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Abstract. As a component of the Mediterranean Forecast
System Pilot Project, a data buoy was deployed in the Cre-
tan Sea. A 1-D ecosystem model of the site has been used
to investigate the role of surface heat fluxes in determining
modelled ecosystem behaviour. The method of calculation
of these fluxes, the quality of the data used, and the temporal
resolution of the data all had an impact upon the modelled
ecosystem function. The effects of the changes in heat flux
formulation were substantial, with both annually averaged
properties of the system and the seasonal evolution of the
biology being affected. It was also found that the ecosys-
tem model was extremely sensitive to the accuracy of the
meteorological forcing data used, with substantial changes
in biology found when offsets in the forcing data were im-
posed. The frequency of forcing data was relatively unimpor-
tant in determining the biological function, although lower
frequency forcing damped high frequency variability in the
biology. During periods of mixing the biology showed an
amplified response to changes in physical dynamics, but dur-
ing periods of stratification the variations in the physics were
found to be less important. Zooplankton showed more sen-
sitivity to physical variability than either phytoplankton or
bacteria. The consequences for ecosystem modelling are dis-
cussed.

Key words. Oceanography: physical (air-sea interactions;
turbulence, diffusion, and mixing processes) – Oceanogra-
phy: biological and chemical (plankton)

1 Introduction

The effective modelling of ecosystems requires a suitable
knowledge of both the governing biogeochemical equations
and physical processes. The ecosystem function is influenced
by physical processes, through changes in the temperature,
light and mixing regimes (Huisman et al., 1999; Margalef,
1997; Sharples and Tett, 1994; Pingree et al., 1978). There-
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fore, the physical parameterisation of the model may have
an important effect upon the biological function (Chen and
Annan, 2000). Additionally, the choice of forcing at the air-
sea interface can strongly influence modelled ecosystem be-
haviour (Lacroix and Nival, 1998).

This work has been undertaken as part of the Mediter-
ranean Forecasting System Pilot Project (MFSPP), which
aims to predict the marine ecosystem variability in coastal ar-
eas of the Mediterranean Sea. A forecasting system requires
two parts, an observing system and a numerical modelling
component. The M3A buoy, in the Cretan Sea, has been in-
stalled to supply the observational data. The forecast capa-
bility of the modelling system is dependent upon the ecosys-
tem model’s responses to variability in physical forcing, and
temporal and spatial resolution of forcing functions.

The aim of this work is to investigate the role of surface
heat flux, as determined by the frequency of meteorological
data and the choice of heat flux formulations, in determin-
ing the biological function of a one-dimensional ecosystem
model of the Cretan Sea. The primary productivity of a sys-
tem is determined by both nutrient availability and the resi-
dence time of plankton in the euphotic zone, which, in turn,
are both dependent upon the stability of the water column
(Huisman et al., 1999). In a 1-D model this is dependent
upon surface fluxes of heat and momentum.

The Cretan Sea, in the eastern basin of the Mediterranean,
is a seasonally stratified oligotrophic system, and in the win-
ter months the water column frequently overturns, mixing
up bottom waters (Tselepides et al., 2000). Phosphorus is
generally considered to be the limiting nutrient in this re-
gion. These overturning events are important to the ecosys-
tem function of the Cretan Sea, since they sporadically mix
up nutrients to the surface waters. Air-sea transfers of mo-
mentum and heat, which determine the timing and extent of
these overturning events, are, therefore, an important factor
in controlling the local biogeochemistry. The extent to which
modelled ecosystem behaviour is affected by the method of
modelling surface fluxes of heat and momentum is, therefore,
a pertinent question. Castellari et al. (1998) have shown, us-
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Fig. 1. Diagram showing the trophic links in ERSEM.

ing an OGCM of the Mediterranean Sea, that the hydrody-
namics are sensitive to the heat flux formulation and mete-
orological data used. Lacroix and Nival (1998) have also
shown that in the western Mediterranean the frequency of
forcing has a strong effect upon the biological function.

2 Methods

2.1 Models

2.1.1 ERSEM

The European Seas Ecosystem Model (ERSEM) is a generic
ecosystem model, with a proven record of use in the Mediter-
ranean Sea (Allen et al., 2002a; Zavatarelli et al., 2000; Allen
et al., 1998; Vichi et al., 1998). ERSEM is a modelling
framework in which an ecosystem is represented as a net-
work of physical, chemical and biological processes that dis-
play coherent system behaviour (Baretta et al., 1995). A
“functional group” approach is used to describe the biota.
The ecosystem is subdivided into three functional types:
producers (phytoplankton), decomposers (bacteria) and con-
sumers (zooplankton), and subdivided on the basis of trophic
links and/or size (Table 1 and Fig. 1).

