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Abstract. Ocean monitoring and forecasting services are in-

creasingly being used by a diverse community of public and

commercial organizations. The Met Office, as the body re-

sponsible for severe weather prediction, has for many years

been involved in providing forecasts of aspects of the marine

environment. This paper describes how these have evolved

to include a range of wave, surge, and ocean reanalysis, anal-

ysis, and forecasts services. To support these services, and

to ensure they evolve to meet the demands of users and are

based on the best available science, a number of scientific

challenges need to be addressed. The paper goes on to sum-

marize the key challenges, and highlights some priorities for

the ocean monitoring and forecasting research group at the

Met Office. There is a need to both develop the underpinning

science of the modelling and data assimilation systems and

to maximize the benefits from observations and other inputs

to the systems. Systematic evaluation underpins this science,

and also needs to be the focus of research.

1 Introduction

Operational ocean monitoring and forecasting services pro-

vide information to marine users that primarily support safe

operations in the marine environment, but have also evolved

to cater for, amongst others, marine security, commercial

operations, licensing for marine operations, marine environ-

mental monitoring and numerical weather prediction. Ocean

services in support of blue and green growth are therefore

already available, some for a number of years, and have

evolved to meet a growing range of users needs. Observations

alone cannot, without enormous investment, provide the spa-

tial or temporal coverage required for a marine monitoring

capability, and are limited to a subset of the parameters that

are required. It is therefore clear that modelling, with the ap-

propriate assimilation of good quality observations, of the

physical environment, the marine chemistry and the lower

trophic level marine biology, is required to support these user

needs.

Early operational forecasts were implemented in the UK to

respond to catastrophic surge events, such as the 1953 storm

that resulted in a surge event killing several hundred people

in the UK (Baxter, 2005). Surge forecasting services were

subsequently implemented at the Met Office, and are a factor

in ensuring that subsequent storms of comparable magnitude

have not had the same catastrophic impact (Lewis, 2015).

Wave models are used to forecast the sea state for mariners

and commercial operators. They are also used in combina-

tion with surge modelling to forecast coastal flooding, to pro-

vide a well-established part of the armoury for predicting and

monitoring extreme weather events.

More recently ocean forecast and monitoring services have

expanded from solving essentially two-dimensional wave

equations to include the fully three-dimensional state (hy-

drodynamics) of the ocean. This was driven initially by the

Royal Navy in the 1990s, with their requirement to under-

stand the depth-resolved currents (for diver operations, mine

hunting, and vessel operations) and the depth varying den-

sity and optical properties (for submarine operations and de-

tection). A number of other users have since started using

ocean analysis and forecast services, including seasonal fore-

casting, which relies on daily high-quality ocean state anal-

yses for initialization of their forecasts. The need has also

expanded to include reanalysis of the marine environment,

to provide information about the mean state, variability, and
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Table 1. The main Met Office marine analysis and prediction systems and their key characteristics. Please refer to the text for details.

System Domain Latitude Longitude Resolution Assimilation Forcing Ensemble Cycle

Waves Global − 80 to 80 −180 to 180 35 km None UM Global None 4× daily

European 30 to 70 −20 to 42 8 km None UM Global None 4× daily

NWS 46 to 61 −12 to 6 4 km None UM Global None 4× daily

Atlantic −80 to 80 Bound by SMC 25–12–6 km None MOGREPS 24 lagged 2× daily

continents

Surge NWS 40 to 62 −20 to 13 1/9◦× 1/6◦ (∼ 12 km) None UM Global None 4× daily

NWS 40 to 62 −20 to 13 1/9◦× 1/6◦ (∼ 12 km) None MOGREPS 24 lagged 2× daily

Ocean Global −83 to 90 −180 to 180 1/4◦ (∼ 25 km) SST, T/S, SLA UM Global None Daily

Med 30 to 47.5 −5.5 to 42 1/12◦ (∼ 9 km) SST, T/S, SLA UM Global None Daily

N Atlantic 20 to 80 −90 to 20 1/12◦ (∼ 9 km) SST, T/S, SLA UM Global None Daily

Indian −25 to 31 33 to 106 1/12◦ (∼ 9 km) SST, T/S, SLA UM Global None Daily

NWS 40 to 62 −20 to 13 1/15◦× 1/10◦ (∼ 7 km) SST UM Global None Daily

OSTIA Global −90 to 90 −180 to 180 1/20◦ SST n/a GMPE Daily

change for planning and monitoring purposes for a number

of users.

Operational ocean services are still relatively immature

and scientific innovation is required to improve their qual-

ity. Understanding the priorities for Ocean Forecasting Re-

search is important at any time, but none more so than at

the moment when fundamental changes in both the scientific

capability and the user drive provide significant challenges

and opportunities. The increasing emphasis on monitoring

the marine environment under legislation such as the Marine

Strategy Framework Directive (MSFD) is driving the need

to monitor the marine environment at levels not presently

achievable. MSFD requires that EU member states have a

marine strategy in place by 2020 that defines how they intend

to monitor their marine waters, and therefore ensure that they

can maintain Good Environmental Status (GES). Alongside

this statutory driver, other users of the marine environment

also require good quality marine information, the most no-

table being the renewable and oil and gas industries which

have huge infrastructure programmes in areas like the North

Sea, and extending into deeper waters. To operate safely (and

within the law) they require an understanding of the physical

environment in which they are working, including the partic-

ularly challenging need to have accurate historical informa-

tion about, and predictions of, currents.

This paper provides an overview of the operational ocean

monitoring and forecasting services being provided by the

Met Office that can, and do, provide underpinning informa-

tion available to support maritime and marine sustainable

growth. The critical investments in science to ensure that the

services can improve and adapt to changing requirements are

described.

2 Met Office ocean monitoring and prediction systems

The Met Office develops and operates a range of monitor-

ing and prediction systems, which are described below, and

summarized in Table 1.

2.1 Surface waves

The Met Office wave models are based on NCEP’s WAVE-

WATCH III™ (WWIII; Tolman, 2009, 2014). WWIII has re-

cently adopted a community model status, enabling users to

benefit from model developments implemented by numerous

research groups worldwide. For example, in the present oper-

ational configurations run at the Met Office, model options to

use a flavour of the WAve Model (WAM) source term physics

(Saulter, 2015) and with a second-order propagation scheme

(Li, 2008) have been selected.

