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Seasonal biological carryover dominates northern
vegetation growth
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Chris Huntingford 7, Josep Peñuelas 8,9, Hao Xu1 & Ranga B. Myneni10

The state of ecosystems is influenced strongly by their past, and describing this carryover

effect is important to accurately forecast their future behaviors. However, the strength and

persistence of this carryover effect on ecosystem dynamics in comparison to that of

simultaneous environmental drivers are still poorly understood. Here, we show that vege-

tation growth carryover (VGC), defined as the effect of present states of vegetation on

subsequent growth, exerts strong positive impacts on seasonal vegetation growth over the

Northern Hemisphere. In particular, this VGC of early growing-season vegetation growth is

even stronger than past and co-occurring climate on determining peak-to-late season

vegetation growth, and is the primary contributor to the recently observed annual greening

trend. The effect of seasonal VGC persists into the subsequent year but not further. Current

process-based ecosystem models greatly underestimate the VGC effect, and may therefore

underestimate the CO2 sequestration potential of northern vegetation under future warming.
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B iological cycles include many successional growth periods in
which the past and the present are tightly connected. In such
temporally connected dynamical systems, transient carryover

of the near past is commonly observed for many state variables1–3.
The carryover effect of biological states has been extensively
documented in biomedical research, for example, describing the
phenomenon where the effects of medical treatments can carry over
from one to another in repeated clinical experiments4. This biolo-
gical carryover effect is also widely existent in plant science2,4–6. The
life-cycle continuity of plant growth implies that present states of
vegetation growth may intrinsically affect subsequent growths,
which is a type of biological memory2,7, and can be referred to as
vegetation-growth carryover (VGC). The VGC effect could poten-
tially control the pattern of seasonal-to-interannual variations of
vegetation growth. For example, a tree may maintain a greening
signal by cumulatively enhancing carbon uptake8, resulting in extra
storage of photosynthate and more substantial leaves and roots.
Such structural change of plants may then boost their resistance to
climate fluctuations9 and emerging disturbances10, unless increas-
ing water and heat stress exceeds the tolerance of sustainable tree
growth11. The critical question is thus how strong this VGC effect
is, particularly when compared against concurrently changing
environmental conditions that also influence the present state of
vegetation growth.

Projections of future vegetation and carbon uptake changes,
including ecosystem capacity to offset CO2 emissions, are highly
uncertain12,13, primarily due to our limited understanding of the
mechanisms that govern vegetation growth dynamics. Surprisingly,
while the concept of vegetation carryover effect is not new, and
some key analyses searching for evidence of the VGC effect do exist,
they are often focused on the short-term carryover14 or limited in
their spatial scope15. Over a broad geographical range, it remains
unclear how substantial the role of the VGC effect is in contributing
to current and future vegetation growth and carbon cycle, parti-
cularly in comparison to that of abiotic factors (such as immediate
and lagged impacts of climate). Indeed, the regulation of vegetation
growth by abiotic factors, particularly climate and associated epi-
sodic climate extremes, has been extensively investigated and fairly
well understood16–22. It is generally accepted that climate variation
is the primary driver of seasonal-to-interannual dynamics of vege-
tation growth and associated carbon uptake over the Northern
Hemisphere (NH)16–18. Importantly, climate change in the early
growing season (EGS) may substantially influence vegetation
growth of late seasons through, for instance, modulating plant
transpiration19,23–26 and snow melting27,28, both leading to changes
in soil moisture that can propagate into late seasons25. This climatic
legacy effect via complex vegetation–soil–climate interactions has
been now included in many state-of-the-art terrestrial biosphere
models29. Still, these models produce a wide divergence in the
estimates of vegetation growth and carbon uptake12,13, suggesting
that some related mechanisms are either missing or incorrectly
parameterized.

The interseasonal connections of vegetation growth has
received increasing attention in recent years. The legacy
effect of EGS vegetation growth on mid-to-late-season growth
through transpiration-regulated soil moisture changes19,23,25,26

can be categorized as an exogenous memory effect under the
theoretical framework of ecological memory by Ogle et al.2.
Different from the legacy effect of climate anomalies or the
exogenous memory of vegetation growth, the VGC effect in this
work emphasizes how the carryover of the early vegetation
structure may contribute to vegetation growth of the following
seasons, or an endogenous memory effect according to the
framework of Ogle et al.2.

In this study, we hypothesize that the VGC has played a critical
role in regulating the seasonal-to-interannual trajectory of

vegetation growth. To test this hypothesis, we quantify the impact
of VGC on NH vegetation growth with a large set of measure-
ments, including satellite, eddy covariance (EC), and tree-ring
chronologies, and compare the size of this effect against that of
immediate and lagged impacts of climate change (see “Methods”).
Our work provides quantitative evidence that peak-to-late season
vegetation productivity and greenness are primarily determined
by a successful start of the growing season (via the interseasonal
VGC effect), rather than by a transient or lagged response to
climate. This carryover of seasonal vegetation productivity also
contributes to annual vegetation growth across consecutive years.

Results and discussion
Interseasonal VGC dominates peak-to-late-season growth. We
first examined the VGC effect at the seasonal scale, using satellite-
derived Normalized Difference Vegetation Index (NDVI, see
“Methods”) for the 1982–2016 period. We defined the dormancy
season (DS) and three periods of the growing season, i.e., EGS,
peak growing season (PGS), and late growing season (LGS), based
on phenological metrics (see “Methods”). The partial auto-
correlation calculated for NDVI time series of two consecutive
seasons, after factoring out concurrent and preceding climatic
impacts, provides an estimate of the interseasonal VGC effects
(see “Methods”). At the hemispheric scale, our analyses show a
significant (p < 0.05) control of the NDVI of the preceding season
(NDVIps) on the interannual variations of seasonal NDVI for all
three active growing seasons (Fig. 1a). This VGC effect is also
consistently positive across the majority (79%, 89%, and 94% for
EGS, PGS, and LGS, respectively) of northern vegetated areas
(Supplementary Fig. 1). Although the EGS NDVI is more strongly
correlated with EGS temperature, the PGS and LGS NDVIs are
most strongly correlated with NDVIps, rather than climate dri-
vers (Fig. 1a). This VGC is particularly important for under-
standing vegetation growth in LGS, when climate is known to
have a weak explanatory power30,31.

