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Abstract –Measurements from six longitudinally separated magnetic observatories, all located close to the
53�mid-latitude contour, are analysed. We focus on the large geomagnetic disturbance that occurred during
7 and 8 September 2017. Combined with available geomagnetically induced current (GIC) data from two
substations, each located near to a magnetic observatory, we investigate the magnetospheric drivers of the
largest events. We analyse solar wind parameters combined with auroral electrojet indices to investigate the
driving mechanisms. Six magnetic field disturbance events were observed at mid-latitudes with
dH/dt > 60 nT/min. Co-located GIC measurements identified transformer currents >15 A during three of
the events. The initial event was caused by a solar wind pressure pulse causing largest effects on the
dayside, consistent with the rapid compression of the dayside geomagnetic field. Four of the events were
caused by substorms. Variations in the Magnetic Local Time of the maximum effect of each substorm-
driven event were apparent, with magnetic midnight, morning-side, and dusk-side events all occurring.
The six events occurred over a period of almost 24 h, during which the solar wind remained elevated at
>700 km s�1, indicating an extended time scale for potential GIC problems in electrical power networks
following a sudden storm commencement. This work demonstrates the challenge of understanding the
causes of ground-level magnetic field changes (and hence GIC magnitudes) for the global power industry.
It also demonstrates the importance of magnetic local time and differing inner magnetospheric processes
when considering the global hazard posed by GIC to power grids.
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1 Introduction

Large geomagnetic storms have the potential to create dis-
ruptive geomagnetically induced currents (GIC) in mid-latitude
conducting networks such as high voltage power transmission
systems (Thomson et al., 2011; Clilverd et al., 2020), and gas
pipelines (Ingham&Rodger, 2018). This potential has been well
accepted for magnetically high latitude networks for some time,
but the recognition of the risk at mid-latitudes is more recent
(e.g., see Rodger et al., 2020 and references therein). During
large geomagnetic storms, fluctuating ionospheric current
systems associated with the equatorially-displaced auroral elec-
trojet (Birkeland, 1908; Cummings & Dessler, 1967; Oughton

et al., 2017) produce rapid changes in mid-latitude ground-based
magnetometer measurements. Such variability can be used as a
proxy for quasi-direct current (DC) levels capable of entering,
and potentially damaging, high voltage transformers (Molinski,
2002; Marshall et al., 2012; Mac Manus et al., 2017; Rodger
et al., 2017).

The use of magnetometer temporal variations to describe the
likely GIC within conducting networks is well established
(Rodger et al., 2017 and references therein). A range of mag-
netic components have shown good correlation with GIC levels,
as have a range of time-scales over which the magnetic compo-
nents are analysed. There is evidence for very high time resolu-
tion (seconds, to tens of seconds) measurements providing the
highest correlation (Rodger et al., 2017; Clilverd et al., 2020).
However, typical analysis involves the horizontal component
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of the local magnetic field (Mäkinen, 1993; Bolduc et al., 1998;
Viljanen, 1998; Mac Manus et al., 2017), and 1 min time scales
of the rate of change (dH/dt).

Systematic differences in extreme rates of change of the
horizontal magnetic field have been shown to vary with
geomagnetic latitude (e.g., Kappenman, 2003; Thomson et al.,
2011; Juusola et al., 2015; Nikitina et al., 2016). During large
geomagnetic storms mid-latitude magnetic observatories exhibit
the largest rates of change of magnetic field within 35�–80�
geomagnetic latitude (Thomson et al., 2011), associated with
the equatorially displaced, and energized, auroral electrojet.
Extreme rates of dH/dt at mid-latitudes have been estimated
to be several thousand nT/min (Kappenman, 2004; Thomson
et al., 2011). We note that although extreme dB/dt observed
at even lower latitudes are small in comparison to those at
mid-latitudes, values of up to 100 nT/min driven by the equato-
rial electrojet (Carter et al., 2015; Adebesin et al., 2016) are
similar to the levels reported in this study.

The potential for large dH/dt and GIC maximises close to
magnetic midnight at high latitudes (e.g., Juusola et al.,
2015), but becomes more variable at subauroral latitudes (e.g.,
Freeman et al., 2019). More than half of mid-latitude extreme
dH/dt occurs during substorms (Freeman et al., 2019). Other
sources include storm sudden commencements. Following a
triggering instability known as substorm onset (e.g., Kalmoni
et al., 2018 and references therein) an expansion phase lasting
about 20 min sees the magnetospheric cross-tail current closing
in the ionosphere, forming a substorm current wedge (SCW).
The expansion phase releases magnetic energy through Joule
heating of the thermosphere (e.g., Tanskanen et al., 2002) and
particle precipitation (e.g., Østgaard et al., 2002), which gradu-
ally subsides as part of the substorm recovery phase. The time
of the maximum dH/dt associated with substorms typically
occurs within a few minutes of the onset (Viljanen et al.,
2006; Turnbull et al., 2009).

The SCW is associated with the disturbance polar 1 (DP1)
surface magnetic field perturbation with a maximum affect
around midnight magnetic local time (e.g., Fig. 3d in Shore
et al., 2018). However, the leading contributor to the surface
horizontal magnetic field variance is the Disturbance Polar 2
(DP2) magnetic disturbance (e.g., Fig. 3a in Shore et al.,
2018) associated with the global convection cycle (Dungey,
1961). DP2 is characterized by its two cell spatial structure with
maximum dH/dt affects occurring towards the magnetic local
time (MLT) dusk-side and morning-side as a result of the
modification of large magnetic fields by mesoscale turbulent
structure (Freeman et al., 2019). Given these two influences
on the occurrence of extreme dH/dt (and hence potential GIC
levels) we set out to determine which has most mid-latitude
impact during a large geomagnetic storm event.