Deterministic operational forecasts are based on a suite of

three nested configurations. A global wave model at approx-

imately 35 km resolution is run four times daily, alternating

between forecasting 2 days and 5 days ahead. This provides

boundary conditions for a European wave model at approx-

imately 8 km resolution, running a similar cycle, and a UK

waters model at 4 km resolution, which also runs four times

daily but is limited to 2-day forecasts. Although WWIII al-

lows a two-way nesting capability, we presently only pro-

vide one-way boundary conditions. At present, all configura-

tions are forced by the Met Office global atmospheric model,

which has a horizontal resolution of the order of 17 km. The

Met Office has also built and run higher resolution wave

models for coastal applications on an ad hoc basis using the

Simulating WAves Nearshore (SWAN) model. For example,

an application was built and run for Weymouth Bay as part

of the Met Office’s support for the London 2012 Olympics

(Golding et al., 2014).
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In the next 12 months, the Met Office expects to make

three enhancements to this system. The first is the imple-

mentation of a refined grid wave model, in which the wave

model comprises cells of different resolutions so that high-

resolutions can be applied near the coast whilst retaining

more computationally efficient larger cells in deeper open

waters. The advantage of adopting this method is to reduce

the need to maintain multiple nested model configurations.

The grid refinement method developed at the Met Office uses

the spherical multiple-cell (SMC) grid (Li, 2011) and will

first be implemented as a global wave model (Li, 2012; Li

and Saulter, 2014). Li and Saulter (2014) demonstrated that,

for an experiment where global and regional wave models

are forced using the same wind fields, a global SMC model

is capable of achieving comparable levels of skill to a nested

modelling system in which the high-resolution model cells

and SMC coastal cells are similarly scaled. In such cases the

SMC model should be much more efficient than the nested

model since (a) no sea areas are duplicated in the SMC

model (in a one-way nested system the area of the regional

model will be represented in both global and regional sys-

tems, whilst for a two-way model a boundary stencil area

will be replicated in both models) and (b) the use of grid re-

finement means that open waters in the regional-scale model

can be represented by coarser cells in the SMC model grid.

An SMC grid model for the Atlantic has already been im-

plemented as a wave ensemble prediction system (wave EPS;

Bunney and Saulter, 2015). Forecasts from the system are

being trialled with a number of users in order to establish re-

quirements for probabilistic decision-making data products.

As a forced-dissipative system, the spread in wave forecast

errors can be primarily simulated using the spread derived in

wind data from an atmospheric ensemble. In this case, the

Atlantic wave model is driven using members from the Met

Office Global atmospheric ensemble MOGREPS-G (Bowler

et al., 2008), with horizontal resolution of approximately

30 km.

For waters around the UK, it is recognized that a high

degree of variability in the oceanic conditions, particularly

associated with the tides, will introduce variability in the

wave field. A version of the UK waters wave model, which

has been one-way coupled to currents from the Met Office’s

northwest European shelf seas model, is presently undergo-

ing verification trials and will be made operational during

2016.

2.2 Storm surges

Tide-surge models are run in real time as part of the forecast

suite of models. Results are used by the joint Environment

Agency/Met Office Flood Forecasting Centre, together with

data from the National Tide Gauge Network, for coastal flood

warning in England and Wales.

The first operational surge forecasts were run in 1978 us-

ing coarse-grid surge and atmospheric models. The present

system is built around a two-dimensional barotropic ocean

model (Flather, 1994) with configurations comprising a

12 km UK continental shelf model (CS3X), with refinements

to 4 and 1 km in order to provide useful predictions in the

complex regime of the Bristol Channel and Severn Estuary.

A deterministic surge model suite comprising CS3X, Bris-

tol Channel, and Severn Estuary models is run 4 times daily,

forced by wind and surface-pressure data from the Met Of-

fice’s global atmospheric model. CS3X is also run as an EPS

forced by MOGREPS-G. Similar to waves, uncertainty in

the surge forecast is primarily influenced by uncertainty in

the atmospheric forecast, such that good probabilistic perfor-

mance can be achieved through perturbing surge-EPS mem-

bers purely by the forcing atmospheric-EPS data (Flowerdew

et al., 2010).

2.3 Operational Sea Surface Temperature and Sea Ice

Analysis

The Operational Sea surface Temperature and sea Ice Anal-

ysis (OSTIA; Donlon et al., 2012b) system was developed

at the Met Office for use in numerical weather prediction

and ocean forecasting systems. It is run in near-real time

on a daily basis. OSTIA produces a global field of sea sur-

face temperature (SST) (free of diurnal variability) every day

on a 1/20◦ (∼ 6 km) grid. The system uses SST input data

from satellite measurements together with in situ data and a

sea ice concentration product. Data assimilation methods are

used to combine the different SST input data with a back-

ground field, taking into account estimates of the observa-

tional uncertainty, to produce a gridded analysis. The back-

ground field is a SST forecast made by persisting anoma-

lies from the previous day’s analysis with some relaxation

towards climatology. An uncertainty estimate is provided,

giving each SST value an associated uncertainty. OSTIA is

widely used, particularly in numerical weather prediction

centres (including the Met Office and ECMWF), where it is

used as a lower boundary condition in weather forecast mod-

els. The OSTIA system is continually being developed and

improved. For example, in November 2011, lake surface wa-

ter temperatures were added for 248 lakes across the globe

(Fiedler et al., 2014). The OSTIA analysis and analyses pro-

duced by various institutes around the world are used to cre-

ate the Group for High-Resolution (GHRSST) Multi-Product

Ensemble (GMPE) product for the global ocean (Martin et

al., 2012). The analyses are regridded onto a common 1/4◦

grid and the ensemble mean and standard deviation are cal-

culated. This provides a mechanism to compare analyses and

potentially facilitate their development.

The OSTIA processing system is also used to produce

reprocessed products of global SST over the satellite era

(Roberts-Jones et al., 2012), Most recently, as part of the Eu-

ropean Space Agency (ESA) SST Climate Change Initiative

(CCI), the OSTIA system was developed and a reprocessing

based on ESA SST CCI input satellite data was performed.
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Aimed at climate research users, this reprocessing covers late

1991–2010 (Merchant et al., 2014).

A new diurnal analysis has recently been developed, which

produces hourly skin SST fields on a 1/4◦ grid. It is generated

by combining the OSTIA foundation SST analysis with mod-

els of the layer of water subjected to solar heating (the warm

layer) and the layer that loses heat through emission of long-

wave radiation (the cool skin). Satellite SSTs are assimilated

into the warm layer model. This diurnal product, together

with OSTIA foundation SSTs, the GMPE product, and a re-

processing are made available through the Copernicus Ma-

rine Environment Monitoring Service (CMEMS), which are

available from http://marine.copernicus.eu. The ESA SST

CCI analyses are available from http://www.neodc.rl.ac.uk/.

2.4 Forecasting Ocean Assimilation Model

The Met Office provides three-dimensional predictions of the

ocean state using the Forecasting Ocean Assimilation Model

(FOAM) suite of systems. These include global and shelf

seas implementations, and as well as the physical environ-

ment the marine biogeochemistry and lower trophic level

plankton are simulated for shelf seas.

The primary shelf seas region of focus is the European

North West Shelf, which includes the continental shelf waters

of the United Kingdom and neighbouring countries. A global

capability is also required, with basin-scale regions at higher

resolutions in the North Atlantic, Mediterranean, and Indian

Ocean.

