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Abstract 19 

Much recent scientific, media and public attention has focussed on the evidence for and 20 

consequences of declines in insect biodiversity. Reliable, complete inventories can be 21 

used to estimate insect trends accurately, but incomplete data may distort assessments of 22 

biodiversity change. Thus, it is essential to understand the completeness of insect 23 

inventories. Assessing the database of Great Britain butterfly occurrences, likely the 24 

most complete database for any group of insects in the world (with 10,046,366 records 25 
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for 58 butterfly species), we found that only 62% of the cells have complete inventories 26 

at the finest scale evaluated. The dynamic nature of butterfly distributions in response to 27 

climate change could explain this result, as the distribution of completeness values is 28 

related to the increasing occurrence of some species at higher latitudes as a consequence 29 

of recent range expansions. The exceptional quantity of information collected in Great 30 

Britain about this appealing group of insects is insufficient to provide a complete 31 

picture. Consequently, we cannot expect to build complete inventories for less popular 32 

taxa, especially in less comprehensively sampled countries, and will require other 33 

techniques to understand the full extent of global biodiversity loss.  34 

 35 

Keywords Completeness ꞏ Great Britain ꞏ KnowBR ꞏ Climate change ꞏ Butterflies ꞏ 36 

Biodiversity inventory.  37 

 38 

Introduction 39 

The study of the distribution of biodiversity at different spatial and temporal scales has 40 

long been one of the main foci of disciplines such as ecology and biogeography (Cox 41 

and Moore 2004). Reliable descriptions of species distributions are critical for obtaining 42 

a better understanding of the causes underlying biodiversity patterns (Gaston 2000), for 43 

assessing the impact of global change (Powney and Isaac 2015), for producing efficient 44 

conservation plans (Meyer et al. 2015), and for directing action towards multiple Aichi 45 

targets (Pereira et al. 2013). Unfortunately, it is well known that our knowledge of the 46 

geographical distribution of biodiversity remains, in general, taxonomically and 47 

geographically biased (the so-called Linnaean and Wallacean Shortfalls; Brown and 48 

Lomolino 1998; Lomolino and Heaney 2004; Whittaker et al. 2005). The number of 49 

studies on large-scale diversity patterns has rapidly increased in the last two decades in 50 
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order to overcome the Wallacean Shortfall (Beck et al. 2013), facilitated by the 51 

development of biodiversity information networks, such as the Global Biodiversity 52 

Information Facility (Edwards et al. 2000). However, despite most of these biological 53 

databases being taxonomically exhaustive, they lack comprehensive information on 54 

survey effort, making it difficult to determine which territories have reliable species 55 

inventories (Ball-Damerow et al. 2019). A direct consequence of the data limitations for 56 

biogeographical and conservation analyses is that it becomes extremely difficult to 57 

determine whether the apparent absence of a species in a spatial unit reflects its actual 58 

absence or is the result of insufficient survey effort. Data limitations also generate maps 59 

of observed species richness that often suspiciously resemble maps of the number of 60 

records per spatial unit (Hortal et al. 2007). Therefore, databases of point occurrences 61 

provide very limited and spatially-biased species inventories for most taxa, except in a 62 

few well-sampled regions and data limitations are rather the rule than the exception 63 

(Meyer et al. 2015). Only a few countries, typically with a longstanding tradition of 64 

natural history study by amateur enthusiasts and sufficient resources, such as Great 65 

Britain, are able to produce good distribution maps based on adequate sampling for a 66 

range of taxonomic groups, including invertebrates (Griffiths et al. 1999; Meyer et al. 67 

2015; Pocock et al. 2015). However, even comprehensive databases of species 68 

occurrences in these intensively-surveyed regions are prone to geographic (Yang et al. 69 

2013) and taxonomic biases (Soberón et al. 2007; Pyke and Ehrlich 2010).  70 

 Although insect populations are intrinsically dynamic (Hengeveld 1992), much 71 

scientific, media and public attention has focussed on recent declines in insect 72 

biodiversity (Goulson 2019; Habel et al. 2019; Cardoso et al. 2020), the consequences 73 

of with calls for immediate policy responses (Forister et al. 2019; Harvey et al. 2020). 74 

