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Abstract: Recurrent Neural Networks (RNNs) are increasingly being used for model identification,
forecasting and control. When identifying physical models with unknown mathematical knowledge
of the system, Nonlinear AutoRegressive models with eXogenous inputs (NARX) or Nonlinear
AutoRegressive Moving-Average models with eXogenous inputs (NARMAX) methods are typically
used. In the context of data-driven control, machine learning algorithms are proven to have compara-
ble performances to advanced control techniques, but lack the properties of the traditional stability
theory. This paper illustrates a method to prove a posteriori the stability of a generic neural network,
showing its application to the state-of-the-art RNN architecture. The presented method relies on
identifying the poles associated with the network designed starting from the input/output data.
Providing a framework to guarantee the stability of any neural network architecture combined with
the generalisability properties and applicability to different fields can significantly broaden their use
in dynamic systems modelling and control.

Keywords: multi-layer neural network; recurrent neural networks; system identification; stability
analysis

1. Introduction

Neural networks are becoming increasingly popular in the fields of dynamic mod-
elling, time series forecasting and control. Deep Neural Networks (DNNs) are employed
in control applications when the traditional model based approach lacks design efficiency
or is deemed unfeasible. This could be due to the model of the system being very complex,
due to a time-varying environment or when the control solution is too cumbersome to
compute due to a large action space [1]. When big datasets are available, machine learning
algorithms show comparable performance to advanced control techniques such as the
combination of real-time optimization and model predictive control [2]. Despite their
advantages, data-driven control systems cannot rely on the traditional stability theory
used for model based approaches [2]. The lack of stability proofs jeopardises the use of
the DNN in safety-critical system identification and control applications in which stability
assessment and quantification are of paramount importance.

Among different types of neural networks, Recurrent Neural Networks (RNNs) show
promising results compared to more classical DNN architectures due to their ability to
remember system features and dynamics correlated with past events [3–5]. Additionally,
RNNs have been successfully applied to healthcare and diagnosis, predicting or classifying
pathologies [6,7] or risk events based on biosignals [8,9]. The original RNN architectures
suffered from the vanishing descending gradient issue, which was successfully addressed
in 1997 with the design of the Long Short-Term Memory (LSTM) architecture [10]. Other
RNN variants have been proposed, including Echo State Networks (ESNs) [11]. LSTMs,
Gated Recurrent Units (GRUs) and ESNs show promising results for dynamic modelling
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applications [12], with LSTM being considered the state-of-the-art for tasks involving long-
term dynamics learning [13]. In [14], vanilla LSTMs, composed of three gates, a block input,
a single cell, an output activation function and peephole connections, were compared with
eight different variants. In this comparison, the gates, activation functions and peephole
connections were sequentially removed, while the coupling between the input and forget
gates (the latter one constituting the GRU network) was added, to identify and isolate
the possible limiting features. The authors concluded that the vanilla LSTMs perform
reasonably well on benchmark problems such as acoustic modelling, handwriting recogni-
tion and polyphonic music modelling. LSTM networks are starting to be applied to linear
and nonlinear dynamic system identification, as reported in [15–17]. In these works, the
concept of stacking and combining different neural networks layers was exploited. The ar-
chitecture obtained by stacking several layers of LSTM cells has already been proven to
deliver state-of-the-art performances on speech recognition tasks [18,19]. Deep hierarchical
architectures, combined with the use of deseasonalised data in a moving window format,
typically outperform shallower networks in multiple applications such as paraphrase
generation applications [20] and time series forecasting [21].

Despite advances in the fields of deep learning and LSTM, in order to render these
techniques suitable for real system identifications and control, some typical stability pro-
prieties are still to be proven. As detailed in [22], RNNs are dynamic systems that need
to be analysed for stability, especially when used to design closed-loop control systems.
When considering a typical closed-loop scheme, comprising a dynamic system and a
control function, a DNN may constitute one or both of the two blocks. Specifically, the
application of LSTMs in the system control context is limited by the missing stability
properties and equilibria computation [13]. Analytical results regarding the computation
of the system equilibria and the stability assessment of a single-layer LSTM were reported
in [23]. No work providing analytical formulations or extended algorithms to estimate the
system equilibria for deeper architectures appear to have been published.