Physiological (ingestion, respiration, excretion and eges-
tion) and population (growth, migration and mortality) pro-
cesses are included in the descriptions of functional group
dynamics. Physiological processes and population dynam-
ics are described by fluxes of carbon or nutrients between
functional groups. Each functional group, therefore, has a
number of components, each of which is explicitly mod-
elled. These include carbon, nitrogen, and phosphorus for
all functional groups and, in the case of diatoms (P1), sil-
icon. Detailed descriptions of ERSEM and its sub-models
can be found in Baretta et al. (1995), Baretta-Bekker et al.
(1995; 1998) and Ebenhöh et al. (1997). Sensitivity anal-
yses of parameterisations of ERSEM have been undertaken
by Ebenḧoh et al. (1997) and Varela et al. (1995).

Table 1. The model code and the descriptive names for the ERSEM
functional groups

Phytoplankton Zooplankton Bacteria

P1 Diatoms, Z5 Zooplankton B1 Bacteria

(Silicate (20–300µm)

dependence)

P2 Flagellates Z6 Heterotrophic

(>2µm) Flagellates

(<20µm)

P3 Picoplankton

(<2µm)

The model used in this study is a version of ERSEM as de-
scribed above, with the main adaptation being the inclusion
of dynamically varying carbon to chlorophyll ratios in the
primary producers, following methods described in Geider
et al. (1996) (Allen, 2002b).

2.1.2 POM

The ERSEM code is coupled with a 1-D version of the
Princetown Ocean Model (POM) (Blumberg and Mellor,
1987). The POM code calculates Richardson number de-
pendent eddy diffusion coefficients for momentum (KM) and
scalar variables (KH), using the Mellor-Yamada 2.5 turbu-
lence closure model (Mellor and Yamada, 1982), modified
after Galperin et al. (1988) and using a prescribed turbu-
lence length scale following Bakhmetev (1932). These co-
efficients are used to transport variables in both the physi-
cal and ecosystem sub-models. The physics is driven at the
air-sea interface by surface fluxes of heat and momentum,
calculated from meteorological boundary data, with salin-
ity held at the surface to climatological values (Psarra et al.,
2000). Horizontal velocity is derived from surface and bot-
tom stresses, and transported in the same way as other pa-
rameters. These velocity gradients are used to determine the
shear production.

The vertical resolution of the model is a metre at the sur-
face, increasing a metre at a time to five metres. The resolu-
tion stays at five metres for the rest of the 250 m deep water
column.

2.2 Surface heat flux formulations

The net flux of heat (QT ) across the air-sea interface is given
by:

QT = QS + QE + QH + QB , (1)

whereQS is the solar radiation flux,QE is the latent heat of
evaporation flux,QH is the sensible heat flux andQB is the
long-wave radiation flux.QS is calculated at every time step
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Table 2. Long-wave radiation formulations; (a) Rosati and Miyakoda (1998) and (b) Budyko (1974)
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Fig. 2. The location of the M3A buoy site.

using astronomical calculations of solar radiation, modified
by cloud cover (Dobson and Smith, 1988).

The sensible (QH ) and latent heat (QE) fluxes are cal-
culated using standard formulae; the net flux of heat (QT )
across the air-sea interface is given by:

QH = pACP CH |V |
(
TS − TA

)
(2)

QE = pALECE |V |
(
qS − qA

)
, (3)

wherepA is the air density,qA is the specific humidity of air,
qS is the saturation specific humidity of air,Cp is the specific
heat capacity of water,LE is the latent heat of vaporisation,
TS andTA are the surface and air temperatures, respectively,
andCE andCH are the exchange coefficients for latent and
sensible heat, respectively.

The calculations for the latent and sensible heat are de-
pendent upon the calculations of the coefficientsCE and
CH . Two formulations taken from Castellari et al. (1998)
are used; the “neutral” formulation (Rosati and Miyakoda,
1988), which sets both coefficients equal to 1.1 × 10−3, and
the Kondo formulation (Kondo, 1975), where the coefficients
are a function of air-sea temperature difference, wind speed
and a stability criterion for the surface waters.

Two formulations for the long-wave radiation flux (QB )
are used (Table 2). The formulations for the exchange co-
efficients and longwave radiation are combined to give three
heat flux models (Table 3). These were found by Castellari et
al. (1998) to model the hydrodynamics of the Mediterranean
most successfully, although it should be noted that the model
used in the Castellari et al. (1998) work is different from that
used here and, therefore, direct comparisons cannot be made.