Since early this century the Met Office, in collabora-

tion (in particular, but not exclusively) with the National

Oceanography Centre (NOC) and Plymouth Marine Labo-

ratory (PML), have developed and delivered operational ser-

vices from ocean models coupled to marine biogeochemistry

models. Siddorn et al. (2007) describes the first system, to

our knowledge, to operationally produce analyses and fore-

casts of the hydrodynamics and biogeochemistry of shelf en-

vironments. It was implemented primarily for the use of the

Royal Navy, but there is also significant interest in, and use

of, this type of service from other agencies responsible for

marine monitoring and response activities.

The shelf seas forecasting was transitioned to use the

Nucleus for European Modelling of teh Ocean (NEMO)

(Madec, 2008), which is also used for the global- and basin-

scale forecast systems. This allowed, amongst other things,

a data assimilation capability already implemented for the

deep-water systems to be implemented efficiently in the shelf

seas systems. At present, only surface-temperature data are

assimilated in Met Office shelf seas systems. The short time

and space scales in the shelf seas, with respect to the data

availability, make assimilating data here a particular chal-

lenge. However, progress is being made and assimilation

of subsurface temperature and salinity data and sea surface

height data (King and Martin, 2013) will become opera-

tionally viable within the next couple of years. Research on

ocean colour assimilation has also shown promise, although

considerably more development is required before this is

ready for operational implementation.

O’Dea et al. (2012) describes the operational implemen-

tation of the FOAM AMM7 (Atlantic Margin Model) at

∼ 7 km resolution, the successor to the forecasting system

detailed in Siddorn et al. (2007). The model has now been

consistently shown to be as good as or better than its prede-

cessor, and was for example shown by O’Neill et al. (2012)

to outperform a significantly higher resolution equivalent for

the Liverpool Bay region. Within the Met Office the success

of the NEMO-based system led to implementations in other

regions, for example in the Persian Gulf region (Hyder et al.,

2012). The development work done in the North-West Euro-

pean Shelf region provided the science starting point for this

work. The Gulf is an interesting region dynamically, with the

Straits of Hormuz acting as the natural boundary between the

shallow and tidal Persian Gulf waters and the Indian Ocean.

Storkey et al. (2010) described the first implementation of

an operational forecasting system using NEMO at the Met

Office. The primary configuration implemented was a global

system based upon the configuration developed at Mercator

Océan, using an 1/4◦ ORCA grid (Drévillon et al., 2008),

a tripolar, curvilinear discretization that allows the poles to

be placed over land and gives enhanced resolution at high

latitudes. Three other basin-scale configurations for regions

of particular user interest (the Mediterranean, the North At-

lantic, and the Indian Ocean) were also implemented on reg-

ular lat–long grids (rotated in the case of the North Atlantic

model) at a higher (1/12◦) resolution, giving a suite of fore-

cast systems that is eddy permitting over the globe and eddy

resolving in key basins.

3 Science challenges and priorities

3.1 Observations

The importance of observations to operational ocean fore-

casting cannot be overstated. They provide the basis on

which process understanding is acquired, and therefore un-

derpin fundamental model and system development. They

are also needed as the basis for understanding the skill of

monitoring and prediction systems. Timeliness requirements

for observations for model/system validation, which is done

on simulations of the recent past and can therefore take ad-

vantage of research data and observations that have been

through a rigorous quality control process, differ to verifica-

tion that requires observations to be available within days if

not hours of collection. Data assimilation also requires obser-

vations and, for forecast simulations, also needs them within

a short period of the validity time. For both verification and

assimilation it is therefore critical that the data are timely and

have good metadata such as quality flags and well-described

error characteristics.
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The space and time sampling of the ocean is far from opti-

mal, and one of the challenges for ocean services is to make

the best use of the available observations. It is therefore a

priority that best use is made of available data sets. Cur-

rent verification is presently not done effectively, and more

use could be made (for example) of global velocity observa-

tions from drifter displacements. Acoustic Doppler Current

Profiler (ADCP) data are still difficult to work with in op-

erational settings, and more should be done to ensure they

are used as effectively as possible. Gliders and other au-

tonomous vehicles are becoming increasingly prevalent, and

available in real time. This has the potential to make a sig-

nificant difference to the sub-surface data available, espe-

cially in marginal seas, if the data become readily available.

Argo profiling floats have made a significant difference to

the sampling in the open ocean of subsurface temperature

and salinity, and the use of Argo is already well established

for data assimilation as well as verification and validation in

our forecasting systems. The Argo programme will continue

to evolve, and making the best use of new Argo data sets,

for example biological or near-surface data, will ensure our

systems continue to improve.

Satellite data are a key component of the observing sys-

tem as they can provide relatively good spatial coverage

and tend to be delivered to operational centres quickly af-

ter collection. The sensors and algorithms have generally

relatively well-described error characteristics, and the mis-

sions are well known in advance so can be planned for. The

Sentinel-3 satellites due to be launched later this year and

in future years will provide high-quality sea-surface topog-

raphy, sea-surface temperature and ocean colour, and have

been designed specifically for support of ocean forecasting

systems. However, satellites can only provide measurements

of the surface of the ocean, cover a relatively limited part of

the desirable parameter space, and can often be at lower ac-

curacy than either in situ observations or at times the models

themselves. For example, Janssen et al. (2007) showed obser-

vation errors in significant wave height data from the ERS-2

altimeter to only be a few percent lower than the errors from

a global wave model.

A well-designed in situ data network is therefore also crit-

ical for the success of operational oceanography. Collecting

data at sea is a time-consuming and costly business and there

is never therefore likely to be the sort of observational cover-

age from traditional collection methods that we would like.

However, there are a number of things that could be done to

improve the current situation. The most likely to show im-

pact in the short term is to ensure that data that are already

collected are as widely (and quickly) available as possible.

This is not a trivial task, given the difficulties in ensuring data

are distributed with suitable quality control and metadata. It

can also be complicated by intellectual property rights and

commercial constraints. OceanObs’09 convened in Venice

in 2009 to develop a “common vision for the provision of

routine and sustained global information on the marine envi-

ronment” and produced a conference statement (Conference

Statement, 2010) that highlighted the need for systematic,

sustained, real-time observations collection. The conference

summary (Fischer et al., 2010) highlights the key investments

needed to meet societal needs for an ocean-observing system.

The more the diverse communities involved in marine obser-

vation collection can work together to agree on protocols for

quality controlling and onwards distribution of their data the

more benefit can be accrued from it, not least from improve-

ments in the ocean forecasting and monitoring services.

Other data sets are becoming available that could, with ef-

fort, make a major difference. Satellite salinity data from Soil

Moisture Ocean Salinity (SMOS) and Aquarius have been

demonstrated to provide some useful information (Martin,

2015), but improvements still need to be made to their bi-

ases for them to meet their potential. More widespread use

of voluntary observers has significant potential. Sensors on

fishing gear have shown significant potential, but are gener-

ally still at the trialling stage and do not as yet deliver sig-

nificant quantities of data. High Frequency (HF) Radar has

the potential to provide a step change in the monitoring of

currents in coastal waters, but coverage is limited in many

regions, notably in the North-West European Shelf.