The method proposed in this paper is designed to have generalisability as a main
objective. A multilayer architecture is chosen for this work to illustrate the application in
different system identification case scenarios, but any other NN architectures can used
in place of the presented one. This paper shows how to assess the stability of a multi-
layer LSTM network through a black-box analysis, aimed at identifying the system poles.
To achieve this, a four step process is detailed, comprising the design of a dataset aimed at
exciting different system dynamics, the training and testing of an NN and the analysis of
the input/output time series.

To eventually assess the stability of the network, standard concepts from the control
theory literature are exploited, such as the identification of the poles and their location in
the complex plane (i.e., checking whether they lie in the left-hand side plane for the case of
continuous dynamic systems).

This paper shows how this procedure renders the guarantee and benchmark of the
stability of LSTMs possible in both a linear and a nonlinear case. Afterwards, this approach
is applied to a case of an unstable dynamic system to show the method’s ability to detect
and quantify system instability in addition to stability.

This work is organised as follows: Section 2 contains the definition of the dynamic
models of the benchmark systems, while Section 3 details the system identification method
and the software implementation of the framework. Results and discussions are pre-
sented in Section 4, alongside the details of the dynamic model and the DNN parameters.
Conclusions and future work are reported in Section 5.

2. System Dynamic Models

In order to analyse the stability of the neural networks, two standard reference models,
well known in the literature, were selected as a benchmark. This allows the poles of the
system to be computed analytically. Additionally, it is possible to reproduce the systems
in a simulation environment to compare the poles identified from the network to those
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of the benchmarks. Poles analysis is typically used in control applications to assess the
stability of a system and to infer the dynamic behaviour of the output as a function of
different input signals. Analytically, given a generic system input/output couple, the
poles represent the roots of the denominator of the transfer function mapping the output
dynamic as a function of the input one. A sliding mass-spring-damper system was chosen
as an example of a linear system, whereas an oscillating pendulum represents a nonlinear
model. In this section, the dynamic systems are described from a theoretical perspective;
the state-space descriptions of the models are reported; and an analytical computation of
the poles is provided.

2.1. Linear Model

The horizontal dynamic equation of a mass-spring-damper system sliding on a surface
with no friction is:

mẍ + dẋ + kx = F (1)

where m is the value of the sliding mass, d the damping coefficient, k the stiffness coefficient,
F the external force applied and x the mass position. The involved quantities and sign
convention are reported in Figure 1.

Figure 1. Linear system dynamics.

To compute the poles of the system, Equation (1) can be rewritten in state-space
form, defining the state-space vector x = [x1, x2]

T , with x1 the velocity of the mass and x2
its position. ẋ1 = − d

m
x1 −

k
m

x2 +
F
m

ẋ2 = x1

(2)

The system dynamic matrix of (2), obtained by computing the partial derivatives of ẋ1
and ẋ2 with respect to x1 and x2, is therefore:

A =

[
− d

m − k
m

−1 0

]
(3)

It is important to notice that, as expected, the equilibria of the system (2) do not
depend on the choice of the state space variables, as the system is linear. In order to obtain
the analytical formulation of the system poles, it is possible to solve det(λI − A) = 0. The
resulting poles, λ1 and λ2, are:

λ1,2 = − d
2m
±
√

d2

4m2 −
4
m

(4)

2.2. Nonlinear Model

The same procedure is applied to the benchmark case of a single DOF nonlinear
system, i.e., a pendulum rotating around a fixed point with a planar hinge. For the
equation describing the rotational dynamics of the system where the total mass of the
swinging rod with the mass attached at its extremity is lumped at the end of the former one,
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the damping torque depends on the friction in the hinge, and Mg represents the gravity
force applied to the mass:

