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ABSTRACT14

Systems-level analysis of an engineered structure demands robust scientific and statisti-15

cal protocols to assess model-driven conclusions that are often non-traditional and causal in16

their content. The formal mathematical, statistical, and philosophical foundations of causal17

inference on which such protocols are based are, nevertheless, not widely understood. The18

aim of this paper is to communicate the essentials of graph-based causal inference to the19

civil engineering community, to demonstrate how rigorous causal conclusions – and formal20

quantification of uncertainty regarding those conclusions – may be obtained in a typical21

engineered system application and to discuss the value of this approach in the context of22

engineered system assessment. The concepts are illustrated via a river-weir ecosystem case23
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study, as an example of decision-making for engineered systems in the built environment.24

In this setting, we demonstrate how rigorous predictions can be made about the outcome25

of decisions, that take a lack of prior knowledge about the system into account. The find-26

ings highlight to end-users the value in applying this approach, in providing quantitative,27

probabilistic outputs that counter decision uncertainty at system level.28

Keywords: causal inference; directed acyclic graph; river-weir ecosystem; systems engi-29

neering30

INTRODUCTION31

The vast majority of scientific hypotheses are not statistical, but are causal. One example32

of such a causal construct that surrounds a system in the built environment is the changing33

response of a structure to external loading conditions over time, as a consequence of the34

natural evolution of internal characteristics such as strength and stiffness, or the interven-35

tion on these properties. Protocols to test such hypotheses are well-understood and codified36

in the modern scientific method, typically a combination of in silico model simulations and37

in situ experiments targeted at replicating the causal mechanisms at work. An experimen-38

tal approach will often seek to produce high quality data to describe only a single causal39

relationship, through controlling surrounding physical conditions.40

A systems-level approach, on the other hand, aims to describe real-world systems by41

simultaneously assessing en masse a collection of causal statements, through employing a42

protocol of codifying numerous causal hypotheses in the form of a single mathematical or43

computational model. The model can be produced without experimental data pertinent to44

every causal statement, able to be constructed from combinations of empirical formulae and45

first principles, and supplied with elicited quantitative information. The model is then used46

to produce predictions about the real-world system, either under specified constraints or as47

the outcome of interventions. The model’s performance can further be assessed against a48

real-world dataset, with strong predictive capability interpreted as evidence in support of the49

collection of causal statements taken together, which is then used to guide future hypothesis50
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refinement.51

The technique aims to establish multiple causal conclusions, using a holistic mixture of52

mathematical models, statistical techniques and diverse datasets. In doing so it offers the53

user a route to rigorous prediction about the real-world system, produced via accessible54

analytical methods and able to function with imperfect and incomplete data. This is useful55

in the case of engineered systems in the built environment, where data may be limited for56

structures situated in real environments if such structures are not endemic in the area.57

Of central importance in the effort to use systems-level approaches are mathematical and58

statistical theories of causal inference. These enable the engineer to establish which causal59

statements are testable from observational data, to adjust for external factors that might60

confound parameter estimates and model-based predictions, to reason about the transfer of61

causal conclusions across the engineered system and its physical surroundings, and to provide62

an honest quantification of the epistemic uncertainty that accompanies all causal conclusions.63

Our experience is that, while the correlation-causation distinction is appreciated (e.g. Bell et64

al., 1992; Salvaneschi et al., 1997; Suraji et al., 2001; Cotter, 2015), the useful and powerful65

logico-deductive theories of graph-based causal inference are not yet well-understood in this66

trans-disciplinary research field. The aim of this article is to communicate a clear, explicit67

and practicable introduction to causal inference via a real-world case study from the field68

of the built environment. The intention is that this presentation will help to accelerate the69

adoption of formal causal reasoning in the field.70

The real-world motivation for this research was to study the Clerkington Weir, an his-71

toric river barrier on the river Tyne in south-east Scotland, under the jurisdiction of the72

Scottish Environmental Protection Agency (SEPA). The weir, which dates from the early73

19th century, has been identified as an inhibitor of fish migration and there is an ongoing74

conversation with a wide variety of stakeholders regarding possible weir removal or modifica-75

tion, such as via the addition of a fish passage structure. Two aspects frustrate this decision76

landscape; firstly that removal is typically technically complex and costly, and may also be77
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hindered by other factors such as historic weirs being protected (listed) structures. In this78

case uncertainty regarding the long-term prosperity of the current physical weir-river system79

is a factor. Secondly, that if weir removal is carried out the impact on the performance of80

the remaining elements of the system is challenging to predict due to its complexity, and81

hence there is epistemic uncertainty about the consequences of removal. These could include,82

for example, changes to river ecology health and river re-routing in the case of removal, or83

increased flood risk under increased precipitation in the case of non-removal.84

To date no formal quantitative probabilistic attempt has been made to predict the con-85

sequences at system level of removal or non-removal. The Clerkington Weir is therefore an86

ideal case study on which to demonstrate the applicability of the concepts of causal inference87

to a real-world context, as well as highlighting aspects in which these techniques are limited.88

This presents an opportunity to assess the value of applying causal inference methods to89

this real world engineered system, where a challenging decision context is being played out,90

and where addressing uncertainty about system response to intervention is key to moving91

forwards. Across the system a large number of causal mechanisms are at play. For example,92

to assess the impact of extreme rainfall events on the structural integrity of a weir it is93

necessary to posit causal hypotheses for how rainfall affects flow in the river, for how the94

weir responds to different flow conditions and for how flow induced erosion and scour might95

act to undermine the integrity of the weir.96

The assessment presented here seeks to address three features of the decision landscape;97

the impetus for the decision (that there is a barrier to natural fish migration), a cause of un-98

certainty relevant to non-removal (weir condition and design), and an uncertain consequence99

of removal (alteration of flood risk). Thus we deploy causal techniques to estimate fish100

passability on the weir, to estimate the unknown weir density and embedment depth, both101

pertinent to the stability of the weir, and to assess the change in risk of upstream flooding as102

a result of weir removal. The results deliver distributional and risk based predictions, derived103

from an explicitly causal model. Using a subset of observed datasets a new set of numeric104
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outputs is presented that describes both currently unknown features and future performance105

measures of the river-weir system pertinent to the ongoing decision making effort.106

The main body of the paper is given to first presenting the elicitation of the causal107

model used with the case study, then the formal reasoning associated with the questions108

used to make predictions about the system, and the predictive results derived from them.109

This is followed by a discussion of the practical and technical challenges faced, the novelty110

of the approach, and a comparison of the work with other possible methods for obtaining111

probabilistic predictions of system performance. The conclusions focus on the value-added112

offered by the causal inference approach over other available methods, especially in the113

context of generating impact in society, and to highlight the potential gains that more114

widespread use of these methods would provide. Two appendices are provided with the115

paper; the first contains an overview of the underpinning frameworks of causal graphical116

models, the second presents the full extent of the causal model construction.117

118

A CAUSAL GRAPHICAL MODEL OF AN HISTORIC RIVER-WEIR SYSTEM119

There are several competing mathematical and philosophical frameworks that attempt120

to formalise the process of causal deduction, including counterfactuals (Morgan and Win-121

ship, 2014), structural equation models (Kline, 2015) and the decision-theoretic approach of122

