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ABSTRACT: Large-amplitude [6100 Sv (1 Sv[ 106m3 s21)], high-frequency oscillations in the PacificOcean’smeridional

overturning circulation within 108 of the equator have been found in integrations of the NEMO ocean general circulation

model. Part I of this paper showed that these oscillations are dominated by two bands of frequencies with periods close to 4

and 10 days and that they are driven by the winds within about 108 of the equator. This part shows that the oscillations can be
well simulated by small-amplitude, wind-driven motions on a horizontally uniform, stably stratified state of rest. Its main

novelty is that, by focusing on the zonally integrated linearized equations, it presents solutions for themotions in a basin with

sloping side boundaries. The solutions are found using vertical normalmodes and equatorial meridionalmodes representing

Yanai and inertia–gravity waves. Simulations of 16-day-long segments of the time series for the Pacific of each of the first

three meridional and vertical modes (nine modes in all) capture between 85% and 95% of the variance of matching time

series segments diagnosed from the NEMO integrations. The best agreement is obtained by driving the solutions with the

full wind forcing and the full pressure forces on the bathymetry. Similar results are obtained for the corresponding modes in

the Atlantic and Indian Oceans. Slower variations in the samemeridional and vertical modes of theMOC are also shown to

be well simulated by a quasi-stationary solution driven by zonal wind and pressure forces.
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1. Introduction

Much research into the meridional overturning circulation

(MOC) focuses on mid- to high latitudes in the North Atlantic

Ocean and the Southern Ocean, because these are the sources

of the headwaters of the North Atlantic DeepWater (NADW)

and of the Antarctic BottomWater (AABW) (e.g., Sloyan and

Rintoul 2001; Marshall and Speer 2012; Cunningham et al.

2007; Smeed et al. 2018; Lozier et al. 2019; Johnson et al. 2019).

However, the MOC in equatorial regions has also been rec-

ognized as playing an important role in the climate system (e.g.,

McPhaden and Zhang 2002; Zhang and McPhaden 2006;

Vecchi and Soden 2007; Song et al. 2018). There are several

motivations for studying MOCs near the equator.

First, the MOC in the Pacific Ocean equatorial region is

thought to interact with phenomena such as the El Niño–
Southern Oscillation (ENSO) or the Pacific decadal oscillation

(PDO) with impact on the uptake or outgassing of CO2 in the

equatorial region (e.g., McPhaden and Zhang 2002; Gruber

et al. 2009; Song et al. 2018). During La Niña conditions, the

wind-driven equatorial upwelling in the eastern Pacific allows a

persistent heat flux from the atmosphere to the ocean to be

maintained there. Clement et al. (1996) and Cane et al. (1997)

have suggested that this upwelling could retard the warming of

the eastern Pacific obtained under climate change. Andrews

and Webb (2018) explain how different patterns of warming

along the equatorial Pacific are associated with different cloud

feedbacks and different equilibrium climate sensitivities (the

global SST warming for a given increase in greenhouse gas

forcing).

Second, in ocean models the equatorial MOC stands out as

having high variability on short (days to seasonal) time scales.

The large seasonal variability can readily be explained by

changes in the wind-driven Ekman overturning cells associated

with the seasonal movement of the intertropical convergence

zone (e.g., Lee and Marotzke 1998). In addition to this well-

known and understood variability in the MOC the equatorial

region has also been shown to exhibit a very large (peak to

peak of up to several hundred Sverdrups) MOC variability on

time scales shorter than 10 days (e.g., Hirschi et al. 2013, 2020;

Blaker et al. 2021, hereafter Part I).

Third, in ocean reanalyses unreliable meridional over-

turning circulations can occur in the vicinity of the equator,

generated by the assimilation of oceanographic measurement

data into ocean models (Park et al. 2018). Therefore, several

reanalyses take special steps to attempt to control these arti-

facts (Bell et al. 2004; Balmaseda et al. 2013; Waters et al.

2014). Nonetheless the initialization of ENSO seasonal fore-

casts remains unsatisfactory, as it is difficult to decide how to

retain the impact of ocean profile measurements into the

forecasts (Mulholland et al. 2016). Any new insights into the

dynamics that control the depth and strength of the equatorial

MOCs would thus be extremely valuable.