The primary role of NDVIps in driving subsequent PGS and LGS
NDVI variations is reaffirmed by conducting partial correlations with
detrended anomalies of all variables (Supplementary Fig. 2), implying
a robust coupling of seasonal vegetation growth within a specific
calendar year. Furthermore, the robustness of the satellite-identified
positive VGC effect dominating vegetation growth in PGS and LGS is
also verified by examining other satellite-derived vegetation growth
proxies, including leaf area index (LAI) and gross primary
productivity (GPP) (see “Methods”; results in Supplementary Fig. 3).
Meanwhile, we also noticed some difference between GPP- and
NDVI-derived LGS-to-EGS VGC effect in some mid-to-high
northern latitudes (Supplementary Fig. 4d). Negative LGS-to-EGS
VGC effect has been found over eastern U.S., North China, and
western and central Russia based on the GPP dataset (Supplementary
Fig. 4d), suggesting greater uncertainties in LGS-to-EGS VGC effect
than EGS-to-PGS and PGS-to-LGS VGC effects.

In contrast to the consistently strong and positive VGC impact,
the strength and direction of climatic factors in determining the
interannual variation of seasonal NDVI, including their immedi-
ate and lagged impacts16–20, is highly variable between seasons
and across regions (Fig. 1a and Supplementary Figs. 5 and 6). At
the hemispheric scale, concurrent seasonal temperature is a
primary and positive factor controlling the interannual variation
of EGS NDVI during the last 35 years (partial correlation, rp=
0.83, p < 0.01). The dominance of EGS temperature on EGS
vegetation growth is also consistently observed when analyzing
other satellite-based vegetation proxies of LAI and GPP
(Supplementary Fig. 4). However, temperature has a much
weaker impact during PGS (rp= 0.42, p < 0.05) and LGS (rp=
0.12, p > 0.05) (Fig. 1a). Although higher concurrent temperature
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generally stimulates vegetation activity in EGS across most of the
northern vegetated areas (Supplementary Fig. 5a), it has emerged
as a limit to PGS and LGS vegetation growth for most of the
warm mid-latitudes and some of the high latitudes (Supplemen-
tary Fig. 5b, c). Additionally, temperature also has a negative
legacy effect on vegetation growth in the subsequent season
(Fig. 1a), most significantly for the DS-to-EGS legacy effect (rp=
−0.42, p < 0.05). This adverse legacy effect of DS temperature is
likely due to the lower chilling accumulation required for leaf
unfolding in EGS caused by DS warming32. For precipitation, we
find very weak and statistically insignificant immediate and
lagged impacts on vegetation growth for all the seasons at the
hemispheric scale (Fig. 1a). This weak precipitation impact is
likely due to a spatial cancelling-out of the positive effects at the
water-limited mid-latitudes by the negative effects at high
latitudes (more precipitation is often concurrent with increased
cloudiness and reduced solar radiation reaching vegetation
canopies) (Supplementary Figs. 5d–f and 6d–f).

For each season, we further derived the individual contributions
of VGC, as well as the immediate and lagged climatic effects, to the
35-year NDVI trends (see “Methods”). The effects of temperature
and precipitation were here combined as a single variable of
climatic effects. As expected, the strong observed EGS greening
trend (0.0012 yr−1, p < 0.05) is predominately attributed to the
concurrent climate change (77%), particularly EGS warming that
stimulates earlier phenology, followed by smaller but non-negligible
contributions from climate (8%) in the preceding DS and vegetation
growth in the preceding LGS (17%) (Fig. 1b). However, for PGS
and LGS, about half of the observed greening trends (48% and 54%,
respectively) are attributed to greening in the preceding season,
supporting the notion of a strong positive biological carryover
between seasons. In comparison, climate, including its immediate
and lagged effects, plays a much smaller role in PGS and LGS
greening (EGS climate may even cause a negative lagged impact on
the PGS greening trend; Fig. 1b). Hence, warming-induced greening
in EGS persists into the mid-to-late growing season, and has been
the primary source for the overall satellite-observed NH growing-
season greening over the last few decades33,34. It is interesting to
note that PGS is the season whose interannual productivity
variations most strongly correlate with that of the growing-season
mean35, and trend of vegetation growth most similar to that of the
growing-season mean (Fig. 1b). However, our results demonstrate

that the higher peak growth rate in PGS is primarily inherited from
greening of the preceding EGS (48%) rather than from direct
contributions of PGS climate change (20%) (Fig. 1b).

Considering the substantial fraction of unexplained variance of
observed vegetation growth in PGS and LGS after accounting for
the climate and VGC effect of the concurrent and immediate
precedent seasons (residuals in Fig. 1b), we further investigated the
residual changes of PGS and LGS NDVI with vegetation and
climatic factors in the previous year (see “Methods”). At the
hemispheric scale, about 58% of the residuals of PGS NDVI
changes can be explained by all the factors collectively (Supple-
mentary Fig. 7c). NDVI of the previous LGS significantly correlates
to PGS NDVI residuals (rp= 0.55, p < 0.05), and contributes the
most to the variance of residuals (Supplementary Fig. 7a). Among
the climatic factors, PGS precipitation of the previous year shows
the strongest correlation (rp= 0.31, p= 0.09) with PGS NDVI
residuals (Supplementary Fig. S7a), indicating a strong legacy effect
of precipitation anomalies (such as droughts) on PGS vegetation
growth. None of the considered factors shows a significant (p >
0.05) correlation with LGS NDVI residuals, and collectively they
explain about 20% of LGS NDVI variance (Supplementary
Fig. S7c).

