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A B S T R A C T   

Numerical models are essential tools for understanding the complex and dynamic nature of the natural envi
ronment. The ability to evaluate how well these models represent reality is critical in their use and future 
development. This study presents a combination of changepoint analysis and fuzzy logic to assess the ability of 
numerical models to capture local scale temporal events seen in observations. The fuzzy union based metric 
factors in uncertainty of the changepoint location to calculate individual similarity scores between the numerical 
model and reality for each changepoint in the observed record. The application of the method is demonstrated 
through a case study on a high resolution model dataset which was able to pick up observed changepoints in 
temperature records over Greenland to varying degrees of success. The case study is presented using the DataLabs 
framework, a cloud-based collaborative platform which simplifies access to complex statistical methods for 
environmental science applications.   

1. Introduction 

The natural environment is a complex system that evolves through 
time in response to drivers such as climate change, economic change and 
social change (IPCC, 2018; Schröter et al., 2005). To understand the 
wide range of feedbacks and interactions involved in the earth system, 
numerical models (of varying complexities and computational re
quirements) are becoming increasingly relied upon. Recent advances in 
high powered computing have resulted in models that are capable of 
running at finer spatial and temporal resolutions and/or include more 
processes, and thus better represent the dynamic natural environment 
(Collins et al., 2011; Gutjahr et al., 2019; Hu et al., 2018; Savage et al., 
2013; Swart et al., 2019). These developments are particularly impor
tant as many environmental processes are local in nature and exhibit 
high spatial variability, e.g. air pollution episodes, localised heavy 
rainfall, or ice sheet melt. Therefore, in theory, finer resolution models 
should be able to better capture this variability than their coarser scale 
counterparts. Furthermore, finer scale models are able to provide high 
resolution predictions of future environmental change, under a warming 
climate. However, with this enhanced capability comes increased scru
tiny of uncertainty in the model structure, parameters and outputs 

(Beven, 2006) and how these uncertainties are communicated to model 
users, developers and ultimately decision makers. 

This increasing need to quantify uncertainty in outputs, along with 
the rapid rise in the volume and variety of ‘big data’ in environmental 
science, has resulted in increasingly complex datasets from which sci
entists wish to answer key questions. The field of data science provides 
potential solutions to extract information from ever growing complex 
environmental datasets (Tso et al., 2020) along with providing the 
ability to drive new scientific insight and better constrain uncertainties 
(Hollaway et al., 2018). However, utilisation of such techniques often 
requires experts from different domains to work together in an open and 
transparent way. Therefore there is a need to facilitate such collabora
tive efforts in order to use complex statistical methods to answer envi
ronmental science challenges, an example of which is the evaluation of 
complex numerical models. 

Typically, numerical models are evaluated against observations from 
a variety of different sources (E.g. Sensor networks or satellite data) with 
global metrics often employed to assess how well the model captures the 
overall behaviour of the system (Gleckler et al., 2008; Pincus et al., 
2008). These integrated quantities often include the coefficient of 
determination (R2) which assesses how well a numerical model 
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represents the overall variance seen in the observations or the root mean 
square error (RMSE) which evaluates the overall magnitude of the 
forecast errors by the numerical model. Whilst providing a good overall 
summary of model performance, these metrics do have limitations in 
their use. For example, if the numerical model consistently over/under 
predicts the observations it can still return a high R2 (Krause et al., 
2005). Therefore it is often used in conjunction with other metrics such 
as RMSE, however this itself is scale dependant and therefore cannot be 
used to compare different model outputs. Furthermore, many processes 
in the natural environment are local in both space and time, and 
therefore a good numerical model performance using integrated metrics 
does not necessarily translate to the model being a good predictor at the 
local scale. Examples of such local scale events can be seen in long term 
atmospheric records over varying temporal scales. These can range from 
abrupt shifts in the long term statistical properties of air temperature (e. 
g. the rapid rise in global mean temperature in the late 1990s (IPCC, 
2018), through to shorter term shifts associated with seasonal vari
ability. Therefore, if a numerical model is to be classed as suitably 
representing the reality of the natural environment it should be able to 
capture variability at a range of spatial and temporal scales with an 
acceptable degree of accuracy. 

In recent years there has been a move towards incorporating 
advanced statistical techniques into climate model evaluation, for 
example, the analysis of extreme events (Leeson et al., 2018). To date 
however, no previous studies have focussed on the degree of accuracy to 
which models capture the timing of changepoints in the long term 
temperature record. 

This study presents a new approach to numerical model evaluation 
that utilises changepoint analysis (detection of shifts in the statistical 
properties of time series data) to assess the ability of a model derived 
time series to capture different modes of temporal variability seen in the 
observed record. Changepoints are first identified in the modelled and 
observed time series, then their locations – together with an estimate of 
uncertainty calculated through bootstrap samples - are used in combi
nation with fuzzy logic to develop a metric which captures the degree to 
which the location of modelled changepoints agrees with those identi
fied in the observations. The method is then demonstrated using a case 
study of its application to a high resolution model reanalysis dataset 
designed to simulate the climate of the Greenland Ice Sheet. 

