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Global Data Gaps in Our Knowledge
of the Terrestrial Cryosphere
Hamish D. Pritchard*
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The IPCC Special Report on Oceans and Cryosphere in a Changing Climate identified

major gaps in our knowledge of snow and glacier ice in the terrestrial cryosphere. These

gaps are limiting our ability to predict the future of the energy and water balance of

the Earth’s surface, which in turn affect regional climate, biodiversity and biomass, the

freezing and thawing of permafrost, the seasonal supply of water for one sixth of the

global population, the rate of global sea level rise and the risk of riverine and coastal

flooding. Snow and ice are highly susceptible to climate change but although their

spatial extents are routinely monitored, the fundamental property of their water content is

remarkably poorly observed. Specifically, there is a profound lack of basic but problematic

observations of the amount of water supplied by snowfall and of the volume of water

stored in glaciers. As a result, the climatological precipitation of the mountain cryosphere

is, for example, biassed low by 50–100%, and biases in the volume of glacier ice are

unknown but are likely to be large. More and better basic observations of snow and

ice water content are urgently needed to constrain climate models of the cryosphere,

and this requires a transformation in the capabilities of snow-monitoring and glacier-

surveying instruments. I describe new solutions to this long-standing problem that if

deployed widely could achieve this transformation.
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INTRODUCTION

The IPCC Special Report on Oceans and Cryosphere in a Changing Climate (SROCC) highlighted
key strengths and weaknesses in our understanding of the cryosphere (IPCC, 2019). It showed
that we can observe with high or very high confidence (IPCC confidence definitions in italics) loss
of mass from the ice sheets (SROCC section A.1.1), declining sea ice (SROCC A.1.4), and snow
cover (SROCC A.1.2), and can produce probabilistic climate projections across a range of future
scenarios. For many aspects of the cryosphere, however, it is only the trajectories of change that
can be projected withmedium to very high confidence. Their magnitudes are either not quantified,
have large uncertainties or are quantified with low confidence. These include terrestrial snow cover
(SROCC A.1, A.7.7, A.4.1, A.1.4, A.1.2, B.1.3), mountain and Arctic water resources (SROCC
A.7.6, B.1.6, B.7, B.4.3), permafrost thaw (SROCC B.7.2), mountain and polar species distribution,
biodiversity and biomass (SROCC B.4, B.4.1, B.4.2) and disaster risk (SROCC B.1.5, B.7.1).
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Major deficiencies in snow and ice observations from
mountain ranges and the Polar Regions contribute to this
uncertainty. “Clear knowledge gaps” exist in current glacier-
ice volumes and the spatial and temporal variation of snow
cover (SROCC section 2.5). Time-series of snow water equivalent
(SWE) show “reasonable consistency” when averaged by
continent but considerable disagreement in spatial pattern
(SROCC section 3.4). Knowledge of SWE trends is “inadequate”
(SROCC section 3.7), and mountain precipitation trends globally
are “highly uncertain” due to large natural variability and
“intrinsic uncertainties” in measurements (SROCC section 2.5).
Long-term observations are particularly scarce inHighMountain
Asia (HMA), Northern Asia and South America (SROCC section
2.2.2). Similarly over Arctic land, precipitationmeasurements are
“sparse and highly uncertain” (SROCC section 3.7). Atmospheric
re-analyses suggest a recent Arctic-precipitation increase but
the wide model spread gives only low confidence in reanalysis-
based closure of the Arctic freshwater budget. A declining
trend in snow-depth in the Russian Arctic was assigned
medium confidence as the “pointwise nature” of weather-station
measurements does not capture prevailing conditions across the
landscape. A shift in the timing of maximum snow depth was
detected for the North American Arctic but no comparable
analysis is available for Eurasia (SROCC section 3.7).

Snow and ice strongly modify the albedo and insulation of
land and sea surfaces, the wetting or drying (and greening or
browning) of the terrestrial Arctic, and the mass balance of all
of the world’s glaciers and ice sheets. These weaknesses therefore
critically impact our understanding of cold-region water and
energy balances, with global consequences. Over the recent past,
global glacier mass loss was as great as that from the Greenland
Ice Sheet (the single largest source of sea level rise), but with 10-
fold greater uncertainty (Figure 1). Due to the limited number
of well-observed glaciers, there is only medium confidence in
the ability of glacier models to reconstruct past sea-level change
(SROCC section 4.2.2.2.3). Climate models also fail to reproduce
a pre-1970 Greenland warming and resulting sea-level rise, hence
there is only medium confidence in the ability of these models to
predict future glacier and ice sheet surface mass balance (SMB)
(SROCC section 4.2.2.6). These issues are reflected in projected
future glacier losses under RCP2.6 by end-of-century that have a
“likely” range of uncertainty of ±40%, using models calibrated
with only “limited observations” and “diverging initial glacier
volumes” (IPCC, 2019, CCB.6).