We further examined the VGC effect and vegetation–climate
connections with seasonal GPP data from the global FLUXNET
EC network. The short temporal coverage of EC records prevents
calculating temporal correlations, we hence analyzed the
relationship between the trend of GPP and that of its potential
drivers across 50 available flux-tower sites (“Methods”). Con-
sistent with the satellite-based findings, we discovered strong
positive cross-site correlations between the trend of GPP and
that of its preceding values for all the growing seasons (Pearson
correlation, r= 0.42, 0.70, and 0.82 for EGS, PGS, and LGS,
respectively, p < 0.01 in all cases; Fig. 2a). However, temperature
and precipitation changes cannot account for the cross-site
variation of GPP trends for any season (Supplementary Fig. 8),
even though EGS temperature is identified as the primary driver
of satellite-based EGS NDVI changes (Fig. 1a). The weak cross-
site correlation with climatic variables may be overshadowed by
the biome-dependent sensitivity of GPP to climate16,17. To test
this, we examined the cross-site relationship between the GPP
trend and its climatic sensitivities (“Methods”). We found a
significant positive correlation between the EGS GPP trend and
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Fig. 1 Satellite-based vegetation growth carryover versus climatic effects. a Partial correlation coefficients between 35-year seasonal Normalized
Difference Vegetation Index (NDVI) time series and concurrent climatic factors (temperature, TMP and precipitation, PRE), and climatic factors (TMPps
and PREps) and NDVI (NDVIps) of the preceding season. The subscript ps denotes values for the immediately preceding season, except that ps for early
growing-season (EGS) NDVI refers to NDVI of the preceding late growing season (LGS). Squares with black outline show statistically significant
correlations at the 95% confidence level. b Individual contributions of the vegetation growth carryover (VGC) effect and the immediate and lagged climatic
effects to seasonal NDVI trends over the 35 years (1982–2016) (see “Methods”). The gray dashed line indicates the observed trend of the growing-season
mean NDVI over the Northern Hemisphere, and the gray stars indicate the observed NDVI trend of each season.
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its sensitivity to temperature (r= 0.29, p < 0.05) (Fig. 2b),
supporting that EGS warming controls EGS greening patterns.
For all the other cases, the insignificant (p > 0.05) relationship
between the GPP trend and its climatic sensitivity (Fig. 2b, c)
supports a weak climatic impact.

In addition to these global datasets, we also used long-term
GPP measurements from 11 AmeriFlux EC sites (“Methods”) to
characterize temporal relationships between vegetation growth
and climate. Results of this analysis again confirm our main
findings: EGS temperature is the primary determinant of EGS
GPP (cross-site median correlation: rp= 0.52, p < 0.05), which is
then carried over to dominate the variance of GPP in PGS (rp=
0.43, p < 0.05) and LGS (rp= 0.62, p < 0.05) (Fig. 2d). GPP of PGS
and LGS also show varied signs of correlation with other climate
factors in the previous year (Supplementary Fig. 7), which
collectively explain 30–72% and 16–81% of the GPP residual
variance, respectively.

Our observed interseasonal connection in vegetation activity
may also be modulated by indirect non-biological pathways, for
example, soil moisture anomalies caused by vegetation changes
persisting into the next season19,22,25,36. These different
mechanisms imply potentially multiple simultaneous pathways
for the interseasonal interactions between vegetation, climate,
and soil moisture status. To quantify the complex pathways
underpinning interseasonal vegetation–climate–soil interac-
tions, we constructed structural equation models (SEMs),
forced with satellite-based NDVI and soil moisture, and
climatic variables (see “Methods”). We allowed for broad

biome differences by grouping northern vegetation into three
main vegetation types of temperate grassland, forest, and arctic
tundra and shrubland, based on satellite-derived land-cover
maps (“Methods”; Supplementary Fig. 9). Figure 3 shows all
pathways of the EGS–PGS connection (for other interseasonal
linkages see Supplementary Fig. 10). The SEM analysis
identifies the significant positive influence of EGS vegetation
growth on that of PGS, explaining the largest fraction of PGS
NDVI variations for all vegetation types (Fig. 3). This result
provides further support for strong VGC between EGS and
PGS vegetation growth. This EGS-to-PGS VGC effect is robust
by further demonstrating that for all vegetation types, years
with greener EGSs (under favorable climates) generally have
greener PGSs, and accordingly, years with browner EGSs
(under unfavorable climates) tend to have browner PGSs
(Supplementary Fig. 11).

In parallel to the interseasonal vegetation growth carryover, we
also diagnosed a strong interseasonal carryover effect of soil
moisture, where local soil moisture status in PGS links tightly to
that in EGS (Fig. 3). However, the indirect impact of EGS
vegetation growth on PGS vegetation via this soil moisture
pathway may be weaker than previously thought22. For grassland
where water is often the dominant limiting factor, PGS soil
moisture does significantly influence PGS productivity, yet the
amount of soil moisture in EGS is controlled predominantly by
EGS climate rather than vegetation (Fig. 3a). For forest-
dominated ecosystems, EGS greening does significantly dry out
the soil, causing a soil moisture deficit that is further carried over
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to the PGS25. However, this moisture deficit has limited impacts
on restraining PGS forest growth (Fig. 3b), likely due to the deep
root system that can access water reservoirs in deep soil layers37.
For arctic tundra and shrubland, temperature is a key limiting
factor38, and thus the vegetation–soil moisture interaction is
relatively weak for both EGS and PGS seasons (Fig. 3c).
Furthermore, we also find that the VGC effect is more dominant
than soil moisture carryover effect for both EGS (from DS or the
preceding LGS; Supplementary Fig. 10a, c, e) and LGS NDVI
(from PGS; Supplementary Fig. 10b, d, f).

