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Variational data assimilation of sea surface height into a regional storm surge
model: Benefits and limitations
David Byrne, Kevin Horsburgh and Jane Williams

National Oceanography Centre, Liverpool, UK

ABSTRACT
Storm surges are coastal sea-level variations caused by meteorological conditions. It is vital that
they are forecasted accurately to reduce the potential for financial damage and loss of life. In
this study, we investigate how effectively the variational assimilation of sparse sea level
observations from tide gauges can be used for operational forecasting in the North Sea. Novel
data assimilation ideas are considered and evaluated: a new shortest-path method for
generating improved distance-based correlations in the presence of coastal boundaries and an
adaptive error covariance model. An assimilation setup is validated by removing selections of
tide gauges from the assimilation procedure for a North Sea case study. These experiments show
widespread improvements in RMSE and correlations, reaching up to 16 cm and 0.7 (respectively)
at some locations. Simulated forecast experiments show RMSE improvements of up to 5 cm for
the first 24 h of forecasting, which is useful operationally. Beyond 24 h, improvements quickly
diminish however. Using the setup based on the shortest path algorithm shows little difference
when compared to a simpler Euclidean method at most locations. Analysis of this event shows
that improvements due to data assimilation are bounded and relatively short lived.
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1. Introduction

Coastal floods are a major hazard globally with severe
economic and environmental consequences. In a
world of changing climate and rising seas, the risk to
coastal communities from storm surges is increasing
(Bindoff et al. 2007; Haigh et al. 2010; Menendez and
Woodworth, 2010; Church et al. 2013). Globally, the
increase in extreme sea levels will result in critical
flood defence thresholds being breached more fre-
quently and therefore the risk of flooding will increase.
Allowing for investment in adaptation measures (e.g.
rising flood defences), global flood losses in 136 of the
world’s largest coastal cities have recently been esti-
mated (Hallegate et al. 2013) to rise from US 6 billion
per year in 2005 to US60–63 billion per year by 2050.
For the European coastline, expected annual damages
due to coastal flooding are projected to increase (Vous-
doukas et al. 2018) by two to three orders of magnitude
(from €1.25 billion today) by 2100. For the UK cur-
rently, $150 billion of assets and 4 million people are
at risk from coastal flooding (Flowerdew et al. 2009).
Jevrejeva et al. (2018) warn that without additional
adaptation, the UK would be exposed to flood risk of
6.5% of UK GDP (800 billion per year) by 2100 if the
worst greenhouse gas emissions scenario is realised.

These drivers mean that vulnerable coastal communities
will be at increased risk in the future. Forecasting
models for waves and storm surges, delivery mechan-
isms and monitoring technologies therefore need to
constantly innovate, in order to provide the state of
the art warning systems needed by emergency respon-
ders to protect lives and livelihoods.

A storm surge is the regional increase in sea level due
to passage of a storm and can last from hours to days
and span hundreds of square kilometres. In European
shelf seas, they can produce sea levels several metres
higher than tides alone (Wadey et al. 2015). The primary
mechanisms that contribute to the generation of a storm
surge (Pugh and Woodworth, 2014) are:

1 The inverse barometer effect increases sea level due to
local areasof lowairpressure generating convergingcur-
rents.This is the larger contributionaway fromthe coast.

2 Momentum transfer from strong winds to the sea sur-
face bywind setup drives water against coastal bound-
aries. This is the dominant mechanism in shallower
coastal areas.

Other factors contributing to extreme sea levels are
wave setup and superimposed wind waves which,
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when combined, lead to the overtopping of coastal
defences. Additional dynamical considerations which
affect sea levels are interactions between the surge, the
tides and wave action (Horsburgh and Wilson, 2007;
Wolf, 2008).

In the mid-latitudes, storm surges are created by
extratropical cyclones. These are low-pressure atmos-
pheric systems that are typically accompanied by strong
winds and generally bad weather. Northwest Europe is a
region particularly vulnerable to destructive storm
surges due to areas of low lying land (e.g. The Nether-
lands and East Anglia) and shallow seas (Gonnert
et al. 2001). A prominent example of such a surge
occurred on the night of 31 January 1953 (Gerritsen,
2005). A large depression generated a storm surge in
the North Sea that swept southwards along the UK
coastline. The surge, which coincided with spring
tides, resulted in hundreds of deaths (1836 in the Neth-
erlands, 307 in the UK), as well as an estimated £50
million of damage in the UK. Partially as a response,
many new coastal defences have been constructed and
storm surge forecasting has made substantial improve-
ments over the last three decades.

The benefits of improvements to forecasting and
defences can be seen by contrasting the 1953 storm
with the more recent ‘Xaver’ North Sea storm surge of
5–6 December 2013 (Sibley et al. 2015; Wadey et al.
2015). The strong winds that accompanied this event
brought non-tidal residuals of up to 3.4 m and skew
surges of up to 2 m in parts of the North Sea. In total,
1710 home were reported to have been flooded along
the East coast of England, while thousands were evacu-
ated throughout areas bordering the Irish and North
Seas. Although this event was in many ways meteorolo-
gically similar to that of the 1953 event (similar
depression and coincident surge and spring tides), the
impacts were far less. The storm and surge resulted in
significant damage to coastal structures and defences,
flooded 2800 properties in the UK and damaged infra-
structure (Wadey et al. 2015). Despite the reduced
impacts, however, it is still one of the most damaging
surge events in north-western Europe since the 1953
event.