In September 2017 a sequence of solar-irruptive activity led
to large geomagnetic disturbances lasting several days, particu-
larly during 7 and 8 September. Regional studies have been
undertaken into the GIC generated by the storms, with Clilverd
et al. (2018) studying high voltage transformer systems in mid-
latitude New Zealand, and Dimmock et al. (2019) studying GIC
occurring in the natural gas pipeline in southern Finland.
Clilverd et al. (2018, 2020) showed that over the geomagnetic
storm period of ~14 h several rapid magnetic field disturbances
produced GIC in South Island, New Zealand, that were large
enough to generate harmonic distortion through transformer

half-cycle saturation (Rodger et al., 2020). Dimmock et al.
(2019) showed that the unexpectedly large GIC levels were
not associated with the maximum of the geomagnetic distur-
bance, and that the largest levels in Southern Finland occurred
during relatively weak driving conditions. However, good
temporal agreement was found between measured GIC variabil-
ity and modelled GIC using the local magnetic field, (Bx, By)
rate of change, in nT/min, as the time-varying input.

Analysis of 41 magnetometer stations in a middle to high
latitudinal range was used to study regional variations in
magnetic disturbance levels caused by auroral electrojet currents
(Dimmock et al., 2020). The study concluded that regional
observations of geomagnetic disturbances are important in
determining GIC levels that occur during strong storms, and that
the regional variations of dB/dt are a function of the energy
deposited into the magnetosphere. As voltages induced in a
power grid are caused by the geoelectric field, surface conduc-
tivity, and network configuration (e.g. Viljanen et al., 1999)
GIC levels at a specific substation will depend primarily on
local conditions. Since the electric field is closely related to
dB/dt, a good correlation between GIC and dB/dt at a nearby
location is expected, and is also observed. This has been con-
firmed by works such as Clilverd et al. (2018, 2020) which
showed that local measurements of magnetic field disturbances
are more highly correlated with GIC variations than measure-
ments made hundreds of km distant.

Several key features of the mid-latitude GIC observed
during the 7–8 September 2017 geomagnetic storm remain
unexplained. What were the up-stream drivers of the GIC
events? What are the scale-sizes of the driving mechanisms?
Why were multiple magnetic local time (MLT) sectors
involved? Which MLT sector is most important for large GIC
occurrence? In this study we analyse measurements from a
number of mid-latitude magnetic observatories spanning the
whole longitudinal range of the Earth. Combined with available
GIC data, we investigate the magnetospheric drivers of the
largest GIC events, the ionospheric current systems involved,
and determine the longitudinal and regional extent of their influ-
ence. Having identified key periods within the storm interval we
analyse solar wind parameters and electrojet indices to identify
the driving mechanisms that caused the rapid magnetic field
perturbations shown to generate GIC.

2 Experimental datasets

Geomagnetic storming on 07 and 08 September 2017 was
caused by two coronal mass ejection events impacting the
magnetosphere in quick succession. This storm period has been
extensively described by Dimmock et al. (2019), with the key
features being a large solar wind shock arriving at the Earth
super-imposed on the passage of the coronal mass ejecta from
the previous shock event, followed by the passage of the second
ejecta sheet about 12 h later. These events gave rise to two
clearly separate intervals of geomagnetic disturbance, both last-
ing about 6 h, identified as Interval 1 and Interval 2 by
Dimmock et al. (2019). Figure 1 summarizes the solar wind
(speed, density, and magnetospheric loading factor epsilon, �)
and interplanetary magnetic field (IMF) conditions for 07–08
September 2017 using the DSCOVR measurements made at
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L1. Solar wind observations made by DSCOVR provide solar
wind speed (v), and proton number density measurements,
describing conditions just upstream of the Earth. For the major-
ity of the period of study the solar wind speed is ~700 km s�1,
and the proton number density is ~7 cm�3. The IMF parameters
show the magnitude of the magnetic field (|B|) which we label
here, Btot, and the north-south component, Bz. � is a measure
of the upstream solar wind Poynting flux transfer into the
magnetosphere, and is closely related to the energy dissipated
in the magnetosphere through geomagnetic storm and substorm
processes (Perreault & Akasofu, 1978). Epsilon is determined
from solar wind observations using the following relationship:
� = vBtot

2sin4(ӨCA/2) where ӨCA is the IMF clock angle, which
is a measure of the angle between the IMF vector and the
magnetospheric field vector just upstream of the magnetopause.
Labels in the � panel indicate the times of the two intervals,
1 and 2, which are characterized by rapid elevations of epsilon,
followed by steady declines back to near zero levels. Interval 1
includes a period where IMF Btot becomes elevated to levels of
>10 nT and Bz becomes strongly negative around the start of
8 September. Interval 2 occurs 12 h later, again showing a
period of elevated Btot and negative Bz.