Jz θ̈ + dθ̇ + MgL sin θ = T (5)

where z denotes the pendulum rotating axis, exiting from the swinging plane, M the value
of the mass of the swinging system, Jz its moment of inertia around the z-axis, L the length
of the rod, g the gravitational constant, d the damping coefficients, T the torque applied
to the rod and θ the pendulum angle, with θ = 0 corresponding to the stable equilibrium
of the system. Additionally, it is worthwhile recalling that, based on the assumptions
mentioned above, the moment of inertia is computed as Jz = ML2. The parameters and
sign convention are reported in Figure 2.

Figure 2. Nonlinear system dynamics.

Similarly to the linear case, the state-space form of the pendulum system is de-
scribed by System (6), with x1 and x2 being the angular position and velocity of the
mass, respectively. ẋ1 = − d

Jz
x1 −

MgL sin x2

Jz
+

T
Jz

ẋ2 = x1

(6)

The Jacobian evaluated in x = [0, 0]T is reported in Equation (7).

A =

[
− d

Jz
−MgL cos x2

Jz
1 0

]
(7)

The system (6) has two equilibria corresponding to the rod position parallel to
the gravity force vector. Analytically, the equilibria correspond to the tuple (xα

1 , xα
2) =

(0 (rad), 0 (rad/s)) and (xβ
1 , xβ

2 ) = (π (rad), 0 (rad/s)) and are denoted by α and β, respec-
tively. Once more, it is possible to compute the eigenvalues of the system by imposing
det(λI − A) = 0, with A evaluated in each equilibrium point. The poles’ locations associ-
ated with α and β, respectively, are reported hereby.

λ1,2 = − d
2Jz
±

√
d2

4J2
z
− MgL

Jz
(8)

λ3,4 = − d
2Jz
±

√
d2

4J2
z
+

MgL
Jz

(9)

In absence of the damping term d and recalling that M, g, L and Jz are always positive,
λ1 and λ2 are complex conjugate, while λ3 and λ4 are real. It can be inferred that in the
undamped case, the eigenvalues associated with α are on the boundary of stability (being
purely complex conjugate with IRe = 0), while the ones corresponding to β are both real,
one with IRe > 0 and the other with IRe < 0. λ1 and λ2 lead to an oscillating response
around the equilibrium point, while λ3 and λ4 lead to an unstable response. On the other
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hand, when d 6= 0, the location of the poles and their stability assessment depend on the
specific values of the system parameters. In Section 4, two cases are analysed in detail, and
the associated poles’ values are reported for a specific choice of the parameters.

3. Method and Implementation

In this work, a system identification architecture capable of learning and predicting
the dynamics of a system is proposed to assess its stability. The designed architecture
consists of sequential steps comprising the data generation, the training of a neural network
and the computation of the associated poles. The system was designed with the main
objective to be as general as possible, in order to allow its application in different fields and
with any neural network architectures. In Section 3.1, the methodology of the framework
is illustrated, while in Section 3.2, the framework is illustrated in its constituting modules
and the software implementation is detailed.

3.1. Method

The proposed method consists of the application of a randomly generated dataset to a
dynamic system and in the collection of the corresponding output. The designed method
treats the block resembling the model dynamics as a black-box, and as such, it is not tied to
a specific NN architecture type.

In Figure 3, the architecture used for the identification procedure is depicted. The
stability assessment algorithm is designed as a block receiving the input/output datasets of
the NN and evaluating the corresponding stability. The same block is applied to the system
representing the ground truth dynamics, as it will be used for comparison in Section 4.