KEY OBSERVATION GAPS IN THE
CRYOSPHERE

Snowfall
Snowfall seasonally covers a third of all land (NSIDC, 2020) and
exceeds 3000 Gt of transient water storage (Pulliainen et al., 2020)
but snowfall SWE remains difficult to measure, particularly over
mountains and the Polar Regions. Globally, most observations
come from weather stations such as those contributing to
the Global Historical Climate Network (GHCN), a quality-
controlled database of 100,000 daily measurements (Menne et al.,

FIGURE 1 | Annual rates of ice loss for 2006–2015 from the Greenland Ice

Sheet (GIS) and Antarctic Ice Sheet (AIS) (IPCC, 2019, Table 3.3) and all other

global glaciers (IPCC, 2019, section 2.2.3, Table 2.A.1). The glacier losses are

as great as Greenland’s but with much greater uncertainty.

2012) of which 26% report precipitation in the cryosphere
and only 6% in the mountain cryosphere (Figure 2A). Only a
single active GHCN station on the dry Tibetan Plateau reports
daily precipitation in the combined 566,000 km2 Himalayan
headwaters of the Brahmaputra, Indus and Ganges river basins
above 4,000m altitude (Figure 2A). Furthermore, the number of
weather stations has decreased and is now at its lowest in over
100 years (Fick and Hijmans, 2017).

These observations do not adequately represent even the
climatological-average precipitation in these environments.
Gridded precipitation climatologies interpolated from GHCN
station data [e.g., the “WorldClim v2” 1970–2000 mean (Fick
and Hijmans, 2017)] correlate reasonably well (0.86) on the
global scale with test data but universally less well in mountain
ranges. More significantly, they systematically underestimate
precipitation inmuch of the cryosphere by 50–100% (Figure 2B).
WorldClim v2 precipitation in the cryosphere requires an average
bias-correction factor (inferred from streamflow data) of 1.52
vs. 1.05 for the rest of the world (Beck et al., 2020). In the
mountain cryosphere the global average bias-correction factor
is 1.46 for annual precipitation, and 1.61 in winter. Regionally
the factor is 1.55 annually in the HMA (1.90 in winter and 1.44
in summer), 1.5–2 annually throughout the Arctic, and up to
2.05 for the Andes in winter (Figure 2B). Such biases among
mountains are also present in comparable gridded precipitation
products produced by variousmethods, including PREC/L (Chen
et al., 2002), CHELSA V1.2, CHPclim V1, GPCC V2015, GPCP
V2.3, andMERRA-2 (Beck et al., 2020), and regional hydrological
assessments (e.g., Wortmann et al., 2018; Pritchard, 2019).
Although these bias corrections have been calculated, they apply
only to climatological averages and not the daily timescales of
weather models, and also have considerable uncertainty due
to the challenges involved in calibrating precipitation from
streamflow: the range in possible correction factors in the Andes
locally exceeds 4.00 (Figure 2C).

In part these precipitation biases (that are worst in winter
and in mountains) reflect a spatial-sampling problem in
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FIGURE 2 | (A) Weather stations (coloured dots) in the Global Historical Climate Network that lie within the terrestrial cryosphere (mid grey), or more specifically within

the mountain cryosphere (dark grey) and whose daily observations are ongoing (in 2020/21). Light blue dots show stations in the lowland terrestrial cryosphere that

report either snowfall water content (SNOW) or depth (SNWD). Dark blue dots show stations that reported precipitation (PRCP) but do not distinguish snow

observations. Yellow to red dots show stations within the mountain cryosphere that report SNOW or SNWD, coloured according to altitude. Black polygons show the

river basins of the Indus (I), Ganges (G), and Brahmaputra (B). The cryosphere is defined as having a mean monthly temperature <0◦C in January and/or July. The

mountain cryosphere is the intersection between these areas and mountain areas (Karagulle et al., 2017). This highlights the paucity of snow observations in much of

the mountain and Arctic cryosphere. (B) Bias-correction factors (blue-to-red scale, after Beck et al., 2020) that must be applied to the observation-based “WorldClim

v2” annual climatological precipitation product (Fick and Hijmans, 2017) in order to agree with observations and models of catchment hydrology. All WorldClim v2

weather stations that reported precipitation (RAINID) in the 1970–2000 period are shown by black dots. (C) The uncertainty range in the estimated bias correction