2.1 Magnetometers

In this study magnetometer data is analysed in terms of the
rate of change of the horizontal magnetic field H-component
(dH/dt) at 1 min resolution, where H is calculated in the usual
way using the north magnetic field component X, and the east
component Y, i.e., H =

p
(Y2 + X2). Figure 2 shows a map of

the locations of the magnetometer observatories (indicated by
black asterisks) used to determine the rate of change of horizon-
tal magnetic field strength. The data for Victoria (VIC), Ottawa
(OTT), Eskdalemuir (ESK), Arti (ARS), Magadan (MGD) were
obtained from the INTERMAGNET website (http://www.
intermagnet.org/), and the map uses the INTERMAGNET iden-
tifier codes for each site. Data from SWP were obtained from a
local magnetometer operated close to Dunedin, New Zealand,
operated by the University of Otago at a location known as
Swampy Summit (SWP). This magnetometer has been
described in Clilverd et al. (2018). The 53� magnetic latitude
contour in both the northern and southern hemispheres is indi-
cated by dashed blue lines. The magnetometer locations have
been chosen for their proximity to the 53� magnetic latitude
contour (using the DGRF/IGRF geomagnetic field models for

Fig. 1. A summary plot of the solar wind and geomagnetic conditions during the disturbed period in September 2017. DSCOVR solar wind
speed and density are shown in the upper two panels, solar wind epsilon factor and IMF magnetic field components (Btot and Bz) in the lower
two panels.
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Epochs 2017 – https://omniweb.gsfc.nasa.gov/vitmo/cgm.html),
as well as for their relatively uniform spread in longitude.
Table 1 summarises the location of each magnetometer site,
giving latitudes and longitudes in geographic and geomagnetic
coordinates, as well as the time of magnetic midnight in UT,
and the L-shell of the magnetic field line that passes through
each site.

2.2 GIC observations

Figure 2 also shows the locations of two sites where we
have access to GIC measurements that were made during the
7–8 September 2017 storm period (Scotland and New Zealand,
indicated by red squares). In New Zealand GIC measurements
were made at the Halfway Bush substation (HWB) in Dunedin

Fig. 2. A map of the location of magnetometer observatory sites used in the study (black asterisks). Lines of constant 53� magnetic latitude are
shown in the northern and southern hemisphere (blue hashed line). Sites providing geomagnetically induced current measurements are shown
by red squares.

Table 1. Details of the locations, time of magnetic midnight, and L-shell of each of the magnetometer and GIC measurement sites used in this
study.

Magnetometer
site

Code Geographic
latitude

Geographic
longitude

CGM
latitude

CGM
longitude

MLT,
UT

L
(RE)

Victoria VIC 48.52 236.58 53.55 298.62 8.74 2.9
Ottawa OTT 45.40 248.45 54.42 2.68 4.92 3.0
Eskdalemuir ESK 55.32 �3.20 52.33 76.40 23.40 2.7
Arti ARS 56.43 58.57 53.02 132.14 19.66 2.8
Magadan MGD 60.05 150.73 54.04 220.82 14.60 3.0
Swampy summit SWP �45.79 170.48 �52.86 256.47 11.28 2.8
GIC site
Torness TOR 55.99 �2.41 53.04 77.26 23.33 2.8
Halfway bush HWB �45.86 170.48 �52.93 256.51 11.28 2.8
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by Transpower New Zealand Limited. A detailed description of
this dataset, along with the corrections to remove stray earth
return currents, was presented by Mac Manus et al. (2017).
The corrected Halfway Bush GIC observations reported in this
study were described in detail by Clilverd et al. (2018). This site
is only ~7 km from the Dunedin magnetometer site, SWP.
Further GIC measurements, but on essentially the other side
of the globe, were made simultaneously at Torness in Scotland
(TOR) by Scottish Power. This site has the advantage of being
close to the Eskdalemuir magnetic observatory (~88 km distant)
and close to the 53� magnetic latitude contour shown in
Figure 2. Table 1 summarises the location of each GIC measure-
ment site, giving latitude and longitudes in geographic and
geomagnetic coordinates, as well as the time of magnetic mid-
night in UT, and the L-shell of the magnetic field line that passes
through the sites.

2.3 SuperMAG observations

The SuperMAG data product SML is used to assess the con-
tributions of solar wind driving and magnetospheric processes
to the study period. SML is derived from the lower envelope
of the SME index, and is considered a measure of the auroral
electrojet, being particularly sensitive to loading-unloading/
substorm events (Freeman et al., 2019). It is based on all avail-
able ground magnetometer stations at geomagnetic latitudes
between +40� and +80�. SML is defined as the minimum value
at each moment of the X component, with the baseline
removed. Typically, these indices are derived from approxi-
mately 110 stations. In this study we also make use of the
SuperMAG substorm event list. This SuperMAG product pro-
vides a comprehensive list of substorms have been derived
using a simple automated algorithm to identify substorm expan-
sion phase onsets from the SML index (Newell & Gjerloev,
2011; Gjerloev, 2012). The SuperMAG substorm product iden-
tifies the onset time of each substorm and the MLT of the onset
footprint. One minute cadence SML data, with a sliding 30 min
buffer, is used to identify a substorm event. Substorm onset is
identified when well defined conditions are satisfied, where
the initial drop must be exceed 45 nT in 3 min, and remain
100 nT below the initial value for half an hour. The substorm
onset is then identified as the last minute before a 15 nT drop.
For a full description see Gjerloev (2012) or the SuperMAG
website substorm derivation page (https://supermag.jhuapl.
edu/substorms/?tab=description). Details of the substorm prop-
erties relevant to this study are provided in a table presented
later in this paper.