Others, however, have cautioned against overextrapolation from the limited current 75 
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evidence (Saunders et al. 2020), noting the heterogeneity of insect responses (Wagner et 76 

al. 2021) and highlighting the need for more data, especially from the tropics 77 

(Montgomery et al. 2020). In order to estimate insect trends accurately and thus better to 78 

understand the full extent of global biodiversity loss, it is thus essential to assess the 79 

completeness of insect inventories. To date, most studies of faunistic databases have 80 

reported a dearth of complete and extensive inventories for insect taxa (e.g., Romo et al. 81 

2006; Sánchez-Fernández et al. 2008; Santos et al. 2010; Bruno et al. 2012; Ballesteros-82 

Mejia et al. 2013; Fattorini 2013; Lobo et al. 2018). Within insects, diurnal Lepidoptera 83 

are expected to be affected by under-sampling to a lesser degree than other taxa 84 

(Troudet et al. 2017), likely due to their relatively large size and aesthetic appeal. 85 

Butterflies have traditionally been popular subjects of study for the general public as 86 

well as for scientists, and are acknowledged as important flagships for insect 87 

conservation (Barua et al. 2012). Yet, a recent study using a dataset of over 19 million 88 

species occurrence records, identified knowledge gaps in butterfly biodiversity 89 

inventories at a global level (Girardello et al. 2019); while inventory completeness is 90 

relatively good for the Global North (especially some European countries), major gaps 91 

exist in the Southern Hemisphere (particularly in tropical areas). Furthermore, most of 92 

these completeness assessments have been conducted at a relatively coarse spatial 93 

resolution (at least 50x50 km). While of value in describing broad scale biodiversity 94 

patterns, the information obtained from these studies is too coarse for practical 95 

conservation planning applications (Hopkinson et al. 2000). High quality data from a 96 

broad spectrum of taxa and regions based on fine-grained and intensive collection and 97 

assessment of insect inventories are essential for reliable macroecological and 98 

conservation analyses (Beck et al. 2012). The challenge now is to be able to identify 99 

areas with reliable inventories for insects at fine spatial scales. Currently, only the 100 
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combination of data on charismatic insects such as butterflies compiled in countries 101 

with a long tradition in natural history such as Great Britain would meet this objective. 102 

Despite the fact that the quality of data on Great Britain butterflies has been extensively 103 

studied during recent decades (e.g. Dennis et al. 1999; Dennis and Thomas, 2000), and 104 

measures adopted in analyses of the data to account for spatiotemporal variation in 105 

sampling effort (e.g. Carvalheiro et al. 2013; Macgregor et al. 2019), no fundamental 106 

assessment of sampling has been made to determine the completeness of this inventory.  107 

In this study, we examine the database of Great Britain butterfly occurrences, 108 

likely the most complete dataset for any group of insects in the world and which has 109 

been widely used to examine the role of climate change on butterfly distributions (e.g. 110 

Warren et al. 2001; Hill et al. 2002; Menéndez et al. 2006). We explore the spatial 111 

distribution of completeness values at different spatial resolutions and identify those 112 

spatial units that can be considered as sufficiently surveyed. We additionally examine if 113 

spatial variation in the distribution of completeness values may be partially explained 114 

by the temporally dynamic nature of species distributions driven, in part, by 115 

anthropogenic climate change (Parmesan and Yohe, 2003; Chen et al. 2011; Ripple et 116 

al. 2020. 117 

  118 

Material and methods 119 

Species selection and data sources 120 

We analysed a database containing Great Britain records of species from the families 121 

Hesperiidae, Lycaenidae, Nymphalidae, Papilionidae, Pieridae and Riodinidae for the 122 

period 1800-2014. Only resident species were considered, but Phengaris arion was 123 

excluded (due to a long-standing programme of reintroductions), while Vanessa 124 

atalanta was included as it now appears to be resident year-round in Great Britain (Fox 125 
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and Dennis 2010). This database has been generated by the Butterflies for the New 126 