Operational forecasting of storm surges is routinely
performed using numerical hydrodynamical models.
For instance, in the UK the Met Office provides storm
surge and wave forecasts four times per day using an
ensemble of the same depth-averaged hydrodynamical
model that is used in this study (Flowerdew et al.
2009). Many operational tide-surge forecasting models
use the depth-averaged Navier-Stokes equations for
modelling sea surface height. The equations are often
modelled using finite differencing on a choice of

Arakawa grid (Messinger and Arakawa, 1976), although
this can vary. Model domains are normally regional,
allowing for a higher resolution, and are forced at the
air–sea interface by the best resolution numerical
weather prediction models. Operational systems serve
national needs so there is an ongoing necessity to
improve the accuracy of forecasts. One candidate to
further improve the accuracy of storm surge models is
data assimilation.

Data assimilation (DA) is used for estimating the true
state of a system using multiple data sources. Typically,
this involves combining model variables (background
variables) with observations of the system, while taking
into account information about errors in each. For fore-
casting applications, DA is typically used to create
improved initial conditions for a model run or to update
the model state at specific time steps. This is done to
mitigate the propagation and amplification of model
errors over time. Other applications include the creation
of reanalysis datasets, where data from multiple sources
are combined to generate an accurate as possible picture
of the state of a system in the past. Such datasets can be
useful for improving physical understanding and vali-
dation, for example see studies by Bresson et al.
(2018) and Brown et al. (2010).

DA is integral for modern weather forecasting and
has been used for decades (Lorenc, 1986; Daley, 1991).
Weather forecasting agencies such as the Met Office,
Meteo-France and the Canadian Meteorological Service
all use it to initialise their forecast models (see for
example Gauthier et al. 1999; Rawlins et al. 2007; Daniel
et al. 2009). DA has also been used for ocean prediction.
For example, Hoyer and She (2007) assimilated sea sur-
face temperature observations from multiple sources,
including satellites. It has also been shown to have oper-
ational benefit for ocean wave forecasting, see for
example Voorrips (1999) and Almeida et al. (2015).

A limited amount of work has been done on using
data assimilation in storm surge forecasting. In the
North Sea, Madsen et al. (2015) looked at the assimila-
tion of reconstructed altimetry data and successfully
improved their model. However, their method involves
the assimilation of large amounts of data, which is costly
and time consuming. They also assimilated data only
every 12 h. Zijl et al. (2015) used a Kalman filter to
assimilate sea-level data into the North Sea sea-level
forecasting, seeing improvements for the first few
hours of forecast. Variational techniques have been little
studied in storm surge forecasting: Lionello et al. (2006)
did use variational assimilation for a forecasting model
of the Adriatic Sea, however, only considered the assim-
ilation of data from a single location and the system is
no longer in use.
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In this paper, we build on the above studies by eval-
uating the use of variational data assimilation of tide
gauge data in operational storm surge forecasting in
the North Sea and attempt to quantify its limitations.
Tide gauge observations are easily accessible in real
time and so any improvements due to their assimilation
is of great practical use. We bring together ideas from
atmospheric data assimilation as well as new ideas for
dealing with the problems not present in the atmos-
phere such as coastal boundaries. A number of numeri-
cal experiments are performed, making use of a specific
case study: the 2013 Xaver storm surge event.

2. Methods

In this paper, a data assimilation system has been cre-
ated to work with observations from tide gauges and
an operational storm surge forecasting model. This sec-
tion describes in detail the model used, the data assim-
ilation setup and the numerical experiments used to
validate the system and evaluate forecasting skill. Two
assimilation setups are considered: one using a tra-
ditional parametric covariance model and the other
used a novel coast-following method, both of which
are explained below.

2.1. Model

As potential improvements to operational storm surge
forecasting is being evaluated, the CS3X (Continental
Shelf Model 3) model is used as a numerical tool. This
model has seen extensive use for operational storm
surge forecasting around the UK by the UK Met
Office from 1991 to 2020 and is one of the most vali-
dated operational storm surge models. At the time of
writing, the UK Met Office was in the process of repla-
cing CS3X with the NEMO model for future scalability
and consistency with other systems. CS3X uses a grid
with resolution 1/9◦ (latitude) by 1/6◦ (longitude) – a
resolution of approximately 12 km. Its domain covers
the area between 40◦N to 63◦N and 20◦W to 13◦E.
The sea surface is modelled using finite differencing of
2D depth-averaged Navier-Stokes equations. Three
dimensional models may also be used for storm surge
modelling and are especially useful where multi-direc-
tional flows, stratification and internal waves/tides are
significant. However, these models require more com-
putational resources but offer little improvement for
operational forecasting skill, for example, see Bertin
et al. (2012), Dangendorf et al. (2014), and Kodaira
et al. (2016).