This is the second part of a two-part paper seeking to in-

terpret the large-amplitude oscillations in theMOC found near

the equator in global NEMO simulations in the Atlantic,
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Indian, and Pacific Ocean basins initially reported by Hirschi

et al. (2013). Figure 1a illustrates these oscillations with a 1-yr

time series for the PacificMOCon the equator at 1583-m depth

calculated from 4-h time mean velocities. Part I shows that

these oscillations are driven by the winds within 108 of the

equator and that their periods, typically between 4 and 10 days,

correspond to those of the long zonal wavelength, low vertical

wavenumber, baroclinic Yanai and inertia–gravity waves

identified within TAO mooring data by Farrar and Durland

(2012). Part I shows that the oscillations are not associated with

boundary currents and that the amplitude of the MOC vari-

ability is roughly proportional to the width of the ocean basin

(approximately 0.03 Sv km21; 1 Sv[ 106m3 s21). Although the

oscillations in the MOC transport are large (6200 Sv in the

Pacific Ocean), the meridional velocities associated with them,

if they occur across the whole basin and down to depths of

1500m, could be little more than about 1 cm s21.

In this part of the paper we aim to simulate these oscillations

as ‘‘classical’’ small-amplitude, wind-driven motions on a

horizontally uniform, stably stratified, state of rest, as de-

scribed by Gill (1982). McCreary (1985) and Clarke (2008)

provide useful reviews of this approach to equatorial waves

that wasmade popular by the seminal paper of Lighthill (1969).

The wind forcing is projected onto the vertical normal modes

as in themodeling of atmospheric tides (Chapman and Lindzen

1970). The response to a sudden change in the wind forcing in

an unbounded ocean is one topic of interest. Cane and Sarachik

(1976) study this with particular attention to the asymptotic

response at the head of the resulting train of planetary waves.

Another topic of interest is the response to an equatorial

Kelvin wave impinging on an eastern boundary. Moore (1968),

Anderson and Rowlands (1976) and Cane and Sarachik (1979)

study this with particular attention to the resulting coastal

propagation and westward propagation of planetary waves. In

both cases the dispersion relations for meridional equatorial

modes discovered by Blandford (1966) play important roles in

the simplification and interpretation of the Laplace transforms

used in the solutions.

The solutions in the above papers are restricted to oceans

with flat bottoms, any side boundaries being strictly vertical. In

this paper, motivated by the results presented in Part I, we

focus solely on zonally integrated motions. As explained in

section 2, this allows us to use vertical normal modes in ocean

basins with sloping bathymetries, the only restriction on the

bathymetry being that its maximum depth Hmax at a given

latitude is in fact independent of latitude. We also focus mainly

on high-frequency motions while most of the literature cited

above focuses on the slower planetary wave solutions. It turns

out that the dispersion relations for the zonally integrated

motions are somewhat simpler than the standard case and that

the time dependence of the amplitudes of the modes is deter-

mined by an equation for a wind-driven harmonic oscillator. So

we do not need to resort to Laplace transforms, Green’s

functions, or Fourier transforms in our solutions.

Figure 1b shows that the solutions of the resulting equations

reproduce very well the time series from the NEMO integra-

tion of the zonal integral of the meridional velocity in the first

baroclinic mode and meridional mode zero. Using the

FIG. 1. (a) Time series of the Pacific MOC (Sv; 1 Sv [ 106m3 s21) on the equator at 1583-m depth from the

NEMO integration. (b) Time series of the amplitudes (m2 s21) of meridional mode zero (n 5 0), first baroclinic

vertical mode (m 5 1) for the Pacific Ocean in the NEMO integrations (black), the ‘‘natural’’ simulation DN (red

dashed), and least squares fit simulationDH (blue). The simulations are restarted every 100 time steps, at the times

marked by red circles. (c) Power spectra of the black (NEMO) and red (natural simulation) time series shown in (b).

664 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 51

Brought to you by UNIVERSITY OF SOUTHAMPTON HIGHFIELD | Unauthenticated | Downloaded 02/23/21 01:19 PM UTC



linearized simulations derived in this paper it was shown in

Part I that the first sixmeridional and vertical modes are able to

account for a large fraction of the variability in theMOCwithin

108 of the equator.

The paper is structured as follows. Section 2 describes the

derivation of the linearized normal-mode solutions. Section 3

describes the methods used to integrate the linearized equa-

tions and to assess the quality of their solutions. It also de-

scribes the simulations that are presented. Section 4 describes

the results. Section 5 summarizes the main conclusions and

discusses some open issues.