The proposed method can be used both offline and online with respect to the training
and testing phase of an NN. In this work, the procedure is used offline, since the identifi-
cation of the location of the poles associated with the network and the assessment of the
method’s performances were the main aims. The same identification block can be applied
online to any other NN (even the ones with the hyperparameters evolving over time) to
flag if any unstable dynamics are present or if the boundary of stability is being approached
during the training phase.

Figure 3. System identification method. NN: Neural Network, S: System.

3.2. Software Implementation

The framework designed for this implementation of the described methodology was
built in MATLAB, Simulink and Python. Simulink was used to simulate the systems and
saving the datasets, while Python was used to design, train and test the LSTMs. MATLAB
served as the main source of the interface to launch the dynamic models, to distribute the
datasets, to execute the callbacks to the LSTM scripts, to post-process the results and to iden-
tify the system poles. This mixed architecture allows exploiting the optimal functionalities
of both systems. A will be further detailed in this section, Python provides well-established
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open-source machine learning libraries, whereas the poles’ identification procedure is
rendered possible by functions belonging to the MATLAB System Identification Toolbox
(https://uk.mathworks.com/help/ident/). The framework follows four logical steps:

1. A sequence of diverse inputs is generated and fed to the model simulated in a
MATLAB/Simulink framework. The output signal is saved and together with the
input data constitutes the dataset;

2. The LSTM network is trained with the input/output dataset previously generated;
3. A new dataset is generated and fed both to Simulink and to the LSTM;
4. The datasets are analysed with built-in MATLAB functions, and the poles are identified.

The framework architecture is illustrated in Figure 4.

Figure 4. Framework architecture—dashed lines: datasets flow, blue dots: modules interfaces.

3.2.1. Training Dataset Generation

The input dataset is generated by recursively selecting a step, a ramp or a sinusoidal
input for a fixed amount of time. The input dataset is a single time series comprising the
series of runs, where a run corresponds to the selection of one input. For each run, the
input is randomly selected as one of the three available signals. The magnitude of the
signals, the slopes of the ramps and the frequencies of the sinusoidal inputs are randomly
selected within pre-tuned boundaries.

Having different inputs proves to be a key factor in exciting as many system dynamics
as possible and in identifying the system poles. Additionally, having a large dataset is
another fundamental aspects to ensure the training of the LSTM is effective.

The size of the datasets and practical considerations on how to select the inputs are
reported in Section 4.6.

The models are simulated with a fixed step size, required by the following identifica-
tion procedure.

https://uk.mathworks.com/help/ident/
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3.2.2. Neural Network Definition and Training

As mentioned in Section 1, stacking neural network layers can improve the identifi-
cation performance. For this application, the chosen architecture comprises two stacked
LSTM cells and a top multilayer perceptron. This hierarchical structure proved to increase
the estimation quality with respect to using both simple feedforward and vanilla LSTM
architectures in non-linear system identification applications [16]. Improving the depth
of the networks is proven to further augment the capability of learning and consequently
improving the forecasting capabilities.

Additionally, including a look-back factor proves to significantly improve the perfor-
mances of the system. This allows the network to predict the next output value based on a
pre-defined number of previous points of the input signal.

The DNNs were designed in Python using the Keras (https://keras.io/) library as a
front-end, in turn based on the TensorFlow (https://www.tensorflow.org/) library as a
back-end.

The details concerning the dimension of the network, the training and the look-back
factor are reported in Section 4.1.

3.2.3. Testing Dataset Generation

The testing dataset generation follows the same criteria detailed for the training set.
Several runs are generated constituted by random inputs with different signal properties.
The input time series is provided to both the Simulink model and to the trained neural
network to compare the results.

3.2.4. Poles’ Identification and Stability Assessment

Following the generation of the datasets, the poles are identified using built-in MAT-
LAB functions. tfest (https://www.mathworks.com/help/ident/ref/tfest.html) (transfer
function estimation) is used as the main identification means. The function provides versa-
tile estimation parameters and does not require any a priori knowledge of the system. tfest
just requires the input and output time series, the sampling time and the number of zeros
and poles of the transfer function to be estimated. This might require a trial-and-error step
while identifying systems where a dynamic model, and in turn the order of the system, is
not known. The cases analysed in this paper are all second order systems.