2. Materials and methods 

2.1. Changepoint detection in discrete time series 

Changepoint detection is essentially a statistical method that is used 
to estimate the point (or points) in a time series where there is an abrupt 
shift in its statistical properties such as the mean, variance or both, 
conditional on an assumed model (Eckley et al., 2011). For a discrete 
time series of ordered data, y1:n = (y1, y2, …… yn), the optimal location 
and number of changepoints (m) are identified based on a chosen cost 
function and a penalty to avoid over fitting. The number and locations of 
the changepoints in this study are identified using the pruned exact 
linear time (PELT) algorithm (Killick et al., 2012). More detail on PELT 
can be found in Killick et al. (2012), but in short, the algorithm performs 
an exact search of the time series and considers all possible combina
tions for any number of changepoints (up to a maximum, specified using 
a minimum segment length). Here, the modified Bayesian information 
criterion (MBIC; Zhang and Siegmund (2007)) is used in combination 
with PELT to detect the optimal number of changepoints in the time 
series. This helps reduce the identification of short segments as the MBIC 
penalty balances the overall fit against the length of each segment. 

2.2. Estimating confidence intervals on changepoints 

In order estimate the uncertainty in the locations of the changepoints 
identified using PELT, confidence intervals (CIs) are constructed. These 

are calculated as follows:  

1. For changepoint location, ki, isolate the segments to its left (yki− 1+1,

…, yki ) and right (yki+1, …, yki+1 ) and generate a bootstrap sample of 
each segment separately giving (ỹki− 1+1, …, ỹki

) and (ỹki+1, …, ỹki+1
)

respectively.  
2. Combine the output from step 1 and treat as a time series with a 

single changepoint. This is the series defined by ̃yki− 1+1, …, ỹki+1
, with 

length li.  
3. Estimate the location of the changepoint for this sample using the 

same approach used to calculate the original m changepoints.  
4. Repeat steps 1 to 3 N times.  
5. Calculate the 2.5 and 97.5 percentiles of the N bootstrap samples 

giving the lower and upper confidence interval for the changepoint 
location.  

6. Repeat steps 1–5 for each of the m changepoints in the time series. 

This will provide 95% confidence intervals for each changepoint 
identified by the PELT algorithm. If another confidence interval range 
(E.g. 90% or 99%) is required, the percentiles set in step 5 can be 
changed accordingly. 

2.3. Comparing changepoints between 2 time series 

In order to compare the timing of changepoints between two time 
series and take account of the uncertainty in the estimation of the 
changepoint locations (represented by the constructed CIs) a new metric 
is proposed that is based around fuzzy logic (Matthé et al., 2006; Meyer 
and Hornik, 2009; Zadeh, 1965). 

Here, the aim is to evaluate whether the numerical models are able to 
reproduce changepoints in the observational record and thus demon
strate the model’s ability to capture key processes in the environmental 
system in their outputs. Note therefore, that the changepoints (and 
associated CIs) in the observed record are assumed to be the ‘truth’ and 
are used as the benchmark with which to evaluate the model. 

The observed and modelled changepoints are converted into trian
gular fuzzy numbers centred on the changepoint location with the cor
responding upper and lower confidence intervals as boundaries. A 
normalised similarity score is computed between each observed and 
climate model fuzzy pairs with a score of 0 indicating no similarity and a 
score of 1 indicating perfect similarity (Fig. 1). In this case the measure is 
the Jaccard similarity score which is the ratio between the fuzzy inter
section (i.e. the area containing membership to both fuzzy numbers) and 
the fuzzy union (i.e. the area containing membership of either of the 
fuzzy numbers being compared) of each pair. The performance of the 
climate model at each observed changepoint is recorded as the model 
changepoint that returns the highest similarity or 0 if no points show 
similarity. If more than one modelled changepoint shows similarity with 
an observed, the one returning the highest score will be associated with 
that observed changepoint. If there are more modelled changepoints 
than observed, some will not be included in this pairwise comparison. 
Conversely, if there are more observed changepoints than model 
changepoints, not every observed will have a match. This approach 
ensures that each model changepoint is only associated with one 
observed. 

The similarity scores are then summed across the total number of 
observed changepoints to give an overall score for the given climate 
model at that site and normalised to unity by dividing by the total 
number of observed changepoints, thus allowing comparison of per
formance across different sites. The total score thus ranges from 0 (no 
observed changepoints captured) to 1 (all observed changepoints 
captured perfectly). It should be noted that if the timing of the 
changepoint is captured perfectly by the climate model but the CIs 
differ, the normalised score will be lower than 1 as different CIs indicate 
that the statistical representations of the two time series are different. 
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In addition, the proportion of climate model changepoints that are 
observed changepoints is calculated as well as the proportion of 
observed changepoints that are captured (using the above criteria). Here 
an observed changepoint is classed as captured if there is intersection 
with the CI of a climate model changepoint. These summary metrics 
provide an overall view of how well the climate model captures the 
statistical properties of the observed dataset in terms of its marginal 
behaviour in time, with the individual similarity scores highlighting 
which local (in time) events are particularly well, or poorly, captured by 
the model. 