The persistence of the VGC effect into the subsequent year. In
order to examine whether this VGC effect operates at longer time
scales of multiple years, we next performed lagged partial auto-
correlations with interannual anomalies of satellite-observed
NDVI and 2739 standardized tree-ring width (TRW) records
(see “Methods”). For a time lag of 1 year, a positive interannual
VGC is present across northern lands, with 75.6% of vegetated
areas (for NDVI) and 82.9% of the tree-ring samples (for TRW)
showing positive lagged correlations (Fig. 4a and Supplementary
Fig. 12). This positive interannual VGC indicates that a greener
year is often followed by another greener year. The positive VGC
is statistically significant (p < 0.05) for 18.3% of northern areas
based on NDVI, but noting it is significant for 46.4% of the tree-
ring samples that cover much longer periods (Fig. 4a). The
positive interannual VGC effect is most significant at high lati-
tudes, particularly over northern North America and East Siberia
(Supplementary Fig. 12). Interestingly, by further grouping tree
species into ring-porous, diffuse-porous and non-porous species
(Supplementary Table 1), we found stronger interannual VGC
effect for diffuse-porous species (95.0% positive) than for ring-
porous (85.3% positive) and non-porous species (81.9% positive)
(Fig. 4b). This observation suggests substantial influence of wood
phenology on the strength of vegetation growth carryover, and
diffuse-porous species whose woody growth is more concentrated
in later growing season are more likely to carry transient growth
anomalies over to the subsequent year. By contrast, only a few
locations (including central Siberia, eastern Europe, and some
semi-arid regions) have a negative yet generally insignificant (p >
0.05) interannual VGC (Supplementary Fig. 12). If the time lags
are extended to 2 years, the positive correlation between current-
year NDVI (or TRW) and that of 2 years earlier is significant for
only 14% of tree-ring samples or 5% of the total vegetated area
(for NDVI). If time lags of 3 years are considered, the lagged
correlation is found to be close to zero (Fig. 4a). Previous studies
have reported stronger legacies of severe drought episodes (e.g.,
>2 SD from the mean climatic water deficit) lasting 2–4 years20,21.
However, for interannual anomalies (=1 SD) of vegetation
growth that is much less deviated from the multi-year average
than severe drought anomalies, the VGC effect can be carried
over to the next year but rarely to years after that.

Terrestrial biosphere models underestimate the VGC effect.
Process-based terrestrial biosphere models are a useful tool for
predicting vegetation growth and examining the associated
complex mechanisms29,31. We next assessed 16 terrestrial bio-
sphere models participating in the TRENDY intercomparison
project (“Methods” and Supplementary Table 2) for their ability
to capture the dominant factors contributing to the satellite-
observed greenness changes in each season. By comparing
modeled GPP (Fig. 5b, of multi-model mean) against satellite-

Fig. 3 Pathways for early-season factors controlling peak-season growth.
Structural equation modeling (SEM) analyses were conducted for three
main vegetation types: temperate grassland (Tibetan Plateau excluded)
(a), forest (b), and arctic tundra and shrubland (c) (see Supplementary
Fig. 9). Double-headed gray arrows indicate covariance between variables.
Single-headed arrows indicate the hypothesized direction of causation, with
positive and negative relationships in pink and blue, respectively. Solid lines
represent relationships that are significant statistically (p < 0.05), and
hatched lines represent relationships that are not significant statistically (p
> 0.05). Arrow thickness is proportional to the strength of the relationship
and to the standard path coefficients adjacent to each arrow. The explained
variance (r2) is labeled alongside each response variable in the model. EGS
and PGS represent early and peak growing season, respectively.
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observed greenness (Fig. 5a), we found that the models correctly
identified EGS temperature as the primary factor controlling
interannual variations of EGS vegetation activity for most
northern areas. In 15 out of the 16 models, areas where EGS
temperature is the primary driver of concurrent GPP variations
were found to have the largest spatial coverage among all
potential driving factors (Fig. 5c). However, the satellite-identified
dominance of VGC effects in PGS and LGS vegetation growth for
much of the northern lands (42% for PGS and 58% for LGS;
Fig. 5d, g and Supplementary Fig. 13b, c) is significantly under-
estimated by models (19% for both PGS and LGS; Fig. 5e, h and
Supplementary Fig. 13e, f). Multi-model averaged results indicate
an overwhelming fraction of vegetated land is instead dominated
by the immediate climatic effects for both PGS (75%) and LGS
(78%). Specifically, 10 out of the 16 models significantly under-
estimate the proportion of VGC-dominated areas for PGS vege-
tation greening, and nearly all (15) of the models significantly
underestimate the proportion for LGS vegetation growth, despite
the strong intermodel discrepancy in the proportion of projected
VGC-dominated areas (from 14% in LPX-Bern to 72% in
SDGVM for PGS and from 9% in LPJ-wsl to 75% in SDGVM for
LGS) (Fig. 5f, i).