Making optimal use of the present observing systems and

technologies that are available or likely to become available

in the near future will allow the ocean forecasting commu-

nity to make good progress. However, that is not to say that

the observing system is optimal for the purposes of ocean

forecasting. A number of parameters are poorly observed,

particularly salinity, currents, and biogeochemical parame-

ters. The evolving services will also put greater demands on

the observation network, with more complete Earth predic-

tion systems increasing the range of observations which will

be required in real time. The drive to provide ocean forecast-

ing services at eddy-resolving scales globally and in shelf

seas also means the requirements for the spatial and tempo-

ral frequency of the observational network to constrain the

model systems is increasing. The ocean forecasting com-

munity must ensure that these needs are well articulated

through the use, for example, of Observing System Exper-

iments (OSEs) to demonstrate the impact of existing obser-

vation types and Observing System Simulation Experiments

(OSSEs) to ensure that the requirements for new observing

networks are well defined.

In summary, as a priority the ocean forecasting community

must (a) make best use of available data, (b) support data col-

lectors in making their data available in a timely and usable

way, (c) support the investment in technologies already close

to operational readiness and ensure they are pulled through

to demonstrate impacts, (d) demonstrate the impact of the

present observing systems, and (e) articulate the evolving

needs for a new or updated observing system.

www.ocean-sci.net/12/217/2016/ Ocean Sci., 12, 217–231, 2016



222 J. R. Siddorn et al.: Research priorities in support of ocean monitoring and forecasting

3.2 Ocean modelling

Progress is needed to ensure models used to provide ocean

services are of sufficient quality to provide the information

required. Producing operational simulations that have suffi-

cient skill requires model developers to improve numerical

schemes and parameterizations that prescribe the inputs to

the system.

Ocean models (including biogeochemistry models) are

still at a level of maturity whereby significant improvements

to skill can be found from improving their process represen-

tation. Process improvements are important and will continue

to improve the systems, but require significant investment of

science expertise to have a significant impact. However, im-

proving atmospheric, riverine, or lateral boundary inputs is

often overlooked as an important driver for improved skill,

and can give substantial benefits for relatively minor invest-

ments of time and computing power. Unfortunately, there is

a limit to the availability of good quality input data.

A number of processes are not fully represented in ocean

models, either as the computational cost is considered to

outweigh the benefit or the complexity added by including

the processes is too onerous. Examples include representing

tides in global ocean models and modelling the interactions

between the surface ocean and surface waves, which are both

represented by relatively simple empirical relationships. As

we improve our modelling capability, we need to consider

where increasing complexity of our systems can provide ben-

efits by replacing implicit or missing processes with well-

posed algorithms or additional models/sub-models. This can

be time-consuming and also often comes with significant

additional computational cost implications, especially when

full coupling to additional components of the Earth system.

Increased complexity systems can often be helpful in inform-

ing the model development process even if not incorporated

as part of the final production solution.

3.2.1 Vertical mixing

Errors in vertical mixing tend to be amongst the most sig-

nificant issues for ocean forecasting problems, both because

of the short time and space scales on which surface forc-

ing and the dynamic processes in the mixed layer operate

and because of the impact of errors in exchange across the

thermocline can have upon water masses. This is a particu-

lar problem for any coupled forecasting systems where the

surface properties of the ocean are unconstrained by the at-

mospheric model forcing and errors can feedback to the at-

mosphere causing rapidly growing biases. Improving upon

vertical mixing properties in ocean models is a priority for

the ocean forecasting community. Present schemes are of-

ten dominated by pragmatic tuning options that dominate the

mixing and result in mixing schemes that poorly represent

the real processes. NEMO for example relies on both a con-

stant background minimum viscosity and diffusivity and an

additional wind-related penetration of turbulent kinetic en-

ergy through the mixed layer due to internal and inertial

waves to compensate for a lack of explicitly included pro-

cesses like internal wave breaking or shear spiking at the

base of the thermocline. The exchange of scalar properties

from the surface to deep waters and vice versa is therefore

dominated by a number of tunable parameters, which have

limited traceability to the true physical processes.

The OSMOSIS (Belcher et al., 2012) project is seeking to

redress this problem by incorporating a more realistic set of

processes into a mixed layer model that will couple to a more

traditional two-equation model below the mixed layer. The

project is still at the stage of developing schemes in ideal-

ized settings. There is still more to be done to move from the

idealized to the real application, for example to address how

the OSMOSIS mixed layer model will behave under ice and

in shelf seas where the bottom and surface-boundary layers

can overlap. However, in the medium term this has the po-

tential to redress some of the shortcomings in this area. As

our understanding and parameterization of mixing processes

improves we will increasingly be adding new explicit terms

for mixing into our models. This further highlights the issue

of spurious numerical mixing, especially for relatively quies-

cent regions.

3.2.2 Numerics and grids

Alignment of the vertical coordinate with isopycnals is im-

portant in reducing this spurious mixing, and a suitable

choice of vertical coordinates (e.g. Siddorn and Furner, 2013)

is key to this. However, short of working in an isopycnic

framework, which gives rise to other complications, a non-

adaptive coordinate cannot eliminate the impact of undulat-

ing isopycnals. Leclair and Madec (2011) developed an arbi-

trary Lagrangian–Eulerian (ALE) capability for the NEMO

model (termed the z̃ coordinate) that applies the Lagrangian

component (i.e. grid adaptation) in response to fast mov-

ing waves. This neatly allows the model to limit the amount

of adaptation required whilst removing the primary source

of spurious vertical mixing. Petersen et al. (2015) described

the impact of a range of vertical coordinates, including fully

ALE and the z̃ subset of ALE and concluded that the use

these coordinates worked well at reducing spurious mixing

under many scenarios. These formulations should be intro-

duced into operational configurations once they are suffi-

ciently mature. Improving the advection/diffusion schemes

is very much business as usual for the ocean model develop-

ment community and will undoubtedly continue. However,

the numerical properties of any modelling framework are

inextricably tied to the numerical framework within which

they are coded. Work being done on grids for atmosphere

modelling, where it is a pressing problem, is providing in-

sight into the optimal approach to take. For example, there

is the US MPAS project (Ringler et al., 2013) and the UK’s

GungHo project (Thuburn et al., 2015) both of which are,
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or have, developed new grid frameworks and appropriate nu-

merical schemes that have improved properties for geophys-

ical modelling (Cotter and Thuburn, 2014). There may be

a significant benefit for the ocean modelling community to

follow the lead of these projects, but it should be noted one

of the key drivers for these activities is the polar singularity

issue, which in ocean models can be hidden through plac-

ing poles over land. The present consensus is that the most

promising numerical approach probably lies in C-grid finite

volume methods like those implemented in MPAS rather than

finite element-based discretizations (Danilov, 2013) which

have been tried for the low aspect-ratio ocean problems

but without great success to date. As most ocean models

presently used are based upon C-grid finite-difference meth-

ods, the pressure for change is relatively low in the ocean

community. However, as computing infrastructures change

the benefits to move to unstructured, finite volume or element

solutions may increase.