Additionally, in the case of underdamped system, when complex-valued poles are
expected to be estimated, the procest (https://www.mathworks.com/help/ident/ref/
procest.html) (process estimation) function can be used. This improves the accuracy of the
location of the imaginary part of the poles, but the application is limited to systems of a
maximum third order.

Eventually, splitting the dataset and identifying the poles associated with every run
prove to be an effective means to increase the estimation accuracy. The dataset is divided
into input/output sequences associated with each input; the poles are identified and, then,
the results averaged over the entire dataset.

4. Results and Discussion

Hereby, the parameters of the dynamic models and the DNN are reported, alongside
the results of the identification procedure. In detail:

1. The tuning of the parameters of the network is explained in Section 4.1;
2. The physical parameters of the models are introduced, and theoretical poles obtained

with that parameter set are reported in Section 4.2;
3. The statistics of the identified poles are given and compared to the theoretical ones in

Section 4.3;
4. Additional analyses are reported to integrate the presented results in Sections 4.4

and 4.5;
5. Lessons learned and additional design considerations are reported in Section 4.6.

https://keras.io/
https://www.tensorflow.org/
https://www.mathworks.com/help/ident/ref/tfest.html
https://www.mathworks.com/help/ident/ref/procest.html
https://www.mathworks.com/help/ident/ref/procest.html
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4.1. Tuning of the Network Parameters

When tuning the DNN architecture described in Section 3.2.2, the tuned parame-
ters are:

• the dimension of LSTM cells;
• the number of training epochs;
• the look-back factor.

Despite advancement in the use and understanding of LSTM networks, no analytical
procedure is yet available to tune the dimension and training parameters. They are tuned
in trial-and-error steps, fixing two parameters and modifying one at a time. The goal is to
minimise the selected loss function, the Mean Squared Error (MSE). The MSE, computed at
each epoch, is defined as:

MSE =
1
n

n

∑
i=1

(Yi − Ŷi)
2 (10)

where n is the total number of points provided at each epoch and (Yi − Ŷi) represents the
difference between the output of the Simulink model and the one of the DNN.

The dimension of each LSTM layer was tested starting from a dimension of two and
increasing the size following an exponential of base two distribution. The optimal network
size that minimised the MSE was found to be 128 cells.

The number of training epochs that produced the best fit to the reference signal
without overfitting was 100. This was tuned starting from 10 epochs and doubling the
number of epochs while evaluating the MSE and the computational time, which was chosen
not to exceed 5 h of training.

Finally, the look-back factor was tuned. The best performance was obtained when it
was 100, meaning that generating the dataset at 10 Hz, the DNN predicted the next output
based on the last 10 s of the input signal.

To carry out the training and validation of the network, eighty percent of the dataset
was used for training and the remaining 20% for validation. In order to avoid the saturation
of the input gate, the input time series was standardised based on the mean value and the
standard deviation of the training set. This avoids any leakage of information coming from
the validation set. An example of the model fitting is reported in Figure 5.

Figure 5. Simulink output dataset (blue) vs. DNN training prediction set (orange) and DNN
validation prediction set (green).

It should be noted that the output time series predicted (corresponding to the train-
ing and the validation sets, reported in orange and green, respectively) almost entirely
superimpose the Simulink generated set (drawn in blue).
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A zoomed plot, corresponding to the red box highlighted in Figure 5, is reported
in Figure 6. This illustrates the section where the two datasets switch: the last input
corresponding to the training set is a sinusoidal input, and the first one to constitute the
validation set is a ramp with a negative slope. The effect of the look-back factor can also be
observed: the first 100 points of the validation set are not predicted since they are needed
to estimate the first output value.