2. Derivation of the linearized normal-mode solutions

a. Overview of derivation

Wewill consider motions driven by time-varying winds, with

zonal and meridional components, in a basin straddling the

equator as illustrated by the schematic in Fig. 2. As in the

schematic, the bathymetry of the basin may be quite complex

but its lateral boundaries are assumed to be closed (e.g., the

Indonesian Throughflow is neglected). Following Gill (1982),

we assume that the motions can be considered to be small-

amplitude fluctuations about a horizontally uniform, stably

stratified, state of rest. [Of course in ‘‘reality’’ the depth of the

thermocline in the eastern equatorial Pacific is considerably

shallower than that in the western equatorial Pacific, there are

marked north–south variations in the depth of the thermocline

near the equator, and there are zonal currents along the

equator (and to its north and south) with strength approaching

1m s21. It is nonetheless assumed that, for low vertical wave-

number modes, these variations in the stratification and zonal

currents can be neglected. The adequacy of this approach is

discussed in sections 4a and 5].

Our derivation of the linearized equations governing the

motions is presented in section 2b. Its main novelty is that it

starts by integrating the equations of motion zonally across the

ocean basin. This allows the bathymetry to vary with latitude

and longitude and the solutions to be written in terms of

the zonally integrated transports. It also makes it clear that the

solutions satisfy the condition of no normal flow at the

boundaries of the basin. It simplifies the equations by elimi-

nating zonal variations but implies that the pressure forces on

the boundaries as well as the surface wind stresses drive the

motions. This approach would be somewhat unsatisfactory if

these pressure forces dominated the wind stresses at the fre-

quencies of interest. We show that they do not in section 4c. It

turns out that the solutions involve only second-order, not

third-order, time derivatives [for reasons explained in the

discussion following (34)]. The zonally integrated linearized

equations are solved by projecting the wind stresses and

pressure forcing onto the vertical and meridional normal

modes. Sections 2c and 2d derive the projections onto the

vertical and meridional modes, respectively. The time evolu-

tion of the amplitude of the meridional velocities of the modes

is found to be determined by an equation, (33), that describes a

simple harmonic oscillator driven by wind and pressure forc-

ing. Section 2e provides summaries of the derivation and the

procedure for calculating the solutions.

b. Governing equations

For simplicity Cartesian coordinates are used with x, y, and z

directed eastward, northward and upward, respectively. The

depth Hb of the basin is allowed to vary [i.e., Hb(x, y)] as are the

‘‘longitudes’’ of the eastern and western boundaries [i.e., xE(y, z),

xW(y, z)]. Denoting the maximum depth of the basin at a given

latitude byHmax(y), our solution technique requires that Hmax

be independent of y. This depth is denoted as H. Small-

amplitude variations are denoted by primes, and quantities

that are zonally integrated across the basin are denoted by

angle brackets (e.g., hu0i is the zonal integral of u0). As il-

lustrated in Fig. 2 the zonal integral for given y and z may

have N segments, N eastern and N western boundaries (N5
2 below the midocean ridge in the figure). The zonal, me-

ridional, and vertical velocities of the small-amplitude mo-

tions are denoted by u0, y0, and w0, respectively and p0

denotes pressure perturbations; p0
E and p0

W denote the

pressure perturbations evaluated on the eastern and western

boundaries. The zonal and meridional components of the

downward flux of momentum input by the winds are denoted

byX
0
(x, y, z, t) and Y

0
(x, y, z, t), and their surface values (the

surface wind stress) are denoted by Xs(x, y, t) and Ys(x, y, t).

The potential density is denoted by r, r0 is a constant density

(1026 kg m23), and rb(z) represents the stably stratified

density profile of the basic state.