Tidal forcing is applied at the domain boundaries
using the 26 largest constituents derived from a

harmonic analysis of the NEA ocean model (Flather,
1980). This forcing is applied as elevations and currents.
Tidal potential forcing is also applied to the whole
domain, using equilibrium tide data as in Cartwright
and Taylor (1971). Wind stress is parameterised from
wind speed using the Charnock formulation (Charnock,
1955), where the surface drag coefficient CD is calculated
from a surface roughness defined as:

z0 = au2∗
g

, (1)

where u∗ is friction velocity, g is gravity, and α is the
Charnock parameter. A value of 0.0275 was found by
Williams and Flather (2000) to optimise storm surge
modelling in CS3X. The atmospheric forcing used at
each timestep is derived from forecasted wind and
sea-level pressure fields with a catenated 6-h lead time
(UK Met Office Unified Model). Using these fields
allows us to reduce errors introduced by inaccuracies
in the atmospheric data and to isolate improvements
to the ocean model alone.

2.2. Data assimilation setup and observations

2.2.1. Overview of assimilation scheme
A variational data assimilation scheme (VAR) is used
for assimilation (Lorenc, 1986). Such schemes (e.g.
3DVar and 4DVar) have been used extensively and
with success in Numerical Weather Prediction (NWP)
(Andersson et al. 1998; Courtier et al. 1998; Rabier
et al. 1998; Gauthier et al. 1999; Lorenc et al. 2000).
4DVar is the current standard (Klinker et al. 2000; Mah-
fouf and Rabier, 2000; Rabier et al. 2000; Gauthier et al.
2007; Rawlins et al. 2007) and is especially useful when
observations are spread irregularly in time. State of the
art methods include Ensemble 4DVar methods (Zhang
et al. 2009; Buehner et al. 2010; Kuhl et al. 2013) and
Ensemble Kalman Filter methods (Houtekamer and
Mitchell, 2001; Houtekamer and Zhang, 2016). For the
purpose of this study however, we neglect the time
dimension and use 3DVar.

Variational assimilation requires the minimisation of
a cost function:

J(x) = dxT B−1dx+ (y− Hxb)T R−1(y− Hxb), (2)

where J(x) is the scalar cost function, xa is the analysis
and the variable over which J is minimised, xb is the
background state vector, y is the vector of observations,
H is the observation operator, which transforms vectors
of variables from the model grid space to the obser-
vation space, B is the matrix of covariances between
the errors of background variables in the model grid
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space and R is the matrix of error covariances between
observations. The term dx = xa − xb is known as the
increment and y−Hxb the innovation. The minimis-
ation problem has been solved using the conjugate gra-
dient method (see Hestenes and Stiefel, 1952) on a
system preconditioned using the control variable trans-
form (CVT) (Lorenc et al. 2000). This uses the substi-
tution u = B

1
2dx into Equation (2), also eliminating

the need to calculate B−1.
Total water level (TWL) data from 15 research-qual-

ity tide gauges around the North Sea is assimilated into
the model (see Figure 1). They are chosen according to
data availability and quality during the December 2013
storm surge event. We choose to assimilate total water
level rather than non-tidal residuals as these contain
phase alterations to the tide, which can manifest as
large unrealistic periodic signals (Horsburgh and
Wilson, 2007). This also means that the calculation
and subtraction of tides at each assimilation timestep
is not required. The datum of assimilated data is
adjusted to match that of the model sea surface by sub-
tracting a 1-year mean from the data. Importantly, this
level will also correspond to the mean level of the tidal
forcing applied at the domain boundaries. Error var-
iances at observation locations are assumed to be uncor-
related, meaning that the matrix R is diagonal –
simplifying calculations somewhat. Variances are esti-
mated through the analysis of 1 year of data filtered
using a high pass filter to remove tidal signals. At all
gauges used, a standard deviation on the order of 0.01
m has been found.

By assimilating total water level, corrections are not
made only to the surge component of the model. The
assimilated data contains part of the tidal signal, which
will subsequently be introduced into the model analysis.
Modelling shelf sea tides accurately remains challenging,
therefore obtaining non-tidal residuals from the analysis
(by subtracting a tide-only model run) becomes very
difficult. To avoid this problem, our RMSE analysis in
Section 3 is performed on TWL, not non-tidal residuals.

Information on barotropic currents is not assimilated
into the model due to a lack of observations and cross
correlations between variables are assumed to be zero.
Instead, sea-level perturbations are introduced into the
model using a short ramp function for stability. This
function introduces sea-level increments gradually
over a time window to reduce any shock to the model
dynamics. This means that the x and y terms in
Equation (2) contain only sea-level information.

2.2.2. Covariance modelling
Two parametric background error covariance models
have been developed using an analysis of innovation

covariance, similar to Hollingsworth and Lonnberg
(1986). Such models can be used to easily and cheaply
create the background error covariance matrix B in
Equation (2). Othermethods, such as ensemblemethods,
are generally more costly to develop. Innovation-based
methods for estimating the background error covariance
work by substituting true background errors, which are
unobtainable, with innovations. Assuming observation
and background errors are uncorrelated then inno-
vations covariances will match the background error
covariance for points that are not collocated (Hollings-
worth and Lonnberg, 1986). This does not hold as the
separation between two points tends to zero, so other
methods must be used to estimate the error variance.
This is discussed further later in this section.

