (Dietz et al., 2016). In
addition, climate—economic models show that losses from
climate change may reach 23% of the global gross product
by the end of 2100 (Burke et al., 2015; Patrycja et al., 2021).
Since 1970, estimates show that weather-related natural
disasters alone caused losses of around US$1.2 trillion and
claimed approximately 1.6 million lives (Swiss Re, 2021).

Heatwaves have shown increasing trends in frequency,
duration and cumulative heat since the mid-20th century,
and have also shown signs of acceleration of those trends
in the presence of global warming (Perkins-Kirkpatrick
& Lewis, 2020). Those upward trends can be seen in the
recent past of such events - the major European heatwaves
of 2003 and 2019 were just 16 years apart but were esti-
mated to be 1-in-450-year and 1-in-283-year events, respec-
tively (Ma et al., 2020; Munich Re, 2004). Those types
of events can be catastrophic for people, countries and
businesses, especially if mitigation plans are not in place.
The 2003 European heatwave claimed an estimated 35,000
lives, 14,947 out of those in France alone, a country with-
out a strategy against heatwaves at the time (Larsen, 2003;
Poumadere et al., 2006). Estimates of the financial cost for
this event alone are around US$13 billion, mostly in agri-
cultural costs, which is believed to be a conservative esti-
mate as crops were not usually insured in Europe in 2003
(de Bono et al., 2004; Munich Re, 2004).

Providing economic loss calculations due to future heat-
waves is outside the scope of this paper, but the methods
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and results showcased in this study can provide a good
baseline for such estimations. For example, making an
assumption that the 1995 Chicago heatwave was a 1-in-
100-year event (Karl & Knight, 1997) and the fact that this
event is part of the 1979-2018 timeseries, one can use our
disruption days framework to estimate the probability of
a similar event arising in the 2040-centred period. Read-
ing from Figure 3, in terms of the same number of disrup-
tion days (both 25°C and 30°C thresholds), the probabil-
ity of having a similar event would increase to 10% (or 1-
in-10 years). This result is limited not only by the afore-
mentioned assumption, but also by the assumption that
the ‘disruption days per year’ metric is perfectly correlated
with the emergence of heatwaves. The lack of higher pre-
cision in distributions of this metric can also have an effect
on this result as the smallest increment in our exceedance
probability plots is 2.5%, while the event is assumed to have
aprobability of 1%. However, this result shows the potential
of this type of analysis for the mitigation of future extreme
weather events.

By knowing the sensitivity to temperatures and the
geographic distribution of their operations, it would be
feasible for an organization to quantify their expected
total financial loss due to temperature disruption days.
This could be essential for provisioning, insurance or risk
reporting, including TCFD disclosures. It also lays the
foundations for planning strategic responses to physical
climate change risk.

Finally, we must remember that the global economy
can be highly concentrated on small regions. In an eco-
nomic ecosystem with small amounts of ‘slack’ in supply
chains, a minor disruption to one part can be highly mag-
nified in its overall impact. In this context, even a rela-
tively small change in the number of disruption days at a
systemically important location could impact well beyond
the affected area. One example of these is logistics hubs: A
major disruption at an international port could have long-
term, global impacts. This consequence of fragile supply
chains underlines further the importance of matching the
research described here with a comprehensive economic
model.

5 | FUTURE WORK

The procedures described in this paper give the first stage
of assessing a financial cost at a relatively local resolu-
tion from extreme temperature effects, expressed as ‘dis-
ruption days’. However, it needs to be followed by assess-
ments at a local level of economic vulnerability to disrup-
tion days. These could be as simple as ‘the airport will close
if the mean daily temperature is above 35°C’ or ‘the cost
of electricity generation for the region rises by US$50 mil-

SUMMERS ET AL

lion for each day above 30°C’. At the other extreme, a com-
plex, multi-location operation could assess operations at
each location, and apply these vulnerabilities to the disrup-
tion days calculated here to give a total expected additional
cost. By combining all significant economic activity in a
region and estimating vulnerability to extreme weather, it
would be possible for a local or national government to
estimate the gross effect of temperature disruption days on
their economy. A multinational company with economi-
cally productive assets spread over many locations could
do the same.