factors in 2b (the upper bound of the factor minus the lower bound) (after Beck et al., 2020), and glaciers with a reported average thickness only (white dots) or

thickness-profile data (blue dots) (GlaThiDa Consortium, 2020, accessed February 2021).
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the cryosphere, but they also reflect a problem of inherent
measurement bias. Mountain precipitation, and particularly
snowfall, is relatively heterogeneous (Gerber et al., 2018) and
so is often not well-sampled regionally by the cryosphere’s
sparse station network or locally by the very small physical
size of pluviometers (<0.3m diameter) relative to local snowfall
variability or to the kilometre-scale grid cells of precipitation
products (e.g., Dozier et al., 2016; McCrary et al., 2017; Sturm
et al., 2017; Yao et al., 2018; Haberkorn, 2019; Yoon et al.,
2019). Snowpack SWE was found to have a standard deviation
of 21% within a plot of only 20 × 8m, for example (Haberkorn,
2019). These sampling problems on the large and small scale
are compounded by the characteristic snow “undercatch” of
pluviometers that leads to a precipitation low-bias of up to 90%
in windy conditions (e.g., Burgess et al., 2010; Beck et al., 2020).

Pluviometer undercatch can be partially mitigated by fences
and baffles, but these are rarely in operational use (Yang,
2014). Other daily operational measurements of snowpack SWE
(e.g., snow pillows, scales) or SWE proxies (e.g., sonic rangers,
radiometers) also observe only small areas (Dozier et al., 2016),
and scaling up from the snow-pillow scale to grid scale, for
example, was found to introduce a bias of up to 200% (Molotch
and Bales, 2005). Together, it is these sparse and biassed snowfall
and snowpack measurements that form the main foundation
for developing, calibrating and validating physical weather and
climate models of the cryosphere and this inevitably limits the
confidence level of their predictions (e.g., IPCC, 2019).

Case Study: Greenland Sea-Level Contribution
Up until the 1990s, the Greenland Ice Sheet’s annual ∼700 Gt
of snow accumulation was approximately balanced by losses of
∼40 Gt to sublimation, ∼260 Gt to surface melt runoff, and
∼410 Gt to iceberg discharge (van den Broeke et al., 2017).
Subsequent acceleration of glacier flow and a decrease in SMB
led to net losses of >200 Gt per year (Figure 1) but with
large interannual fluctuations (Shepherd et al., 2020). While our
understanding of mass-loss processes has advanced considerably,
the snowfall input (hundreds of gigatons larger than each loss
term) remains very poorly observed and understood (Hanna
et al., 2020). Field observations are mostly infrequent and limited
to the dry ice-sheet interior, coming from: (a) ∼133 firn cores
with at-best annual resolution (Burgess et al., 2010); (b) monthly
measurements at Summit Station; or (c) occasional radar surveys
for multi-year snow depths (Montgomery et al., 2018). Near
the wetter coastal margins, 40 sensors of the PROMICE and
GC-NET arrays monitor snow height (Steffen et al., 1996;
Citterio et al., 2015; Cappelen, 2018) but only 15 pluviometers
make sub-daily measurements of snowfall SWE comparable to
precipitation in weather models (Cappelen, 2018). Up to 90%
of SWE reported by these sensors actually consists of estimated
undercatch corrections (Yang et al., 1999; Bales et al., 2009), and
their combined area of <1 m2 is likely representative of <1 km2

of Greenland’s 39,000 km-long coastline (van den Broeke et al.,
2017).

Greenland’s snowfall inputs are likely to have changed, being
sensitive to the same trends in the North Atlantic Oscillation
and cyclogenesis that have affected its surface melt rate (Rogers

et al., 2004; Bevis et al., 2019). Furthermore, snowfall is not only
a mass source but also influences melt losses through its control
of albedo and surface roughness, its thermal mass, its properties
as an insulator and its role as a meltwater aquifer (van den
Broeke et al., 2017; Ryan et al., 2019). Our poor understanding
of snowfall is highlighted by the difficulties that regional climate
models have in reproducing Greenland’s seasonal snowline (Ryan
et al., 2019) and in significant disagreements in historical
accumulation and SMB (Fettweis et al., 2020; Hanna et al., 2020).
Mass losses for 2003–2012 retrospectively calculated by thirteen
models ranged from 1066 to 6034 Gt, with large ensemble
uncertainty of ±1253 Gt (±48%, or ±3.5mm of sea level) and
local uncertainty of up to 2mW.E. per year (Fettweis et al., 2020).
This wide spread was due only to differences in SMB (dynamic
losses were standardised), demonstrating the substantial lack of
model consensus on snowfall-dominated surface processes (Bales
et al., 2009; van den Broeke et al., 2017; Montgomery et al., 2018;
Fettweis et al., 2020).