Tide gauge data is not used to calculate innovations as
it is spatially sparse and limited to the coast. Instead
reconstructed altimetry data developed by Hoyer and
Andersen (2003) and Madsen et al. (2015) has been
used from five periods in 2004-2006. This data were con-
structed by ‘blending’ together tide gauge and altimetry
data to create dense sea-level datasets along altimetry
tracks in the North Sea. It gives good spatial coverage
both near the coast and in the interior. In doing this,
the assumption is made that the error covariance is
stationary in time (ergodic) since the experiments later
in this study are performed for 2013 – a year for which
the reconstructed dataset was not available.

The parametric covariance models use the distance
between model point pairs as an independent par-
ameter. The method used to calculate this distance is
different for each covariance model. They are con-
structed in four steps, which are detailed further later
in this section. These steps are:

(1) Distances are determined between all background
point-pairs.

(2) Innovations are used to derive a parametric corre-
lation function using distance as a parameter.

(3) Innovations are used to estimate error variance for
each background point and thus calculate the
covariance.

(4) The parametric covariance model is modified using
the current state of the modelled sea surface using
an adaptive localisation scheme.

Mathematically, the error covariance between any
two background points i and j is constructed as follows:

B(i, j) = sisjP(i, j)F(i, j), (3)

where si and sj are the estimated background error
standard deviations at point i and j, respectively, P(i, j)
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is an appropriate function of point-pair separation dis-
tance D and F(i, j) is a localisation function that is
dependent on the sea surface height at each point i
and j. Each of these terms is described in more detail
in the following sections.

Point-pair separation distance, D
As mentioned above, the separation distance D
between any model point-pair is used as a parameter
in the construction of the background error covariance
matrix. Two distance calculation methods have been
considered in this study: a Euclidean-based method
and a shortest-path method. Often, for small domains,
distance is calculated using a Euclidean-type or spheri-
cal method. Ocean signals propagate around coastal
boundaries not through them; however, the straight
line distance does not take this into account. Instead,
a shortest path algorithm can be used to calculate dis-
tance and attempt to generate more realistic separation
distances in a topographically complex domain. In this
study, Dijkstra’s algorithm (Dijkstra, 1959) has been
used.

For more complex covariance estimation methods
such as ensemble methods, the effects of along-coast
covariance is accounted for intrinsically. Our method
attempts to model this without the need for large

computational resources and using a basic parametric
covariance model.

Background error correlations, P
Error correlations between point pairs must be equal to
1 at zero distance and tend to zero at infinity and any
function chosen to model correlations must reflect this
(Gaspari and Cohn, 1999). In addition, the resulting
correlation matrix must be positive definite, which is
also a requirement for convergence of the conjugate gra-
dient method used for the minimisation problem. To
this end, a single-parameter exponential function is
used:

P(i, j) = e−aD(i,j), (4)

where P(i, j) is the modelled correlation between back-
ground points i and j, D(i, j) is their separation distance
and α is some constant to be determined.

The analysis of innovations is used to determine the
parameter α. Figure 2(a,b) shows innovation corre-
lations binned by separation distance as well as the opti-
mal fit for both the Euclidean and Dijkstra methods,
both of which are good fits. The ideal shapes of a Kelvin
wave according to the barotropic Rossby radius of
deformation at 55◦N for depths of 100 and 200 m are
also shown. Both fits are of similar order to the the

Figure 1. The North Sea. Tide gauge locations used for assimilation in this study are indicated by orange squares, approximate
location of amphidromic points (points of zero tidal range) by black crosses and the approximate progression of the tidal wave
crest by the black dashed line. The entire CS3X model domain is shown on the top right.
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Rossby radius. Tides and storm surges in the North Sea
propagate as coastally-trapped Kelvin waves and it
appears that the errors behave in a similar fashion.

Background error variance
Background error variances must also be approximated
and parameterised for use in the covariance model. To
do this, covariance is binned by distance for each back-
ground point where an innovation was available. An
exponential function of the following form was then
fitted for covariances at separation distances larger
than 25 km:

ai e
−biDbin, (5)

where Dbin is is the distance used for binning, and ai and
bi are constants to be determined by fitting individually
for each point. We can use the variable a (the intercept

with the y-axis) from each fit as a variance estimate. See
Figure 2(c) for an example. As innovations are not avail-
able at all background points, we further parameterise
variance by point-pair separation distance. This is
done by fitting a final function of the following form
to the above variance estimates:

s2
i =

m
Hi

+ n, (6)

where Hi is the ocean depth at point i and m and n are
constants to be determined by fitting. Variance was
found to correlate well to a function of this form (see
Figure 2(d)). Additionally, in shallower water and
nearer the coasts, model errors are likely to increase
quickly due to the relative influence of nonlinear
effects. There is also a reciprocal relationship between

Figure 2. Model error statistics estimation. (a) and (b) show exponential fits to innovation correlations binned by distance according
to the Euclidean and Dijkstra methods respectively. Grey dashed lines show the shape of a Kelvin wave according to the Rossby radius
of deformation at 55◦N for 100 and 200 m ocean depths. (c) An example of how variances were estimated for each individual back-
ground point. Innovation covariance is binned for distances over 25 km. An exponential fit is used to extrapolate to the y-axis (orange
dashed line) to obtain a variance estimate. (d) Optimal fit to variance estimates binned by depth. In all cases, shading indicates one
standard deviation either side of the mean.
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the bottom friction terms in the barotropic equations of
momentum and depth.