European Centre for Medium-range Weather Forecasts
(ECMWF) 6-hourly data, at a 2.5◦ horizontal resolution, was
extracted for a position close to the M3A buoy site to provide
the meteorological forcing for the model. Air temperature at
2 m (TA), 10 m winds, and cloud cover were available. Dew
point temperature (TD) and mean sea level pressure (PA) data
were also available and were used in the calculation of the
relative humidity (RH ) based on a formulation in Wallace
and Hobbs (1977), and a calculation for the saturation vapour
pressure (ES) (Tetens, 1930):

RH = 100×
ES

(
TD

)
PA − ES(TD

) ×
PA − ES(TA

)
ES

(
TA

) (4)
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Table 3. The combinations of heat flux formulations used; (a)
Rosati and Miyakoda (1998), (b) Kondo (1975) and (c) Budyko
(1974)

Method Turbulent Exchange Long-wave Radiation
Coefficient (CE/CH ) Method

Method

PA1 Neutrala Brunt-Berlianda

PA2 Kondob Brunt-Berlianda

PA3 Kondob Mayc

Table 4. Production and biomass data in the Cretan Sea:
(a) Psarra et al. (2000); integrated over the surface 100 m for station
D4, at 35◦30′ N, 25◦06′ E
(b) Ignatiades (1998); for station 59 (36◦0′ N, 25◦30′ E); integrated
over the surface 50 m
(c) Gotsis-Skretas et al. (1999); for station 59 (36◦0′ N, 25◦30′ E);
integrated over the surface 50 m
(d) Antoine et al. (1995); estimates made by CZCS for the Cretan
Sea
(e) Turley et al. (2000); estimates for the Cretan Sea

Phytoplankton Bacteria

Biomass (mg-C m−2) 1240d 1372±274e

296–1400c

Production (mg-C m−2 d−1) 220±64.3a 48.5±39.2e

65.2b

114–169c

151.0±91.6e

ES

(
T

)
= 0.611 exp

( 17.27T

T + 237.3

)
. (5)

Temperatures are in degrees Celsius and pressures in Pascals.

2.3 Site

The Mediterranean Multisensor Moored Array (M3A) buoy
is located 30 nm north of Heraklion in the Cretan Sea
(35◦40′ N, 25◦00′ E), in 1030 m of water (Fig. 2).

The buoy was deployed to collect three-hourly data for a
number of physical and biological variables, including tem-
perature and chlorophyll, at various depths. In situ meteo-
rological information was also collected. Further details of
the instrumentation used and calibration of data sets can be
found in Nittis et al. (2003). Other data sets are also available
for the Cretan Sea, and some relevant data are summarised in
Tables 4 and 5.

Table 5. Nutrient data in the Cretan Sea, and annually averaged
nutrient concentrations (depths 0–250 m) for the model simulations
PA1, PA2 and PA3:
(a) Tselepides et al. (2000); for stations in the Cretan Sea in depths
of more than 500 m; annual averages of samples taken from depths
0–200 m
(b) Gotsis-Skretas et al. (1999); for station 59 (36◦0′ N, 25◦30′ E);
annual average of samples from depths 0–100 m

Phosphate Nitrate Silicate
(mmol m−3) (mmol m−3) (mmol m−3)

Tselepidesa 0.08±0.06 1.37±1.14 1.49±0.69

Gotskis- 0.03 1.03 2.65
Skretasb

PA1 0.030 1.32 3.14

PA2 0.036 1.36 3.08

PA3 0.035 1.36 3.09

3 Results

3.1 Sensitivity to variations in heat flux formulation

The model was run using the three heat flux formulations, la-
belled PA1, PA2 and PA3 (Table 3), forced using six-hourly
ECMWF meteorological data for the year 2000. A repeating-
year forcing was applied for five years to spin the models up
to a quasi-steady state for each formulation. The simulations
presented here were initialised for both biological and phys-
ical variables using the results from these spin-up runs.

3.1.1 Temperature

A comparison of these simulations with the M3A data shows
that the surface temperature was underestimated by up to 3◦

by all three formulations. The PA1 and PA2 runs were most
seriously affected, with PA3, although still significantly un-
derestimating the surface temperature, showing the closest fit
to the data (Fig. 3). Simulated temperatures at lower depths
(not shown) pick up the correct seasonal trends, but not the
high-frequency variability shown by the M3A data.