Figure 6. Network output vs. dataset zoom.

In Figure 7, the loss function is reported as an example for the training of the nonlinear
model described by Equation (5), with the optimal network parameters mentioned above.

Figure 7. Loss function.

4.2. Tuning of the Model Parameters and Theoretical Poles

Two model parameter sets were selected in order to prove how the poles’ estimation
procedure works in the presence of different system dynamic behaviour: for both the
models defined by Equation (1) and Equation (5), two DNN were trained, corresponding to
the underdamped and the overdamped responses. To obtain the desired dynamics, all the
parameters of model (1) were fixed to be equal to one, apart from the damping coefficient
d, and based on the poles described in Equation (4), d was chosen to obtain either real
or complex conjugate poles. The same process was repeated for the nonlinear model (5).
The system response was validated with the use of pplane (https://www.mathworks.
com/matlabcentral/fileexchange/61636-pplane). Figures 8 and 9 show the state-space

https://www.mathworks.com/matlabcentral/fileexchange/61636-pplane
https://www.mathworks.com/matlabcentral/fileexchange/61636-pplane
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trajectories of the linear model in the underdamped (d = 1 kg/s) and in the overdamped
(d = 10 kg/s) case, respectively.
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Figure 8. Linear model—underdamped.
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Figure 9. Linear model—overdamped.

The same procedure was applied for the nonlinear case, where the parameters were
set as follows: M = 1 kg, L = 1 m, g = 9.81 m/s2, d = 2 kg/s for the underdamped case and
d = 7 kg/s to obtain an overdamped dynamics.

4.3. Poles’ Statistics in Different Models

In this section, the theoretical poles obtained from the two considered models and the
parameters are reported and the statistics generated.

Table 1 summarises the poles’ locations for the two models for the parameter
sets described.
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Table 1. Theoretical poles’ locations.

Model Damping Pole 1 Pole 2
(rad/s) (rad/s)

linear underdamped −0.50 + 0.87j −0.50 − 0.87j
linear overdamped −0.10 −9.90

nonlinear underdamped −1.00 + 2.97j −1.00 − 2.97j
nonlinear overdamped −1.94 −5.06

The statistics are reported in Tables 2 and 3, in the form of the relative error between the
theoretical poles and the ones estimated from the generated datasets for the overdamped
and underdamped dynamics, respectively.

Table 2. Poles’ location statistics: overdamped models.

Dynamics Model Slow Pole Fast Pole

linear Simulink 50.01% 15.57%

overdamped LSTM 34.77% 92.08%

nonlinear Simulink 7.67% 21.99%

overdamped LSTM 43.29% 47.89%

Table 3. Poles’ location statistics: underdamped models.

Dynamics Model IRe IIm

linear Simulink 0.17% 1.64%

underdamped LSTM 74.2% 26.5%

nonlinear Simulink 4.38% 4.38%

underdamped LSTM 50.86% 3.93%

4.4. Unstable Model Identification

The procedure has so far been applied to stable models. In this section, the framework
is tested in the presence of data generated by an unstable process. The chosen model is
a second order system with a pole lying in the right-hand side of the complex plane and
described by the following transfer function:

1
(s + 10)(s− 0.01)

(11)

The unstable pole is defined as λ = 0.01, while the stable one is set as λ = −10.
Additionally, tfest assumes by default that the time series used for the identification proce-
dure are generated by stable processes. This implies that, without modifying its settings,
the poles are identified in the interval (−∞, 0]. This issue can be overcome by modifying
the stability threshold, normally set as s = 0 for continuous-time systems and z = 1 for
discrete-time ones.