3 Results

3.1 Interval 1

In order to gain some insight into the scale size of magnetic
disturbance structures resulting from the geomagnetic storm of
7–8 September 2017, multiple observation sites are required.
Magnetometer data from six mid-latitude observatory sites,
spaced quasi-uniformly over 360� of longitude, during Interval
1, are shown in Figure 3. The rate of change of dH/dt is shown
for each site during the study period, each with the same y-axis
scale for ease of comparison. Panels are plotted in longitude

order, with Canadian sites in the upper panels, and the other
sites plotted downwards with increasingly easterly longitude
(see Fig. 2 for a map of the locations). The plot spans approx-
imately 7 h, centred on the beginning of 8 September, covering
Interval 1. The time that magnetic midday occurs at each site is
indicated by the label “MD” in blue, magnetic dawn and dusk
are shown by red labels indicating M06 and M18 respectively,
while magnetic midnight is shown by “MN” in black. Vertical
red dashed lines indicate times of three large dH/dt occurrences,
i.e., at 23:02 UT, 00:29 UT, and 01:31 UT. Vertical dotted lines
indicate a time window of ±10 min around the event time, con-
sistent with the typical timescale that the ionosphere takes to
reconfigure in response to changes in solar wind conditions
(Tenfjord et al., 2017 and references therein). The three events
are labelled (a)–(c) in the upper panel of the plot for ease of dis-
cussion in later sections. Each was selected as being representa-
tive of one of the main dH/dt features of Interval 1 (>60 nT/min
in at least one site within the ±10 min window). The timing of
the events are determined by the time of the peak at the site
where it is largest. We note that there are some smaller peaks
within the interval that we have chosen not to analyse in detail
in this study. For completeness, similar Interval 1 format figures
were plotted for Bx (Fig. S1) and By (Fig. S2), and are included
as Supplementary Information.

The first event (a) shows a peak of ~40 nT/min dH/dt over a
wide range of longitudes. Notable exceptions to this value are a
smaller peak at Arti, post magnetic midnight, and a larger peak
at Magadon, in the magnetic morning sector. Magnetic
midnight (Eskdalemuir) and magnetic daytime (Swampy
Summit) exhibit very similar dH/dt levels for this first event.
Event (b) shows low peak values in dH/dt (�20 nT/min) at
most sites, although close to magnetic midnight (Eskdalemuir)
the peak values are much larger (~80 nT/min). Event (c) shows
a similar restriction in longitudinal variation, with low values of
dH/dt at most sites, apart from large values at Victoria and
Ottawa which are in the magnetic dusk sector at the time.

3.2 Interval 2

A similar analysis is repeated for Interval 2. Figure 4 shows
the variations of dH/dt with longitude during the 12 h window
that includes Interval 2, in the same format as Figure 3. Three
large dH/dt events are identified for each observatory site by
red dashed lines with ±10 min windows given by red dotted
lines, and labelled in the top panel by (d)–(f). Event (d) shows
the largest dH/dt peak at Swampy Summit (~60 nT/min) close
to magnetic midnight, while event (e) is largest in the magnetic
morning sector and shows substantial peaks over a wide range
of longitudes. Event (f) is very narrowly constrained in longi-
tude, with only Eskdalemuir in the magnetic dusk sector show-
ing a large peak (~80 nT/min), and small effects (�15 nT/min)
elsewhere. For completeness, similar Interval 2 format figures
were plotted for Bx (Fig. S3) and By (Fig. S4), and are included
as Supplementary Information.

3.3 Peak magnetic local times

It is clear from Figures 3 and 4 that there are substantial
variations in the magnitude of dH/dt for each of the events
(a)–(f) at different longitudes. Potentially, these differences are
due to the MLT at each observation site during the event, as
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Fig. 3. Rate of change of the H-component of magnetic field at sites close to 53� magnetic latitude, during Interval 1, i.e. spanning 7–8
September 2017. Observatory sites used are longitudinally spaced around the globe, starting with Canada at the top and progressing eastwards
to New Zealand at the bottom. Times of large dH/dt are indicated by red dashed lines, and identified by (a)–(c) in the upper most panel. Vertical
dotted lines indicate a time window of ±10 min around each event. The times of local magnetic midnight (MN), dawn (M06), dusk (M18), and
midday (MD) are shown on the panels.
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indicated by the times MD and MN labels. This idea is explored
further in Figure 5, where dH/dt is plotted on a MLT clock
plot for each event identified in Interval 1(upper panel) and
Interval 2 (lower panel). Contours of dH/dt are shown at
50 and 100 nT/min, while labels indicate MLT, including the

sunward direction at 12 MLT, and magnetic midnight at
00 MLT. Red lines indicate the dH/dt for each event observed
by the northern hemisphere sites (blue for the New Zealand
site), plotted at the clock angle associated with the local MLT
at each observation site. An ellipse fitted to the largest three

Fig. 4. As for Figure 3 but for Interval 2 (8 September 2017). Large dH/dt times are indicated by (d)–(f).
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dH/dt values is provided in order to highlight the principle MLT
region associated with each event. Approximate regions where
large dH/dt would be expected from DP1 and DP2 current
systems are indicated by light grey and light blue shaded areas
respectively.

In the upper panel of Figure 5 the clock plot associated with
event (a) shows an ellipse of maximum dH/dt orientated
towards 09 MLT, i.e., dayside. This orientation is consistent
with the impact of the solar wind shock event on the dayside
although it is also within the shaded region for DP2 influence.
Event (a) is characterized by a sharp peak in dH/dt at 23:02 UT.
The solar wind shock was identified by SOHO at L1 at
22:38 UT, 07 Sep 2017 (http://umtof.umd.edu/pm/fig170907.
png), with an approximate propagation time to the magneto-
sphere of ~30 min at ~700 km s�1 giving ~23:08 UT as a likely
onset time for dayside magnetic field perturbations. Thus the
timing is also consistent with the idea of a solar wind shock
event driving a sudden storm commencement at the time of
event (a). The compression of the magnetosphere as an inter-
planetary shock passes the Earth perturbs the surface magnetic
field (Kappenman, 2003; Fiori et al., 2014). As a result of the
compression, travelling convection vortices propagate away
from magnetic noon, maximising around 09 MLT (Moretto
et al., 1997). The MLT orientation of event (a) towards
09 MLT is reasonably explained by such a mechanism.