3.2.3 Shelf seas processes

Shelf sea environments present a number of challenges to

modellers. First, they are dynamic regions where a range of

processes need to be represented if realistic simulations are

to be achieved. The wind- and buoyancy-driven residual cir-

culation is superimposed upon the tidal circulation that is a

function of the local and far-field forcing, and has such a ma-

jor impact upon these regions. The difficulty in representing

the relatively poorly understood dynamics of shelf slopes,

where mesoscale and submesoscale processes can have a sig-

nificant impact, means cross-shelf exchanges can be particu-

larly difficult to model. This is compounded by enhanced nu-

merical errors in regions where the model grid is not aligned

well with isopycnals. Small-scale (turbulent) processes are

important in determining exchanges across interfaces, most

notably vertically in seasonally and tidally stratified waters

but also horizontally, for example in determining the hori-

zontal extent of the influence of freshwater discharges as the

freshwater is mixed with adjacent waters by baroclinic insta-

bilities.

Shelf sea environments also present particular challenges

in that they are significantly influenced by the deep ocean,

land, sea-bed, and air boundaries. Therefore, not only do the

relevant dynamical processes need to be well represented,

but also the inputs to the system need to be well specified.

Poor river sources of freshwater can have a dramatic effect

upon the model solution. Good quality bathymetry and coast-

lines still remain a limitation, exacerbated by the difficulty in

defining a roughness length in an environment that not only

has highly spatially variable bottom types that are poorly

monitored but also, may have rapidly evolving changes to the

bed morphology. Air–sea exchange parameterizations tend

to be based upon empirical formulations derived from flux

measurement campaigns, which may not be entirely repre-

sentative of the marine environments being modelled. The

atmospheric models used to provide atmospheric boundary

information are imperfect and primarily tuned to give the best

solutions over land where the dominant societal impact is to

be found.

3.2.4 Resolution

There are fundamental scales in the ocean that need to be

considered when deciding at which resolution to develop

model configurations. At the smallest scales turbulent mo-

tions are clearly not resolvable and so these are parameter-

ized, in the vertical using turbulence closure models and in

the horizontal through diffusion operators. In the recent past

mesoscale processes have not been resolved, and so methods

for parameterising the impacts of mesoscale motions upon

vertical restratification have been included in global models

(e.g. Gent and McWilliams, 1990). We are now entering a

period when computing power is such that operational mod-

elling systems are under development at resolutions that can

in the main resolve the mesoscale (of the order 1/15◦ glob-

ally and 1 km in mid-latitude shelf regions). At these reso-

lutions the challenge is to parameterize turbulent motions at

the (smaller) grid scales, including sub-mesoscale eddies and

filaments.

3.2.5 Marine biogeochemistry

Increasingly there is a drive for forecasting and monitoring of

the whole Earth system, including the marine biogeochem-

istry. Presently, the skill of biogeochemistry models is lim-

ited for forecasting bloom events. Allen et al. (2010) gives

an interesting oversight of the challenges confronting the de-

velopers of biogeochemistry systems. The biogeochemistry

model accentuates physical model errors, and therefore par-

ticular attention needs to be paid to the hydrodynamic mod-

elling framework (including assimilation) errors in the con-

text of their implications for biological function. These seem

particularly pressing in the vertical. We are still at the stage

in the biological modelling community of trying to under-

stand what modelling tools give the best trade off between

complexity (costly, but potentially overfitted) and simplic-

ity (inexpensive, but missing some key processes). Even in

any given model structure, the parameterizations are not nec-

essarily well described given a lack of understanding of the

processes and data to constrain them. Developing well-posed

biogeochemistry models is therefore still an area that needs

active research.

3.3 Waves and surge

Although wave forecasting services have a longer track

record of operational use than their ocean counterparts, con-

tinuing enhancements in the parameterizations and numer-

ical methods underpinning spectral wave models (as sum-

marized by the WISE group 2007; Tolman et al., 2013; and

in proceedings of the ECMWF Workshop on Ocean Waves,
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2012) present numerous opportunities to improve both skill

and utilization of wave forecasts. Recent years have seen a

number of refinements to the source term physics schemes

used to represent the growth and dissipation of wind-sea

energy. In particular, work by Ardhuin et al. (2010) and

Babanin (2011), amongst others, has begun the process of

explicitly parameterizing wave energy dissipation in wave

models, rather than treating this term as a method to achieve

energy closure. An improved representation of wave dissi-

pation will be crucial to more accurately representing the

transfer of momentum from the atmosphere–wave boundary

layer into the ocean within coupled models. Increased com-

putational resources and numerical scheme developments

(e.g. Tolman, 2012) indicate a longer-term potential to im-

prove on the nonlinear wave–wave interaction parameteriza-

tion source term, which, for reasons of computational effi-

ciency, has long used the Discrete Interaction Approximation

of Hasselmann et al. (1985). For any change to the source

terms, moving to an operational model that better represents

one source term generally requires review and re-tuning of

the other terms, in order to derive the best overall representa-

tion of day to day wave spectrum evolution by the forecast

model. The challenge for an operational wave forecasting

group, such as the one at the Met Office, is in identifying the

value of these improvements in the background science and

when they can be practically applied within an operational

computing framework that has finite resources and strict re-

lease timing deadlines.

Whilst source terms improve, it remains the case that the

key determinant for wave forecast skill is the quality of the

wind forcing applied to the model (Cavaleri and Bertotti,

2006; Janssen, 2008) and, where appropriate, inclusion of

variations in the current and depth regimes affecting wave

energy propagation and wave steepness. Regarding the lat-

ter processes, UK waters are subject to strong tidal regimes

and depth variations, such that wave observations in the

coastal zone often exhibit a significant tidal signature. Im-

proving the wave model’s representation of tidal processes is

presently a priority area for research. In principle, incorpo-

rating (at least) ocean current fields in global wave models

in order to properly represent wave field evolution in known

strong current regions, such as the Gulf Stream, Agulhas, and

Kuroshio, should be a next stage in development, although

generic concerns over the quality of ocean model forecast

fields and challenges in demonstrating the value of this cou-

pling (due to sparseness in wave observations) suggests that

near-future developments may remain restricted to regional

systems. The development of increasingly high-resolution

atmospheric models, which explicitly represent convective

processes, may also lead to challenges in future. In such mod-

els a high level of detail can be developed in the wind field,

but not necessarily placed correctly in time and space, pre-

senting a particular problem for site-specific forecasts due

to double penalty effects. How these effects play out over

the ocean needs to be assessed, since wave and ocean mod-

els generally smooth wind field inputs, potentially leading

to a reduction of double penalty effects, whilst coastal zone

wind representation should be improved by using a higher-

resolution description of the land–sea boundary.