Missing data in the observed time series are treated as “missing at 
random” and therefore are ignored in the analysis. For consistency, 
where there are missing data in the observed time series, the corre
sponding data is removed from the numerical model time series. In order 
to ensure a sufficient sample size for processing for changepoints, a 
minimum threshold of 100 complete timesteps of data was assigned, 
with any segment not meeting this threshold discarded from the 
analysis. 

2.4. Case study: Application to the evaluation of a high resolution model 
reanalysis product over the Greenland ice sheet 

The ERA5 dataset is a state-of-the-art global reanalysis product 
developed by the European Centre for Medium Range Weather Fore
casting (ECMWF) which provides a detailed record of global atmo
spheric conditions from 1979 through to present day (Hersbach et al., 
2020). The dataset is based around the Integrated Forecasting System 
(IFS) and utilises data assimilation techniques using observations and 
satellite data to produce the final product representing the best state of 
global meteorological conditions at hourly intervals and ~31 km hori
zontal resolution. The ERA5 dataset supersedes the ERA-Interim rean
alysis dataset (Dee et al., 2011) which operates at lower temporal (6 
hourly) and spatial (~79 km) resolutions and has been commonly used 
to force regional climate models, including over Greenland (Fettweis 
et al., 2013, 2017). Given the high temporal and spatial resolution of 

ERA5, along with the use of data assimilation of observations, it is 
reasonable to expect that ERA5 should perform well, in terms of accu
rately representing local scale temporal variability when compared to 
the observed record. 

The changepoint evaluation method described above is applied to 
ERA5 air temperature time series data, in order to evaluate its perfor
mance against observations from automatic weather stations (AWSs) 
from the Greenland Climate Network (GC-Net; Steffen et al., 1996). This 
network of 18 AWSs provides, amongst other key meteorological vari
ables, long term hourly temperature records from the mid-1990s 
through to the present day. For this work, hourly data is aggregated to 
daily mean temperature for the 14 AWSs with the most complete records 
for the period 2000 through to 2017. These time series are then analysed 
using the approach presented above and the locations of changepoints 
established. As the changepoint detection algorithm is conditional on 
the assumed statistical model used to represent the temperature time 
series, if the underlying data structure is poorly understood, erroneous 
results can be produced (Beaulieu and Killick, 2018). The daily tem
perature time series in this study exhibit seasonality and 
auto-correlation between days, which must be accounted for in the 
fitting of the changepoint algorithm. In this case, pre-screening of the 
data revealed a first order auto-regressive model (AR1) fitted to the data 
enabled the best detection of changepoints in the time series. Therefore 
an AR1 model is fitted to the data prior to the changepoint analysis. 
PELT is then used on the residuals of the AR1 time series to identify 
changepoint locations based on a change in variance over time. The 
same process is then applied to the model time series and the ability to 
capture the observed changepoint evaluated. As the focus of this study is 
to develop a new approach to evaluating the ability of climate models to 
pick up local scale changes in the statistical properties of an observed 
temperature time series, a marginal approach in space is taken and the 
changepoint analysis is applied to each of the 14 GC-Net AWS sites 
independently. 

For this case study, all analysis were conducted using R version 3.5.3 
(R Core Team, 2019) and executed within a Jupyter notebook. Version 

Fig. 1. Schematic to show similarity score calculation for changepoints from 2 different time series. The solid black triangles represent the changepoint and 
associated confidence intervals for the first time series (assumed to be the truth). The solid white triangles represent the changepoint and associated confidence 
intervals from the second time series (the time series being evaluated). The grey triangle represents the Jaccard index/similarity score. A-D represent increasing value 
of similarity between changepoints from none (0) to perfect (1). Two black triangles are shown to represent the situation that not all changepoints will have a match. 
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2.3.1 of the ‘changepoint’ R package (Killick and Eckley, 2014; Killick 
et al., 2019) was used to detect changepoint locations using PELT 
(Killick et al., 2012) and version 1.0–18 of the ‘sets’ package (Meyer and 
Hornik, 2009) was used to calculate the fuzzy based evaluation scores. 

2.5. Implementation of the method into the DataLabs framework 

In order to champion open science, collaboration and ease access to 
complex statistical methods for environmental science applications, the 
method presented here is implemented into the DataLabs framework 
(Hollaway et al., 2020). These tools sit in a cloud based computational 
environment that can scale in resources depending on the complexity 
and volume of data that is required to be processed. Furthermore, 
DataLabs can provide access to analytical methods at different levels of 
abstraction ranging from raw code to a graphical user interface that 
drives the workflow. This can foster collaboration between scientists of 
different areas of expertise in an open and transparent environment, 
seen as a key advancement in the field of data science. 