Approximately 1.5 h after the storm sudden commencement
event (b) occurred, with its peak dH/dt orientated towards
00–01 MLT, midnight, within the shaded region for DP1
SCW influence. Event (c) is strongest on the dusk side, i.e.,
~18 MLT, and within the shaded region for DP2 influence. This
event shows the largest magnitude dH/dt ellipse of all of the
events shown. Similar MLT clock plots for the three large
dH/dt events that occurred in Interval 2 are shown in the lower
panel of Figure 5. The first event of Interval 2, event (d), is

clearly orientated towards 00 MLT, i.e., midnight and within
the region of influence of the DP1 SCW. The second event
(e) is orientated towards 04-05 MLT, i.e., nightside close to
the boundary between DP1 and DP2, and the third event
(f) maximizes towards the dusk side, i.e., ~18 MLT and the
region of influence of the DP2 convection electrojet.

The MLT dependence of the dH/dt of each event, shown in
Figure 5, can be compared with the nearest equivalent time of
substorm events listed in the SuperMAG substorm event data-
base (Gjerloev, 2012) as of 01 September 2020. This provides
an idea of which of the events are likely to be substorm-driven,
and which are probably caused by other factors such as
solar wind-driven convection conditions. Table 2 provides a
comparison between the event characteristics determined from
Figures 3–5 with those from the SuperMAG substorm event list.
Substorm onset times within 10 min of the event times identi-
fied in Figures 3 and 4 are shown. Typically the SuperMAG
substorm onset time is prior to the event time by a few minutes.
This is understandable as the SuperMAG times are given for
onset, while the event timings are taken from the maximum
dH/dt which typically occurs a few minutes after onset
(Viljanen et al., 2006; Turnbull et al., 2009).

Table 2 highlights in bold the events that have estimated
MLT orientations that are separated by <4 h from the
SuperMAG substorm MLT values, i.e., events (b) and (d)–(f).
Previous observations have shown that substorm onset locations
and the locations of maximum dH/dt occur within the coverage
area of regional magnetometer arrays, like the IMAGE array in
Viljanen et al. (2006). This supports the assumption made here.
The MLT time interval was chosen as 4 h because of the timing
resolution imposed by the use of 6 magnetometer sites to cover
24 h of MLT in this study, and because of the likely scale sizes
of the ionospheric current systems investigated, e.g., the sub-
storm current wedge. These four events are therefore consistent

Fig. 5. Clock plots of dH/dt for the first (upper row, events (a)–(c)) and second intervals (lower row, events (d)–(f)), indicating the MLT
orientation of maximum variation. Red lines indicate the dH/dt for each event observed at northern hemisphere sites, and blue for the New
Zealand site. Approximate MLT zones of extreme dH/dt associated with DP1 and DP2 current systems (Freeman et al., 2019) are shown by
dark and light grey shading respectively.
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with the idea that the large dH/dt observed was generated at
least in part by substorm activity. Indeed, Figure 5 suggests that
events (b) and (d) are caused by the DP1 SCW region, and thus
show clear association with substorm activity. The MLT
orientations of events (e) and (f) are more consistent with con-
vective DP2 current systems. However, the co-incident timing
and MLT orientation with SUPERMAG substorm onset foot-
prints suggests that the substorms were a factor in the generation
of mesoscale turbulence which caused large dH/dt close to the
MLT dusk and dawn boundaries. Events with MLT values sep-
arated by >4 h are highlighted in italics, i.e., events (a) and (c).
As noted above event (a) is consistent with the impact of the
solar wind shock event on the dayside, while the most likely
candidate substorm event occurs at MLT midnight. Thus that
substorm is unlikely to be causally linked to the large dH/dt
observed, and magnetospheric compression from the solar wind
shock is the most likely driver of the large dH/dt. Event (c) is
orientated towards MLT dusk, while the closest substorm
candidate occurs on the MLT morning side. This suggests the
event is not substorm-driven, and an alternative generation
mechanism for the large dH/dt needs to be identified.

3.4 Geomagnetically induced currents

We have been able to develop a global picture of the vari-
ations in mid-latitude dH/dt as a function of longitude through-
out the storm period. However, it is important to be able to have
confidence in the use of these observations as a guide to GIC
occurrence and variability. Closely spaced magnetometer and
GIC measurements are used to provide this assurance. GIC
levels at a specific substation will depend primarily on local
conditions such as geoelectric field, surface conductivity, and
network configuration (e.g. Viljanen et al., 1999) so a good cor-
relation between GIC and dH/dt at a nearby location is expected
(Clilverd et al., 2020). Figure 6 shows two panels containing
GIC data recorded during Interval 1 of the 7–8 September
2017 geomagnetic storm period. The upper panel shows GIC
data recorded in Torness, Scotland, which is situated <90 km
from the Eskdalemuir magnetic observatory. The lower panel
shows GIC data from Halfway Bush substation, Dunedin,
New Zealand which is located within 10 km of the Swampy

Summit magnetometer, also in Dunedin. Note that the y-axis
scales in the lower panel are a factor of 10 larger than those
in the upper panel. Although the peak magnitudes of dH/dt of
the events analysed in this paper are similar from magnetometer
site to site, this is not true for the resultant GIC level, which is
strongly influenced by the electrical properties of the local
power network, as well as local surface conductivity. As a
result, the GIC levels at Halfway Bush and Torness are almost
a factor of 10 different from each other, and the y-axis scales
reflect these differences. However, it is important to note that

Table 2. Details of the events identified in Figures 3 and 4. The time of the maximum dH/dt for each event is compared with the nearest
substorm event listed in the SuperMAG database (as of 18 September 2020), as well as the MLT. Events with MLT values separated by <4 h
are identified by bold text, while events with MLT values separated by >4 h are identified in italics.