Dawid, 2000. This work applies one such framework, due to Pearl, 1995, that is based on123

a directed acyclic graph (DAG) representation of causal inter-dependencies in the system of124

interest. The DAG framework has received considerable theoretical attention and is perhaps125

the approach to causal inference that is most widely-used (Pearl, 2009). Even within the126

context of DAGs, the term ‘cause’ has historically received diverse usage. In this paper we127

adopt a domain-specific (and expert-elicited) notion of causation.128

Full details of the mathematical and statistical foundations of the causal inference that129

leads to the causal DAG presented below can be found in Appendix I. The aim of this section130

is to illustrate how the mathematical and statistical content of Appendix I can be applied131
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to perform rigorous causal inference in a civil engineering context specifically in relation to132

an historic river-weir.133

134

The Case Study: Clerkington Weir135

Clerkington Weir is a barrier on the river Tyne in south-east Scotland. It is located136

approximately 1.5 km to the south-west of Haddington and is one of a total of 12 weirs on137

the river (SEPA, 2018). The River Tyne has a total drainage area of 318.27 km2; it is sourced138

in the Moorfoot and Lammermuir Hills and flows in a general north-eastward direction to139

enter the outer Firth of Forth at Tynemouth. The stream network for the Tyne catchment140

is shown in Figure 1.141

The impact of the weir on fish passage has been highlighted by stakeholders and the142

possibility of weir modification or removal has been discussed. Conversely, the age of the143

weir and its perceived cultural and historic significance in the local landscape means it is144

considered an important feature and, as for other barriers on the Tyne, the added protection145

of having listed status renders removal a challenging and emotive issue. One impediment to146

resolution is the absence of quantitative measures of the physical, hydrological and ecological147

impact, positive or negative, weir modification or removal might result in.148

The river-weir ecosystem is complex, containing a large number of components across149

different domains and multiple inter-dependencies. This hinders the generation of reliable150

outputs to produce these measures of impact by standard, non-causal statistical methods.151

For example, it is likely that the Clerkington weir differs in several important respects to152

other weirs on which data may have been collected and it is therefore unclear how conclusions153

of a statistical nature, drawn from structures with possibly quite different characteristics,154

can be meaningfully extracted.155

In seeking to determine the best decision for the Clerkington weir, causal links that156

represent the whole system, must be considered simultaneously in order to prevent inaccurate157

reasoning about the system. For example, although statistical analysis of fish passage over158
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barriers indicates that the height of a barrier is negatively associated with fish passability (e.g.159

King and O’Hanley, 2016), it would not be appropriate to reason that removal of Clerkington160

weir would therefore lead to increased fish stock in the Tyne. This is because such reasoning161

considers only one causal mechanism in the system, where other causal mechanisms may also162

exist. It may be the case that weir removal changes the flow in the river in a way that leads163

to bank erosion and vegetation loss, to the overall detriment of the fish stock. Alternatively,164

if the face of the weir is supporting denitrifying microbes then removal of the weir may result165

in increased levels of nitrogen in the river, leading indirectly to a reduction in fish stock.166

The Clerkington Weir will be used as a case study, allowing us to demonstrate how causal167

graphical models can be applied in the context of managing the built environment and its168

relationship with the surrounding landscape. In particular, we considered three questions in169

detail:170

Q1: To what extent can fish pass over the weir?171

Q2: What can be said about the un-observable aspects of masonry structure of the weir?172

Q3: To what extent does weir removal reduce the upstream flood risk?173

In order to provide clarity in the presentation of our argument regarding the value of applying174

the causal graphical model to this real world context, we have deliberately limited our175

attention to a subset of key random variables (RVs) and datasets. This allows for focused176

discussion of the complex real-world interactions across these variables, that underpins the177

case for a causal inference approach, and their formal representation in a causal graphical178

model. It does also determine that the results presented in this paper are illustrative only,179

and that further development of the model would ideally need to be undertaken if it were to180

be used as the basis of a real-world decision making tool.181

In the remainder of this section, first the main RVs relevant to the river-weir ecosystem182

are elicited and described. These are then assembled into a causal DAG and the conditional183

distributions associated with the DAG are described. This is followed by a demonstration184

of how the causal DAG allows for explicitly causal hypotheses on the river-weir ecosystem185
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to be reasoned about and investigated.186

Elicitation of the Causal DAG187

The first task in constructing a causal graphical model is to elicit the RVs that will188

form the vertices in the causal graphical model. These will be generically denoted Xv, for v189

ranging over an index set V , and include RV’s that are physically relevant across the system190

in relation to the questions being asked, and any associated datasets on which inferences are191

to be based. In this case study, elicitation was conducted based on discussion with both the192

stakeholders and various domain experts, including geologists, ecologists and engineers. Note193

that the set of RVs XV := {Xv}v∈V presented is a subset of all elicited RVs, to encourage194

clarity of communication of the analysis and results. These RVs are partitioned into those195

related to the geometry of the weir, the condition of the weir, the environmental RVs and196

the available datasets.197

Geometry of the Weir198

The first RVs elicited were intended to characterise the geometry of the Clerkington Weir,199

derived from visual observation of the structure on site (Figure 2) and historic documentation200

regarding the typical design of weirs of a similar age to Clerkington Weir, highlighting201

features such as the stacking of masonry units on the weir face (Figure 3a) and the use202

of piled foundations (Figure 3b). To this end, the profile of the weir was assumed to be a203

non-symmetric trapezoid, characterised by a length XL (m), a weir height XWH (m), a slope204

up XSU and a slope down XSD. All geometric RVs are shown in Figure 4.205

No inspection of the below-ground structure was undertaken, hence engineering judge-206

ment was relied upon to elicit the foundation design in use at the weir. Documentary evidence207

suggests that piled foundation solutions were employed for the purposes of ensuring stabil-208

ity in weir structures at the time at which the case study weir was originally constructed,209

however it was not possible to confirm this directly for the Clerkington weir. Considering210

the complexity associated with articulating pile behaviour within the causal framework, a211

simplified approach was taken wherein the foundations were modelled as a rectangular sec-212
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tion with an unknown embedment depth XED (m). This reflects the fact that massing below213

river bed level will almost certainly be present in the weir structure, directly contributing to214

its stability, without seeking to represent additional frictional aspects of pile performance,215

which go beyond the scope of the geomorphological and geotechnical information available216

to the case study. This approach seeks to ensure a worst case stability situation is provided217

for this first stage assessment.218

The masonry construction of a weir of this age would not typically have included the pres-219

ence of mortar, with inclined bedding of rough, interlocking blocks used to provide shearing220

resistance across the weir mass. Over time as the weir was continually exposed to the dy-221

namic effects of hydraulic loading and other environmental effects (e.g. bank expansion and222

contraction), it can be safely assumed likely that the masonry units would have moved rela-223

tive to each other. As such the presence of voids and other imperfections such as vegetation224

in the weir structure that lead to a reduction in overall density, from the value that was225

initially ensured via the masonry laying technique, is anticipated. This is supported by the226

visible and not insignificant presence of vegetation on the weir face (Figure 2), although the227

exact location and extent of voiding was not measured. This uncertainty was modelled as228

an RV, weir density XWDI (Nm−3), homogeneous across the weir body.229

Condition Variables230

Engineering expertise was used to elicit RVs contributory to potential failure modes of231

the weir, utilising available assessment tools (Pickles et al., 2014; Kennard et al., 1996).232

Four failure modes were identified; failure due to overturning (EQU1), failure due to sliding233

(EQU2), failure due to uplift (UPL) and failure due to piping (PIP). These failure modes234

were each represented by the binary RVs X
(i)
EQU1, X

(i)
EQU2, X

(i)
UPL, X

(i)
PIP, with 0 representing235

non-failure and 1 failure occurence, and an index i used to represent the date on which236

failure is being considered. (Here i runs over an index set that will be denoted I.) Not all237

failure modes are modelled and in particular internal failure of the weir structure, for example238

due to fracturing, was not considered. This limits the causal model to that of considering239
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external stability of the weir as a rigid body, whilst enabling the interaction with the river240

water forces to be fully resolved. A further condition assessment binary RV X
(i)
CA was taken241

to equal 1 if, on day i, any of the four failure modes occurred.242

Environmental Variables243

Several environmental RVs are required to properly characterise the river conditions at244

the weir. Hydrological considerations motivated the the inclusion of: bank height XBH (m),245

channel width XCW (m), flow X
(i)
F (m3s−1) on day i, upstream water depth X

(i)
UWD (m) on day246

i and downstream water depth X
(i)
DWD (m) on day i. A further binary RV X

(i)
UF was used to247

indicate whether an upstream flood had occurred on day i, with 1 representing a flood event.248

Full designation of the conditions used to classify a flood event are described in Appendix II.249

Additionally, to represent the failure mode EQU2 it was necessary to include RVs XC and250

XSFA respectively representing the soil cohesion (Nm−2) and the soil friction angle (deg).251