Figure 2(d) shows the variance estimates binned by
ocean depth as well as the optimum function fit. At
depths larger than 50m, the error variance stays fairly
uniform somewhere between 0.01 and 0.02. As the
depth approaches zero, the variance increases rapidly,
which is reminiscent of functions of the form seen in
Equation (6). This could be explained by the increased
influence of nonlinear effects and high sea level variabil-
ity in areas closer to the coast.

Adaptive localisation
A secondary localisation step is also applied to the
covariance model using a similar method to Riishøj-
gaard (1998). This is done via the elementwise multipli-
cation of a correlation-like matrix, generated as a
function of the difference in sea level between each
point-pair. In other words, for two background points
i and j, the function Φ can be defined as:

F(i, j) = F(‖xb(i) − xb( j)‖), (7)

where xb is the background variable as before and ‖X‖
is the absolute value of X. If Φ is chosen such that the
resulting matrix is positive definite, then an element-
wise multiplication of our existing covariance matrix
by the adaptive correlation matrix will result in a
new positive definite covariance model (Riishøjgaard,
1998).

Due to the the difficulty of separating distance and
sea level difference, we do not derive the adaptive

component empirically. Instead we perform a set of tun-
ing experiments to find an optimal paramter γ in an
equation of similar form to Equation (4):

F(i, j) = e−g‖xb(i)−xb( j)‖. (8)

In reality, this tuning approach has no physical basis
and would need to be performed independently for
different regions and models. In preliminary tests, the
inclusion of these adaptive correlations either improved
or made no change to model accuracy at all locations.
The effect of applying this step is to reduce covariances
according to the dynamical state.

Figure 3 shows an example of how these covariances
look for a single location both before and after the adap-
tive localisation is applied. In both cases shown, dis-
tances have been derived using the shortest path
method. Before the localisation is applied, covariances
clearly decrease monotonically with distance (which is
expected). After this step, monotonicity is lost and sea
level and bathymetric features can be seen, including
Dogger Bank and the Norwegian Trench.

2.3. Numerical experiments

This section describes the numerical experiments per-
formed to validate the assimilation setup described
above and to evaluate forecasting skill. The names and
descriptions of the different experiments can be found
in Table 1.

For the validation runs (VA, VB and VC), a number
of 120 h hindcasts have been performed for the time
period 01/12/2013–05/12/2013, with hourly assimila-
tion. To validate the assimilation setup, only a subset
of the tide gauges shown Figure 1 are used in each
run. Which gauges are included for each run are
described in each Table 1. RMSE and correlations can

Figure 3. Map of background error covariance estimates at a
single example timestep between Esbjerg and other model
points. Panel (a) shows covariances for the parametric covari-
ance model before the adaptive localisation step and (b)
shows covariances after the adaptive localisation step. Both
show the covariance model when calculating point-pair dis-
tances using a shortest path method.

Table 1. Names and descriptions of the numerical experiments
performed in this study.
Experiment
name Description

VALOC Validation A. One by one, each tide gauge (indicated by
LOC) is removed from the assimilation. RMSE and
Correlations evaluated at LOC. Allows for maximum
number of assimilated data as well as physical

assessment.
VBLOC Validation B. Every other tide gauge assimilated starting

at LOC, going anti-clockwise around North Sea.
VCLOC Validation C. Every third tide gauge assimilated starting at

LOC, going anti-clockwise around North Sea.
SF Simulated Forecasts. A period of assimilation at all

locations (hindcast period) followed by a period of no
assimilation (forecast period).

PT Perturbation Test. 1m innovations assimilated one time at
every gauge using a correlation function such that
innovations are spread generously into the domain.

Note: LOC changes depending upon the specific model run.
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then be assessed at the locations where data were not
used for assimilation. This allows for an evaluation of
how well the assimilation setup works with the model
physics as well as how many locations are required for
a good result.

A note on correlation calculation: as the tide is sig-
nificant in the data, correlations are generally high.
Therefore, correlations of non-tidal residuals are instead
calculated. The results of our validation experiments are
discussed in Section 3.1.

After validation, a set of simulated forecasts (SF)
were run for the December 2013 Cyclone Xaver event
(Wadey et al. 2015). These model runs were designed
to simulate a realistic forecasting setup for this event
and have been named to avoid confusion with real-
time forecasts or hindcasts. Each simulated forecast is
constructed to resemble a real operational scenario
and consists of two parts: 120 h of hourly assimilation
at all tide gauges up until some time T (hindcast period)
followed by a period of no assimilation (forecast
period). A separate simulated forecast has been per-
formed for each location, timed such that T is 12 h
before the maximum high water at that location.
RMSE within a moving window is then evaluated
during the forecast period. The results of our simulated
forecast experiments are discussed in Section 3.2.

The final entry in Table 1 is the PT model run, which
is used to determine how long SSH perturbations, such
as those introduced by assimilation, persist in the model
domain. This is discussed in more detail in Section 3.2.