Event
identifier

Date Time of maximum dH/dt
(decimal day)

Time of maximum
dH/dt (UT)

SuperMAG nearest
substorm time (UT)

Estimated MLT of
maximum dH/dt

SuperMAG
substorm MLT

(a) 07/
09/17

7.959 23:02 23:00 09 01

(b) 08/
09/17

8.019 00:29 00:30 01 02

(c) 08/
09/17

8.0635 01:31 01:25 19 04

(d) 08/
09/17

8.529 12:42 12:08 00 04

(e) 08/
09/17

8.591 14:11 14:00 04 03

(f) 08/
09/17

8.753 18:04 17:57 18 20

Fig. 6. Mid-latitude magnitude GIC data from Scotland (Torness)
and New Zealand (Halfway Bush) during Interval 1 on 7–8 September
2017. The times of coincident, large dH/dt events (a)–(c), determined
from Figures 3 and 4, are plotted as vertical red dotted lines where
they coincide with enhanced GIC levels. The times of local magnetic
midnight (MN) and midday (MD) are shown on the panels. Note the
factor of 10 difference in the y-axis scales.
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the largest dH/dt experienced at each site does tend to generate
the largest GIC levels at those sites.

Of the three large dH/dt events identified throughout
Interval 1, only events (a) and (b) produced high levels of
dH/dt at Eskdalemuir (shown in Fig. 3) such that we would
expect to observe GIC in nearby power transmission systems
such as Torness, Scotland. The largest dH/dt at Eskdalemuir
during Interval 1 was clearly event (b) at ~85 nT/min. The
Torness GIC data shown in the upper panel of Figure 6 has
the times of events (a)–(c) indicated by vertical red dashed lines.
The magnetic midnight label (MN) indicates that Interval 1
occurred when Torness was experiencing magnetic midnight
conditions. As expected, event (b) generates the largest GIC
levels observed at Torness in Interval 1, consistent with the
dH/dt analysis. Event (a) generates a small peak of GIC which
is consistent with a solar wind sudden impulse generating larger
dH/dt on the dayside than the nightside. Event (c) shows an
elevated GIC response at Torness, but we note that there are
other MLT zones where the dH/dt levels are much larger than
observed at Eskdalemuir, and we would expect significant
GIC levels at other sites (see Fig. 5c). The same GIC compar-
ison analysis is undertaken during Interval 1 for Halfway Bush
GIC plotted in the lower panel of Figure 6, to be contrasted with
the magnetometer data from Swampy summit (Fig. 3). Only
event (a) generated notable dH/dt (~30 nT/min) near Dunedin,
but this does coincide well with the largest GIC observed at
Halfway Bush in Interval 1, reaching ~35 A. Event (b) produces
little response in dH/dt, and little response in GIC. This is con-
sistent with the idea that event (b) is substorm-driven, and the
weak Dunedin responses are due to magnetic midday condi-
tions, as indicated by the MD label in the plot. Event (c) also
shows enhanced GIC levels in Dunedin, although as noted
above, from Figure 5c we would expect larger GIC impact at
sites other than those presented here.

Similar analysis of GIC levels during Interval 2, based on
magnetometer dH/dt data shown in Figure 4, is summarized
in Figure 7. The upper panel shows GIC data from Torness,
Scotland. Analysis of dH/dt in Figure 4 suggests that event (f)
should generate the largest observable GIC effect due to its
highest dH/dt values. Figure 7 shows that this expectation is
clearly correct. Events (d) and (e) show little enhancement in
GIC, which is consistent with low levels of dH/dt related to
substorm-driven events experienced at longitudes close to
magnetic midday. The lower panel shows Halfway Bush,
Dunedin, GIC data during Interval 2, which was initially
experiencing magnetic midnight conditions. Previous analysis
from Figure 4 suggested that event (d) would be expected to
generate the largest GIC in Interval 2, as identified by dH/dt
from the nearby Swampy Summit magnetometer. This expecta-
tion is clearly correct, with GIC levels of >40 A. Events (e) and
(f) produce little response in GIC levels as expected from the
dH/dt analysis.

This section demonstrates the importance of magnetic
longitude and magnetospheric drivers when considering the
GIC-hazard to ground based electricity networks. This also
suggests that local monitoring of the magnetic field variations
caused by external drivers is very important. Figures 6 and 7
provide some evidence that the identification of the large
dH/dt events (a)–(f) is appropriate in terms of GIC-effective
conditions, and we now set out to confirm their driving sources
in the inner magnetosphere.

4 Solar wind versus magnetospheric drivers

In order to identify the relative contributions of solar wind
driving, and magnetospheric processes, to auroral electrojet
activity we compare the SML index to the solar wind Epsilon
parameter, �, which is a measure of the upstream solar wind
Poynting flux transfer to the magnetosphere (Perreault &
Akasofu, 1978).

The upper panel of Figure 8 shows scatter plots of � as a
function of SML during the study period. The lower envelope
of the plotted data points is taken as a representation of the con-
tribution of solar driving to the geomagnetic index, and are
identified by the fitted line. This method represents the separa-
tion of the DP2 convection component from the DP1 substorm
current wedge component, based on the two-component electro-
jet concept (Kamide & Kokubun, 1996). For SML the depicted
relationship with � can be expressed as: SML(�) = �0.12 � �.
From this analysis it is possible to estimate the levels of solar
driven convection influence on the SML index throughout the
storm period. The lower panel of Figure 8 shows the temporal
variation of SML (black line) from late on 7 September to the
end of 8 September. Included on the plot is SML(�) from the
relationship determined from the upper panel (red line). Where
SML and SML(�) are of similar value then solar wind driving is
the dominant factor in the DP2 electrojet convection intensifica-
tion. The occurrence of events (a)–(f) are indicated by dashed
vertical lines.