The general approach used in this study (re-gridding at
relatively fine spatial granularity, bias correction of indi-
vidual models, calculation of the disruption days for each
model at each location, followed by ensemble averaging
over models to get model risk statistics) can equally well be
applied to other extreme weather features which are likely
to be affected by climate change, and could be the subject
of future work:

* Precipitation. Droughts and flooding have profound
effects on many natural and human activities, not least
agriculture

* Multivariate analysis of compound risks. For example,
the impacts of humidity combined with temperature, or
drought combined with high temperature

* Low temperature thresholds. Frost days, for example,
can limit economic activity in some temperate regions,
where freezing temperatures are relatively rare and pre-
paredness is low

* Quantifying maximum or minimum daily temperatures,
rather than mean daily temperatures, might also be
interesting as many activities are more accurately lim-
ited by daily extremes rather than mean temperatures.

The methodological analysis presented in this paper
could be improved in future studies as and when new
datasets and methods become available. In terms of data
preparation and pre-analysis, machine learning methods
show great promise in improving existing bias correction
techniques, and such new methods could be applied to
repeat and improve our analysis presented here. While this
study has focussed on the use of model results from the
CMIP5 generation of climate models, the newly available
generation of CMIP6 models have a higher spatial resolu-
tion and would allow for the approach in this paper to be
repeated with finer geographic grids.

6 | CONCLUSION

Using multi-model, bias-corrected results from CMIP5 cli-
mate models, we estimate the frequency of daily mean
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temperatures exceeding certain temperature thresholds on
‘disruption days’, at given locations for a future period cen-
tred on 2040, compared with historical observations from
ERAS5 centred on 2000. Since it is often the exceedance over
a threshold, rather than simply the mean annual temper-
ature, that is the determining factor for economic activity,
this approach is expected to be a better indicator on the
effect of climate change on human and economic activity.

Our results allow for the estimation of the increase in
the number of disruption days exceeding a certain temper-
ature threshold for a given location and exceedance proba-
bility. For example, in Chicago one can expect that by 2040,
every decade there will be one year where 55 days have a
mean daily temperature above 25°C, up from 40 days for
the period centred on 2000. Another way to read the results
is that Chicago can expect a fourfold increase in the num-
ber of years with at least 40 disruption days above the 25°C
threshold by 2040.

Globally, our results also show that there is broad
variation in the modelled increase in number of disrup-
tion days, for different locations, temperature thresholds
and exceedance probabilities. Central America and sub-
Saharan Africa show the largest increases in number of
disruption days at the 25°C temperature threshold, while
the greatest increases in disruption days exceeding 35°C
are seen in Saharan Africa and the Middle East.

By combining these results with the sensitivities of eco-
nomic activities to temperature thresholds (not described
in this paper), it will become possible to estimate the
financial impact of climate change on a wide variety of
businesses. Examples are logistics (frequently disrupted
by weather extremes), outdoor work (where human pro-
ductivity rapidly falls with temperature) and agricultural
yields (which typically fall once a crop-dependent temper-
ature threshold is passed).

By knowing locations and the nature of activities
through an organization, it will be possible to estimate,
with a given level of confidence over model risk, the finan-
cial impact of climate change-related changes in tempera-
ture.

REPRODUCIBLE MATERIAL FROM
OTHER SOURCES

Except where noted, material from other sources has not
been used.
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Appendix

The CMIP5 models used are ACCESS1-3, BNU-ESM,
CMCC-CMS, CNRM-CM5, CSIRO-Mk3-6, GFDL-
CM3, GFDL-ESM2G, GFDL-ESM2M, HadGEM2-CC,
HadGEM2-ES, IPSL-CMS5A-LR, IPSL-CM5A-MR, IPSL-
CM5B-LR, MPI-ESM-LR, MPI-ESM_MR, NorESMI-M,
bce-csmi-1 and inmem4. A small number of other models
were not included either because they had been super-
seded by later models from the same research group or
because of data incompatibilities.
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