Ecological considerations led to the inclusion of RVs representing fish passability X
(i)
FP on252

day i. Here the passability of the weir for brown trout, one of the species of fish known253

to populate the Tyne, is considered, such that X
(i)
FP takes one of the four categorical values254

{total, high,medium, low} defined in Baudoin et al., 2014 as indicative of the degree of pass-255

ability of the weir, according to the weir geometry, flow conditions and fish characteristics256

(e.g. jumping capacity).257

Observed Variables258

A limited number of datasets were collated to provide statistical information related to259

the physical RVs just described. The geometric RVs XL = 6.3 (m), XSU = 0.4, XSD =260

0.4, XCW = 50 (m) could be directly observed. The weir height XWH = 1.2 (m) was261

measured using differential GPS data, shown in Figure 5, obtained on 28th September 2018.262

In addition, the bank height was denoted XBH and was observed as 1.5 (m).263

Measurements of flow X
(i)
F were obtained from the National River Flow Archive (NRFA,264

2019). These consisted of mean daily flow measurements taken from 1981-2000 at three265

upstream locations, one upstream at Spilmersford on the Tyne and two at intermediate266
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tributaries (Lennoxlove on the Coulston and Saltoun Hall on the Birns) that contribute to267

the total flow arriving at the weir. The values X
(i)
F were calculated as the sum of these three268

contributors to the total flow at the weir with the index set I containing approximately 7,300269

days in total. The date range used derives from the fully overlapping portion of the three time270

series that constitute our dataset, in order that additional technical development to handle271

missing data was not required. Finally, a condition appraisal of the weir indicated that no272

failure mode has occurred, so that X
(i)
CA = 0 for all days i in the dataset. In the following273

we denote by XO where O = {L,WH, SU, SD,CW,BH, SSD,F(i),CA(i)}, the subset of RVs274

which together constitute observed nodes in the DAG.275

This completes specification of the RV index set V . It remains to specify any causal276

relationships among the RVs, in a real-world qualitative sense at the level of the DAG and277

in quantitative terms at the level of conditional and interventional probability distributions.278

Full details of these relationships, as they derive from physical and empirical functions, are279

presented in Appendix II. The full DAG model is displayed in Figure 6.280

Scientific Reasoning Using the Causal DAG281

To illustrate how the causal graphical model enables rigorous and automatic reasoning282

about scientific hypotheses, the three scientific questions Q1, Q2 and Q3 are considered. Of283

these, Q1 and Q2 concern the distributional nature of the RVs involved and are not causal in284

nature; the purpose of these is to demonstrate the type of mathematical calculation involved285

when using the causal DAG to determine the conditional distribution of a given RV. The286

third question, Q3, is explicitly causal and relies on the Pearlean interventional structure287

that we have endowed on the causal DAG to measure the effect of an intervention on the288

river-weir system.289

Q1: Fish Passability290

The Clerkington weir is recognised as being as a barrier to fish passage on the Tyne, but291

to date no quantitative analysis of the river-weir ecosystem has been performed that draws on292

observed data specific to the physical nature and situation of the weir in the river. As a first293
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example of reasoning based on the articulated graphical model, we consider how the observed294

data described so far can provide quantitative information concerning the impedence to fish295

passage posed by the weir. This is formalised as the following question:296

Question 1. What is the conditional distributions of fish passability p(X
(i)
FP | XO) on each297

day i, given the observed datasets XO?298

In what follows we explain how the DAG in Figure 6 enables this question to be precisely299

answered. First we apply the law of total probability to express the desired conditional300

distribution as the integral301

p(X
(i)
FP | XO) =

∫
p(X

(i)
FP,XV \(O∪{FP(i)}) | XO) dXV \(O∪{FP(i)}).302

Then we leverage the definition of the conditional density as303

p(X
(i)
FP | XO) =

∫
p(X

(i)
FP,XV \(O∪{FP(i)}),XO)

p(XO)
dXV \(O∪{FP(i)})304

=
1

p(XO)

∫
p(XV ) dXV \(O∪{FP(i)}) (1)305

where in (1) we recognise that the RVs XO are not being integrated. At this point we can306

exploit the conditional independence structure of the DAG using the Markov property in (2)307

of Appendix I to obtain308

p(X
(i)
FP | XO) =

1

p(XO)

∫ ∏
v∈V

p(Xv|Xπ(v)) dXV \(O∪{FP(i)})309

Each of the terms appearing in the product has been elicited. The term p(XO) does not310

depend on X
(i)
FP and can be considered to play the role of a normalisation constant. Numerical311

techniques, such as implemented in the software discussed in Appendix I, can be used to312

numerically evaluate these conditional distributions. For the purposes of this paper we313

implemented a standard Markov chain Monte Carlo method.314
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Results are displayed in Figure 7. The left panel displays a superposition of the condi-315

tional probability distributions p(X
(i)
DWD|XO) for each of the days i in the dataset. These316

indicate that, given the geometry of the weir and the observed variation in river flow con-317

ditions, the downstream water depth typically does not exceed 0.2 (m) and therefore that318

the air gap X
(i)
UWD − X

(i)
DWD is typically at least XWH − 0.2 = 1 (m). It follows that fish319

passability is rarely better than medium or low in the sense of Baudoin et al., 2014. The320

right panel displays a superposition of the conditional probability distributions p(X
(i)
FP|XO)321

which confirms the barrier effect of the weir on fish passage. The automatic computation of322

these multiple conditional distributions from the same DAG structure provides for efficient323

prediction across system variables, and from this greater awareness of the system’s state.324

It is important to emphasise that these results are driven by all of the observed datasets325

in XO and not just a small portion of the available data, and that the correct integration326

of these multiple and diverse strands of evidence is performed automatically and efficiently327

through the DAG. This simultaneous conditioning against multiple observed datasets, allows328

the user to bring all the “knowns” to bear on the posited question and output rigorous and329

reliable new information from it.330

Q2: Density and Embedment Depth331

A major source of uncertainty regarding the performance of the river-weir system is the332

state of the weir itself. The original design of the weir and the extent to which its condition333

has deteriorated since construction dictates its stability and safety as a structure today,334

which influences decisions around possible interventions to the system. If the weir is in a335

state where even minor interventions would instigate weir instability or collapse, then the336

site works required to modify the weir to install a fish passage, for example, may not be337

practically possible. Or, if long-term system stability is desired with the weir in-situ, and338

works to ensure the longevity of the weir against increased flows are extensive, they may not339

be cost effective.340

There is therefore interest in assessing and quantifying the state of the weir. However, a341
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lack of observable features limits the capacity to achieve reliable assessment via survey, as342

values required to fulfil a majority of the variables needed to determine weir state through343

consideration of the physical interactions contributing to it are missing. Q2 considers infer-344

ence across these unobserved variables relating to stability and condition, on the basis of the345

information that is available, XO. This is posed in particular as:346

Question 2. What is the conditional distribution of the weir density and embedment depth347

p(XWDI, XED|XO) given the observed datasets XO?348

The observed data includes the knowledge of the weir geometry and environmental con-349

ditions. It additionally includes the information that failure has not occurred, through the350

condition assessment RV X
(i)
CA. This knowledge of the capacity of the weir to withstand the351

loading conditions to which it has previously been exposed provides important insight into352

the state of the weir. Being able to condition on this knowledge via the DAG, in combi-353

nation with the other observed information, allows for a prediction of the unobserved weir354

density and embedment depth that draws on this knowledge of historic system state. Formal355

computation of unobserved variables via historic systems level knowledge represents a new356

offering in the context of decision making around complex engineered systems, especially357

in relation to historic structures where so many variables are unknown. Proceeding in an358

analogous manner to Q1, we arrive at the formula359

p(XWDI, XED|XO) ∝
∫ ∏

v∈V

p(Xv|Xπ(v)) dXV \(O∪{WDI,ED}),360

with proportionality up to an implicit normalisation constant.361

Results are displayed in Figure 8, indicating the probable upper and lower bounds of362

embedment depth XWD and weir density XWDI that are consistent with the fact that the363

weir has not failed under the system conditions contained in the observed nodes in the DAG.364