The hydrostatic, incompressible equations for large hori-

zontal scales of motion, zonally integrated across the basin il-

lustrated in Fig. 2 are then

›hu0i
›t

1 rhu0i2 f hy0i5 r21
o

��
›X 0

›z

�
1 p0

W 2 p0
E

�
, (1)

›hy0i
›t

1 rhy0i1 f hu0i52r21
o

�
›hp0i
›y

2A
�
1 r21

o

�
›Y 0

›z

�
, (2)

FIG. 2. Schematic depiction of the ocean basin. Axes and lines

parallel to them, including the equator, are colored red. Surface

fields, including thick arrows for the surface wind stresses, are

colored blue. The bathymetry is colored black, and the basic state

density profile is green. The depth of the bottomHbmay depend on

x and y, and the surface wind stress vector (Xs, Ys) may depend on

x, y, and t. The eastern and western sides of the basin xE and xW,

respectively, may depend on y and z, and the basic state density rb
may depend on z. A zonal integral over the volume of widthDy and
height Dz is used in (8) to derive (4).
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›hp0i
›z

2B52hr0ig , (3)

›hy0i
›y

1
›hw0i
›z

5 0, and (4)

›hr0i
›t

1 hw0i›rb
›z

5 0: (5)

In the above f 5 by is the Coriolis parameter and r is a weak

Rayleigh damping coefficient that crudely represents the ef-

fects of unresolved turbulent motions; use of Rayleigh friction

is consistent with application of boundary conditions of no

normal flow. The terms

A[ p0
E

›x
E

›y
2 p0

W

›x
W

›y
and B[p0

E

›x
E

›z
2p0

W

›x
W

›z
(6)

in (2) and (3) arise because, for example,

›hp0i
›y

5

�
›p0

›y

�
1
›x

E

›y
p0
E 2

›x
W

›y
p0
W . (7)

In deriving (4) we have zonally integrated the incompressibility

condition over the volume segments with width Dy and

height Dz illustrated in Fig. 2 (the integral illustrated has

two segments). Using the divergence theorem and applying

the boundary conditions of no normal flow on the sloping

side boundaries (the faces colored red where they are visi-

ble), one sees that the integral receives contributions only

from the four other faces (the ones colored blue and yellow

where they are visible). Taking limitingly small values of

Dy and Dz,

I[

ðz1Dz

z

ðy1Dy

y

ðxE
xW

�
›u0

›x
1

›y0

›y
1
›w0

›z

�
dx dy dz

5Dz

ðxE(y1Dy,z)

xW (y1Dy,z)

y0(y1Dy, z) dx2Dz

ðxE(y,z)
xW (y,z)

y0(y, z) dx1Dy

ðxE(y,z1Dz)

xW (y,z1Dz)

w0(y, z1Dz) dx2Dy

ðxE(y,z)
xW (y,z)

w0(y, z)dx. (8)

Then using the definitions of the zonal integrals

I5Dz[hy0(y1Dy, z)i2 hy0(y, z)i]
1Dy[hw0(y, z1Dz)i2 hw0(y, z)i]

5DyDz

�
›hy0i
›y

1
›hw0i
›z

�
.

The zonal component of the momentum equation in-

volves the pressures on the eastern and western boundaries.

Fluctuations in these pressures near the equator are likely to

result from Kelvin and Rossby waves driven by winds along the

equator or winds near the boundaries. We will assume that

the momentum fluxes input by the winds (X
0
, Y

0
) and also the

pressure fluctuations, p0
E and p0

W , on the eastern and western

boundaries are known. Separate calculations similar to those

described in section 11.11 of Gill (1982) (see also Clarke 2008)

would be needed to calculate p0
E and p0

W from the wind stresses.

In the following derivations we set the termsA and B, which
are defined by (6) and only appear in (2) and (3), to zero. We

make this choice to avoid complicating the presentation of the

algebra and because we are able to simulate the motions well by

using calculations that omit these terms. Appendix A explains

how the corresponding forcing terms could be calculated from

the NEMO ocean model output and suggests why the terms do

not contribute more substantially to the fluctuations.

We can use (3) in (5) to eliminate hr0i:
›2hp0i
›z›t

1 r
0
N2hw0i5 0, where N2 52

g

r
0

›r
b

›z
. (9)

This leaves four equations, (1), (2), (4), and (9) for four un-

knowns, hu0i, hy0i, hw0i, and hp0i. For brevity in (1) we will write

Dp0 [ p0
W 2p0

E . (10)

c. Projection onto vertical normal modes

Section 6.11 of Gill (1982) describes the projection of solu-

tions to the equations ofmotion for large horizontal scales onto

the orthogonal vertical normal modes; the basic state and re-

sulting equations are sufficiently simple that the solutions can

be found by the method of separation of variables. Following

Gill’s notation, functions that depend only on z are denoted

by a circumflex [e.g., ĥ(z)] and those that depend only on y and

t by a tilde [e.g., ~w(y, t)]. The solutions of our equations can be

written as linear sums of products of functions of z and func-

tions of y and t:

hw0i5�
m

ĥ
m
(z) ~w

m
(y, t) and

[hp0i, r
0
ghu0i, r

0
ghy0i]5�

m

p̂
m
(z)[ ~h

m
, ~u

m
, ~y

m
]. (11)