Millennium project operated by Butterfly Conservation.  The project commenced in 127 

1995, but has accumulated a substantial volume of historical records (Asher et al. 2001; 128 

Fox et al. 2015), notably from a previous recording scheme that led to the first butterfly 129 

atlas of Britain and Ireland (Heath et al. 1984). The Butterflies for the New Millennium 130 

database principally comprises butterfly occurrence records (unique combinations of 131 

species x recorder x location x date) from opportunistic, non-standardised sampling by 132 

citizen scientists, either submitted directly to the Butterflies for the New Millennium 133 

project or compiled from other sources including iRecord and iNaturalist. The 134 

Butterflies for the New Millennium also includes records from the structured sampling 135 

of the UK Butterfly Monitoring Scheme.  Prior to being collated into the Butterflies for 136 

the New Millennium database, all records are verified by a network of expert 137 

volunteers. Most Butterflies for the New Millennium records, especially those since 138 

1995, contain fine-scale spatial and temporal information, enabling their use in 139 

biodiversity conservation. However, for our analysis records were binned to specific 140 

combinations of species/10km x 10km grid cell/year. The centroid of each 10km x 141 

10km cell based on the Great Britain Ordnance Survey National Grid was translated to 142 

geographic coordinates (latitude/longitude) following the World Geodetic System 143 

(WGS84). 144 

 145 

Completeness of the database 146 

KnowBR (Lobo et al. 2018; Guisande and Lobo 2019) was used to examine the 147 

accumulation in the number of species with the addition of database records. These 148 

accumulation curves were performed simultaneously for all the Great Britain cells for 149 

five different spatial resolutions (grid cells at 5’, 10’, 20’, 30’ and 60’) applying the 150 
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exact estimator proposed by Ugland et al. (2003). KnowBR automatically estimates the 151 

final slope of the accumulation curve for each cell, the completeness of each cell 152 

inventory, and the ratio between the number of database records and the number of 153 

species. Completeness values (i.e. the percentage of species that have been inventoried) 154 

were calculated after adjusting the accumulation curves to a rational function (see Lobo 155 

et al. 2018 for details), extrapolating the asymptotic values of all these curves to 156 

estimate the probable number of species in each cell when the number of records tends 157 

towards infinity. In our case, well surveyed cells are considered as those that have a 158 

final slope in the accumulation curve ≤0.01 (one new species added to the inventory for 159 

each 100 new database observations), a completeness value ≥ 90%, and at least 20 times 160 

more database records than species. These values seem reasonable thresholds to 161 

consider a grid cell as complete (well surveyed cells). The results provided by KnowBR 162 

at the different resolutions considered are available as Supplementary Information.  163 

 164 

Locally uncommon species and recent species dispersal 165 

As the results of species accumulation curves are greatly influenced by the proportion of 166 

locally uncommon and/or transient species (Thompson et al. 2003) we estimate the 167 

number and proportion of species in each cell with five or fewer database records 168 

(hereafter “locally uncommon species”). The number of locally uncommon species was 169 

correlated against completeness values using the Spearman rank correlation coefficient 170 

(rs). The difference in the number and proportion of locally uncommon species among 171 

well surveyed cells and insufficiently surveyed cells was also assessed by using Mann-172 

Whitney U tests. Additionally, as some Great Britain butterflies are expanding 173 

northwards in response to climate change (Hill et al. 2002; Hickling et al. 2006), these 174 

recent and quite limited occurrences may influence completeness estimates. To examine 175 
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this question, the first year in which each species is observed in the northernmost cell 176 

was determined, and the average date of locally uncommon species computed for each 177 

cell (mean year at which these species attain their maximum latitude).  178 

 179 

Results 180 

The database contains a total of 10,046,366 records (species/locality-cell/year) for 58 181 

species belonging to six families (Table 1). None of the species has been recorded less 182 

than 1000 times, with Maniola jurtina (Nymphalidae) and Pieris rapae (Pieridae) being 183 

the most recorded (with more than 700,000 records each; see Fig. 1). Fifty-four percent 184 

of total database records include species from the family Nymphalidae. The mean 185 

number (± SD) of species and database records per cell (5’ resolution) is 26.0 ±11.0 and 186 