In many cases, improvements to wave model science lead

to small incremental benefits in terms of the most com-

monly used wave model data, i.e. forecasts of significant

wave height derived from the overall wave spectrum. How-

ever, the bigger picture is that many recent science and model

resolution changes ought to lead to a significant expansion

in the geographic scope and range of wave forecast ser-

vices that can be provided to users. For example, the de-

velopment of the SMC grid models run by the Met Office

is aimed at providing wave forecasts that correctly repre-

sent the near-coastal zone without the requirement to run and

maintain multiple high-resolution nested coastal wave mod-

els. This development is important in terms of service reach,

as the coastal zone has a far higher number of marine users

than the open seas. As well as improving the bulk wave en-

ergy prediction represented by significant wave height, recent

source term improvements have led to a verifiable improve-

ment in representation of the wave spectrum (e.g. Bidlot et

al., 2005; Ardhuin et al., 2010). This means that forecasters

should be able to offer a wider range of wave forecasts de-

scribing characteristics of the sea-state additional to signif-

icant wave height, for example wave steepness (Savina and

Lefevre, 2004; Niclasen et al., 2010), whether seas are con-

fused or regular due to the presence or otherwise of multiple

wave components comprising wind-sea and swells (Savina

and Lefevre, 2004; Kohno, 2013), and, potentially, the risk

of occurrence of so-called rogue or freak waves (Janssen and

Bidlot, 2009). Development of ensemble prediction systems

also expands the list of potential products that can be de-

veloped dependent on a user’s preference to receive deter-

ministic or more risk-based information. A significant pro-

portion of the operational model development team’s task is,

therefore, to demonstrate and advise marine forecasters on

the value of and methods to exploit an increasingly rich data

set of good quality wave parameters.

In a similar vein, a key challenge for improvement of

both modelling and utilization of parameters associated with

storm surges is to better combine the effects of both surge

and wave when issuing flood forecast advice. In terms of

background science, two-way feedbacks exist between sur-

face waves and tide plus surge in shallow waters. Brown and

Wolf (2009) demonstrated that these effects modify both the

wave field and the surge, indicating the need both for cou-

pling wave and surge models and applying wind stress to the

surge model via the waves (e.g. a modification to the wind

stress that accounts for the amount of energy being trans-

ferred from the atmosphere to the wave field). Generally,

UK storm-surge modelling has concentrated on large-scale

(basin) surges, which are driven by synoptic-scale meteo-

rology. However, resolution improvements enabling an un-

derstanding of variability introduced on the convective scale
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may lead to the addition of useful detail to the forecast surge

and wave forecast, for example in indicating smaller-scale

surges sometimes referred to as meteotsunamis (e.g. Tappin

et al., 2013). From the forecasting point of view, understand-

ing details of the wave field alongside high tide plus surge

conditions should enable forecasts to add extra detail when

identifying areas of coastline at particular risk. This is since

the degree of wave energy reaching the coast will be highly

dependent on the difference in angles between waves off-

shore and the alignment of the coast, plus the likelihood of

waves shoaling and refracting in the nearshore. Both of these

processes are influenced by wave period, leading to a prob-

lem with many degrees of freedom. Ongoing work at the Met

Office includes a dialogue between flood forecasters and the

modelling team on how best to work with a combination of

both surge and wave information within a probabilistic fore-

casting framework.

3.4 Quantifying uncertainty

Ensemble predictions are increasingly being seen as a prior-

ity for future generations of ocean forecasting systems. En-

sembles are already routinely, and widely, being produced

for surface-wave and storm-surge systems, with the spread in

the ensemble generated by fluxes from an atmospheric EPS

(e.g. Bowler et al., 2008). This provides reasonable spread

for surface-wave and storm-surge systems, where the solu-

tion is tightly coupled to the forcing. However, this is not

likely to be sufficient in full ocean simulations, where the

initial state and internal ocean dynamics are also important

components of the uncertainty. Forcing perturbations (e.g.

from a coupled atmosphere) may induce some spread in the

near-surface ocean variables (e.g. Sakov et al., 2012; Pinardi

et al., 2011) but are unlikely to be enough to produce the

correct spread for the deeper ocean. In order for the ensem-

ble to be useful for ocean forecasting, perturbations to the

ocean initial conditions and internal dynamics are therefore

required.

3.5 Coupled prediction

A key driver for the ocean forecasting community is the

growing interest in coupled ocean–atmosphere forecasting,

which has the potential to better represent some of the in-

terface exchanges. The importance of air–sea interaction in

both the modelling of the ocean and atmosphere has been

recognized for many years. The timescales on which these

interactions have traditionally been considered important has

limited the use of coupled models to studies or prediction

systems for monthly and longer timescales and while the

need to represent feedbacks between different components

of the environment is well understood and mature for cli-

mate prediction, the use of coupled approaches is not as well

developed on shorter timescales. However, as weather mod-

els increase in resolution, and the focus on hazards predic-

tion increases, the potential for air–land–sea–ice–waves cou-

pling systems is increasingly driving research activity. There

have been several vision papers (e.g. Brunet et al., 2010) and

workshops relevant to this area, in which the importance of

coupling is becoming increasingly recognized for weather

timescales. The need to accelerate progress in Earth Sys-

tem prediction across all scales (climate and weather, global

and local) was discussed by Shapiro et al. (2010), and this

message was strongly reinforced during the 2014 World Me-

teorological Society’s World Weather Research Programme

(WMO WWRP) Open Science Conference in Montreal.

The Global Ocean DAta Assimilation Experiment (GO-

DAE) OceanView (GOV) Science Team, recognizing the

need to explore the potential benefit to both oceanic and at-

mospheric forecasting, formed the Short-to Medium-Range

Coupled Prediction Task Team. Given the obvious need

to join up efforts with other communities, a link with the

Working Group for Numerical Experimentation (WGNE)

was formed and a joint GOV–WGNE workshop was held

in March 2013 to discuss the status, plans, and challenges

of coupled forecasting. The progress made by the commu-

nities involved in the Short to Medium Range Coupled Pre-

diction Task Team (SMRCP-TT), since its inception on un-

derstanding coupled modelling, its challenges and benefits,

and in building coupled systems, is detailed in Brassington

et al. (2015). One of the key regions where coupled ocean–

air interactions are of importance is in the tropics, and re-

cent work has demonstrated that, in addition to improved

verification against various tropical ocean and atmospheric

metrics, Madden–Julian oscillation (MJO) predictions are in

some instances superior in coupled hindcasts (Shelly et al,

2014). Also important for the Met Office, in its role as the

UK’s weather service, is the formation and/or evolution of

extra-tropical storms, the ability to simulate land–sea–breeze

circulation and the formation of coastal fog, all of which can

be expected to be improved by coupled modelling.