It is apparent that XWDI (for which a uniform distribution was elicited) is relatively well-365

informed by the dataset, with a minimum density of around 10,000 (Nm−3) being plausible366
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under the model. Similarly the model provides a plausible minimum value for XED of around367

0.5 (m). For very small values of either XWDI or XED the model anticipates a larger value of368

the other to compensate and to ensure stability of the weir, as would intuitively be expected.369

The contour plot also provides the joint conditions attributable to the worst case that the370

weir might plausibly be considered to be in, in terms of its overall stability. Meanwhile the371

“soft” nature of the plot reflects uncertainty with respect to RVs such as the downstream372

water depth which play a causal role in failure of the weir.373

Again, these results are driven by all of the observed data XO, with correct integration of374

these different strands of evidence being performed automatically through the DAG. Such a375

computation of the jointly probabilistic nature of variables from partial, high level knowledge376

of a complex real world engineered context is not traditionally available to decision makers,377

and the ease by which the DAG can compute these represents a significant opportunity to378

improve the quality of information available in these contexts.379

Q3: Weir Removal380

Neither Q1 nor Q2 require causal semantics, since they do not countenance an interven-381

tion on the system. Intervention is also at the root of the decision context being considered382

for the weir. A more realistic situation is now considered, where causal semantics are es-383

sential, specifically the effect of weir reduction or removal on upstream flood risk. This is384

an explicitly causal question that can be cast as an intervention on the weir height, XWH,385

whereby it is set to some other fixed height h ≥ 0. To make this precise, we now let X
(i)
WH386

be indexed by day i and consider the effect of removal on a future day, denoted ∗, not in the387

earlier index set I.388

Question 3. If an intervention was performed that sets the weir height to h, what is the389

interventional distribution of an upstream flood p(X
(∗)
UF | XO, do(X

(∗)
WH = h)), given the390

observed datasets XO?391

To address this question we extend the index set I to include ∗, leading to a larger causal392

DAG. Here an intervention is considered on a day ∗ not in the index set I, which can be seen393
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as a degenerate case of Balke and Pearl, 1994. This is a simpler method of approach than394

other alternately available ones. The intervention could have been posed as a counterfactual395

question where it is asked what would have happened on a day i ∈ I in the dataset if the396

weir height had been intervened on during that day; such questions are rigorously addressed397

in the counterfactual network approach of Balke and Pearl, 1994.398

Now it is required to specify a marginal probability distribution for the newly introduced399

source node X
(∗)
F , which was taken to be a log-normal distribution fitted to the observed400

X
(i)
F . Fits that are consistent with the flow dataset are displayed in the left panel of Figure401

9. Then, from the Pearlean structure in (3) of Appendix I:402

p(X
(∗)
UF | XO, do(X

(∗)
WH = h)) ∝

∫ ∏
v∈V

p(Xv|Xπ(v))
∣∣
X

(∗)
WH=0

dXV \(O∪{UF(∗)}).403

Results in the middle panel of Figure 9 indicate that complete removal of the weir (h = 0)404

reduces the per-day risk of an upstream flood event substantially, from 10−3 with the weir405

in situ to around 10−8 with the weir removed. Utilising the causal DAG to compute this406

reduction in risk provides the end-user with clarity and confidence regarding the scale of407

impact associated with undertaking a specific intervention within a larger system of interac-408

tions. This is a powerful tool with regards situations where there is a need to make decisions409

without prior knowledge of their effect. Methods that work to counteract vague and uncer-410

tain knowledge contexts explicitly address this real world problem. Additionally, the setting411

out and structuring of the causal DAG enables multiple causal roots to be explored in the412

context of interventions, and their impact updated as more data and knowledge is supplied.413

For illustration the average causal effect (ACE; see Appendix I) of weir height RV X
(∗)
WH414

on the upstream flood RV X
(∗)
UF is also computed, shown in the right panel of Figure 9. This415

demonstrates the intuitively sensible fact that there is greater impact achieved on flood risk416

from reduction in height of a tall weir (X
(∗)
WH > 1.3 (m)) compared to reduction in height of417

a smaller weir (X
(∗)
WH ≤ 1.3 (m)). On the other hand, the ACE is zero for values of X

(∗)
WH418
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greater than the bank height XBH = 1.5 (m), since a weir higher than the bank guarantees419

an upstream flood.420

DISCUSSION421

Causal graphical models constitute a rigorous framework in which deductive causal rea-422

soning can be performed that simultaneously takes all of the identified causal mechanisms423

into account. The purpose of this study has been to demonstrate the value of applying a424

causal graphical model framework in an engineered-systems decision appraisal context. The425

outputs from the DAG-based causal analysis provide explicit insight into system perfor-426

mance, that might otherwise have remained as vague assertions. Without such an approach427

the answering of the three questions posed (Q1-Q3) would have been reliant on non-causal428

inference from statistical data (e.g. historic flood occurrence) and fragmented by the use429

of disparate, localised interaction models within the system (e.g. river flow over a barrier).430

This represents a valuable change in approach to overall engineered-systems assessment.431

It is emphasised that the case study is illustrative only, and does not seek to provide432

validated proof of the specific case study’s system state in the future. For example, the433

results reported account neither for changes that may have occurred in the flow profile of434

the Tyne since the flow dataset was obtained, nor for the possibility of more extreme future435

flow events due to climate change. Detailed justification and criticism of modelling choices436

would be essential if the conclusions drawn from the causal model are to be used as part of437

a decision-making tool in the future.438

The following section discusses where future developments of the approach could be439

directed, and the impact of these. This includes refinement of the system assessment to in-440

crease the resolution of the causal relationships being articulated; expansion of the approach441

to situations where the causal structure is itself uncertain; and application of the work to442

cases where new system knowledge can be uncovered by experimentation.443
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Physical Model Assertions444

Underpinning the validity of the DAG are the physical causal models with which it is445

constructed. Whilst full causal fidelity in the physical and engineering model structure446

has been sought for as much as is possible, for reasons of feasibility there remain some447

approximations and gaps. The list of failure modes used is not exhaustive, and the focus448

in this first stage assessment was to look at those modes where some degree of observation449

contributory to the causal structure could be undertaken, such as with the geometry of the450

weir. Additionally, with some of the failure models less resolute numerical techniques have451

been applied, such as in the specification of the model for piping failure. These stemmed452

from a desire to produce a model of the system that was more accessible to end-users than a453

fully resolute one might be, whilst also seeking to ensure confounding effects were avoided.454

Further simplifications come from ignoring certain physical features of the natural system,455

especially those observed over time periods orders of magnitude greater than the immediate456

decision context. For example, the possibility of dynamic re-routing of the river, which is457

known to have historically occurred, was not considered. Changes in the course of the river458

Tyne through the site have been identified by comparison in a GIS system of: (i) historical459

Ordnance Survey maps (surveyed in 1855 and 1895); (ii) aerial photographs dating from460

1946, 1988 and 2009; and (iii) a GPS survey of the river centreline undertaken in September461

2018. An overview of these changes is presented in Figure 10; over the past 150 years the462

river has clearly migrated across the flood plain at several locations across the site. To463

properly account for uncertainty with respect to the future route of the river appears to be464

difficult, yet this has a direct bearing on the possible consequences of weir removal.465

Estimation of Causal DAGs466

This work presents the situation where all relevant causal mechanisms are elicited from467

experts (e.g. an engineer) and data is used only to quantify uncertainty with respect to pa-468

rameters of the mechanisms involved. For engineered systems this situation can be justified,469

as the causal relationships are by definition designed into reality in the artifact. This provides470
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a strong argument in favour of DAG-based causal deduction, compared to, say, epidemiology471

where the notion of a “direct cause” may need to be clarified. However, in some applications472

the edge structure of the causal DAG is itself an unknown object of interest. For example,473

in this case study this would be relevant to assertions about the system that relate to the474

down-scaling of very large scale causation into locally observed effects. Such as if climate475

change were to be explicitly considered, scaling from global temperature rise observations476

through catchment rainfall accumulation to flow specifically at the weir structure would be477

a consideration. That scale of model extent is beyond the scope of this assessment however.478