3620 ± 6736, respectively. The geographical distribution of observed species richness is 187 

positively correlated with the number of database records (rs = 0.869, p<0.001) having 188 

a clear latitudinal pattern (Fig. 2). 189 

At the highest resolution assessed (5’ cells), 62% of total cells may be 190 

categorized as well surveyed cells (Table 1; Fig. 3). Completeness and location of well 191 

surveyed cells suggest that at the 5’ resolution many cells in Scotland, as well as some 192 

in Wales and north-west England would be regarded as insufficiently surveyed (Fig. 3). 193 

An increasing percentage of cells can be considered well surveyed cells as the size of 194 

spatial units is increased (Table 2; Fig. 3). For example, almost 90% of Great Britain 195 

cells at 30’ (≈60 x 60 km) can be considered as well surveyed cells. In the same way, a 196 

fit of the % of well surveyed cells against cell resolution using the Morgan-Mercer-197 

Flodin growth function predicts that only 30% of total cells can be considered as well 198 

surveyed cells when the cell resolution is 1 minute (4 km2, approximately; see Fig 4).  199 
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Both the number and the percentage of locally uncommon species in the cells are 200 

negatively correlated with completeness values (rs = -0.492 and -0.870, respectively; 201 

p<0.001) (Fig. 5). The number of locally uncommon species differs between well 202 

surveyed cells and insufficiently surveyed cells (U = 15.41, n1 = 1054, n2 = 1721, p 203 

<0.0001) as well as the proportion of locally uncommon species (U = 39.17, n1 = 1054, 204 

n2 = 1721, p <0.0001), so that well surveyed cells harbour a significantly lower 205 

proportion of locally uncommon species (mean ± sd; 19.5 ± 7.8 %) than the remaining 206 

cells (55.5 ± 24.8 %). On the other hand, completeness percentages are also negatively 207 

correlated with the values of the mean year at which locally uncommon species attain 208 

their maximum latitude (rs = -0.458, p<0.001). In the same way, the mean year at which 209 

locally uncommon species attain their maximum latitude significantly differ between 210 

well surveyed cells and insufficiently surveyed cells (U = 26.33, n1 = 1049, n2 = 1716, p 211 

<0.0001); insufficiently surveyed cells harbour locally uncommon species reaching 212 

their maximum latitude more recently (year 1978.4 ± 16.1) than well surveyed cells 213 

(1951.5 ± 26.2). 214 

 215 

 Discussion 216 

The results clearly indicate that the Wallacean shortfall emerges even in one of the most 217 

complete distributional databases for insects in the world. This result outlines the 218 

difficulty of obtaining reliable inventories of insects at fine scales relevant to 219 

conservation, as less than 2/3 of the total territory can be considered complete even after 220 

more than 200 years of field sampling resulting in more than 10 million records for just 221 

58 species. Of course, these results are dependent on the thresholds selected for 222 

establishing those cells recognized as well-surveyed. In our opinion, the criteria applied 223 

(one new species recorded when 100 database observations are added, completeness 224 
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values ≥ 90%, and at least 20 times more database records than species) are reasonable 225 

and not excessively exigent. Similarly, the number and proportion of cells identified as 226 

being well-surveyed depends on the level of resolution selected; the proportion 227 

diminishes exponentially at cell resolutions finer than ≈40 x 40 km. Thus, the number of 228 

localities that can be recognized as harbouring reliable inventories diminishes 229 

drastically at resolutions closest to home ranges of butterflies, those at which 230 

management decisions are being made (Brakefield 1982; Mallet 1986). At the lowest 231 

considered resolution (≈ 100 km2) more than one third of Great Britain territory does 232 

not meet our criteria for being considered as well-surveyed.  233 

For other taxonomic groups in other regions worldwide, results obtained have 234 

been even worse, where only small fractions of the spatial units examined provide 235 

relatively complete inventories. For example, another relatively well surveyed area is 236 

the Iberian Peninsula. In this area, some studies have evaluated the completeness of the 237 

inventories of water beetles (Sánchez-Fernández et al. 2008), dung beetles (Lobo and 238 