3. Results and discussion

3.1. Validation of covariance models

Table 2 shows the averaged Root Mean Squared Error
(RMSE) and correlations (compared to tide gauge
observations) for each of the validation runs in Table
1. This table also indicates where there is improvement
or deterioration of RMSE or where correlation improve-
ments are significant. For RMSE, this is defined as 1 cm
difference from the control (the observation error stan-
dard deviation estimated in Section 2.2). To compare
correlations, a Fisher z-transformation is used (Fisher,
1915) with a 95% confidence interval. The values in
these tables are metrics calculated over the tide gauges
that were not included in the assimilation. So for the
VA runs, this is at a single location, for VB runs it is
over one half all locations and for the VC runs it is
over two thirds of locations. Doing this allows us to
assess how well our assimilation scheme can spread
innovations into areas of the domain where obser-
vations are not available.

In general, there is little difference between the Eucli-
dean and Dijkstra-based methods. This is likely due to
regional considerations seeing as the North Sea is
approximately a single rectangular basin (there are few
significant headlands or peninsulas). For the VA
model runs, most locations see improvements in
RMSE and correlation for both covariance models. On
average across removed locations, the VB validation
runs show significant improvement over the control
despite assimilating data from only eight locations.
However, there is no significant improvement for 2
out of 3 of the VC validation runs.

The above results imply that if data is unavailable at
certain gauges, the assimilation will still be reasonable
until the distance between locations becomes too
large. It is likely that this is related to number and proxi-
mity of tide gauges required to correctly resolve a tidal
wavelength, which is in turn related to the Rossby
radius. For example, the Rossby radius in the North
Sea ranges between 200 and 300 km and the average dis-
tances between tide gauges for the VA, VB and VC vali-
dation runs are approximately 132, 232 and 328 km
respectively. In other words, for the VC runs, the dis-
tance between observations exceeds the Rossby radius.

As a whole, these results suggest that our covariance
models are reasonable estimations of the true error
structure. The assimilation does more than just remove
bias, it also improves the correlation between the model
and observations.

Table 2. Mean RMSE and correlations for the control model run
alongside improvements in each.
RMSE (cm) Control Euc Dijk Corr Control Euc Dijk

VALer 7 0 0 VALer 0.65 0.20 0.19
VAWic 21 5 5 VAWic 0.45 0.28 0.27
VAAbe 11 1 0 VAAbe 0.68 0.19 0.18
VALei 31 13 13 VALei 0.20 0.62 0.62
VANsh 22 14 14 VANsh 0.43 0.52 0.52
VAWhi 15 9 9 VAWhi 0.65 0.30 0.31
VAImm 22 3 2 VAImm 0.60 0.11 0.11
VALow 16 2 2 VALow 0.69 0.06 0.06
VAHvh 22 0 −1 VAHvh 0.67 −0.06 −0.08
VADhe 33 9 10 VADhe 0.49 0.32 0.33
VAWte 29 15 15 VAWte 0.58 0.33 0.33
VACux 38 12 12 VACux 0.60 0.26 0.26
VAHor 32 5 5 VAHor 0.61 0.13 0.13
VAEsb 24 1 1 VAEsb 0.75 −0.06 −0.06
VAHan 21 4 5 VAHan 0.91 −0.07 −0.05
VBLer 25 6 7 VBLer 0.55 0.25 0.26
VBWic 21 3 3 VBWic 0.64 0.16 0.16
VCLer 22 7 7 VCLer 0.64 0.21 0.21
VCWic 23 0 0 VCWic 0.61 0.04 0.04
VCAbe 24 1 1 VCAbe 0.55 0.06 0.06

Notes: This is shown for each validation run, using the Euclidean (Euc) and
Djikstra (Dijk) covariance models (see Table 1). For the VA runs, the value is
at a single location whereas for other runs they are averages across all non-
assimilated locations. Positive values show improvement and negative
values indicate deterioration. Bold text indicates significant improvement
(over 1 cm or statistical significance), italics represents significant
deterioration.
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3.2. Simulated forecasts: December 2013 case
study

In this section, the results of the SF numerical exper-
iments are discussed (see Table 1). These experiments
were a set of model runs used to evaluate the models
ability to forecast storm surges during the December
2013 Cyclone Xaver event. Figure 4 shows which
locations saw a significantly improved or worsened
RMSE during the first 24 h of forecast after the final
assimilation time step. Results for both covariance

models were near identical, therefore here we discuss
results for both simultaneously. In total, 13 out of 15
locations see improvement or no significant change to
RMSE during this time window and just over half
(eight) see improvement. Two locations in the south
see worsened RMSE. Again these are locations that are
in close proximity to an amphidrome. On average
across all locations, RMSE were improved by 0.02 m
and the maximum improvement was 0.05 m. Although
improvements are small, they are significant for oper-
ational applications.

After the first 24 h of forecast, RMSE differences (and
improvements) begin to diminish rapidly, becoming
almost negligible by the end of second day. Figure 5
shows RMSE differences (from the control) calculated
at each tide gauge location inside a moving 24 h win-
dow. Only results for the Dijkstra-based assimilation
setup are shown. Where the lines intercept the y axis,
the graph shows the mean RMSE difference during
the first 24 h of forecast. The eight locations that saw
RMSE improvement during the first 24 h period can
be seen as the eight lines starting above the green dashed
line. The shrinking RMSE differences can be seen
clearly, with the vast majority of differences being
within 0.01 m by the 12 h.