3. Results 

3.1. Identification of changepoints in the observed time series 

A summary of the changepoint locations estimated using PELT be
tween 2000 and 2017 inclusive is shown in Fig. 2. In general, most of the 
stations show 2 changepoints in each calendar year with the first typi
cally falling during the spring (March to May) and the second falling in 
late summer/early autumn (August to October). From the PELT fit (not 
shown), it is clear that the time series tends to be more variable during 
the winter months and less so during summer. This allows physical 
inference to be made from the timing of the changepoints, which 
potentially correspond to the onset and end of the ice melt season in a 
given year. Overall, where there is data available (periods of missing 
data are highlighted in grey in Fig. 2) this pattern of changepoint timing 
holds for most stations. The exception is Summit which returns no 
estimated changepoints for the period 2009–2011. During the 

estimation of the changepoint locations (using the bootstrap approach 
described above), the mean temperatures of each segment are also 
calculated. The resulting warmest segments at each site (red shading in 
Fig. 2) indicate that the 2012 ‘summer season’ (as inferred from the 
changepoint locations) is warmest at 4 of the 14 measurements stations. 
It is known that 2012 was particularly high melt year on Greenland 
(Nghiem et al., 2012) and thus this is a potential key event to focus on for 
the evaluation of the numerical model. 

3.2. Evaluation of ERA5 in terms of capturing observed changepoints 

The changepoint analysis is repeated on the ERA5 temperature time 
series (for the grid cells corresponding to each AWS site) to identify 
changepoint locations (and associated confidence intervals). As per the 
observations, each location is treated independently in space. The new 
fuzzy logic based metric is then used to evaluate the model’s ability to 
capture the observed changepoints at each station (Fig. 3). 

Overall, ERA5 captures the timing of the changepoints in the ob
servations with varying degrees of accuracy returning overall similarity 
scores that range from 0.17 at JAR2 to a best performance of 0.51 at 
Summit. This indicates that there are fairly significant differences be
tween the timing of the changepoints seen in observations and corre
sponding estimated changepoints in the ERA5 simulated time series. 
Furthermore, lower scores tend to occur at sites where the percentage of 
observed changepoints captured by ERA5 is low (i.e. no intersection at 
all between the modelled and observed changepoint confidence in
tervals) or the percentage of model changepoints that are true change
points is also low (Fig. 3). 

A closer look at the individual changepoint evaluation scores (cor
responding to each changepoint in the observations time series) at the 2 
best performing (NASA-U and Summit) and the 2 worst performing sites 
(NASA-SE and JAR2) provides further information to inform interpre
tation of the overall performance metric (Fig. 4). 

At NASA-U and Summit, ERA5 tends to produce high scores for 
capturing each individual changepoint, particularly in the latter half of 
the record (2012 onwards) where similarity scores of 0.65 or higher are 

Fig. 2. Location of changepoints in the 
observed temperature time series at the 14 
GC-Net stations for the time period 1/1/ 
2000 to 31/12/2017. The y-axis shows the 
station name and the x-axis shows time. 
Each bar represents a single station with the 
vertical black lines indicating a changepoint 
and the grey shading indicating missing data 
from the record. The red shading indicates 
the segment (based on the changepoint lo
cations) with the highest mean temperature 
across all years for each station.   
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frequently returned. At Summit, from 2012 to 2017, the timing of the 
observed changepoint is captured perfectly on 4 occasions (out of 11) 
and within 2 days on 4 other occasions, resulting in similarity scores of 
0.65–1.0. Here the range in scores is driven by differences in the con
fidence intervals of the observed and climate model changepoints. At 
NASU-U, for the same period, the timing of observed changepoints is 
captured perfectly on 3 occasions (out of 7). For the remaining 4 occa
sions in this period, the model misses the timing by 2–10 days, including 
failing to capture the observed changepoint in 2017 at all (i.e. returns a 
similarity score of 0). Again, the range in similarity scores at NASA-U for 
2012–2017 (0.18–0.82 for non-zero similarity scores) is also driven by 
differences in the confidence intervals. ERA5 tends to capture a similar 
proportion of the observed changepoints at each site (Fig. 3), resulting in 
the higher overall metrics when normalised across all changepoints 
(0.51 at Summit and 0.44 at NASA-U). 