With rising atmospheric CO2 concentrations and anticipated
warmer climate, Earth system models that simulate stronger VGC
effects tend to project higher carbon uptake potentials over
northern ecosystems (Supplementary Fig. 14). To improve
estimates of how the global carbon cycle will evolve in the
decades ahead, it is critical to diagnose the causes of this
underrepresentation of modeled VGC effects. We therefore
compared the three models that best identify the areas identified
by satellite where VGC dominates vegetation growth versus the
three models that least capture it (based on Fig. 5f, i). As
expected, we find that the models with the best representation of
the VGC effect produce better estimates of PGS and LGS levels of
greenness based on EGS growth levels, for all the three major
biomes (Supplementary Fig. 15a, c, e). Conversely, for the models
that fail to replicate the VGC effect, modeled years with the
greenest EGSs do not necessarily imply a greener PGS or LGS,
especially for temperate grasslands and forests (Supplementary
Fig. 15b, d).

Guided by the identified drivers from our empirical analyses
(Figs. 1–3), we tested the hypothesis that the interseasonal
inconsistency in modeled greening trends is related to sensitivity
biases of vegetation productivity responses to climate variation
(Fig. 6). Comparison of satellite-based and modeled sensitivities
of PGS and LGS vegetation productivity to climatic variables
confirms this hypothesis. For both PGS and LGS, models with
better VGC representation show very similar spatial patterns of
productivity sensitivities to temperature and precipitation as that
derived from observations (Supplementary Figs. 16a, b, d, e and
18a, b, d, e). However, models underestimating the VGC effect
broadly overestimate the climate sensitivity. In specific, for PGS,
models underestimating the VGC effect severely overestimate the
magnitude and extent of the negative impact of PGS warming and
precipitation decrease on vegetation productivity in temperate
regions (Supplementary Fig. 16c) and some semi-arid areas
(Supplementary Figs. 16f and 17b), respectively. Similarly, for
LGS, models that underestimate the VGC effect tend to
overestimate the positive effects of LGS temperature on
vegetation productivity in cold areas (>45°N) (Supplementary
Fig. S18a, c, d, f).

Conclusions and implications. In summary, our analyses reveal
strong biological carryover effects of vegetation growth and
productivity across succeeding seasons and years, providing new
insights into how vegetation changes under global warming. The
VGC effect represents a key yet often underappreciated pathway
through which warmer EGSs and associated earlier plant phe-
nology subsequently enhance plant productivity in the mid-to-
late growing season, which can further persist into the following
year (Fig. 6). Without considering this biological carryover of
vegetation growth, some previous studies suggest an overly
negative impacts of EGS warming on PGS/LGS vegetation
growth, in particular, through triggering earlier transpiration and
associated soil moisture deficits19,23,36. Yet, despite the potential
for raised soil moisture deficits, we find the strong VGC effects
can override this negative abiotic legacy impacts, with greener
EGSs ensuring lush PGS vegetation (Fig. 6). Hence, warming in
EGS not only augments concurrent vegetation growth and carbon
uptake but also has a positive legacy impact on the following PGS
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Fig. 4 Observed interannual vegetation growth carryover. a The histogram shows the frequency distribution of the partial correlations between
Normalized Difference Vegetation Index (NDVI), or tree-ring width, of each year and that of the preceding year, after controlling for the climatic variable of
both years. b Frequency distribution of the partial correlations between tree ring width of each year and that of the preceding year, for ring-porous, diffuse-
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and LGS vegetation carbon sequestration, ultimately enhancing
the annual carbon sink. However, it is important to bear in mind
that, while the beneficial VGC effect of EGS vegetation growth
can override immediate and time-lagged climatic impact under
the present climate, whether this stronger VGC effect will con-
tinue with future warmer climate remains an open question

(Fig. 6). Processes involved in the lagged vegetation responses to
precedent climate, soil, and growth conditions are highly complex
and often non-linear6,39,40. For example, summer climate
extremes, which are often associated with large-scale climate
oscillations and partly contributed by enhanced EGS vegetation
growth25, could trigger severe tree mortality and fires that nullify

Fig. 5 Observed versus modeled vegetation growth carryover effects. Spatial patterns show the relative contributions of vegetation growth carryover
(VGC) and climatic factors of the present and preceding seasons to the interannual variations of Normalized Difference Vegetation Index (NDVI) or gross
primary productivity (GPP). Maps in the left column represent satellite-observed NDVI, and those in the right are the model ensemble-mean GPP for early
growing-season (EGS) (a, b), peak growing-season (PGS) (d, e), and late growing-season (LGS) (g, h). Ternary diagrams in c, f, i show the relative fraction
of global vegetated areas where the interannual trend of GPP (or NDVI) is dominated by each different driver (corresponding to the maps in each row).
Both percentages of the model ensemble-mean (closed blue circles) and the individual models (open symbols) and of satellite observation-based
estimates (closed black circles) are shown.

Normal state

Warming (+)

EGS PGS

VGC (+)

Suppressed growth

Accumulated soil water deficit

Warming ( )

Strong warming and 
climate extremes ( )

LGS Carryover to the next year

VGC (+)

Enhanced growth

Fig. 6 Schematic representation of the vegetation growth carryover. The green curves indicate anomalies of vegetation greenness/productivity in
response to climatic changes and disturbances, relative to the climatological seasonal cycle (the gray line). Early growing-season (EGS) warming stimulates
extra vegetation growth and productivity, and this ecological benefit can persist into peak and late growing-season (PGS and LGS) and even the subsequent
year because vegetation growth is largely determined by its prior states (i.e., the vegetation growth carryover, VGC). This greening signal from EGS,
however, may be suppressed or even reversed for some locations due to climate extremes or soil moisture deficit legacy from EGS. The symbols − and +
in each bracket represent either a negative or positive force respectively imposed on terrestrial vegetation.
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any positive carryover effect from EGS (Fig. 6). Recent advances
in statistical modelling and machine learning6,39,41 may provide
useful tools for a better understanding of such non-linear vege-
tation responses.