Correlations are more difficult to analyse for the
forecast case. For a 24 h window, there are not
enough data points to draw significant conclusions
and for larger time windows, the differences are too
small to be significant. During the first 24 h, there
are only two significant differences (which are
improvements) for each model run. After this, the
same pattern of rapidly decreasing differences can
be seen, as for RMSE.

Figure 4. Locations that saw improved, worsened or no signifi-
cant difference to RMSE during the first 24 h of forecast from the
simulated forecast model runs in this paper. Results from exper-
iments using Euclidean and Dijkstra distances were near identi-
cal and this figure represents both. See Figure 1 for locations
names.

Figure 5. RMSE difference (relative to control) for a moving average RMSE (in total water level) with a window size of 24 h. The x-axis
shows the number of hours since assimilation ended and the beginning of the RMSE window. Each line shows data for a different tide
gauge. Positive indicates improvement and negative indicates worse RMSE values. Dashed lines indicate 0.01 m bounds. This is for the
Dijkstra-based covariance model.
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These diminishing differences are due to the assimi-
lated model rapidly tending back towards the control
run. This is most likely because of the strong influence
of boundary conditions on model dynamics. Tides
enter the model at the domain boundaries, and when
reaching the North Sea propagate in an approximately
anti-clockwise direction (see Figure 1). Changes to the
model sea surface (due to assimilation) also conform
to this flow. The surge component of sea surface height
is also strongly influenced by the atmospheric forcing,
with which is strives to reach a dynamical balance.
The above point is demonstrated further in the follow-
ing section.

3.3. Persistence of assimilation increments

A simple numerical experiment has been performed to
investigate how long assimilation increments persist in
the model domain. For the PT model run (see Table
1), a deliberately unrealistic 1m innovation is assimi-
lated into the model at all tide gauge locations. A non-
adaptive correlation model is used in place of the full
covariance models (i.e. the third and fourth steps out-
lined in Section 2.2.2 are not included when construct-
ing the error covariance matrix). The outcome of this is
that model increments will be large and spread widely
across the domain. This is an extreme example but we
use it solely to prove a point.

Figure 6 shows how many hours after assimilation it
took for the final occurrence of a 0.5 and 0.25 m differ-
ence from the control run at each gauge. At Lerwick, we
see the changes diminish to below 25% after a single

tidal cycle. This time increases as one travels anti-clock-
wise around the North Sea; the same direction as the
tidal flow. Except at a few locations (notably Leith),
the increase is of the same order as the approximate
time it takes for a shallow water wave to propagate in
the same direction (also shown in Figure 6). Leith is
the most obvious location that does not conform to
this relationship. This may be because of its location
inside a large estuary, where local oscillations such as
seiching are more likely to be significant. Once intro-
duced by the assimilation perturbation, these oscil-
lations may continue independently of the tidal flow
in the North Sea.

These results place an upper bound on the effective-
ness of data assimilation in regional ocean models that
are strongly constrained by surface and lateral boundary
conditions and simple descriptions of frictional dissipa-
tion. As seen in Figure 5, increments do not last long
anywhere in the system, likely due to the small domain
size and proximity to unchanged boundary conditions.
Having said this, it appears DA will have more of a pro-
longed effect in the Southeast of the sea than, for
example, along the UK coastline. Unlike the atmos-
phere, it appears as though this type of ocean model
does not display chaotic behaviour, again due to the
strong dependence of the model upon boundary
conditions.

4. Conclusions

In this study, the assimilation of tide gauge data into a
North Sea storm surge model was investigated to

Figure 6. Number of hours taken for the differences due to an assimilation of a 1 m innovation at each tide gauge simultaneously to
reduce to and never return to 50% and 25% of the original value. Tide gauges are spaced at distances from the previous tide gauge in
an anti-clockwise direction (see Figure 1). Also shown is the distance travelled by a shallow water wave for a depth of 98 m (the mean
depth of the model North Sea).
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examine how effectively it can be used to improve storm
surge forecasting and coastal flooding risk assessment.
To do this, two different data assimilation setups were
developed and tested by performing validation hind-
casts and simulated forecasts of the December 2013
Cyclone Xaver storm surge event. Another model run
was done to quantify how long sea surface perturbations
due to assimilation last in the model domain.

The covariance models necessary for variational
assimilation were created in four steps. First, two differ-
ent methods for calculating distances between model
point-pairs were considered: a Euclidean method and
a method based on Dijkstra’s shortest path algorithm.
Innovations and their spatial correlations were then cal-
culated using reconstructed altimetry data, and an opti-
mal exponential fit was used as a parametric correlation
model. A similar method was then used to estimate
model error variances based on ocean depth. Finally,
an adaptive localisation component was added to the
covariance model, based on the difference in sea level
between model point-pairs.

Background error covariance was found to have a
similar correlation length scale as the model physics
themselves, i.e. on the same order as an average Rossby
radius in the North Sea. Variances were small and uni-
form (around 0.02 m) for depths deeper than 50 m but
increased rapidly for shallower depths. This makes
sense as more complex nonlinear effects come into
play in shallower, coastal seas. Ocean variability itself
is higher in these areas, again suggesting that the errors
behave in a similar way to the model dynamics. This
supports the need for an adaptive component in the
covariance model.