The model uncertainty range for Greenland’s recent SMB
equates to 1mm of global sea level over 4 years (Table 4.1 in
IPCC, 2019), and under the three main climate (RCP) scenarios,
the SMB uncertainty range in predicted contributions by 2100
is 6 cm, 7 cm or 14 cm (Table 4.4 in IPCC, 2019), amounting to
50–70% of Greenland’s total mass-loss uncertainty (Aschwanden
et al., 2019). Similar uncertainties persist in newer CMIP6 model
runs under the SSP forcing scenarios (Hofer et al., 2020). The
magnitude of these uncertainties in SMB and sea-level rise imply
an uncertainty in annual coastal-flooding costs to the global
economy by 2100 of around $1–2 trillion (Jevrejeva et al., 2018).

Glacier Thickness
The thickness of mountain glaciers is much less well-surveyed
than that of the ice sheets (Pritchard, 2014) and projections of
future mass-loss are highly sensitive to the initial ice volume
(Hanna et al., 2020). Some thickness information is available
from 5,141 glaciers (2.6%) globally (Figure 2C) (Welty et al.,
2020, accessed 25 February 2021) but is poorly-distributed,
sampling only 0.07% of 95,000 HMA glaciers, for example (RGI
Consortium, 2017), and has questionable accuracy. A “mean
thickness” is reported for 67 small (mean 2.7 km2) and one
large glacier (Fedchenko, 824 km2) but only 8 glaciers report
survey profiles, all of which are short (<3 km), thin (mean 60m),
clustered in the northern ranges and largely predate accurate
GPS survey-control (mean year 1987). This shortage of thickness
measurements reflects the difficulties of surveying, particularly
on remote, high, debris-covered glaciers (Pritchard et al., 2020).

Given the data scarcity, glacier volumes are estimated
from scaling relationships with area and inversions of local
thickness from surface characteristics (topography and SMB)
using principles of ice-flow constrained with measurements
where available (e.g., Langhammer et al., 2019a). Estimates
vary widely however: a 5-model ensemble recently revised
downwards by 46% the estimated HMA ice-volume, though each
model frequently produced local deviations of up to twice the
observed mean thickness (Farinotti et al., 2019). Globally, the
ensemble-average uncertainty is estimated to be±26% (Farinotti
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et al., 2019) but without representative observations the absolute
accuracy is unknowable for most mountain ranges.

The thickness-inversion approach (Huss and Farinotti, 2012)
was tested on Austrian glaciers with extensive topographic
and climatic data, and unusually widespread, well-distributed
thickness measurements for 58 glaciers representing >40% of
Austria’s glacierised area (Helfricht et al., 2019). Key to the
inversion process is a mass-balance-gradient parameter that
must be calibrated with SMB and thickness observations. When
carefully optimised to individual glaciers within the data-rich
Austrian subset, this key parameter was found to exhibit a large
spatial and temporal spread and yielded a thickness uncertainty
of 25–31%, with 5% residual bias. Without such tuning the
bias was +25% (Helfricht et al., 2019) though, highlighting
the importance of extensive ice-thickness and SMB calibration
measurements even locally within a mountain range.

The thickness of non-flowing, stagnant areas of glacier ice
cannot be calculated from scaling or inversion, and these are
increasingly common on debris-covered glaciers as their surfaces
lower and flatten. A minimum slope threshold of 2◦ was
applied to an inversion of HMA glaciers to exclude such areas
(Kraaijenbrink et al., 2017), but 12% of glaciers have slopes <2◦

and these tend to be disproportionately large with thickness ∼3
times greater than the regional average (ICIMOD, 2011). At least
1,250 km2 (4%) of the regional glacier ablation area is effectively
stagnant [flow rate <5m a−1 (Kraaijenbrink et al., 2017; after
Dehecq et al., 2019)], an area likely containing more than 100
km3 of ice in just this region.

Case Study: Nepal Glacier Lifespan
Recent field surveys with a low-frequency ice-penetrating radar
have produced detailed profiles of thickness for the slow-flowing,
debris-covered lower tongues of three Nepal glaciers, allowing
modelled ice thicknesses to be tested. At these profiles the
modelled thickness (Kraaijenbrink et al., 2017) for Ngozumpa,
Nepal’s largest glacier, was biassed by −32% (modelled 184m,
measured 270m), and for Lirung and Langtang glaciers, the
biases were −77 and +31%, respectively (Pritchard et al.,
2020). The significance of these biases is clear from the
glaciers’ projected lifespans based on recent thinning rates. For
Ngozumpa, this is reduced from around 420 to 290 years. For
Lirung and Langtang, projections based on measured thickness
are around 300 and 200 years, respectively vs. 70 and 260 years
from modelled thickness.