We also find poor representation of the VGC effect in dynamic
vegetation models, and as this likely influences predictive capacity
of future global carbon cycle changes, a major research challenge
is to better simulate biological processes related to this carryover
effect. Tackling this challenge requires not only using satellite and
ground measurements to refine existing parameterizations, but
also using leaf-level measurements to understand the physiolo-
gical mechanisms controlling VGC patterns and to incorporate
new process representation in model components. Long-term
manipulative field experiments will also be useful to better
characterize VGC features under different imposed meteorologi-
cal regimes and to provide key process parameters for future
model improvements.

Methods
Satellite-based vegetation growth and land-cover maps. Normalized Difference
Vegetation Index (NDVI) is commonly used as a proxy for vegetation greenness
and photosynthetic activity. Here, NDVI data were obtained from the Global
Inventory Monitoring and Modeling Studies (GIMMS) third-generation NDVI
product (NDVI3g) based on retrievals from sensors on the Advanced Very High
Resolution Radiometer (AVHRR)42,43. The GIMMS NDVI3g dataset is available at
a spatial resolution of 8 × 8 km2 and a biweekly temporal resolution, covering the
1982–2016 period. We composited the biweekly NDVI to monthly values by
selecting the highest values.

Considering that NDVI may saturate in densely vegetated areas, we also
included two other satellite-based products, LAI and GPP, to independently verify
the robustness of NDVI-based findings. Biweekly maps of the global land LAI were
derived from the GIMMS AVHRR LAI3g44, with a spatial resolution of 8 × 8 km2

for the period 1982–2016. The monthly gridded GPP maps at 0.5° spatial
resolution for 2001–2015 were derived from the remote sensing-based (RS)
product of the FLUXCOM database45,46. This dataset was generated with upscaling
approaches based on three machine learning algorithms that integrated EC-based
carbon fluxes and satellite measurements from Moderate Resolution Imaging
Spectroradiometer (MODIS)45,46.

The effects of climate and VGC on vegetation changes can vary among
ecosystem types. Therefore, we investigated the climatic and VGC impacts
separately for three major vegetation types of temperate grassland, forest
(temperate and boreal), and arctic tundra and shrubland. We used the 300-m
resolution global land-cover maps for 1992–2016 provided by the European Space
Agency’s Climate Change Initiative (ESA-CCI)47 to delineate the three major
vegetation types. These maps characterize the global surface using 37 land-cover
classes defined by the United Nations Land Cover Classification System
(UNLCCS). We grouped the original UNLCCS classes into forest, shrub, and
grassland based on the cross-walking table provided by the ESA-CCI land cover
product47. We did not consider shrub as a separate group in temperate regions, but
assigned this type evenly to grasses and forests. In this study, temperate grassland
was defined as water-limited grassland distributed in warm mid-latitude regions,
but excluding temperature-limited grassland in pan-Arctic regions and the Tibetan
Plateau. The forest type includes evergreen needleleaf forests, evergreen broadleaf
forests, deciduous needleleaf forests, deciduous broadleaf forests, and mixed forests.
The arctic tundra and shrubland was defined as temperature-limited grassland and
shrubland over high latitudes (>50°N). We aggregated the land-cover maps into
0.5° resolution, and calculated the fraction of the above three vegetation types in
each 0.5° grid. We only selected grid cells for which the dominant vegetation type
occupied >60% of the grid area over the entire period of 1992–2016
(Supplementary Fig. 9) to minimize potential confounding impacts of other
vegetation types and land cover conversions. We also masked northern ecosystems
dominated by cropland, as for these locations, the seasonal vegetation growth is
primarily controlled by human management practices such as irrigation,
fertilization, cropping schedule, and multi-cropping, rather than environmental
drivers.

Climatic and soil moisture data. Environmental variables used here include
temperature, precipitation, and soil moisture. Monthly time series of temperature
and precipitation were obtained from the Climatic Research Unit (CRU) v4.0.1
dataset48. This gridded dataset, with a spatial resolution of 0.5°, was constructed by
interpolation from meteorological stations based on spatial autocorrelation func-
tions48. This climatic product also provides climatic forcing for TRENDY model
simulations, ensuring better comparability between observed and modeled
responses of ecosystems to climate. Daily root-zone soil moisture estimates with a
spatial resolution of 0.25° over 1988–2016 were derived from the Global Land
Evaporation Amsterdam Model (GLEAM) v3.2a49. The GLEAM data have fully

assimilated microwave observations of precipitation, surface-soil moisture, and
vegetation optical depth (VOD)49. GLEAM incorporates VOD as this enables
estimates of the effects of water and heat stress and plant phenological changes on
evapotranspiration49. This knowledge of vegetation response in turn allows char-
acterisation of interactions between soil moisture and vegetation growth.

EC measurements. We enhanced the reliability of remotely sensed seasonal
vegetation–climate interactions by additional analyses using monthly GPP esti-
mates and climatic variables from the FLUXNET2015 and AmeriFlux EC mea-
surements. EC-based GPP values used here were estimated from the direct
measurement of net ecosystem CO2 exchange by flux towers, combined with
knowledge of plant light-response curves50. This FLUXNET2015 database consists
of 212 sites that encompass 13 major vegetation types defined according to the
classification system of the International Geosphere Biosphere Programme (IGBP).
Here, we selected sites that provided at least 7 years of records, and excluded those
labeled as cropland or falling into MODIS-based regions dominated by cropland,
leading to a total of 50 EC sites for analysis. Since launched in 1996, the AmeriFlux
observation network provides half-hourly or hourly flux records that allow for
temporal correlation analyses. We obtained a subset of 11 AmeriFlux sites (CA-
TP4, US-Los, US-Me2, US-Ne1, US-Ne2, US-Ne3, US-PFa, US-Ton, US-Uaf, US-
Var, US-WCr) that provide at least 15 years of data, including GPP flux and
meteorological variables.