To validate the covariance models and assimilation
setup, a set of 120 h validation experiments was per-
formed, each with varying numbers of tide gauges
removed from the assimilation (see Table 1 for model
names). How well the assimilation setup performed
was then examined by comparing the model to obser-
vations from locations that had not been assimilated
into the model. Both covariance models performed
well, with improvements in RMSE and correlations at
most locations when compared compared to a control
run with no assimilation. There was little difference
between the Euclidean and Dijkstra methods, probably
due to the shape of the North Sea, which is near to
being mathematically convex. However, we believe
this method to be worthy of further examination in
more topographically complex domains.

From the validation experiments, it could be seen
that operational significant improvements can still be
obtained when assimilating data from only every other
tide gauge (VB validation runs). However, once the

distance between tide gauges extends beyond this, very
little improvement can be obtained at other locations.
The consequence of this for a real-time scenario is
that if data is unavailable for a handful of locations
(e.g. bad quality data, damaged equipment) then assim-
ilation is still viable, at least whilst the distance between
locations is less than approximately a Rossby radius of
deformation.

Simulated forecasts of the December 2013 North Sea
storm surge event showed that, although there was
initially some small improvements, any RMSE differ-
ences quickly diminished. This was due to the assimila-
tive models rapidly tending back to the control after
assimilation was finished. We suggest that this is
because of the ocean models reliance on boundary con-
ditions, especially tidal and atmospheric forcing. This
places an upper bound on the effectiveness of storm
surge forecasting in the North Sea. Even with a perfect
covariance model and assimilation scheme, significant
adjustments to the model only persist for 12–24 h of
forecast (along the UK coast). Furthermore, the DA
would be a vital tool in any long storm surge reanalysis,
e.g. to detect climatic trends or provide statistics for
coastal planning.

Despite this, there are many avenues available for
investigation to potentially improve the covariance
model. The assumption of ergodic error correlations
could be relaxed and more investigation made into
how they vary with, for example, the seasons or with cli-
mate modes. More complex adaptive covariance models
could also be developed, such as a reliance on current
speed and direction as well as sea level height. Bespoke
dynamical covariance models that optimise operational
forecasting can also be conceived. For instance, if par-
ticular ports, cities or regions are particularly exposed
to risks then the fact that all assimilated information tra-
vels at shallow water wave speeds allows for a dynamical
adjustment of the covariance matrices focused on the
subdomains with most influence on the solution at a
later time. These could be identified by adjoint methods
(Wilson et al. 2013).

The above bounds may limit the use of the assimila-
tion for longer term forecasts. However, during the first
24 h of forecast (and thus during the surge event), the
majority of locations saw some improvement in their
RMSE values when using the adaptive covariance
model. In some cases, this improvement was as high
as 4–5 cm which can be significant for forecasting.
Improvements of this size will improve confidence in
the overall short term forecast, providing forecasters
with the ability to give authoritative advice with fewer
caveats regarding model performance. Although this
timeframe is short, it is enough to warn the public of
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an event in advance with sufficient time to enable the
targeted deployment of emergency responders.

This study has three important limitations which
must be kept in mind when interpreting conclusions
and results. Firstly, only a single case study was exam-
ined which is particularly pertinent when considering
metrics such as RMSE and correlations. The values pre-
sented in this paper are examples to demonstrate poten-
tial improvements and the limitations of assimilation
algorithms used. For statistically significant estimates
of these metrics – which would be necessary for oper-
ational applications – further study of longer time
periods and more events is required.

Secondly, it should be noted that the variational assim-
ilation algorithm (2DVar) used is not state of the art, nor
was it intended to be. Instead, the method used in this
paperwas chosen to demonstrate potential improvements
from a low-cost method. Where resources are available,
further work to examine more up to date methods such
as ensemble 4DVar (Zhang et al. 2009; Buehner et al.
2010; Kuhl et al. 2013) or EnsembleKalman filtermethods
(Houtekamer and Mitchell, 2001; Houtekamer and
Zhang, 2016) is recommended.

The third and final limitation that must be noted is
that by assimilating the full total water level signal, the
tidal signal is not removed from either the observations
or the model prior to assimilation. This will affect both
the assimilation and resulting RMSE values from the
model, with model corrections including components
of both the storm surge and tidal signal. Indeed, many
assimilative oceanographic systems such as those utilis-
ing altimetry data do not assimilate the full tidal signal.
Which method is best will depend on the exact model,
configuration and circumstance and requires further
study.

Despite the above limitations, many of the con-
clusions in this study are applicable to the model behav-
iour itself and therefore offer insight for assimilation
into similar regional models which are subject to strong
boundary constraints.

Finally, a comparison can be made to other oper-
ational applications of data assimilation. For atmos-
pheric forecasting (for example) there are more
observations, the domains are larger and better con-
nected (no coastal boundaries) and the models deal
with far more variable interactions (Klinker et al.
2000; Mahfouf and Rabier, 2000; Rabier et al. 2000; Gau-
thier et al. 2007; Rawlins et al. 2007). As a result, there is
less dependence upon the boundary conditions and per-
turbations to the model state persist for longer. The
effects of chaos are more prevalent in the atmosphere
than in semi enclosed seas such as the North Sea,
which are heavily influenced by boundary conditions.
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