The inability of the model to reproduce the surface tem-
perature could be related to horizontal advection of heat to
the site. It is well documented that the Mediterranean has a
negative heat budget (Castellari et al., 1998), compensated
for by transport of heat across the Gibralter Sill, and, there-
fore, a 1-D model with no compensation for this would be
expected to underestimate the temperature. An underestima-
tion of the solar inputs to the system may also have an effect,
although this has been discounted, since the modelled solar
heat flux was substantially higher than literature estimates for
the Mediterranean; Garrett et al. (1993) gives the long-term
mean solar heat flux as 202 W m−2, compared to 219 W m−2

for this model.
Other potential causes of this temperature underestimation

were also investigated. The ECMWF forcing data used was
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Fig. 3. Surface temperature for(a) PA1, (b) PA2 and(c) PA3 runs.
Dashed line indicates model, solid line indicates data.

checked against the meteorological data taken from the M3A
buoy (Nittis et al., 2003), and the two data sets showed good
agreement for most variables. However, the humidity, as cal-
culated from the ECMWF data, showed substantial differ-
ences to the measured M3A data. The importance of the ac-
curacy of the forcing data is investigated further in Sect. 3.3.

The three runs, as mentioned above, showed substantial
differences in their calculations of the hydrodynamic prop-
erties of the M3A site. As an indicator of the physical be-
haviour of each model run, strength of stratification, as given
by the maximum Brunt-Vaisala frequency and temperature
difference across the thermocline, was calculated (Fig. 4).

The onset of stratification occurred around day 80 for all
three runs, with the strongest stratification not occurring until
after day 100. Differences between the runs were evident,
with PA1 giving a deeper thermocline in the initial stages
and stronger stratification in the latter parts of the year. PA1
also appeared to give a more diffuse thermocline. The PA3
simulation resulted in the shallowest thermocline depth, and
subsequently the extent of the stratification was the greatest.
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Fig. 4. Stratification strength as given by(a) temperature difference
across the thermocline and(b) the monthly running-mean of the
depth-averaged Brunt-V̈ais̈alä frequency, for runs PA1, PA2, PA3
and PA3 with M3A humidity.

3.1.2 Comparison of biological time-series data

The physical differences between the modelled water
columns have an effect upon the biological function of the
model, through the timing of stratification, the water temper-
ature and the extent of mixing. The timing and magnitudes
of the spring blooms were quite different for the three sim-
ulations. The PA1 simulation bloomed the latest and with
the smallest peak (87 days and 0.51 mg–Chl m−3). PA2 gave
a rather diffuse bloom, with substantial secondary blooms
at most depths; these peaks occurred earlier than for the
PA1 run (at days 62 and 71), and with a similar magnitude
(0.54 and 0.53 mg–Chl m−3). The PA3 simulation resulted
in an early bloom (day 61) which was of a greater magnitude
(0.68 mg–Chl m−3) than either the PA1 or PA2 blooms.

The comparisons of simulated chlorophyll concentrations
with data show that they are of the right order of magnitude
(Fig. 5). However, the relatively large peaks in chlorophyll
in the model runs are not consistent with the apparent lack
of any significant spring bloom in the measured data. There
is unfortunately little data available for the period up until
day 65, and none between day 40 and 65, so it is possible
that some elevated chlorophyll concentrations were present
in this period.

The three runs showed remarkable similarity in the sum-
mer and autumn, and substantial differences in the winter and
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Fig. 5. Comparison of chlorophyll from the model runs PA1 , PA2 and PA3 for(a) 40 m depth,(b) 65 m depth.

spring (Fig. 6). The winter and spring periods coincide with
overturning events, and hence, the nutrient supply to, and
residence times of, phytoplankton in the euphotic zone are
controlled by the physical properties of the water column. In
the summer and autumn stratification disconnects the surface
waters from the nutrient rich bottom waters. Hence, the limit
to primary production is the in situ recycling of nutrients in
the surface layers, and the ecosystem comes under biological
control.

Turley et al. (2000) found a highly significant relation-
ship between bacterial and primary production in the Cretan
Sea, and this relationship is well replicated in the simula-
tions (Fig. 7). No obvious differences were evident between
model runs, with all showing relative bacterial and primary
production of the same order as the Turley data.

3.1.3 Annually averaged biology

The comparison of the three runs with data for phytoplank-
ton production show good agreement (Table 4 and Fig. 8),
although the scatter in the data does not allow a judgement to
be made on the relative merits of them. The phytoplankton

biomass also agrees well with published data for the region,
although possibly slightly on the high side in all cases. Both
bacterial biomass and production lie within the range of pub-
lished data. Similarly, modelled nutrient levels show good
agreement with observations (Table 5).

The annual average production and biomass of the three
runs showed some significant differences (Fig. 8). The main
differences between the three runs lie in the production data,
with the zooplankton being particularly affected (the differ-
ence between the PA1 and PA2 annually averaged produc-
tion is greater than 300%). The biomass varied by less than
10% for both the phytoplankton and bacteria, although the
zooplankton showed a much more marked variation (a 60%
difference between the PA1 and PA2 runs).