TRM chronologies. We obtained 2739 standardized TRM chronologies from the
International Tree-Ring Data Bank (ITRDB)51 V713 dating to August 2017. All
selected tree-ring samples are located in the NH (>30°N), and cover at least 25
years during 1901–2016. Each chronology is an average annual time series of
standardized ring width measurements from typically 10 to 30 trees of the same
species. We derived the standardized TRM series by detrending the raw TRM
measurements based on the “cubic smoothing spline” approach52. This standar-
dization removes low-frequency signals of wood growth associated with increasing
tree age and trunk diameter, while still preserving interannual and interdecadal
variabilities51. Site-level standard chronologies were generated by averaging tree-
level standardized tree ring indices with a bi-weight robust mean53.

Process-based ecosystem model simulations. We used an ensemble of 16
process-based terrestrial biosphere models participating in the TRENDY (trends in
net land–atmosphere carbon exchange) v6 project29 that provide GPP outputs for
1982–2016. These models were CABLE, CLM4.5, ISAM, JSBACH, JULES, LPJ-
GUESS, LPJ-wsl, LPX-Bern, ORCHIDEE, ORCHIDEE-MICT, SDGVM, VISIT,
VEGAS, OCN, CLASS-CTEM, and DLEM (details in Supplementary Table 2). All
these models performed the same set of factorial simulations following a standard
experimental protocol29. In particular, we use TRENDY simulation S2 that was
forced by varying both atmospheric CO2 and climate. The historical climatic fields
were from the CRU-NCEP V8 dataset, which is a merged product of monthly CRU
observations and a 6-h NCEP reanalysis. Global atmospheric CO2 concentrations
were from a combination of ice-core records and the NOAA monitoring
observations.

Quantifying climatic and VGC effects on vegetation growth. We used satellite-
derived NDVI and concurrent climatic data to identify covariation between the
interannual variation of vegetation growth at northern latitudes (>30°N) of active
vegetation growing seasons (EGS, PGS, or LGS). We considered the NDVI of the
preceding season, as well as climatic variables (temperature and precipitation) of
both the focused season and the preceding season, as driving factors of seasonal
NDVI variations. Here we defined preceding-season NDVI for EGS as NDVI of the
preceding LGS rather than the preceding DS, since vegetation in DS is dormant and
the detection of NDVI is hampered by the presence of snow cover (in cold regions).

Periods of different seasons were not defined for each grid cell directly by
temperature thresholds19 or fixed months across regions (e.g., spring as
March–May)25. Instead, we account for actual phenological seasonality using the
climatological mean seasonal cycle of satellite-derived monthly NDVI values for
1982–2016. We derived the dates for the start of the growing season (SOS) and the
end of the growing season (EOS) across the NH (>30°N) from the time when the
rate of the daily NDVI change interpolated from the original biweekly NDVI time
series was highest and lowest, respectively54. Our analysis is based on the 35-year
average of SOS and EOS, since we focus on interseasonal connections of mean
vegetation growth states (greenness or productivity) instead of the shift of
phenological events. PGS was defined as the two consecutive months with
maximum NDVI values but not earlier than April or later than October. Grid cells
with maximum NDVI occurring before April or after October were not considered.
For regions with a growing season length of 3 months or less, PGS was defined as
the month with the maximum NDVI value. Accordingly, EGS was defined as the
period from the month containing the SOS date to the beginning of PGS, and LGS
was from the end of PGS to the month of EOS. The remaining months of a year
were defined as the DS. Compared to seasonal descriptions based on temperature
thresholds19 or fixed months25, these definitions of seasons utilizing the timing of
phenological events are more suitable for analyzing linkages between different
stages of vegetation growth in the active growing season. We aggregated monthly
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NDVI for the three vegetation active seasons and then resampled the NDVI values
to 0.5° to match the spatial resolution of the climatic data. The above definitions of
seasons were also used for gridded EC measurements of GPP and climatic
variables. For site-level analyses, we derived SOS and EOS values based on the
derivative of the time series of daily GPP (i.e., the maximal/minimum second
derivative value as the SOS/EOS55) that were smoothed with spline curves.

We quantified the contributions of climatic drivers (present- and preceding-
season for both temperature, TMP and precipitation, PRE) and VGC (preceding-
season NDVI) to observed NDVI trend during 1982–2016. This quantification was
achieved by decomposing the 35-year linear trend of NDVI (dNDVIdt ) for each season
into the additive contributions of five components:

dY
dt

¼ ∂Y
∂Yps

dYps

dt
þ ∂Y
∂TMPps

dTMPps
dt

þ ∂Y
∂PREps

dPREps

dt
þ ∂Y
∂TMP

dTMP
dt

þ ∂Y
∂PRE

dPRE
dt

þ ε

¼ΔYYps þ ΔYTMPps þ ΔYPREps þ ΔYTMP þ ΔYPRE þ ε ¼ ΔYYps þΔYCLMps þ ΔYCLM þ ε

ð1Þ
where ∂Y

∂X represents the sensitivity of Y (NDVI) to an explanatory variable X
(NDVIps, TMPps, PREps, TMP, or PRE). These sensitivities were estimated as the
regression coefficients of a multiple linear regression performed with NDVI against
all listed explanatory variables for 1982–2016. dYdt (or

dX
dt ) represents the linear trend

of Y (or X) during 1982–2016. For different seasons, this trend was calculated as
the slope of the simple linear regression of mean Y (or X) values against the year.
Here, The NDVI trend during 1982–2016 (dYdt ) was decomposed into the
contribution of each variable X (ΔYX), which was represented as the product of the
partial derivative against that variable X as ∂Y