The Met Office strategy for both weather and ocean fore-

casting is to focus upon a two system approach, one global

and one for the UK. The coupling activities follow the same

approach, and this paper outlines the rationale and benefits

for, and recent progress in developing, each system sepa-

rately. Given the scientific and technical expertise on coupled

modelling in the Met Office, and the strategy for seamless

prediction that is increasingly bringing the weather and cli-

mate systems in closer alignment, we are well placed to make

(and are already making) significant progress in coupled

modelling on weather timescales. Nonetheless, the move to

coupled forecasting presents significant technical, scientific,

and resourcing challenges which are discussed below.

Regional systems are being developed around the world,

one of the most advanced being the UK Environmental Pre-

diction system, a joint NERC and Met Office activity led

from the Ocean Forecasting group at the Met Office. A global

coupled system is already delivering ocean forecasts opera-
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tionally to the CMEMS (http://marine.copernicus.eu). These

systems are described below.

3.5.1 Regional systems

For regional high-resolution prediction, there is already ev-

idence of the benefit of coupled prediction for improving

weather forecast skill. For example, coupled atmosphere–

ice–ocean forecasts are now operational at the Canadian Me-

teorological Centre for the Gulf of St Lawrence region in

Canada, with evaluation demonstrating significant improve-

ment in the skill of both atmospheric and ice forecasts (Smith

et al., 2013 and others). A key component of this activity was

the design and development of a flexible and collaborative

modelling framework for coupled land surface and hydro-

logical models (Pietroniro et al., 2007; Deacu et al., 2012).

This enabled better understanding of the behaviour of dif-

ferent land surface models and objective testing of different

schemes for producing ensemble streamflow forecasts to im-

prove the representation and accuracy of the regional water

budget.

Coupled regional prediction systems have also been ap-

plied in research mode to improve the representation of air–

sea interactions on Bora winds over the Adriatic (e.g. Pullen

et al., 2006), on the evolution of Mediterranean storms (e.g.

Renault et al., 2012), on hurricane formation and develop-

ment (e.g. Warner et al., 2010) and on suppressing the ur-

ban heat island effect in New York (e.g. Pullen et al., 2007).

The challenge now is to realize the potential of integrated

regional coupled prediction in the UK context, and a robust

flexible coupling strategy over the short–medium term is a

key requirement to underpin this research activity.

The Met Office, the Centre for Ecology & Hydrology, the

National Oceanography Centre, and Plymouth Marine Lab-

oratory are now working with others to accelerate research

progress in developing the foundations of a coupled high-

resolution UK forecast system that links together predictions

of the atmosphere, coastal ocean, land surface processes and

hydrology. A prototype project is now in progress to develop

and evaluate a first look system. This work has needed to de-

velop and test new ocean and atmosphere (and land surface)

configurations on a new domain – extending the atmosphere

model domain relative to the operational configuration to

provide sufficient coverage across the North-West Shelf and

increasing the horizontal resolution of the ocean component

relative to the AMM7 operational configuration to be com-

parable with the atmospheric resolution. Initial evaluation of

the first coupled atmosphere–ocean system is currently under

way. The immediate development priority is to add a wave

model component to begin to represent and evaluate three-

way interactions acting on a variety of timescales between

ocean, atmosphere, and the surface-wave field.

3.5.2 Global systems

The leading order impact of including an interactive ocean

model as part of a coupled operational numerical weather

prediction (NWP) system is that the atmosphere will see a

more realistic evolving SST during the forecast period. It

is therefore expected that the main benefits will be in re-

gions where there is a large diurnal SST range (particularly

the tropics) or where ocean surface temperatures can change

rapidly due to large heat fluxes or strong ocean mixing pro-

cesses. Previous work (e.g. Kim et al., 2010) has shown that

permitting high-frequency SST variability (by coupling at-

mosphere and ocean components at least every few hours)

has significant benefits in the tropics by allowing for a bet-

ter phase relationship between SSTs and convection, and in-

creasing the ability of models to forecast the spatial and tem-

poral evolution of the MJO. As mentioned above indications

of improved MJO predictions have already been seen in Met

Office coupled systems (Shelly et al., 2014). There is also ev-

idence that mid-latitude storm generation and evolution can

be better predicted in a forecast model with an interactive

ocean and atmosphere. Such benefits are expected to be more

fully realized once the ocean model resolution is high enough

to provide a detailed representation of the sharp SST gradi-

ents (associated with, for example, eddies), which can then

strongly influence the atmospheric boundary layer. A num-

ber of studies (e.g. Janssen et al., 2013) have shown that us-

ing a coupled system has an impact on the evolution of slow

moving tropical cyclones due to cooling of SSTs as heat is re-

moved from the surface ocean. This is expected to correctly

reduce the tendency of atmosphere-only models to otherwise

over-develop such systems, particularly as the resolution in-

creases.

Development towards using global coupled atmosphere–

land–ocean–sea-ice prediction, including coupled data as-

similation, for operational short-range forecasts at the Met

Office continues. The coupled system is based upon the

Global Coupled system (GC2) being developed for applica-

tions across all timescales (Williams et al., 2015) and there-

fore benefits from the significant development across the Met

Office over the last decade for monthly, seasonal, and climate

coupled applications. A consistent atmosphere configuration

is used for operational NWP. The ocean configuration (and

ocean data assimilation) relies heavily on the existing ocean-

only global FOAM.

Modest improvements in coupled forecast skill (particu-

larly in the tropics) compared to uncoupled atmospheric and

ocean control experiments have been demonstrated and val-

idation of coupled forecasts for provision of the Copernicus

Marine Service forecasts showed improvements in some re-

gions over FOAM (which benefits from higher resolution at-

mosphere forcing), although differences are relatively small.

Given the FOAM and NWP systems are well tuned and have

been shown to perform extremely well when compared with

international partners (e.g. Ryan et al., 2015), this is encour-
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aging and one would expect significant benefits to be realized

as the system matures.

In the configurations currently used, the SST field coupled

to the atmosphere is from the top ocean model depth level,

which has a thickness of ∼ 1 m and is coupled hourly. How-

ever it is known that net surface-heat fluxes calculated from

a 1 m layer instead of a skin SST can differ by ∼ 10 W m−2

(Brunke et al., 2008). A skin SST scheme is being developed

to implicitly calculate skin SST and non-solar fluxes within

the coupled model. Research is ongoing but the diurnal range

in SST in the tropics is significantly improved when validated

against satellite data.

Work is also ongoing to include a wave model component

within the global coupled model system. There are a number

of potentially important wave–atmosphere and wave–ocean

interactions, but the initial focus is on the wave-dependent

surface roughness seen by the atmosphere model.