3.2 Sensitivity to the frequency of meteorological forcing

To investigate the role of surface forcing frequency, the three
simulations were each rerun with the meteorological data
read in at 12-hourly, daily, weekly and monthly intervals.
Annually-averaged simulated zooplankton were more sensi-
tive than either the bacteria or the phytoplankton to changes
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in forcing frequency (Fig. 9); the bacteria and phytoplankton
biomass values were surprisingly unaffected by the use of
extremely low temporal resolution surface forcing data. The
PA3 run was particularly insensitive to changes in frequency
of forcing, with little change in any of the annually averaged
production values for the 6-, 12- or 24-hourly forced simu-
lations, and relatively small changes when using weekly or
monthly forcing. The production was more sensitive to fre-
quency of forcing than the biomass, with the PA1 run show-
ing by far the most sensitivity.

The chlorophyll concentrations showed little dependence
upon the frequency of forcing. The differences were mainly
in the fine scale detail, with the simulations that used lower
frequency forcing showing damping of the short-term fluc-
tuations in chlorophyll concentrations, but the main chloro-
phyll peak remaining of largely the same amplitude and tim-
ing.
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Fig. 8. Annually averaged(a) production and(b) biomass for total
phytoplankton, zooplankton and bacteria.

3.3 Sensitivity to variations in the forcing data

Inaccuracy in the forcing data could well be a cause of
the consistent shortfall in sea surface temperatures (Fig. 3).
Comparison of measured (M3A) data and the ECMWF forc-
ing data shows that the ECMWF gives good estimates of air
temperature, wind speed and mean sea level pressure, but a
poor estimate of humidity. The average relative humidity for
days one to 160 was 51% for the ECMWF and 65% for the
M3A measured data. To investigate the significance of this
difference, a simulation (spun up for a year from the PA3
standard initialisation), forced with the M3A humidity, rather
than ECMWF data, was run. The accuracy of the M3A hu-
midity sensor is±3% (Nittis, pers. comm.). In the second
half of the year, and at other times where no M3A data was
available, an average value of 65% was used. This run re-
sulted in a marked increase in modelled temperatures, and
a much better fit with the chlorophyll data (Fig. 10). It also
showed markedly stronger stratification than the previous run
using the PA3 formulation (Fig. 4).

The chlorophyll peak that was being produced at between
40 and 70 days no longer appeared and a far lower, broader
peak at around day 90 was found. It is apparent from this that
the ecosystem function of the model is extremely sensitive to
the quality of the humidity data used. Even when using rather
patchy data, with average values used in periods of no data, a
far better result is obtained than if using high resolution, but
inaccurate, data.

The quality of the humidity data influences the behaviour
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Fig. 9. Comparison of the annually averaged(a) production and(b) biomass for (1) phytoplankton, (2) zooplankton and (3) bacteria for PA1,
PA2 and PA3 runs using different forcing frequencies.

of the model, which indicates that the accuracy of other mete-
orological forcing data should be considered. Therefore, per-
turbations of the forcing variables were performed to com-
pare the influence that these data have on the surface heat
flux. These were run from the standard PA3 initialisation,
and the differences in model behaviour over 160 days (the
period of M3A data availability) analysed.

An increase in air temperature led to increases in sea sur-
face temperature and stronger, earlier stratification, and vice
versa. Similarly, increasing the humidity also acted to raise
sea surface temperature (and give more pronounced strati-
fication). The wind also had an effect upon stratification,
with increased winds giving less stratification as would be
expected.

The simulations that gave earlier stratification also had ear-
lier phytoplankton blooms. These earlier blooms were more

intense but shorter lived. When the onset of stratification
was delayed the bloom became delayed and far less intense.
The overall net effect upon the biomass and production is a
balance between the longevity and intensity of the bloom,
and hence there was no strict pattern as to how a change in
air temperature or wind speed affected the net production or
biomass (see Table 6). However, it is apparent that even rel-
atively small offsets in the forcing data may have major ef-
fects upon the ecosystem function of the model. A compari-
son between a standard run and runs using perturbed forcing
data show that substantial changes in heat flux can be induced
(Fig. 11). Large, but realistic, perturbations over a period of
a month give changes of the order of± 50–150 Wm−2 differ-
ences in the total heat flux (compared with a heat flux of the
order of−200–200 Wm−2). The strength of influence of the
perturbation does not appear to be dependent upon its sign,



J. R. Siddorn and J. I. Allen: Surface heat fluxes and ecosystem function in the Cretan Sea 385

Table 6. Percent change in 160 day mean biomass (1B) and production (1P ) for depth-integrated phytoplankton, zooplankton and bacteria
with changes in forcing variables. Note the increase in relative humidity is scalar – a 20% increase in a humidity value of 50% gives 70%,
not 60%