∂X and the concurrent trend of X itself as
dX
dt . Note that the contributions of temperature and precipitation were combined to
provide the total contribution of climate change to the trend of NDVI, for both the
preceding season (ΔYCLMps ) and the present season (ΔYCLM). ε represents the
difference between the observed and predicted Y. The approach given by Eq. (1)
was conducted for each grid cell, and the total areally-averaged contribution of
each factor to the trend of NDVI over the NH was calculated by averaging the
decomposed contribution of factors (ΔYX) across all the northern vegetated
nonagricultural areas. In addition to satellite-observed analyses, we also conducted
similar analyses with TRENDY model simulated GPP. The analyses were similar to
that of NDVI-based, except that GPP was used to represent vegetation growth as
the dependent variable.

We also applied a partial correlation analysis to assess the relationship between
seasonal time series of NDVI and each driving factor while statistically controlling
for potential covarying effects of the remaining set of factors. This analysis was
performed for NDVI values averaged over the entire NH (30–90°N) (Fig. 1) and
that for each pixel (Supplementary Figs. 1 and 4–6).

At the annual time scale, we again calculated partial correlations between
NDVI of each year and that of the preceding year (and similarly for TRW), while
statistically factoring out the covarying effects of climatic factors (temperature
and precipitation of the present and preceding year). For comparability with
standardized tree ring data, linear trends of all yearly time series were removed.
Additionally, we quantified the persistence of the interannual VGC by
calculating partial autocorrelation coefficients20 of NDVI and TRW time series,
but with the lead time ranging from 1 to 3 years. For example, for a lead time j
(years), we calculated the partial correlation between Yt (NDVI or TRW, t is the
present time) and Yt−j, while factoring out the covarying effects of all smaller
lead periods (0, 1, 2, …, j−1).

As a further check of the detected NDVI-based seasonal ecosystem responses to
different drivers, we also plotted the trend of GPP against that of climatic factors
preceding-season GPP across all FLUXNET EC sites (Fig. 3). The majority of these
EC sites are distributed in temperate climates with relatively homogeneous trends
of temperature. Thus these sites alone do not encompass sufficient spatial
variations of GPP response to warming. However, the sensitivity of GPP to
temperature varies across sites of different ecosystem types. We therefore plotted
the trend of GPP against the calculated temporal sensitivity of GPP to temperature
across these EC sites, to understand such ecosystem dependence. For the 11
Ameriflux EC sites with sufficient temporal coverage, we quantified the partial
correlations between time series of GPP and that of its driving factors, in the same
manner as that conducted for satellite-observed NDVI.

In Eq. (1), residual ε represents the contributions of other drivers that could
influence vegetation growth but were not included in this regression. The above
analyses focus on the influence of factors in the concurrent and the immediately
previous season on seasonal vegetation growth. An additional analysis was also
performed to extend the time period to the entire previous year except the
immediately neighboring season, by correlating the residual series with the same
factors of the previous seasons. For example, for ε of PGS NDVI, we calculated its
correlation with NDVI, TMP, and PRE of the previous PGS and LGS, and TMP
and PRE of the previous DS (Supplementary Fig. 7).

We also used SEM to assess the direct and indirect pathways of how climatic
factors and VGC influence vegetation changes across seasons for the three major
vegetation types. SEM is a multivariate statistical approach that synthesizes path,
factor, and maximum-likelihood analyses, and provides strong pointers to
underlying deterministic processes. Compared with traditional multivariate
analyses, SEM allows partitioning the direct and indirect effects that one variable

may have on another, and is thus useful for exploring complex influence networks
in ecosystems. In this model, the causality between soil moisture and vegetation
greenness is determined by the sign of their correlation. Positive correlations
indicate a dominance of soil moisture impact on vegetation (soil moisture
stimulates growth), while negative correlations indicate a dominance of vegetation
impact on soil moistures (growth depletes soil moisture). We used the χ2 test (and
associated p values), the root mean square error of approximation (RMSEA), and
an adjusted goodness-of-fit index (AGFI) to evaluate the fit of the established SEM
models. The SEM analysis was implemented using the AMOS (version 21.0)
software (Amos Development Corporation, Chicago, USA).

Data availability
All observation and model data that support the findings of this study are available as
follows. The AVHRR GIMMS NDVI3g data are available at http://ecocast.arc.nasa.gov/
data/pub/gimms/3g.v0/; The AVHRR GIMMS LAI3g data are available at http://cliveg.
bu.edu/modismisr/lai3g-fpar3g.html; The FLUXCOM RS GPP product is available at
http://www.fluxcom.org/; The ESA-CCI land-cover maps are available at http://maps.elie.
ucl.ac.be/CCI/viewer/download.php; The climatic variables from the CRU v4.0.1 data are
available at https://crudata.uea.ac.uk/cru/data/hrg/; The FLUXNET2015 EC
measurements are available at https://fluxnet.fluxdata.org/2015/12/31/fluxnet2015-
dataset-release/; The AmeriFlux EC measurements are available at https://ameriflux.lbl.
gov/data/download-data/; The tree-ring width chronologies from the ITRDB V713 data
are available at https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/
tree-ring/; the root-zone soil moisture from the GLEAM v3.2a data are available at
https://www.gleam.eu/; model outputs generated by TRENDY v6 ecosystem models are
available from Stephen Stich (s.a.sitch@exeter.ac.uk) or Pierre Friedlingstein (p.
friedlingstein@exeter.ac.uk) upon request.

Code availability
The processing MATLAB codes are available from the corresponding author upon
request.
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