3.6 Ocean data assimilation

There are a number of different methodologies for data as-

similation of varying levels of complexity and computational

cost. The ocean forecasting systems at the Met Office use

an incremental, first guess at appropriate time (FGAT) three-

dimensional variational (3-DVar) data assimilation scheme,

NEMOVAR (Waters et al., 2015). This has a number of

properties that make it suitable for operational use, not least

the computational cost, and it produces good quality analy-

ses and forecasts (Ryan et al., 2015). Improvements to this

methodology are currently being considered. Ensembles are

a useful tool for producing uncertainty estimates in forecasts

at various lead times, and can therefore provide useful esti-

mation of the short-range forecast errors required by data as-

similation schemes. Pure ensemble-based data assimilation

methods can suffer from sampling issues when small num-

bers of ensemble members are available. As this is likely to

be the case for initial implementations of ocean ensemble

forecasting systems at the Met Office, we intend to make use

of the ensemble information using hybrid 3-DVar-ensemble

data assimilation schemes. Initial work to implement the ca-

pability for using such a scheme in NEMOVAR has been

completed (Weaver et al., 2015). Much work remains to be

done though to develop an operational system based on this

methodology.

As well as the planned improvements to the underlying

data assimilation methodology, other aspects of the data as-

similation are also being developed. For instance, data assim-

ilation near the Equator has been shown to induce spurious

vertical motions, which can adversely affect the biogeochem-

istry in coupled physical–biogeochemical models. Schemes

to reduce the impact of physical data assimilation on verti-

cal motions have been developed and implemented over the

years (Bell et al., 2004; Balmaseda et al., 2007), but these

schemes do not completely resolve the problem. Waters et

al. (2016) described a new scheme (based on the ideas of Bell

et al., 2004), which is shown to further reduce the variability

in the spurious vertical velocities induced by physical data

assimilation near the Equator. Further work on this scheme,

and implementation in the operational forecasting systems,

is expected over the next year or two.

New data types often become available and are assessed

for their suitability to be assimilated in the forecasting sys-

tems. Satellite sea surface salinity (SSS) data from the SMOS

and Aquarius satellites were assessed by Martin (2015) by

comparing them to outputs of the FOAM system and showed

some potential for future assimilation. The impact of assim-

ilating data from animal-borne temperature and salinity sen-

sors was assessed by Carse et al. (2015) and the temperature

data from these platforms are now assimilated operationally,

with the near-real-time salinity data shown to degrade results.

Data from the Sentinel-3 satellite (Donlon et al., 2012a) are

expected to become available soon, and preparations for their

ingestion into the operational ocean forecasting systems at

the Met Office are underway.

Besides the general desire to improve the data assimilation

capability, a number of new activities and challenges need to

be addressed in the coming years. Data assimilation has (in

the ocean forecasting community) been primarily developed

for global- or basin-scale applications in forced mode (i.e. the

ocean model is not coupled to an atmosphere). The develop-

ment of coupled ocean–atmosphere systems for short-range

forecasting means that assimilation schemes need to adapt to

this change. A significant recent step forward has been in the

setting up of a prototype weakly coupled atmosphere–land–

ocean–sea-ice data assimilation system described by Lea et

al. (2015). The system is termed weakly coupled as the data

assimilation schemes for the ocean and atmosphere both take

as their initial background state the output from a coupled

model and add increments to the coupled model, but do not

include any information from the ocean when calculating the

increments in the atmosphere, and vice versa. Initial results

from a weakly coupled data assimilation system are promis-

ing, for example giving reduced SST increments as a result

of a better balanced system. The impacts on the forecast skill

are presently modest though, and further work is required to

tune the system. Ongoing work to assess the future direc-

tion of coupled data assimilation includes the calculation of

coupled ocean–atmosphere error covariances. This work will

inform the decision of whether a fully coupled data assimila-

tion system will be developed, and if so, the design of such a

system.

The Met Office shelf–seas configurations have assimilated

only SST data up to now. Work is underway to develop the

assimilation of altimeter sea level anomaly data and tempera-

ture and salinity profile data in these configurations. This re-

quires research into how best to make use of these data types

in the presence of tides and a changing vertical coordinate,

and how to deal with the sparseness of the data compared to

the dominant timescales and space scales.
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3.7 Quantifying skill

It is critical for the future utility of ocean forecasting ser-

vices that there is a focus on quantifying and understanding

the skill and uncertainty in ocean forecasting systems. Quan-

tifying skill must include an evaluation of systems and com-

ponents of systems prior to inclusion in a service (validation)

and a continuous evaluation of the outputs of a service in

operations (verification). Additionally, the quantification of

uncertainty can be included as part of the validation or ver-

ification process, and is most robustly done using ensemble

methods.

Historically, verification has been approached as a sec-

ondary activity, and has often been undertaken with a brief

and often basic representation through summary statistics.

Increasingly, there is a demand from users for clear informa-

tion on accuracy, which is relevant to the users’ application,

as well as a more considered approach as to which statis-

tics are applied and reported. There is also the obvious sci-

entific benefit from the insight that verification provides, and

a good understanding of the system skill will drive priori-

ties for model and system development. Focusing on the user

aspect of verification will help to ensure that existing users

make best use of the data, and give them an understanding of

the confidence, which can be placed in the forecasts. Model

development priorities should be informed by knowledge of

the errors, which have greatest impact on users. Presently,

this is generally driven by a largely subjective attempt to un-

derstand user needs, but with improved user-driven verifica-

tion this can become increasingly objective.

Compared to NWP and wave forecasting, the routine ver-

ification for ocean forecasts uses a very limited set of met-

rics, primarily mean and root mean square error (RMSE) and

in some cases Pearson correlation coefficient. Whilst pro-

viding a useful measure of the overall skill of the forecasts,

these statistics can also give a misleading picture in more

dynamic situations, especially as model resolutions increase.

There is a danger of driving model development inappropri-

ately unless these simpler statistical measures are augmented

by more sophisticated and well-posed metrics. The develop-

ment of these metrics is happening in various guises (see e.g.

Divakaran et al., 2015 and Ryan et al., 2015). Lessons can be

learnt from the science already done in other communities,

particularly atmospheric science, but a significant research

effort is needed to apply techniques to the specific nature of

the ocean and the needs of the ocean users.

4 Summary

Ocean services in support of blue and green growth are avail-

able, with forecasting and monitoring of most essential ele-

ments of the marine environment developed or developing.

These services have evolved to meet a growing range of users

needs, and continue to evolve to meet new challenges, for ex-

ample to deliver information to the Marine Strategy Frame-

work Directive.

The Met Office has a wide range of applications that

are increasingly supporting public and commercial organi-

zations that operate in the marine environment. These ser-

vices can and will be improved. This paper summarizes the

science priorities for driving these improvements. Science-

based services need to be supported by a balanced research

programme. In this case, that means developing not only the

underpinning science of the modelling systems and data as-

similation but also the inputs to them, including observations

and boundary conditions. Coupled modelling provides one

means (albeit a costly one) to do this. Methods to initial-

ize analysis and prediction systems will continue to improve,

and increasingly probabilistic information will become avail-

able to users, improving the utility of the services. Systematic

and appropriate evaluation of product skill, in a user focused

way, is still in need of considerable research, but must under-

pin all of the aforementioned activities to ensure that the re-

search activities both lead to scientifically justifiable, as well

as known, quantifiable, changes to the products.
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