Phytoplankton Zooplankton Bacteria

1P (%) 1B (%) 1P (%) 1B (%) 1P (%) 1B (%)

Humidity

+20% −29.5 −12.1 −58.2 −32.2 −31.5 −2.8

+10% −7.0 −3.5 −15.5 −3.1 −1.8 2.4

−10% −5.3 −1.0 −0.4 1.7 3.1 0.4

−20% −2.4 1.6 6.7 5.9 7.0 1.6

Wind

+2 m/s 11.4 6.5 39.3 22.1 29.0 4.9

+1 m/s 9.1 6.4 17.6 11.1 10.5 2.7

−1 m/s 14.5 2.4 19.2 9.8 13.6 3.8

−2 m/s −9.9 −5.6 −33.9 −13.2 −15.6 −0.3

Air
Temperature

+2◦C −7.9 −4.5 −31.4 −10.8 −13.5 0.2

+1◦C 10.1 2.4 17.6 10.5 13.5 3.6

−1◦C 3.4 3.7 10.5 7.3 7.4 1.7

−2◦C 17.4 6.9 50.6 23.7 32.5 6.2

and is significant for all three parameters investigated.

4 Discussion and conclusion

The behaviour of the biological model was shown to be sen-
sitive to variations in the heat flux formulations used. It is
difficult to judge the relative merits of these formulations,
since they all produced broadly acceptable ecosystem re-
sponses. However, the combination of the Kondo and May
formulations (simulation PA3) gave the best temperature val-
idation, which is in agreement with Castellari et al. (1998).
Annual average biomass and production estimates from the
three simulations showed distinct differences, although all
showed agreement with literature data. Changes in produc-
tion were far greater than the changes in biomass, and zoo-
plankton seemed to be particularly sensitive. The timing and
amplitude of the spring bloom showed quite substantial dif-
ferences for the different simulations. All three simulations
had peaks of chlorophyll in the period between 60 and 90
days, yet stratification did not occur in any of the simulations
until about day 80, with significant levels of stratification not
occurring before day 100. In addition, the stratification oc-
curred at similar times in the three runs, although with some
difference in intensity, and yet the phytoplankton blooms oc-
curred at quite different times. This does not fit with the
classic theory of phytoplankton bloom development, which
requires stratification to take place before blooming occurs

(e.g. Mann and Lazier, 1996). Huisman et al. (1999) de-
veloped a model where blooming may occur without strat-
ification if the turbulence is below a critical level and the
light penetration is sufficient for growth to occur. They sug-
gest that in clear waters the critical turbulence theory would
become important. The results of these simulations support
this; the clear waters of the oligotrophic Cretan Sea allow
the turbulence to dictate the onset of phytoplankton bloom-
ing, and hence, the timing of the spring bloom is sensitive to
changes in turbulence induced by small changes in surface
heat flux. This is illustrated in Fig. 12, which shows the tem-
poral evolution of scalar eddy diffusion coefficients, primary
productivity and phosphate concentration for the first 90 days
of the simulation. In addition, this shows that in the PA2 and
PA3 simulations strong mixing events (KH > 0.3 m2 s−1)
coincide with net respiration. The reduced exposure to light
and poor adaptation to ambient light conditions due to the
mixing of phytoplankton out of the euphotic zone is likely to
be the cause. The same is not true for the PA1 simulation,
where the mixing is less intense. Similarly, there appears
to be a threshold of phosphate concentrations below which
there is little primary production, as can be seen by the late
winter lack of primary productivity in the PA1 simulation, in
contrast to the PA2 and PA3 simulations. The PA2 and PA3
simulations have higher average vertical mixing constants
than PA1, resulting in enhanced mixing of phosphate into the
euphotic zone. A simple rule of thumb for this system seems
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Fig. 10.Temperature at(a) the surface and(b) 40 m and chlorophyll
at (c) 40 m and(d) 65 m for the standard PA3 run (solid line) and
the PA3 run with M3A derived humidity (dashed line).

to be that threshold values of phosphate of approximately
0.004 mmol m−3 must be exceeded and eddy diffusion values
of approximately 0.3 m2 s−1 must not be exceeded for pri-
mary productivity greater than 100 mg–C m−2 d−1 to occur.
The surface heat flux, which, to a large extent, determines
the turbulence of the surface waters, can, therefore, be seen
to heavily influence biological behaviour through, first, de-
termining the transport of phosphate up from deeper waters
and second in determining the residence time of phytoplank-
ton in the surface, euphotic waters.