Statistical methods have been developed to estimate causal DAGs from so-called “obser-479

vational” data that arise. These methods require the so-called (causal) Markov and faithful-480

ness conditions to hold (see Appendix I) and are often classified as either “constraint-based”481

or “score-based”. Popular constraint-based methods include the PC algorithm of Spirtes et482

al., 2000 and Bayesian hybrids of these methods (Claassen and Keskes, 2012), and popular483

score-based methods include (Meinshausen and Bühlmann, 2006; Bühlmann et al., 2014;484

Bartlett and Cussens, 2013).485

Application to Experimental Design486

Once a (causal) DAG has been produced, it can be used to guide the design of future487

experiments to optimally reduce uncertainty with respect to some (causal) statement(s) of488

interest related to the (causal) DAG. For instance, if it was desired to reduce uncertainty489

surrounding the unknown embedment depth XED but there was no option to undertake490

a direct measurement then, from the DAG, it is apparent that one could instead seek to491

obtain information on the weir density WWDI (for example by conducting an ultrasound492

experiment), which would in turn provide information on the conditionally dependent RV493

XED. The statistical literature on experimental design is large and we refer the reader to494

standard sources (e.g. Chaloner and Verdinelli, 1995) for further detail.495

CONCLUSIONS496

The presentation of this case study serves to highlight the potential benefits of the causal497
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graphical model framework for systems-level engineering assessment. Without such an ap-498

proach reliance on observed datasets for prediction and subsequent decision becomes the499

norm for this context. Whilst empirically robust, these approaches do not in general ac-500

commodate the deeper logico-deductive causal inference that is afforded in the causal DAG501

framework. Furthermore, the general lack of observed data that underpins much charac-502

terisation of engineered-systems in the built environment, hinders adoption of empirical503

approaches. As such, methods such as that presented here, offer a significant opportunity504

to overcome current epistemic uncertainty that surrounds decision making and intervention505

strategies in engineering situations, such as weir removal. These methods further represent an506

opportunity to capture and utilise the knowledge and information that does exist, currently507

confined largely to human expertise, which cannot assimilate and integrate so explicitly with508

purely data-derived predictive methods.509

The deductive frameworks for causal inference that are presented in this article provide510

the mathematical, statistical and philosophical tools to address this challenge and to enable511

the honest quantification of the causal content of a model. New outputs produced by this512

work quantify the epistemic uncertainty accompanying causal conclusions drawn from the513

model. The case study of the Clerkington weir demonstrates the potential for these analytical514

techniques to deliver value in a real-world context, but nevertheless it is clear that further515

model criticism and refinement would be required for the work to form part of a decision-516

making tool. It is hoped that this article will help to stimulate further research effort toward517

adopting and tailoring formal causal models in these engineered-systems contexts.518
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APPENDIX I. APPENDIX I: CAUSAL GRAPHICAL MODELS: AN OVERVIEW519

The aim of this section is to communicate the essentials of causal inference based on a520

DAG. Before we begin, we note that other excellent introductions to causal inference are521

available and include Spirtes, 2010; Pearl, 2010; Dawid, 2010. Our article differs in its presen-522

tation, being focused toward causal inference in civil engineering applications, but we were523

nevertheless heavily influenced by these earlier authors, who have each made fundamental524

contributions to the field.525

Non-Mathematical Definitions526

Causal inference blends both mathematical and real-world considerations in a unified527

framework. This means that the definition of certain non-mathematical terms will require528

context-specific semantics that must be specified. Examples will be provided below, while529

in the immediate development we follow Dawid, 2010 by indicating non-mathematical terms530

with teletype font.531

Denote the collection of all relevant quantities in the engineered system of interest ab-532

stractly as XV = {Xv}v∈V , with each quantity Xv being indexed by an element v in some533

suitable index set V . Our aim below is to build a graphical model that describes causal534

interdependencies among these quantities. To proceed, we must make precise the following535

non-mathematical terms:536

• a direct cause among the XV537

• a common cause of the XV538

The semantics that are attached to these non-mathematical terms will be context-dependent.539

For example, when the Xi represent river level measurements, a direct cause between Xi540

and Xj may be understood to mean that location i is upstream of location j, so that increased541

river level at i implies more water must also be present at location j, since water flows542

from upstream to downstream. In this same example a common cause may be an external543

stimulus X∗, such as rainfall across the catchment area, that promotes increased river levels544
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simultaneously at both locations i and j. In the case where X∗ is latent (i.e. not included545

in the set XV ), then variation in X∗ can induce a spurious association between Xi and Xj546

that cannot be explained at the level of the quantities XV . Such latent common causes can547

be problematic as they require special treatment when performing causal deduction and, in548

order to simplify our presentation, these will be explicitly ruled out. That is, we will make549

the strong assumption that all relevant variables have been explicitly included in the set XV .550

Finally, it is convenient to call Xi an indirect cause of Xj if Xi is not a direct cause of551

Xj but there nevertheless exists a sequence of direct causes that connect Xi to Xj.552

Graphical Calculus553

Once the above non-mathematical terms have been defined for the relevant engineering554

context, one can formulate a causal graphical model. Recall that a DAG G = (V,E) is555

comprised of a variable index set V and an edge set E ⊂ V ×V with the property that there556

does not exist a directed path starting and ending at the same vertex (e.g. 1→ 2→ 3→ 1).557

Such a DAG G is said to be “causal” if (a) an edge (i, j) ∈ E exists if and only if Xi is a558

direct cause of Xj, and (b) there are no latent common causes of the XV . A causal DAG559

is distinct from, for example, correlation networks or other types of probabilistic graphical560

model, though the latter have to some extent been exploited in engineering applications561

(Fienen et al., 2013; Wu et al., 2015a; Wu et al., 2015b; Tong and Tien, 2017; Bhandari562

et al., 2017). Rather, we restrict attention to formal causal models in order that rigorous563

causal conclusions can be derived.564

For the moment we assume that the DAG G has been elicited from an expert and is565

treated as fixed. Practical approaches to elicitation are discussed below, in addition to a566

discussion of how the assumption of perfect expert elicitation can be relaxed.567

In the framework of Pearl, 2009 each Xi holds the status of a random variable (RV),568

with randomness reflecting either epistemic uncertainty regarding these quantitites within569

a particular engineered system, or reflecting the fact that many similar engineered systems570

are being considered, of which the behaviour of a typical, randomly selected member of that571
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population is being studied. The joint probability density function of the RVs is denoted572

p(XV ). In order to relate causal DAG models to the RVs we assume in this work the (causal)573

“Markov” property (Spohn, 1980; Spirtes et al., 2000). This states that, for a (causal) DAG574

G, the following factorisation of the joint density holds:575

p(XV ) =
∏
v∈V

p(Xv|Xπ(v)) (2)576

where π(v) denotes the set of parents of vertex v according to the DAG G and XS denotes

the set of RVs {Xv : v ∈ S}. For example, under the Markov property the DAG in Figure

11 implies that the joint density p(X1, X2, X3) can be factorised as p(X1)p(X2|X1)p(X3|X2).