At NASA-SE and JAR2, ERA5 captures far fewer of the observed 
changepoints, and returns lower similarity scores when they are 
captured (Fig. 4). At NASA-SE, similarity scores of 0.45–0.82 are 
returned for 2015–2017 inclusive where the climate model captures the 
timing of the observed changepoints either exactly or within one day. 
Despite this, similarity scores of less than 1.0 are due to differences in 
the confidence intervals overlap. However, from 2003 to 2006, 7 
changepoints are estimated in the observed time series, with ERA5 
failing to estimate any at all. Conversely at JAR2, with the exception of 
2010, ERA5 and observed changepoint pairs occur in most years (Fig. 4), 
however the model tends to return lower similarity scores (0.03–0.75) 
with ERA5 failing to capture the timing of the observed changepoints by 
between 2 and 16 days. Overall, despite capturing a smaller proportion 
of observed changepoints (17 out of 31) at NASA-SE than at JAR2 (14 
out of 22), the generally higher similarity scores at NASE-SE leads to a 
slightly better overall performance (0.19 compared to 0.17 at JAR2). 

3.3. Focus on capturing key events – the 2012 warm year 

As highlighted in Section 3.1, the changepoint analysis on the 14 
AWS temperature time series identified the summer months of 2012 as 
the warmest on average at 4 of the stations. Furthermore, previous 

studies have highlighted that 2012 was an unusually warm year and one 
of extreme melt over the Greenland Ice Sheet (Hanna et al., 2014; 
Nghiem et al., 2012). As such, this provides an ideal localised (in time) 
event to evaluate how well ERA5 captures the timings of these 
changepoints. This can be done by critiquing the similarity scores at sites 
where the changepoint locations in the observations dataset could be 
interpreted as the start and end of the summer months (Table 1). The 
timing of the summer months is captured best at Southdome (Fig. 5d) 
with the model capturing the start of the season (evaluation score of 
0.712) better than the end (0.365). Here, the start of the season is 
captured perfectly with the non-perfect similarity score being driven by 
the difference in confidence intervals (lower panel Fig. 5d). ERA5 esti
mates the end of the season as being 15 days later than the observations, 
however given the relatively large uncertainty in the changepoint 
location, there is a degree of overlap in the confidence intervals resulting 
in the similarity score of 0.365. 

The timing of the summer season is captured fully (i.e. ERA5 returns 
non-zero evaluation scores for both the start and the end) at 4 of the 
remaining 5 sites, Swisscamp (Fig. 5a), DYE2 (Fig. 5b), Saddle (Fig. 5c), 
and NASA-SE (Fig. 5e). Overall, the timing of the start of the summer 
season is captured better than the end at DYE2 (0.528/0.045 for the 
start/end), Saddle (0.170/0.098) and NASA-SE (0.101/0.003) with only 
DYE2 capturing the timing perfectly. The reverse is seen at Swisscamp 
where the end of the season is captured very well (0.719) with the 
timing captured perfectly and the non-prefect similarity score again 
driven by the overlap in the confidence intervals. The start of the season 
is only just captured (returns a non-zero score of 0.016), estimating it to 
be about a month later than the observations (Fig. 5a). At the remaining 
sites, ERA5 performs poorly, either not estimating any changepoints at 
all for 2012 at NASA-E (not shown in Fig. 5) or failing to capture the start 
of the summer at all at JAR2 (the model estimating the changepoint 
around a month earlier than the observations with no overlap of the 
confidence intervals). The end of the summer at JAR2 is also captured 
poorly with ERA5 estimating the changepoint around 10 days earlier 
than the observations, returning a low similarity score (0.106). The 
uncertainty in the changepoint locations (as signified by the confidence 
intervals), indicates that the underlying statistical representation of the 

Fig. 3. ERA5 performance at each GC-Net AWS, 
defined by the three summary metrics outlined in 
Section 2. The coloured box width shows the per
centage of true changepoints captured and the col
oured box height shows the percentage of model 
changepoints that are true changepoints. The dashed 
boxes represent a perfect score of 1 on each of these 
measures. The colour of each box represents the 
overall normalised score for the changepoint evalu
ation metric. Note that the scale for the changepoint 
evaluation metric has been capped at 0.6.   
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time series from ERA5 differs to that of the observations at these sites, 
leading to the discrepancies in the timings of the changepoints. For 
example, at JAR2, at the start of summer the model displays much larger 
uncertainty (Fig. 5f) in the changepoint location indicating that the 
variance of the time series differs greatly to that of the observations. This 
could indicate the methods used to produce the reanalysis time series 
potentially fail to capture the variability seen in reality on this particular 
event and location. Furthermore, this also suggests that the summer 
season is offset a month earlier in the ERA5 model and could have im
plications for ice melt should the reanalysis product be used to drive 
other regional models simulating ice dynamics. 

During the calculations of the confidence intervals for the change
point locations, the bootstrap samples were also used to estimate the 
corresponding segment means (and associated confidence intervals), 
given the uncertainty in the changepoint locations. These were used to 
compute similarity scores using a similar fuzzy union approach to the 
changepoint evaluation (Table 1). Of the sites that capture the summer 
season, only 2 return non-zero similarity scores (for the segment means); 
Swisscamp and Southdome. At Southdome, despite capturing the timing 
of the season well, ERA5 does not estimate the mean temperature well; 
only returning a score of 0.112. In contrast at Swisscamp, the similarity 
score for the mean is slightly higher (0.125) however ERA5 fails to 
capture the start of the season well. 