The lower panel of Figure 8 shows that during Interval 1,
solar wind driven influence of enhanced DP2 convection is
the primary factor in determining the time variation of the
SML index, whereas Interval 2 has much less solar wind influ-
ence. During Interval 1 a notable exception to this occurs for
event (b) where a rapid deviation of SML is observed, while
at the same time SML(�) can be seen to be recovering towards
its pre-storm values. This is consistent with a significant contri-
bution to the auroral electrojet index from a magnetospheric
process such as a loading-unloading/substorm event, and an
enhancement of the DP1 SCW. The disturbed Interval 1 comes
to an end after a few hours, as both SML and SML(�) return to
near pre-storm levels, i.e., near zero.

Fig. 7. As for Figure 6, but for Interval 2 and events (d)–(f), 08
September 2017. The times of magnetic local dawn (M06) and dusk
(M18) are indicated, in addition to midday (MD) and midnight (MN).
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During Interval 2, associated with the passage of the second
CME ejecta sheet, SML turns strongly negative half way
through 8 September. The index then exhibits a slow recovery
towards zero, punctuated by a series of negative-going bays. In
contrast SML(�) shows a smooth recovery towards zero after
the initial small negative onset. This is consistent with the
decreased intensity of convection electrojets during Interval 2
compared to Interval 1. Non-disturbed levels of SML are only
reached towards the end of 8 September, while the solar wind
driving component returns to zero many hours beforehand.
The characteristics of Interval 2 are consistent with a series of
loading-unloading/substorm events with solar wind influence
primarily confined to a steady enhancement of background
levels of DP2 convection electrojet activity.

4.1 Identifying substorm occurrence during
the 7–8 September 2017 storm period

Substorms are known to be an important contributor to sur-
face magnetic field variability (Shore et al., 2017, 2018), and
have been implicated as a common cause of extreme dH/dt
and associated GICs. For example, statistical analyses show a
peak in the probability of large dH/dt and GIC in the local time
sector of the substorm current wedge (Viljanen et al., 2001;
Freeman et al., 2019), over half of all extreme dH/dt in the

UK occur during the substorm expansion and recovery phases
(Freeman et al., 2019), and the maximum dH/dt within a sub-
storm occurs close to onset time (Viljanen et al., 2006; Turnbull
et al., 2009).

However, attribution can be complicated by ambiguities in
the identification of substorms due to the different instruments
with which they can be detected, varying instrument coverage,
and by different definitions of substorm onset even using the
same measurement (e.g., Forsyth et al., 2015; and references
therein). This can be particularly problematic during magnetic
storms when magnetic field variability from multiple current
sources is at its most extreme. With these caveats, we have
attempted to identify substorm occurrence during the 7–8
September 2017 storm based on the SML index as a measure
of peak westward auroral electrojet strength (Gjerloev, 2012).

We use a substorm identification algorithm developed by
Forsyth et al. (2015). It first low-pass filters the SML data with
a 30-min cut-off and identifies substorm expansion phases
based on the gradient of the low-pass filtered SML being below
a user-specified percentile level. Similarly, it identifies substorm
recovery phases as being above a user-defined positive thresh-
old. The percentile threshold is defined such that the algorithm
provides equal numbers of expansion and recovery phases.
Following this idea, in Figure 9 we remove the solar wind
driving function by showing the absolute difference between
10-min averaged SML and SML(�) for Interval 1 (upper panel),
and Interval 2 (lower panel). The resulting values are colour-
coded based on the local gradient criterion from Forsyth et al.
(2015). Specifically, red intervals indicate expansion phases,
based on the local gradient being in the lowest 25th percentile
of SML over the storm interval from 12 UT on 7 September
to 0 UT on 9 September. Blue intervals indicate recovery
phases, based on the local gradient being in the highest 25th
percentile of SML. Changes in phase of <30 min have been
ignored, as it is generally thought that an onset recurring within
30 min or less of a previous one should be regarded as an inten-
sification of a substorm rather than a new substorm (e.g.,
Borovsky & Nemzek, 1994). Events (a)–(f) are indicated by
vertical dashed lines.

Figure 9 shows that the large dH/dt events identified through
Figures 3 and 4 are associated with peaks in the modified SML
index. In the upper panel the red/blue colour coding suggests
that there are only two periods of expansion/recovery during
the whole of Interval 1. The first expansion phase ends at about
the time of event (a) which we have previously shown is asso-
ciated with the solar wind shock/sudden storm commencement
rather than a substorm. A result that is confirmed by the dayside
MLT orientation of this event (as earlier shown in Fig. 5). The
second period of expansion ends at the time of event (b),
confirming the occurrence of a substorm as suggested by the
midnight MLT orientation of maximum dH/dt (see Fig. 5)
and the SuperMAG database (see Table 2). There is no evidence
of an expansion phase lasting >30 min at the time of event
(c) which confirms our previous analysis suggesting that this
event is not obviously associated with a substorm. It is unclear
what the origin of event (c) is. However, the orientation of
maximum dH/dt towards 18 MLT suggests a link with DP2
electrojet currents, with meso-scale perturbations occurring.
These perturbations may possibly be driven by Alfven wave
sources such as ULF wave activity (Mathie & Mann, 2001),
which has been shown to peak in the morning and afternoon

Fig. 8. Upper. The variation of the auroral electrojet intensity index,
SML, with the upstream solar wind Poynting flux transfer to the
magnetosphere, �, (black diamonds). The lower boundary is
highlighted through a simple linear relationship (SML
(�) = �0.12 � Epsilon; red asterisks). Lower. Plot showing the
time variation of SML (black line) and the solar wind forcing
component, i.e., the SML(�), (red line) during the 7–8 September
2017 geomagnetic storm period, with intervals 1 and 2 indicated.