RECENT ADVANCES IN MEASURING
SNOWFALL AND GLACIER THICKNESS

To address the sampling problems and measurement biases
of existing snowfall instruments, new spatially-integrated
methods have been developed based on monitoring sub-surface
water pressure as it responds to surface snow-loading. The
“geolysimeter” approach employs a sensor in an aquifer borehole
to monitor changes in groundwater pressure, but is limited in
potential application to suitably confined aquifers and by the cost
of borehole drilling (Smith et al., 2017). Amore widely-applicable

approach is based on monitoring winter water pressure in lakes
as it responds instantaneously to the mass of precipitation falling
onto the lake surface (Pritchard et al., 2021). Importantly, both
methods help eliminate bias in the calibration and validation of
weather models as they sense on hourly timescales specifically
the water equivalent of snowfall, avoid undercatch as the sensors
are submerged, and average over large areas (e.g., several square
kilometres). The lake method has been used in alpine and
Arctic lakes that were 1 million to 274 million times larger than
the nearest available conventional pluviometers, and through
25 snowfalls over a winter at a Swiss mountain lake, average
uncertainty in the snowfall rate was calculated as ±0.1mmW.E.
h−1 (Pritchard et al., 2021).

While the latter method is limited to lake sites, these
are abundant in the world’s mountain ranges and glacier
margins. The World Meteorological Organisation recommends
a precipitation sampling-density of 0.4 pluviometers per 100 km2

among mountains, with each observing an area of ∼0.05 m2

(WMO, 2018; Haberkorn, 2019). Within just the HMAmountain
cryosphere there are over 25,000 lakes at altitudes ranging from
1700 to 6200m (mean 4,710m) and covering a total of 1,735 km2

(Wang et al., 2020). This gives a potential sampling density of 0.7
lakes per 100 km2 and an observable area of 48,000 m2 per 100
km2, much larger than possible with pluviometers. Globally there
are also over 14,000 lakes situated on mountain glaciers, covering
8,950 km2 (Shugar et al., 2020). Coastal Greenland has 3,347
lakes within 1 km of the ice sheet margin totaling ∼3,000 km2

(at 4 lakes or 3,600,000 m2 observable area per 100 km2) (How
et al., 2021). Instrumenting a small subset of these many lakes
could narrow the range of predicted Greenland SMB, and hence
the future rate of sea level rise, by allowing unrealistic ensemble
model outputs to be culled and by providing calibration of the
climate-model physics needed to improve their predictions.

For ice-thickness surveying, recent progress has also been
made in the development of helicopter-borne ice-sounding
radars in the European Alps (Rutishauser et al., 2016;
Langhammer et al., 2019b) and challenging, large, debris-covered
Himalayan glaciers (Pritchard et al., 2020). Being modular,
lightweight and capable of low frequencies, the latter system
is particularly suited to reach otherwise inaccessible glaciers.
It has, for example, been used over heavily-crevassed Arctic
tidewater margins (Pritchard et al., 2020) and the major glaciers
of the Everest area through ice >200m thick and at altitudes up
to 6,500m (https://www.bas.ac.uk/project/bedmap-himalayas/).
Measurements from an enlarged sample of such glaciers
would improve model calibration and de-biassing of thickness-
inversions in many more ranges beyond the European Alps.

CONCLUSIONS AND FUTURE PRIORITIES

Seasonal snowfall and glacier ice play important ecological,
hydrological, socio-economic, and climatic roles within the
Earth system, but IPCC SROCC identified large biases and
uncertainties in the present-day magnitude of these major
water-cycle components and even greater uncertainty in their
future evolution. These uncertainties are globally significant,
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producing for example large ranges in possible sea level rise and
coastal flood risk over coming decades, and large ranges in the
potential lifespan of the water supply from mountain glaciers.
A primary cause of these biases and uncertainties is a lack of
basic measurements in the cryosphere, reflecting the practical
difficulties of monitoring and surveying in such environments.
New instruments have recently been developed to overcome
these difficulties, and a key priority now is to deploy them
widely to collect representative observations of snowfall and ice-
thickness that are sufficient to constrain weather, climate and
glacier models. This constraint should empower the models to
predict the cryosphere’s future with greater confidence.
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