The influence of the forcing frequency upon the biol-
ogy was investigated. The main differences with changes
in frequency forcing were found in the high-frequency phe-
nomenon, which were reduced when using lower frequency
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Fig. 11.The change in QT (net heat flux from the ocean to the atmo-
sphere) in Wm−2 for (a) an increase of 20% (solid line) and a de-
crease of 20% (dashed line) of humidity,(b) an increase of 2 ms−1

(solid line) and a decrease of 2 ms−1 (dashed line) of wind speed
and(c) an increase of 2◦C (solid line) and a decrease of 2◦C (dashed
line) of air temperature.

forcing data. The annual mean biological properties showed
relatively little dependence upon the frequency of forcing
data used, although the level of dependence varied for the dif-
ferent flux formulations. As with other simulations the major
changes in the annual mean values were generally found in
the production values, and the zooplankton data were most
affected. This is consistent with the observation of Cole-
brook (1985) that the interannual variability in zooplankton
in the North Sea is dependent upon phytoplankton abundance
early in the year. It is felt that the model behaves similarly;
Figure 8 shows the zooplankton biomass and production to
be substantially higher in the simulations where the bloom
occurs the earliest (PA3) or persists (PA2).

Even though changing the heat flux formulation had sig-
nificant impacts upon the model function, it still did not sig-
nificantly alter the fact that all three formulations signifi-
cantly underestimated the surface heating. The model sim-
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ulates the M3A site in the Cretan Sea, which is close to two
gyres, to the east cyclonic and to the west anticyclonic (Geor-
gopoulos et al., 2000). One-dimensional water column mod-
els are incapable of simulating the horizontal processes as-
sociated with these gyres. However, the sporadic advection
to the gyres is thought unlikely to be responsible for the con-
sistent underestimation of temperature. It is more likely that
it is due to the well documented continuous input of heat to
Mediterranean waters across the Gibralter Sill.

Other possible sources of error in the model were inves-
tigated, and the hydrodynamic properties of the simulations
were found to be greatly improved when using humidity forc-
ing based upon M3A data, even though the data set was in-
complete and averages had to be used throughout much of
the year. Improving the physical performance of the model
was matched with a better simulation of the chlorophyll;
the chlorophyll maximum was delayed significantly, and re-
duced in amplitude, to give a dramatically improved valida-
tion. Accurate meteorological forcing data, therefore, seems
to be extremely important in ecosystem modelling.

In summary, the accuracy of meteorological data is of
paramount importance in determining ecosystem behaviour
in the 1-D ERSEM/POM model of a Cretan Sea site. The
frequency of the forcing data is of only relatively minor im-
portance, and has very little effect on any of the seasonal
properties of the system. The heat flux formulation has a sig-
nificant effect upon the biological function of the system. In
the winter and early spring, when the system is overturning
and hence, mesotrophic, the biomass is sensitive to changes
in heat flux. The system is said to be under physical control,
with nutrient availability being primarily dependent upon the
strength and depth of mixing; small variations in the physi-
cal regime are amplified by the modelled biological system.
Later in the year, when the water column stratifies and the
system becomes oligotrophic, the variations in heat flux have
little effect on the biomass estimates, and the system is under
biological control; old production dominates, and the system
becomes dependent upon bacterially mediated cycling of nu-
trients.

Therefore, in systems where this physical control is likely,
great care must be taken to effectively model the physics if
there is to be any chance of effectively predicting biological
behaviour. During times of biological control, the physics
becomes less important, and emphasis must be placed on
paramaterizing the biogeochemical model. This has impli-
cations for data assimilation systems; ideally, both biological
and physical parameters would be assimilated, but knowl-
edge of the properties of the system would allow for judge-
ment to be made on the relative importance of biological or
physical parameters to the ecosystem function of the model.
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 Fig. 12. Comparison of(a) vertical diffusion coefficient, depth av-

eraged over whole water column (250 m),(b) phosphate concentra-
tion, depth averaged over the euphotic zone (surface 120 m) and(c)
the depth integrated primary production over the whole water col-
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line) runs.
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Ebenḧoh, W., Baretta, J. W., and Baretta-Bekker, J. G.: The primary
production module in a marine ecosystem model ERSEM II, J.
Sea Res., 38, 173–194, 1997.

Galperin, B., Kantha, L. H., Hassid, S., and Rossati, A.: A quasi-
equilibrium turbulent energy model for geophysical flows, J. At-
mos. Sci., 45, 55–62, 1988.

Garrett, C., Outerbridge, R., and Thompson, K.: Interannual vari-
ability in Mediterranean heat and buoyancy fluxes, J. Climate, 6,
900–910, 1993.

Geider, R. J., MacIntyre, H. L., and Kana, T. M.: A dynamic model
of photoadaptation in phytoplankton, Limnol. Oceanogr., 41 (1),
1–15, 1996.