4. Discussion 

The method presented in this study provides a new approach for 
assessing numerical models by evaluating how well they capture 
observed local scale temporal events (i.e. changepoints). The fuzzy logic 
based metric also factors in the uncertainty in the changepoint locations 
(represented by bootstrapping confidence intervals) in both datasets 
into the evaluation. The application of the method is demonstrated in 
the evaluation of the ERA5 reanalysis dataset using temperature data 
from the GC-Net monitoring network in Greenland. 

4.1. Understanding numerical model performance at capturing local scale 
temporal events 

Using the normalised summary metric, ERA5 returns overall simi
larity scores ranging from 0.17 to 0.51 (Fig. 3), when averaged across all 
observed changepoints at a given site. As similarity scores are also 
calculated for each individual changepoint, these can give an indication 
of potential reasons for the model performing poorly. At sites where 
ERA5 performs the best (Summit (0.51) and NASA-U (0.44)) the model 
tends to score 0.65 or higher for many changepoints in the latter half of 
the record. This indicates that ERA5 not only captures the timing of the 
changepoints well but there is also strong overlap in the confidence 
intervals between the changepoints of each time series. Strong overlap 

Fig. 4. Evaluation of ERA5 at the 2 best performing sites (NSU and SUM) and the 2 worst performing sites (NSSE and JAR2) using the changepoint evaluation metric. 
The left column (a, c, e, g) shows the residuals of the climate model time series (after the AR1 model fit) and estimated changepoint locations (blue lines and vertical 
solid black lines respectively) and the corresponding observed residual time series and estimated changepoint locations (red lines and vertical dashed black line 
respectively). The right hand column (b, d, f, h) shows the individual similarity scores for each corresponding site on a normalised scale. 
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indicates that, accounting for uncertainty in the changepoint location, 
there is little difference in the statistical properties of the time series (in 
this case variance) suggesting ERA5 is representing reality well for that 
particular event. At sites where ERA5 performs poorly (e.g. NASA-SE) 
the model, despite returning reasonably high scores when it does cap
ture changepoints, fails to capture the majority of changepoints at the 
start of the record leading to an overall low similarity score. Interest
ingly, when compared across all sites the model tends to perform better 
at sites located in the dry snow zone of the ice sheet, where there is very 
little melting, and poorly at the ablation zone sites (Swisscamp, JAR and 
JAR2) where there tends to be the most melt (Leeson et al., 2018), which 
plays an important role in the surface mass balance of the ice sheet. 
Therefore, as reanalysis datasets are often used to drive detailed regional 
climate models that include detailed representations of melt processes 
(E.g. MAR (Fettweis et al., 2017)), the failure to capture local scale 
events by datasets such as ERA5 could propagate through the model 
chain. Therefore consistency across sites in either the geography or 
timing of poor performance can be used to aid development efforts as to 
potential processes and feedbacks in the ERA5 model that require 
further investigation. This offers potential advantages over using global 
metrics to evaluate model performance. 

A comparison with evaluation using the traditional integrated met
rics yields another advantage of utilising this local event based method 
as part of the model evaluation workflow. Table 2 shows the associated 
R2 for each site indicating that ERA5 generally captures the general 
temperature trends well (R2 of 0.65–0.97). Overall, the sites where the 
R2 indicates good performance, tend to also perform better at capturing 
the local scale events. However, there are some notable exceptions at 
JAR (0.88 R2) and JAR2 (0.72 R2) that return good performance on the 
global metrics but produce some of the lowest scores using the 
changepoint metric (0.22 and 0.17 respectively). Therefore, the good 
performance across the record does not translate to the ability to capture 
local scale events well. This agrees with previous work where fidelity at 
global scales does not always translate to finer scale events when using 

complex, computationally heavy models (Medley et al., 2013). 
The individual similarity scores can also evaluate how well the 

model captures key events that are known to be important. In this case, 
using the changepoint locations, 2012 was identified as a potential 
anomalous warm year with ERA5 able to capture this with mixed results. 

The summer season is captured at 5 of the 7 sites (that recorded 
changepoints that could be inferred as the start and end of the summer 
season) with either missed changepoints or poor capturing of timing 
leading to poor performance at the other 2 sites. Further to this, as the 
overall similarity scores are normalised across the record, if there is a 
known event that is of critical importance for the model to capture, 
greater weightings can be applied when the overall score is calculated. 
As this method enables focus on localised events in time, it could be used 
to flag other potential events (in this case summer seasons) that could 
also be anomalous, and are critical for the climate model to capture. 