Martín Piera 2002), and butterfly species (Romo et al. 2006), revealing that less than a 239 

third of the Iberian and Balearic 50 × 50 km grid cells can be considered as relatively 240 

well surveyed areas (90% completeness).  241 

If, in an exceptional case such as Great Britain, the quantity of information 242 

collected about the species of an appealing group of insects is not able to provide a 243 

complete picture, there can be little expectation that biodiversity distribution patterns for 244 

less popular taxa can be resolved accurately, especially in countries with lower levels of 245 

sampling. Two complementary options exist to tackle this knowledge gap. First, 246 

sampling effort could be directed to increase the number of well surveyed cells, 247 

particularly in order to represent the full geographical extent and environmental 248 

heterogeneity of the chosen territory (Hortal & Lobo, 2005; Sánchez-Fernández et al. 249 
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2008; Varela et al. 2014). Techniques used in the current study are valuable for 250 

identifying geographical areas, at different scales, where attention is required. Second, 251 

modelling techniques can be used to determine the probability of presence/absence of 252 

species in absence of exhaustive information (Peterson et al. 2011). Species distribution 253 

modelling has been extensively used in ecology, biogeography and biodiversity 254 

conservation to predict occurrences using existing (albeit incomplete) records of taxa 255 

correlated with environmental variables such as land cover and climate data (Guisan and 256 

Thuiller 2005; MacKenzie et al. 2006; Norberg et al. 2019). Additionally, modelling 257 

approaches have been developed to predict distributions of communities of species, 258 

including Great Britain butterflies (Dapporto et al. 2015; Ovaskainen et al. 2016), and 259 

for assessing temporal trends in species distributions using incomplete (and 260 

spatiotemporally biased) occurrence data (e.g. Isaac et al. 2014; Dennis et al. 2017; 261 

Outhwaite et al. 2018).   262 

The completeness pattern found in this study is simple and homogeneous, 263 

independent of spatial scale: northern cells appear recurrently as insufficiently surveyed 264 

at all resolutions. While likely causes include low human population density and 265 

mountainous terrain, this latitudinal pattern could be an artefact caused by the 266 

increasing occurrence of new species in cells due to climate-driven northward range 267 

expansions. Completeness values derived from accumulation curves are highly 268 

dependent on the number of locally uncommon species (Chao et al. 2009), and our 269 

results suggest that a significantly lower number of locally uncommon species appear in 270 

well-surveyed cells. Furthermore, the cell average year at which locally uncommon 271 

species attain their maximum latitude differs between well-surveyed and insufficiently 272 

surveyed cells. These two results, together with the statistically significant relationship 273 

between the mean year at which locally uncommon species attain their maximum 274 
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latitude and completeness values, suggest that the dynamic nature of butterfly 275 

distributions in response to climate change (Hill et al. 2002; Hickling et al. 2006; 276 

Menéndez et al. 2006) could frustrate attempts to delimit complete inventories when the 277 

data are collected over a long period of time. Hence, the dynamic nature of species 278 

assemblages (Hengeveld 1992), particularly when habitats and climate are changing 279 

rapidly as a consequence of human actions (Ripple et al. 2020), and our incapacity to 280 

provide reliable snapshot estimations of the distribution of a large portion of 281 

biodiversity, could prevent the use of the available occurrence data for accurate research 282 

for basic and applied purposes.  283 

Although the primary data of biodiversity databases may be used to improve the 284 

available distributional knowledge of a species (e.g., Dennis et al. 2002; Dennis and 285 