It further follows from this factorisation that the RV X1 is conditionally independent of the

RV X3 given X2, written X1⊥⊥ X3|X2. (In general a “conditional independence relation” is

a statement of the form

XA ⊥⊥ XB|XC

for some index sets A,B,C ⊂ V , meaning that the RVs XA and XB are de facto independent577

once the value of XC is observed.) In order to simplify the presentation in what follows,578

the converse of the (causal) Markov property, called (causal) “faithfulness”, is also assumed.579

This states that (2) is a maximal factorisation of the joint distribution, meaning that a580

conditional independence relation Xi ⊥⊥ Xj|XS, i, j /∈ S for some set S ⊂ V , implies that581

there does not exist an edge Xi → Xj in the DAG, and hence Xi cannot be a direct cause582

of Xj (Spirtes et al., 2000).583

Note that, although the name “random variable” is used, this framework also includes584

the possibility that a RV Xv is deterministically related to its parents Xπ(v) in the DAG,585

perhaps explicitly through a mathematical formula or implicitly through a computer model.586

In this case the conditional density p(Xv|Xπ(v)) should be interpreted as probability mass587

function whose mass is confined to a single point.588

The power of the graphical representation G is due to an extensively developed graphical589
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calculus for causal DAGs. That is, there exist algorithmic manipulations of the graph which590

can be used to determine whether certain probabilistic and causal statements follow as a591

logical consequence of the elementary causal statements that are encoded in the individual592

edges of the graph. This can be illustrated with the motif in Figure 12, from which we may593

conclude that Xi is an indirect cause of Xk. Moreover, Xk cannot be an indirect cause594

of Xi, since this would imply that there exists a cycle in G, which is in contradiction to595

the definition of a DAG. In the case of general G, an important algorithm that we highlight596

is “d-separation” (Geiger et al., 1990), which allows all implied conditional independence597

statements among the RVs XV to be deduced from the graph G; this provides a convenient598

data-driven check on the statistical (i.e. non-causal) assumptions that are encoded in a DAG599

model. The criterion are implemented in software including Daggity (www.dagitty.net).600

These automatic methods for logical deduction, together with the ease of communication601

that is afforded by the graphical representation, have helped to contribute to the popularity602

of DAGs in a variety of research fields, most notably epidemiology (Rothman and Greenland,603

2005).604

Panel Notation605

In applications of graphical models it is common for multiple RVs to appear in parallel606

in the DAG, as illustrated in the left part of Figure 13. In our case study, for example, each607

day i in the dataset is associated with a RV representing flow conditions in the river on day i.608

Such large numbers of RVs can make graphical representations unwieldy and it is therefore609

common to adopt so-called panel notation. An explicit example is given in the right part of610

Figure 13, wherein the dashed panel is used as a shorthand to indicate that copies of the611

graphical motif in the panel should be included for each of the indices i ∈ {2, 3, 4}.612

The Reification Fallacy613

At this point the opportunity is taken to emphasise the distinction between DAG models,614

in the general sense of a probabilistic graphical model, and causal DAG models in the615

specific sense that we have outlined. In particular, while every probability distribution can616
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be factorised as in (2) for some DAG G, it is only causal DAGs for which an edge can617

be interpreted as a direct cause and therein associated with additional context-specific618

semantics. To assign a causal interpretation to edges in a non-causal DAG is known as the619

“reification fallacy” and is in general both scientifically and philosophically incorrect (see620

Section 4.3 of Dawid, 2010).621

The reification fallacy is frequently overlooked, both in the over-interpretation of edges in622

a general (non-causal) graphical model, such as Gaussian graphical models and (non-causal)623

Bayesian networks, and in the assignment of meaning to higher-order graphical motifs. Fur-624

ther discussion on the mis-understanding of causal inference was provided in Imai et al.,625

2008.626

Expert Elicitation of the DAG627

The expert elicitation of a causal DAG can be broken down into three main stages: the628

elicitation of the variables which form the nodes of the graph, the elicitation of the edges of629

the DAG, and the elicitation of the conditional probability distributions associated to the630

DAG, as appearing in (2).631

In the engineering context, it is usually most efficient to encourage the expert to work632

backwards from the relevant failure mode(s) of the engineering system. The initial RVs633

considered will be called Level 1 RVs. The expert now considers other features of the634

problem that might be a direct cause of at least one of these failure mode(s). These are635

Level 2 RVs. The elicitation process continues to trace back these direct causes to their636

sources. The next layer, called Level 3 RVs, will contain RVs that are a direct cause637

of a Level 2 RV (and therefore also an indirect cause of a failure mode). This process638

continues until the expert is content that all RVs pertinent to the failure mode(s) have been639

traced back. The resulting structure is sometimes called a trace-back graph (Smith, 2010).640

It is important at this stage to ensure that each of the RVs have a clear and unambiguous641

meaning, and could in theory be observed. The vertices of the DAG are taken to be the642

collection of all RVs just identified, denoted XV .643
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For each RV, Xv, the expert identifies a subset Xπ(v) of the remaining RVs that are644

considered to be direct causes of Xv. The set π(v) may be empty, in which case there are645

no direct causes of Xv. The set π(v) is interpreted as the index set of the parents of the646

RV Xv in the DAG. For more information on the elicitation of edges in a DAG, see Chapter647

7 of Smith, 2010 and Wilkerson and Smith, 2019.648

The third stage, the elicitation of condition distributions for RVs, has been extensively649

studied in the literature (e.g. Garthwaite et al, 2005; O’Hagan et al, 2006). The aim is to650

translate the domain knowledge of an expert regarding a RV Xv (conditional on its parents651

Xπ(v) in the DAG), into a probability distribution object. To do so, the expert is usually652

asked a series of questions about quantities that could, at least in theory, be observed.653

Questions should also be asked to minimise psychological biases exhibited by individuals654

when they express probabilistic judgements (O’Hagan et al, 2006). If domain knowledge is655

to be elicited from multiple experts, then an additional step of attempting to resolve multiple656

judgements into a single probability distribution representing the group is required. There657

are two main approaches to this: mathematical aggregation, which uses a mathematical rule658

to combine probability distributions, and behavioural aggregation, which attempts to bring659

the experts to a consensus. For more information see Cooke, 1991; O’Hagan and Oakley,660

2014; Wilson and Farrow, 2018; Barons et al., 2018.661

Pearlean Causal DAGs662

One of the main purposes of causal inference is to predict how the engineered system663

might behave when it is manipulated. To be precise, we introduce the non-mathematical664

concept of an intervention, to which context-specific semantics must be associated. For665

example, in the context of a weir, an intervention might constitute removal of the weir, in666

effect setting the RV Xi = 0 when Xi represents the height of the weir.667

Pearl, 2009 popularised a specific class of causal DAG models that behave in a particu-668

larly simple way under intervention. To make this precise, we consider a subset S ⊂ V669

of the RVs on which an intervention may be performed, and denote by do(XS = x) the670
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intervention that sets the RVs XS to the fixed value xS. Then we say that a causal DAG671

G is “Pearlean” if the distribution of the RVs XV \S under intervention satisfies672

p(XV \S | do(XS = xS)) =
∏

v∈V \S

p(Xv|Xπ(v))
∣∣
XS=xS

. (3)673

The notation here means that each instance of a RV in XS on the right hand side is held674

fixed equal to the associated value in xS; in particular, the behaviour of the joint RV XV675

under an intervention is assumed to be a straight-forward transformation of (and only of)676

the joint distribution p(XV ) of XV describing XV in the non-interventional context. In the677

Pearlean framework it is only necessary for (3) to hold for the specific subset S of the RVs on678

which an intervention is actually being considered. For a full discussion of Pearlean causal679

DAGs relative to more general causal models in which an intervention can change conditional680

distributions in respects that are not captured by a Pearlean causal DAG, see Section 7 of681

Dawid, 2010. The effect of intervention for a Pearlean causal DAG can also be generalised682

to interventions that change the distributional nature of the RVs XS, but details are reserved683

for standard references (e.g. Eaton and Murphy, 2007; Pearl, 2009).684

The additional structure that is encoded in a Pearlean causal DAG is sufficient to allow685

prediction of the effect of an intervention on the engineered system, as explained next.686

Estimation of Causal Effects687

An important task in the causal context is to quantify “how much” one RV depends on688

another. Equivalently, an understanding of the strength of causal dependencies is crucial in689

the design of a targeted intervention with a causal objective, such as in weir modification or690

removal, where a minimal, cost-efficient intervention is preferred. Here we demonstrate how691

this is achieved with the intervention semantics that are provided in the Pearlean DAG692

framework. The “average causal effect” (ACE) of RV Xi on RV Xj is defined as the function693

ACE(x) =
∂

∂xi

∫
Xj p(XV \{i} | do(Xi = xi)) dXV \{i}. (4)694
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The integral in (4) represents the expected value of Xj under the intervention do(Xi = xi);695

this is then differentiated with respect to xi to obtain the sensitivity of this expectation with696

respect to xi, which is the ACE. Several alternative measures of causal dependence to the697

ACE are also widely-used (e.g. Rosenbaum and Rubin, 1983; Pearl, 2001; Hudgens and698