The changepoint analysis used in this study suggests the 2012 sum
mer season is warmest (over the 20 year record of available data) across 
a large number of sites which corresponds to one of the largest melt 
years in history over Greenland (Hanna et al., 2014; Nghiem et al., 
2012). Therefore, the method could be run on longer term data records 
to highlight other extreme summer years in the past and provide further 
constraints on model evaluation. The method utilised here, can use 
changing patterns in the statistical properties of the data to detect the 
onset of particular events (e.g. in this case summer season). This can 
provide a more robust constraint on how well the model captures local 
scale temporal changes rather than simply looking at annual time series 
or arbitrary definitions of a season. In this study, the method was applied 
to detect changepoints on a seasonal scale, however with the availability 
of long term records it could be adapted to critique the data for longer 
term changes. This could be combined with using the technique to 
evaluate multiple climate models of different complexities and resolu
tions to assess whether the incorporation of more processes leads to 
better model fidelity at capturing local scale temporal events and would 
constitute a natural follow on study to this work. 

4.2. Issues to consider 

Despite the advantages this new model evaluation method offers, 
there are some issues that need to be considered in its application, 
particularly when using highly seasonal environmental data. Typically, 
datasets from the environmental domain exhibit high levels of season
ality, are non-stationary and can exhibit high levels of auto-correlation. 
Changepoint detection algorithms can be sensitive to all of these things 
and lead to the identification of spurious changepoints in the time series 
(Beaulieu et al., 2012; Beaulieu and Killick, 2018) and overfitting of the 
algorithm. This can often make it difficult to make any inference as to 
the physical cause of the changepoint (e.g. onset of a particular season or 
a change in instrument calibration or location). Therefore, due to the 
changepoint algorithm being conditional on the underlying model that 
is specified for the data (AR1 in this study), if the underlying data 
structure is not adequately understood, the method could produce 
erroneous results as discussed in Beaulieu and Killick (2018). 

The GC-Net temperature data and corresponding model data in this 
work were investigated for seasonality and autocorrelation prior to 
fitting of PELT and it was concluded that an AR1 model was the best 
model to fit to the data. However, not all environmental datasets would 
be suitable for fitting an AR1 model and therefore some prior explora
tion of the data is required. Finally, the amount of missing data in the 
time series can also impact the ability to detect changepoints and result 
in issues of overfitting of PELT. The method presented here allows 
specification of the minimum length of continuous data for the time 
series to have for PELT to be applied to detect changepoints. In this case, 
it was set at 100 days to focus on seasonal changes, however this setting 
can be varied dependent on the temporal scale of features which want to 
be investigated. 

Table 1 
Timing of observed changepoints in 2012 at a subset of GC-Net sites along with 
similarity scores for corresponding changepoints (if identified) from the ERA5 
model. The evaluation score for ERA5’s ability to capture the segment mean is 
also presented. Here a score of zero indicates either the model does not capture 
the mean or the model does not estimate a corresponding full summer season. 
Note, only the sites where changepoints are identified in the observation time 
series for the start and the end of the summer season are shown. Similarity scores 
are presented to 3 decimal places due to very low scores returned for some sites 
(E.g. NSSE).  

Site Start 
Date 

End 
Date 

ERA5 
similarity 
score (start) 

ERA5 
similarity 
score (end) 

ERA5 
similarity score 
(mean) 

SWS 02/ 
04/ 
2012 

09/ 
09/ 
2012 

0.016 0.719 0.125 

DYE2 27/ 
05/ 
2012 

25/ 
08/ 
2012 

0.528 0.045 0.000 

SDL 13/ 
04/ 
2012 

29/ 
09/ 
2012 

0.170 0.098 0.000 

SDM 30/ 
04/ 
2012 

17/ 
09/ 
2012 

0.712 0.365 0.112 

NSE 07/ 
04/ 
2012 

18/ 
09/ 
2012 

0.000 0.000 0.000 

NSSE 06/ 
05/ 
2012 

25/ 
08/ 
2012 

0.101 0.003 0.000 

JAR2 28/ 
06/ 
2012 

15/ 
09/ 
2012 

0.000 0.106 0.000  
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4.3. Contribution to data science solutions to environmental science 
challenges 

To facilitate access to the complex workflow of integrating statistical 
(I.e. Changepoint analysis) and process based models (i.e. ERA5), for a 
range of users with different expertise, the analytical workflow pre
sented here is implemented into the DataLabs framework. These cloud 
based tools provide a consistent and coherent environment for scientists 
from different backgrounds (e.g. environmental scientists, statisticians 
and computer scientists) to come together and collaborate in the 
development of novel methods. Furthermore, through visualisation 
dashboards such as RShiny (Chang et al., 2018), users can run compli
cated analytical methods without having to access complex code 
(Fawcett, 2018; Slater et al., 2019). This enables the dissemination of 
results to a wide range of user abstractions. The method presented above 
sits in a modular series of R Markdown (Allaire et al., 2018) notebooks 
that perform the data extraction, the changepoint analysis itself and 
calculation of the fuzzy based evaluation metric. Finally, an RShiny 
application sits over the R code in the notebooks which enables the user 
to explore the performance of the model at each site (an example of the 