Georgopoulos, D., Chronis, G., Zervakis, V., Lykousis, V., Poulos,
S., and Iona, A.: Hydrolgy and circulation in the Southern Cretan
Sea during te CINCS experiment (May 1994–September 1995),
Prog. Ocean., 46, 89–112, 2000.

Gotsis-Skretas, O., Kalliopi, P., Moraitou-Apostolopoulou, M., and
Ignatiades, L.: Seasonal horizontal and vertical variability in pri-
mary production and standing stocks of phytoplankton and zoo-
plankton in the Cretan Sea and the Straits and the Cretan Arc
(March 1994–January 1995), Prog. Ocean., 44, 625–649, 1999.

Huisman, J., van Oostveen, P., and Weissing, F. J.: Critical depth
and critical turbulence: two different mechanisms for the de-
velopment of phytoplankton blooms, Limnol. Oceangr., 44(7),
1781–1787, 1999.

Ignatiades, L.: The productive and optical status of the olig-
otrophic waters of the Southern Aegean Sea (Cretan Sea), East-
ern Mediterranean, J. Plank. Res., 20(5), 985–995, 1998.

Kondo, J.: Air-sea bulk transfer coefficients in diabatic conditions,
Boundary-Layer Meteorol., 9, 91–112, 1975.

Lacroix, G. and Nival, P.: Influence of meteorological variability on
primary production dynamics in the Ligurian Sea (NW Mediter-
ranean Sea) with a 1-D hydrodynamic/biological model, J. Ma-
rine Syst., 16(1–2), 23–50, 1998.

Mann, K. H. and Lazier, J. R. N.: Dynamics of marine ecosystems:
Biological-physical interactions in the oceans, 2nd Ed., Black-
well, Oxford, 1996.

Margalef, R.: Turbulence and marine life, Sci. Mar., 61, 109–123
(Suppl. 1), 1997.

Mellor, G. L. and Yamada, T.: Development of a turbulence closure-
model for geophysical fluid problems, Rev. Geophys., 20 (4),
851–875, 1982.

Nittis, K., Tziavos, C., Thanos, I., Drakopoulos, P., Cardin, V.,
Gacic, M., Petihakis, G., and Basana, R.: The Mediterranean
Moored Multi-sensor Array (M3A): System Development and
Initial Results, Ann. Geophysicae, this issue, 2003.

Pingree, R. D., Holligan, P. M., and Mardell, G. T.: The effects of
vertical stability on phytoplankton distributions in the summer on
the northwest European Shelf, Deep-Sea Res., 25, 1011–1128,
1978.

Psarra, S., Tselepides, A., and Ignatiades, L.: Primary productivity
in the oligotrophic Cretan Sea (NE Mediterranean): seasonal and
interannual variability, Prog. Ocean., 46, 187–204, 2000.

Rosati, A. and Miyakoda, K.: A general circulation model for upper
ocean simulation. J. Phys. Oceanogr., 18(11), 1601–1626, 1988.

Sharples, J. and Tett, P.: Modelling of the effect of physical variabil-
ity on the midwater chlorophyll maximum, J. Mar. Res., 52(2),
219–238, 1994.

Tetens, O.: Uber einige meteorologische Begriffe, z. Geophys, 6,
297–309, 1930.

Tselepides, A., Zervakis, V., Polychronki, T., Danovaro, R., and
Chronis, G.: Distribution of nutrients and particulate organic
matter in relation to the prevailing hydrographic features of the
Cretan Sea (NE Mediterranean), Prog. Ocean., 46 (2–4), 113–
142, 2000.

Turley C. M., Bianchi M., Christaki U., Conan P., Harris J. R. W.,
Psarra, S., Ruddy G., Stutt, E. D., Tselepides, A., and Van
Wambeke, F.: Relationship between primary producers and bac-
teria in an oligotrophic sea – the Mediterranean and biogeochem-
ical implications, Mar. Ecol. Prog. Ser., 193, 11–18, 2000.

Varela, R. A., Cruzado, A., and Gabaldón, J. E.: Modelling primary
in the North Sea using the European Regional Seas Ecosystem
Model, Neth. J. Sea Res., 33, 337–361, 1995.

Vichi, M., Zavatarelli, M., and Pinardi, N.: Seasonal modulation of
microbially mediated carbon fluxes in the northern Adriatic Sea
– a model study, Fish. Oceanogr., 7 (3–4), 182–190, 1998.

Wallace, J. M. A. and Hobbs, P. V.: Atmospheric Science: An In-
troductory Survey, Academic Press, San Diego, 1977.

Zavatarelli, M., Baretta, J. W., Baretta-Bekker, J. G, and Pinardi,
N.: The dynamics of the Adriatic Sea ecosystem. An idealized
model study, Deep-Sea Res. (Oceans), 47(5), 937–970, 2000.