Halloran, 2012).699

Causation in Time700

The causal DAG presented in this article does not refer to an explicit time-dependence701

in the engineered system, yet in many applications the causal semantics are premised on one702

event being the trigger for another subsequent event. There is therefore a need to distinguish703

between discrete and continuous time models.704

A straight-forward extension to the causal DAG model that captures time-dependence is705

the “dynamic Bayesian network” (DBN; Ghahramani, 1997). In a DBN, RVs are endowed706

with a second index n ∈ N such that Xv,n represents the value of the RV Xv at the nth707

discrete time point. Often the time points t1, t2, . . . are constrained to be evenly spaced,708

with increment ∆ = tn+1 − tn. A direct cause Xu of Xv is represented in the DBN by709

a collection of edges Xu,n → Xv,n+1 for each n ∈ N. The DBN has close connections with710

vector autoregressive models from econometrics, where the causal framework is related (but711

not identical) to the Granger causality framework (Granger, 1969). Weir removal at time712

n0, for example, in the context of the DBN corresponds to an intervention do(XWH,n =713

0 ∀ n ≥ n0) that fixes the height of the weir to zero at all subsequent time points. Estimation714

of causal effects in DBNs is discussed in Brodersen et al., 2015.715

The ∆ ↓ 0 limit of a DBN model is a continuous time model that can, in some cases, be

described by a stochastic differential equation (SDE):

dXV = f(XV )dt+ gdB

Here f , g are drift and diffusion coefficients and B is a Brownian motion. The analogous716
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notion of a weir removal intervention for the SDE is denoted do(Xv(t) = 0 ∀ t ≥ t0). In717

this case, Sokol and Hansen, 2013 argued that a natural definition for the continuous time718

dynamics under intervention is719

dXV = f(XV | do(Xv(t) = 0 ∀ t ≥ t0))dt+ gdB (5)720

where

f(XV | do(Xv(t) = 0 ∀ t ≥ t0)) = f(XV )|Xv=0.

In particular the definition given here can be recovered by applying a fine time discretisa-721

tion ∆ = tj − tj−1 << 1 to the original SDE to obtain a DBN, then using the definition722

of a Pearlean causal DBN and taking the limit ∆ ↓ 0 to obtain (5). This provides a nat-723

ural generalisation of Pearlean causal DAGs to model engineering systems that evolve in724

continuous-time.725

Other Causal Graphical Models726

The causal DAG is a specific example of a causal graphical model, but other classes727

of causal graphical model have been developed. In general, a causal model is based on728

certain non-mathematical definitions and formal axioms for causal reasoning and deduction729

are stated. Such a model is “graphical” when the causal model can be represented as a730

graph and the deductive process of drawing conclusions based on the stated axioms can be731

represented as a sequence of graphical manipulations. Examples of causal graphical models732

include nested Markov models (Shpitser et al., 2014), chain event graphs (Thwaites et al.,733

2010; Yu et al., 2020) and graphical models that are induced as the margins of causal DAG734

models (Evans, 2016); each of these can be used to reason about the presence of unmeasured735

confounders.736

Summary737

This completes our brief exposition of causal graphical models in the abstract; the in-738

terested reader is directed toward the more technical introductions of Spirtes, 2010; Pearl,739
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2010; Dawid, 2010 for further detail.740

The actual calculation of various probability distributions implied by a DAG can be auto-741

mated with dedicated software, such as Bayes Fusion (www.bayesfusion.com) and Agena Risk742

(www.agenarisk.com), along with purpose-built (Perov et al., 2019) and generic probabilis-743

tic programming software such as STAN (mc-stan.org). However, most software presumes744

that all RVs are of the same mathematical type (e.g. discrete, continuous, categorical) and745

in practice this can impose restrictions on the statistical model in order to fit into such a746

homogeneous framework. For this reason, as well as to improve the pedagogy, we include747

explicit probabilistic derivations in the main text.748
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APPENDIX II. APPENDIX II749

This appendix contains full details of the causal DAG model that was used.750

Direct Causes and Elicitation of the DAG751

Once the RVs XV have been specified, the edges of the DAG can be elicited. This752

is equivalent to specifying the parents of each RV in the DAG. Recall that these represent753

direct causes, as opposed to mere statements about correlation. Certain edges are trivially754

included; for example an edge X
(i)
EQU1 → X

(i)
CA should be included since the weir is defined to755

have failed the condition assessment whenever one of the failure modes, such as X
(i)
EQU1, has756

occurred. In what follows we identify the parents for nodes related to failure modes EQU1,757

EQU2, UPL and PIP, which draws on traditional techniques from engineering assessment.758

Description of the remainder of the DAG structure will be deferred to the next section, where759

the associated conditional distributions are specified.760

EQU1: Failure Due to Overturning761

The first failure mode we considered was overturning of the weir due to rotation about the762

toe, as shown in Figure 14a. The assessment here is similar to that used for other engineered763

retaining structures, with the weight of the structure being resolved into downward forces764

at the centre of gravity of the structure, resisting the overturning moment instigated by the765

water pressure behind the back face of the weir.766

Two kinds of moment must be resolved; horizontal moments due to water pressure and

vertical moments due to weight. The horizontal force exerted by the depth of water on the

weir was assumed to be

force =
ρwatergh

2

2
XCW (N)

where ρwater = 9970 (Nm−3) is the density of water, g = 9.81 (Nkg−1) is the gravitational

constant and h (m) is the height of the body of water. The force was resolved at one third

of the height h of the water, acting at the centroid of the triangular pressure distribution.
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The vertical forces due to weight were assumed to be

force =
ρga

2
XCW (N)

where ρ = ρwater (kNm−3) in the case of water or ρ = XWDI (kNm−3) in the case of weir767

material and a (m2) is the cross-sectional area of the body being considered.768

The failure mode EQU1 is defined to have occurred when the total clockwise moment769

about the toe of the weir is > 0. It follows that the parent nodes of X
(i)
EQU1 in the DAG must770

include the geometric RVs XL, XWH, XSU, XSD, XED involved in the moment calculations,771

in addition to the weir density XWDI, that are needed to determine whether failure mode772

EQU1 has occurred. Note that, since all moments are proportional to XCW, it is clear that773

this failure mode occurs independently of the channel width XCW and there is therefore no774

edge XCW → X
(i)
EQU1 in the DAG. (This is the case for all four failure modes considered.)775

EQU2: Failure Due to Sliding776

The second failure mode that we considered was failure due to sliding, which occurs when

the friction of the weir and its embedment is overcome by the horizontal force exerted by

the water. The friction force was modelled as

force = Ntan(XSFA) (N)

where N (N) is the total downward force due to the combined weight of the weir and water,

as resolved above in EQU1, and XSFA is the soil friction angle (Novak, 2014). Failure mode

EQU2 is defined to have occurred when

T > XLXCXCW +Ntan(XSFA)

where T is the total horizontal force, as resolved above in EQU1, and XC is the cohesion777

of the soil. The parents of XEQU2 in the DAG therefore include the same geometric RVs778
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required in EQU1, together with XSFA and XC.779

UPL: Failure Due to Uplift780

The third failure mode considers that the upward water pressure is high enough to ver-

tically displace the weir. This is illustrated in Figure 14b. Uplift pressure is determined

through calculation of the hydraulic gradient as

Puplift =
ρwaterg(XWH −XDWD)XCW

2XL

.