Fig. 5. Evaluation of ERA5 for 2012 at subset of sites. The observed temperature time series is shown by the blue line and the ERA5 time series is shown by the red 
line. The blue solid vertical lines show the changepoints in the observations and the solid vertical red lines show the estimated changepoints from ERA5. The blue 
triangles represent the confidence intervals around the observed changepoint (triangle point) and the red triangles represent the confidence intervals around the 
modelled changepoint (triangle point). The grey shaded areas highlight regions of overlap between the confidence intervals of observed and ERA5 changepoints (I.e. 
returns an evaluation score). Note data for site NSE is not shown in the plot despite the changepoints for the start and end of the summer season being identified in the 
observations (Table 1). This is because the ERA5 did not estimate any changepoints for the same period. 

Table 2 
ERA5 evaluation at the GC-Net sites showing R2 and overall similarity score 
using the changepoint metric.  

Site ERA5 changepoint metric ERA5 R2 

SWS 0.27 0.94 
CRW 0.29 0.88 
NSU 0.44 0.96 
HUM 0.29 0.91 
SUM 0.51 0.96 
TUN 0.36 0.97 
DYE2 0.37 0.96 
JAR 0.22 0.88 
SDL 0.22 0.65 
SDM 0.32 0.96 
NSE 0.26 0.91 
NGR 0.33 0.94 
NSSE 0.19 0.72 
JAR2 0.17 0.72  
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application is available with this manuscript). The open and transparent 
nature of the DataLabs enables the method to meet FAIR (Findable, 
accessible, interoperable and reusable (Wilkinson et al., 2016)) standard 
recommended for scientific data. This allows users to understand the 
assumptions made in the execution of the workflow and enable repro
ducibility of the method and adaptability to datasets from other do
mains. The user is also able to tailor the lab to bring in a different 
changepoint algorithm or indeed combine the analysis with other ap
proaches that critique model performance. E.g. the lab could be updated 
to also evaluate the climate models using extreme value theory, as has 
been done previously by Leeson et al. (2018). This can serve as a key tool 
in facilitating the use of data science methods to tackle some of envi
ronmental sciences grand challenges (Blair et al., 2019). 

5. Conclusions 

A new approach to numerical model evaluation has been developed 
by utilising a combination of changepoint analysis (using the PELT al
gorithm developed by Killick et al. (2012)) and fuzzy logic to assess the 
ability of climate models to capture key events seen in the observed 
record. Uncertainty in the changepoint locations are used in combina
tion with a fuzzy union based metric to assign individual similarity 
scores to each changepoint in the observations time series to measure 
how well the numerical model captures that particular changepoint. 
This allows focus of the model evaluation to be placed on local scale 
temporal events and quantify whether strong performance using global 
integrated quantities translates to the local scale. In addition, the 
method can be used to identify common events that indicate good or 
poor performance highlighting potential areas to focus further model 
development on. This was demonstrated through a case study using a 
regional climate model which was able to pick up observed change
points in temperature records over Greenland to varying degrees of 
success. 

In order to facilitate access to data science and statistical approaches 
for environmental scientists, the method has also been incorporated into 
the DataLabs framework. This allows users to interact in a collaborative 
way utilising the method standalone, porting it to other datasets or 
combining it with other approaches (e.g. extreme value theory (Leeson 
et al., 2018; Toulemonde et al., 2015)) for a more robust model evalu
ation exercise. This helps provide a collaborative platform to tackle 
environmental data sciences’ grand challenges (Blair et al., 2019). 

Code and data availability 

Software Name: Fuzzy changepoint application to evaluate numeri
cal model ability to capture important shifts in environmental time se
ries. Hardware Requirements: PC, System requirements: Windows, 
Linux, Program language: R, Program size: 60 KB, Licence: OGL v3, 
Available at the NERC Environmental Information Data Centre (EIDC): 
https://doi.org/10.5285/49d04d55-90a7-4106-b8fe-2e75aba228e4 
(Hollaway, 2021). The R code to run the Fuzzy Changepoint based 
analysis case study presented in this paper is available as either a 
Jupyter or R Markdown notebook and is available on GitHub: https 
://github.com/mjhollaway/Fuzzy_cpt_eval. The accompanying R 
Shiny application is available at the following URL: https://dsne-fuzzyc 
pteval.datalabs.ceh.ac.uk/. The Gc-Net weather station data are publi
cally available for download from http://cires1.colorado.edu/steff 
en/gcnet/. The ERA5 reanalysis dataset is available for download 
from the Copernicus Climate Change Service (C3S) Climate Data Store 
at https://cds.climate.copernicus.eu/#!/search?text=ERA5&type=dat 
aset. 
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