In this example, the corresponding parameter to be modified is set as tfestOptions.
Advanced.StabilityThreshold.s = 103. Once more, the model is simulated and the corre-
sponding DNN trained and tested. The distribution of the identified poles is reported
in Figure 10. It can be seen that out of 4000 runs, 2693 times (0.67%), the real part of the
unstable poles was correctly identified in the right-hand side of the complex plane. The
framework was capable of recognizing that an unstable dynamics arises in the model
generating the data and flagging the behaviour accordingly. As described in Section 1, this
framework can be used to detect instabilities linked to any NN architecture, even the ones
whose weights evolve over time (e.g., the ones associated with Reinforcement Learning
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(RL) algorithms). The process generating the data in this example, i.e., Equation (11), is
time-invariant, but the same procedure applied to time-variant systems would be able to
detect an arising instability online. In fact, any single pole identified as unstable is enough
to trigger the detection algorithm and the corresponding notification that the process gen-
eration is no longer stable. To conclude, the poles wrongly detected as stable are the ones
associated with runs where ramp signals are provided as inputs: the ramps are in fact the
signals generating the slowest dynamic responses and not always triggering an unstable
behaviour fast enough to be identified. Additional considerations on the issue are detailed
in Section 4.6.

Figure 10. Unstable model—poles’ locations.

4.5. Introducing Noise

After having shown the results for ideal cases in which the datasets are generated
by processes with no noise (or equivalently in which the noise has been filtered out), in
this section, one of the benchmark cases is analysed, introducing disturbances in the data
generation process.

The chosen model is the nonlinear system defined by Equation (5). The disturbance
is introduced in the form of a noisy output variable, resembling a real case in which the
reading of the swinging mass angle θ is provided by a non-ideal sensor. The signal-to-
noise ratio was chosen as 25 dB, ensuring a noise power greater than the signal power. A
comparison between the testing datasets is reported in Figure 11, with the output of the
Simulink model and the DNN drawn in blue and red, respectively.

It is possible to notice that the DNN is able to identify the model dynamics, and
it additionally shows intrinsic filtering capabilities, both in the steady-state and in the
transient sections of the responses.

The poles’ locations were then evaluated. The slow poles of both Simulink and
the DNN were estimated with a maximum relative error bounded below 50%, showing
comparable performances with respect to the ideal case. The fast pole is on the contrary
identified showing a loss of accuracy performance (several orders of magnitude greater,
but still identifying that the system is stable).

It is important to bear in mind that in a real-case scenario involving a noisy signal,
before the training step, an intermediate filtering stage would be performed.

The analysis reported in this section shows how the designed framework can deal with
system noise: if the aim of the system identification is only to assess the stability of a process,
the system does not require additional steps, whereas if the purpose is to accurately locate
the position of the poles, a filtering stage is suggested. If the noise properties are constant
(e.g., its variance), it is possible to change the numerical search method, for instance by
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setting tfestOptions.SearchMethod equal to fmincon lm, or gn, with the advantage of avoiding
the filtering stage.
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Figure 11. Nonlinear model (overdamped case)—system with noise.

4.6. Additional Design Considerations

In this section, practical considerations regarding the generation and the scaling of the
dataset, as well as the choice of the input signals are reported.

1. Ensuring that the training dataset is composed by different signals in terms of mag-
nitude and type is a key factor to obtain an NN capable of generalising the output.
Additionally, other experimental results proved to be key to improve the ability of the
network to learn different dynamic behaviour with corresponding improvements in
the associated poles. During the design of the datasets, two main factors emerged,
which are capable of jeopardising the accuracy of the identified poles:

• the presence of ramps with low slopes;
• the presence of sinusoidal inputs with long periods.

More generally, the presence of inputs exciting only slow dynamics is believed to
cause issues while using tfest. To avoid the issues associated with the sinusoidal inputs,
it is possible to set a lower boundary to the period of those signals. By defining the
period of the chosen sinusoidal inputs Tsin and the period of the simulation run Trun,
it is possible to impose: Tsin > Trun.
Regarding the slope of the ramp (mr), no analytical boundary was identified, and
a trial-and-error approach led to finding different values for each model simulated
(for reference: mr > 0.1 (N) and mr > 0.5 (Nm) for the linear and nonlinear models,
respectively).