The total pressure downward due to the weight of the floor of the weir is

Pfloor =
XWDIgaweirXCW

XL

where aweir (m2) is the cross-sectional area of the weir. The density of the floor material and781

its thickness dictate the resisting pressure. Meanwhile the floor length XL contributes to the782

hydraulic gradient (Novak, 2014).783

The failure mode UPL is defined to have occurred if Pfloor < Puplift . The parents of XUPL784

in the DAG therefore include the geometric RVs XL, XWH, XSU, XSD and XED required to785

compute cross-sectional area of the weir, along with X
(i)
DWD and XWDI.786

PIP: Failure Due to Piping787

The final failure mode considered is due to piping, which describes the action of seepage

under the floor of the weir. The relationship between the seepage streamline lengths and the

hydraulic head in the system defines the exit gradient of the weir system

Ge =
XWH −XDWD

XL

,

which arises from a simple linear model, more sophisticated methods based on partial dif-788

ferential equations can also be used (Khosla et al., 1954). Different bed soils have different789

permissible exit gradients and we define failure due to piping to have occurred when Ge > G∗e790
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where G∗e is a constant specific to a given soil type. This constant can be determined from791

literature using the sediment size distribution XSSD. Inspection of sediment samples from792

Clerkington weir suggested that a value G∗e = 0.22 be used. The parents of XPIP in the DAG793

therefore are XWH, X
(i)
DWD, XL and XSSD.794

Elicitation of Conditional and Interventional Distributions795

To each unobserved RV Xv, v ∈ V \ O, we must specify the conditional distribution796

p(Xv|Xπ(v)) of Xv given its parents Xπ(v) in the DAG. In the case where there are no parents,797

this is simply the marginal distribution p(Xv) that must be specified. Several conditional798

distributions are deterministic and have already been specified when we elicited the edges of799

the DAG. The remainder of the conditional distributions are now elicited.800

Source Nodes801

A maximal value for the weir density XWDI was informed by information available for802

similar material (MacGregor, 1945). In particular, we assumed that XWDI is uniformly803

distributed between 0 and 0.9× 26, 000 (Nm−3) where the factor of 0.9 accounts for visually804

determined voiding in the weir. The lower bound of 0 allows for the possibility that large805

sections of the interior of the weir are completely voided. The soil properties XSFA, XC806

were informed from sediment samples and geology tables. For XSFA an elicited uniform807

distribution of between 0 and 65 degrees was used, representing a range from pure clay to808

compact sandy loam. For the embedment depth XED a uniform distribution between 0 (m)809

and 3 (m) was elicited.810

Intermediate Nodes811

For XC we took p(XC|XSFA) to be Gaussian with mean (5000/35)×XSFA (m) and stan-

dard deviation 250 (m). For the upstream water depth, seepage under the weir is a possibility,

which means that the embedment depth XED may be relevant. For the present paper we
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neglect this possibility and simply related X
(i)
UWD to the flow X

(i)
F on day i as follows:

X
(i)
UWD = XWH +

(
X

(i)
F

cdg1/2XCW

)2/3

where cd is the discharge coefficient, taken to be 0.9 for our weir. The “crump” model most812

closely represents the geometry that we studied and we therefore used the associated flow813

equation from Novak, 2014. An upstream flood is defined to have occurred (X
(i)
UF = 1) when814

the upstream water depth X
(i)
UWD exceeds the bank height XBH.815

The relationship between upstream and downstream water levels is challenging to charac-816

terise due to dependence on the downstream flow characteristics of the river (Novak, 2014),817

and demands hydrological expertise beyond the scope of this project. We proceed with a818

simple statistical model for p(X
(i)
DWD|X

(i)
UWD, XWH), namely the approximation819

X
(i)
DWD +XWH −X(i)

UWD ∼ Gamma(1, 0.1) (6)820

was used. Here the gamma distribution is in the shape-scale parametrisation and we empha-821

sise that (6) would need to be replaced with a model driven by hydrological considerations822

in the context of a decision-making tool.823

The fish passability RV is determined by two aspects; (i) the overflow head at weir824

X
(i)
UWD − XWH and (ii) the air gap X

(i)
UWD − X

(i)
DWD. As discussed in the main text, the RV825

X
(i)
FP is categorical and its value is determined as follows:826

X
(i)
FP =



total head > 0.1, gap < 0.5

high head > 0.1, 0.5 ≤ gap < 0.9

medium head > 0.1, 0.9 ≤ gap < 1.4

low otherwise

,827

based on the detailed analysis of Baudoin et al., 2014.828
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Interventional Distributions829

Beyond eliciting conditional distributions, to address an explicitly causal hypothesis we830

must specify how these conditional distributions change under an intervention on the831

system. For this purpose we endow our causal graphical model with the Pearlean structure832

that was previously described. Thus (3) defines the collection of interventional distributions833

that were used as the basis for causal inferences about the river-weir ecosystem. This crucial834

final step completes the specification of the causal DAG model.835
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figures/fig4.pdf

FIG. 1: The stream network for the Tyne catchment. This network was extracted using
ArcGIS hydrology tools and an assumed 0.1 km2 area for stream initiation, which matches
well with water courses shown on Ordnance Survey maps. The main branch of the River
Tyne can be described as a 6th order stream, using the terminology of Strahler (1952).
Clerkington Weir is located approximately one third of the distance down this main branch,
at an elevation of 48 m above Ordnance Datum. The weir lies approximately 400 m downriver
from where the 5th order Gifford Water joins the Tyne, which creates a sharp rise in its
contributing drainage area. At the Clerkington Weir, the river captures a total area of
approximately 250 km2, which represents 79% of the entire Tyne catchment.
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FIG. 2: Clerkington Weir, as observed in 2018. (Image: Stephenson, 2018.)
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(a) Original drawing of the 18th Century Carron
Dam in Scotland.

figures/fig12b.pdf

(b) Original drawing of the Saltersford Weir in
Cheshire, constructed in the 1820’s.

FIG. 3: Historic weir construction in the UK.
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FIG. 4: A geometric characterisation of the river-weir system. The random variables anno-
tated on the diagram are defined in the main text.
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FIG. 5: Data collected on the 28th of September 2018, using a Leica GS08 GPS system.
The river bed elevation and water surface elevation was measured with an average interval
spacing of 12.5 m.
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FIG. 6: The elicited DAG for the river-weir ecosystem. [Dark nodes indicate observed
random variables and light nodes indicate latent random variables that must be inferred.
The index set I runs over each day from 1981-2000.]
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FIG. 7: Q1: Fish Passability. Left: A superposition of the conditional probability distri-
butions p(X

(i)
DWD|XO) over downstream water depth X

(i)
DWD for each of the days i in the

dataset. Right: A superposition of the conditional probability distributions p(X
(i)
FP|XO) over

fish passability X
(i)
FP for each of the days i in the dataset.
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FIG. 8: Q2: Density and Embedment Depth. Contours of constant conditional probability
density p(XWDI, XED|XO) are displayed.
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FIG. 9: Q3: Weir Removal. Left: Empirical distribution of upstream flow X
(i)
F from the

dataset indexed by I (bars), together with a log-normal distribution (blue) fit to this dataset.

Middle: The probability of an upstream flood event (X
(∗)
UF = 1), computed under the inter-

ventional probability distribution p(X
(∗)
UF | do(X

(∗)
WH = h),XO), based on a modified height

h for the weir. Right: The average causal effect of weir height h on the probability of an
upstream flood event. [In each of panel several blue curves are shown, each based on a dif-
ferent log-normal fit to the dataset and representing the fact that several such distributions
could plausibly have given rise to the observed dataset.]
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FIG. 10: Dynamic re-routing of the Tyne river over the last 150 years, based on historical
Ordnance Survey maps (surveyed in 1855 and 1895), aerial photographs dating from 1946,
1988 and 2009, and a GPS survey of the river centreline undertaken in September 2018. The
colour of the river centre lines go from white (oldest) to dark blue (most recent). Image from
Getmapping plc, courtesy of Google Earth.
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FIG. 11: Illustration, a 3-variable causal directed acyclic graph (DAG). If the causal Markov
property holds, then we may conclude that X1 is conditionally independent of X3 given X2,
written X1⊥⊥ X3|X2.
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FIG. 12: Illustration, part of a causal DAG. From this motif we may conclude that Xk has
an indirect causal dependence on Xi, but that Xi does not causally depend on Xk. This is
a demonstration of logico-deductive reasoning based on a causal DAG.
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FIG. 13: Illustration of panel notation. For instances of “parallel” random variables in a
DAG, such as X2, X3 and X4 in the left hand DAG, panel notation provides a compact
shorthand, as exemplified in the right hand DAG.
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figures/fig12a.pdf

(a) Equilibrium failure modes (EQU1, EQU2)

figures/fig12b.pdf

(b) Uplift and piping failure modes (UPL, PIP)

FIG. 14: The four failure modes considered.
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