M.A. Clilverd et al.: J. Space Weather Space Clim. 2021, 11, 33

Page 11 of 15



MLT sectors at mid-latitudes during large geomagnetic
storms (Marin et al., 2014). The lower panel of Figure 9 shows
Interval 2 plotted using the same format to the upper panel.
Events (d)–(f) all occur close to times of expansion/recovery
boundaries, and could therefore be associated with substorm
activity.

Of the six periods of large dH/dt variations that have been
identified during the 7–8 September 2017 geomagnetic storm
period, one has been identified as solar wind shock/sudden
storm commencement-driven, four as substorm-related, and
one whose origin is unclear. Analysis has shown that only the
shock-driven event has a maximum effect on the MLT dayside,
while the other 5 events occurred over a wide range of MLT
from near-dusk, through midnight, to near-dawn. Four of the
night time events were associated with substorm activity,
although only two of them were clearly driven by the SCW
DP1 current system. The other two events were more likely
to be associated with substorm-driven perturbations in the con-
vection-driven DP2 current system instead. The six events
occurred over a period of almost 24 h, during which solar wind

remained elevated at >700 km s�1, indicating an extended time
scale for potential GIC problems in power networks following
the sudden storm commencement. The typical MLT range for
the events over which large dH/dt occurs is about 4 h, i.e.,
widths of 2–6 h at the 50 nT/min contour level in the clock plots
of Figure 5, with usually only one of the six longitudinally
separated magnetometer sites experiencing large dH/dt at any
one time.

5 Summary

During the large geomagnetic storm period of 7–8
September 2017, six magnetic field disturbance events were
observed at mid-latitudes with dH/dt > 60 nT/min. Co-located
GIC measurements in New Zealand identified transformer
currents >15 A during three of the six events. The dH/dt events
were observed using six magnetic observatory sites spaced
quasi-uniformly in longitude, all located close to the 53�
magnetic latitude contour. At two of the observatory sites,
Eskdalemuir in Scotland, and Dunedin in New Zealand, nearby
GIC measurements confirmed that enhanced GIC levels were
associated with the dH/dt events. Longitudinal differences in
the peak levels of dH/dt for each of the six events are consistent
with MLT influences on the event characteristics.

In this study we find that:

1. Analysis of the solar wind loading factor, epsilon,
compared with the auroral westwards electrojet index
SML, and further analysis of the SML temporal gradients,
indicate that four of the six dH/dt events were caused by
substorms, which impacted both DP1 and DP2 current
systems.

2. The initial dH/dt event was associated with the arrival of
the solar wind shock which produced peak effects on the
dayside at 09 MLT, consistent with previous work show-
ing that rapid compressions of the dayside magnetic field
can couple to travelling convection vortices propagating
away from magnetic noon.

3. Large variations in the MLT of the maximum effect of
each substorm-driven dH/dt event were apparent, with
magnetic midnight, morning-side, and dusk-side events
all occurring.

4. The association of enhanced GIC levels at locations close
to the magnetometer observatory sites showing large
dH/dt suggests that, while elevated currents are likely to
occur in mid-latitude power systems on the magnetic
day-side initially, night-side processes dominate the
remainder of the storm period, driven by DP1 or DP2
current systems.

5. Identification of the solar wind, and convection/SCW
current systems controlling the MLT orientation of
maximum dH/dt are key to the identification of the longi-
tudinal regions of susceptibility faced by power systems
during large storms.

6. The typical MLT scale-sizes of the driving mechanisms
over which GIC problems could be generated in electrical
power networks was about 4 h for each event.

While it is common for space physics researchers to assume
that the largest magnetic field changes associated with

Fig. 9. The SML index with solar wind component removed
(SML � SML(�)) to highlight potential substorm conditions during
Interval 1 and Interval 2, on 7–8 September 2017. Substorm phases
are identified using the gradient of a 30-min sliding box-car window,
which is colour-coded by red intervals to indicate expansion phases,
and blue intervals to indicate recovery phases. The times of large
dH/dt events, (a)–(f), are indicated.
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substorms will be associated with the DP1 SCW influence
around magnetic midnight, this is not true in all cases, particu-
larly at mid-latitudes. The possibility for large dH/dt and GIC is
largest in night-time at high latitudes (e.g., Juusola et al., 2015),
but more variable at subauroral latitudes (e.g., Freeman et al.,
2019). Our finding complicates the simple picture of where
large GIC (due to large dH/dt) will occur in MLT, finding a
wide range of MLT possibilities, including as a result of
meso-scale perturbations of the DP2 convection electrojet.
Substorm occurrence and characteristics are difficult to accu-
rately model in current space weather modelling codes (e.g.,
Freeman & Morley, 2004; Borovsky & Yakymenko, 2017).
This work demonstrates the challenge of understanding the
causes of ground-level magnetic field changes (and hence
GIC magnitudes) for the global power industry. It also demon-
strates the importance of magnetic local time and differing inner
magnetospheric processes when considering the global hazard
posed by GIC to a power grid. This also suggests that local
monitoring is very important. We speculate this will still be true
for extreme space weather events, such that different magnetic
longitudes have higher or lower risks which change with time
as the Earth rotates.

Supplementary materials

Supplementary material is available at https://www.swsc-
journal.org/10.1051/swsc/2021014/olm

Fig. S1. Same as Figure 3 in the paper but for Bx.
Fig. S2. Same as Figure 3 in the paper but for By.
Fig. S3. Same as Figure 4 in the paper but for Bx.
Fig. S4. Same as Figure 4 in the paper but for By.
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