2. It is also important to recall that the dataset size affects the training capabilities of
the DNN. In this application, the dataset, formed by 500 runs (corresponding to 500
different inputs), has 106 points. Previous training tests carried out with a smaller
dataset did not show satisfactory identification performances. Ensuring that the
training set is large enough is therefore an important aspect of the procedure.

3. The last factor affecting the performance of the framework is identified as the scaling
of the dataset. The input gate of the LSTM cells is sensible relative to the magnitude
of the input signal: if the latter is excessive, the gate can saturate and show degrading
identification performances. The input time series can be bounded between [0, 1]
or ±3σ (with σ denoting the standard deviation) by means of a normalisation or
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a standardisation, respectively. For this work, the dataset was standardised since
the method proved to be more robust with respect to the presence of outstanding
outliers. For instance, the presence of a single step signal with a final value one
order of magnitude higher than the average value of the rest of the dataset in a
normalised dataset could lead the NN to assign a higher weight to some neurons in
order to minimise the error for that case. That would in turn cause a degradation
of the performance for the signals with a smaller magnitude. On the contrary, the
standardisation of the dataset allows detecting when the high value signal is outside
the ±3σ interval of the dataset and consequently assigning to it a relative lower
weight during the training step.

5. Conclusions

In this paper, a new procedure to compute the poles of a generalised DNN architecture
is proposed. The procedure consists of generating a dataset composed of different inputs in
order to excite as many dynamics of the network as possible. The poles are then extracted
from the time series by analysing their input/output dynamic relationship. The procedure
generates accurate results for the estimation of the location of the poles and is shown to
be able to assess the stability of the systems in all the analysed cases. Starting from a
linear system and having obtained positive results, a nonlinear standard reference model
was designed to check whether the accuracy of the poles’ location is preserved even in
more realistic case scenarios, with consistent outcomes. Following, an unstable system is
chosen as source of data generation, and a DNN is trained to learn the dynamics and to
assess the stability: the framework proves to detect and flag its instability. Eventually, the
performances of the identification procedure are reported in the presence of noisy signals,
and the corresponding degradation of the performance is quantified.

Since the procedure is general and not tied to the specific network architecture used
in this work (i.e., stacked LSTM layers), the authors are confident that it can be applied to
other DNN architectures with consistent results. The contribution of this paper consists
of mixing standard concepts and techniques used in system identification and in their
application to a newer field, i.e., in the identification of dynamic models with DNN and in
the assessment of their stability. Previous approaches proposed in the literature showed the
stability properties of specific DNN architectures, whereas this paper presents a framework
that can be applied to architectures of arbitrary complexities. Other works rely on grey-
box system identification techniques, for which the parametric description of the model
is available. In contrast, in this work, a black-box system identification procedure is
developed. This renders the described approach applicable to any architectures where the
analytical description of the system is too difficult to obtain or has not yet been developed.

The main application of interest is represented by the identification of the poles of
the network implementing learning control algorithms, for which the stability remains a
fundamental property yet to be proven analytically. RL algorithms are based on DNNs
evolving over time, and the criteria defined in this paper to assess the stability of the DNN
can be used online in RL applications. The framework designed in this work can assess the
stability of any DNN architecture online by iterative computations of the system poles. It is
suited to be applied as an online supervisor to control systems and flag whether the system
is approaching the boundary of stability by recursively computing the system poles. The
limitation of the proposed work, to be proven with future analyses, is in the performance
assessment of the real-time identification of the system poles. Additional developments
will consist of extending the stability analysis shown in the two single-input single-output
systems to the case of multiple-input multiple-output ones. Further works will comprise
the application of the procedure to data generated by real dynamic systems for which
the stability cannot be easily assessed (e.g., for autonomous underwater gliders) and to
feedback systems constituted by one or more DNN.
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