Shreeve 2003), the compilation of this information often encompasses such long time 286 

periods that the presence or absence of a species in a locality may not reflect current 287 

reality, thereby undermining the usefulness of the hard-earned biodiversity databases. 288 

Thus, the dynamic character of biological inventories makes it even more difficult to 289 

use them to derive useful patterns for applied uses such as in biodiversity conservation. 290 

Despite the undoubted interest and long history of trying to establish the distributions of 291 

species (Pocock et al. 2015), we suggest that conservation decisions should be 292 

complemented with modelling approaches (Guisan et al. 2013) and time-series data 293 

coming from systematic standardized surveys. In addition, simple steps can be taken to 294 

improve the usefulness of opportunistic distribution records (Altwegg and Nichols 295 

2019; Callaghan et al. 2019a, b) while retaining the societal benefits of involving citizen 296 

scientists (Lewandowski and Oberhauser 2017; Turrini et al. 2018).  297 
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Table 1.- Total species richness (S) and number of data base records (DR) for each 517 

family of butterflies recorded in Great Britain. 518 

 519 

Family S (%) DR (%)
Hesperidae 8 (13.79) 641,627 (6.39)
Lycaenidae 14 (24.14) 1,185,705 (11.80)
Nymphalidae 27 (46.55) 5,437,602 (54.13)
Papilionidae 1 (1.72) 2,723 (0.03) 
Pieridae 7 (12.07) 2,767,276 (27.55)
Riodinidae 1 (1.72) 11,432 (0.11) 
Total 58 10,046,365

 520 

 521 

 522 

 523 

Table 2.- Spatial resolutions in minutes at which accumulation curves have been 524 

produced, their approximate resolution in kilometres, total number of cells (N), number 525 

of well surveyed cells (WSC) and their corresponding percentages. SOBS and SPRE are 526 

the mean number of observed and predicted species according to a rational function 527 

adjustment of the accumulation curve. 528 

 529 

resolution N WSC SOBS SPRE 
60’ (≈120 x 120 km) 70 64 (91.4 %) 34.2 34.9 
30’ (≈60 x 60 km) 208 183 (88.0 %) 32.5 33.4 
20’ (≈40 x 40 km) 420 357 (85 %) 31.4 32.4 
10’ (≈20 x 20 km 1456 1025 (70.4 %) 27.8 29.1 
5’ (≈10 x 10 km) 2775 1721 (62.0 %) 26.1 27.8 

 530 

 531 

 532 

 533 

 534 
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Figure 1. Number of database records for each species. 535 

 536 

 537 

  538 
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Figure 2.- Spatial variation (5’ cell resolution) in the number of database records (A), 539 

completeness percentages (B), number of observed butterfly species (C), and number of 540 

predicted species (D) after adjusting accumulation curves to a rational function (see 541 

Lobo et al., 2018 for details).  542 

  543 

544 



25 
 

Figure 3.- Well surveyed cells at the five considered resolutions. Well surveyed cells are those have a final slope in the accumulation curve 

≤0.01, a completeness value ≥ 90%, and at least 20 times more database records than species  
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Figure 4.- Variation in the percentage of well surveyed cells (%WSC) according to five 

different (grey dots) spatial resolutions of the cells (in minutes) and a Morgan-Mercer-

Flodin adjusted curve on these data (r= 0.999; broken line). The grey area represents the 

variation in the observed mean number of species in well surveyed cells, while the 

continuous black line represents the predicted mean number of species in well surveyed 

cells following the adjustment of the accumulation curves to a rational asymptotic 

function. 
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Figure 5.-  Relationship between the completeness and the proportion of locally 

uncommon species in all the 5’ cells of Great Britain. Completeness was calculated as 

the proportion of observed species against those predicted by adjusting the 

accumulation curve of each cell to a rational function. Locally uncommon species are 

those with five or less database records in a cell. The size of the dots is proportional to 

the frequency of similar values. The broken line represents a cubic polynomial fit of the 

data. 
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