Here the square bracket notation [a1, a2, a3] 5 [b1, b2, b3]

means a1 5 b1, a2 5 b2 and a3 5 b3. The functions ~wm, ~hm, ~um

and ~ym, which depend only on y and t, and ĥm and p̂m, which

depend only on z, are yet to be determined. For the projection

of the wind and pressure forcing onto these normal modes

we set�
g
›hX 0i
›z

, g
›hY 0i
›z

,Dp0
�
5�

m

p̂
m
(z)[ ~X

m
, ~Y

m
,D ~h

m
], (12)

where again ~Xm, ~Ym and D ~hm depend only on y and t. We will

assume a simple (but realistic) profile for the input of mo-

mentum by the wind stress into the mixed layer later in this

subsection. One is free to choose the dimensions of either ĥm or

p̂m. We choose the dimensions of ĥm to be the same as z (i.e.,

meters). The dimensions of p̂m are then the same as those of r0g

and the dimensions of ~um and ~ym are the same as those of hu0i
(i.e., m2 s21).
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Substituting (11) and (12) in the four equations for the four

dependent variables one obtains two separate sets of equa-

tions. Choosing

~w
m
5 ›~h

m
/›t , (13)

the vertical variations must satisfy

dp̂
m

dz
52r

0
N2ĥ

m
and p̂

m
5 r

0
gH

m

dĥ
m

dz
, (14)

whereHm is a constant of separation. To satisfy hw0i5 0 at the

deepest point of the basin z 5 2Hmax, as stated earlier we

require Hmax to be independent of y. Then, denoting Hmax by

H, we require ĥm(2H)5 0. For the baroclinic modes the rigid-

lid approximation is very accurate, so we can also require

ĥm 5 0 at the upper boundary:

ĥ
m
5 0, z5 0,2H . (15)

The horizontal variations then satisfy the zonally integrated

momentum equations

›~u
m

›t
1 r~u

m
2 f~y

m
5 ~X

m
1 gD ~h

m
,

›~y
m

›t
1 r~y

m
1 f ~u

m
52g

› ~h
m

›y
1 ~Y

m
, (16)

and

› ~h
m

›t
1H

m

›~y
m

›y
5 0: (17)

Clearly (16) and (17) are the shallow water equations (for

motions that are independent of x).

Denoting gHm by c2m, (14) and (15) gives a second-order

ordinary differential equation (ODE) for p̂m

d

dz

�
1

N2

dp̂
m

dz

�
52c22

m p̂
m

(18)

with boundary conditions

dp̂
m

dz
5 0, z5 0,2H . (19)

These two equations are of Sturm–Liouville form with a unit

weighting function (see e.g., Kreyszig 1979, his section 4.8). So

the p̂m are orthogonal eigenfunctions. We choose their am-

plitudes by writing them and the vertical coordinate z in the

nondimensional forms pm and z, respectively, where

z5Hz and p̂
m
5 r

0
gp

m
. (20)

We normalize the nondimensional eigenfunctions pm by

setting ð0
21

p
m
p
m0 dz5 d

mm0 . (21)

The wind stress forcing is taken to be imparted uniformly

over the depth of the mixed layer HM, so using (12) and (21)

r
0
[ ~X

m
, ~Y

m
]5

[hX
s
i, hY

s
i]

H
M

ð0
2

HM
H

p
m
(z) dz,

r
0
gD ~h

m
5

ð0
21

p
m
(z)Dp0 dz , (22)

where (as stated earlier) Xs and Ys are the zonal and meridi-

onal components of the surface wind stress and Dp0, defined by

(10), is the pressure difference between the eastern and west-

ern boundaries. In the simulations presented, HM is taken to

be a constant (independent of space and time), but in principle

this projection could use a mixed layer depth that depends on

x, y, and t.

d. Meridional modes

Elimination of ~um from (16) gives ~ym in terms of ~hm, ~Xm, ~Ym,

and D ~hm:

��
›

›t
1 r

�2

1 f 2
�
~y
m

52f ( ~X
m
1 gD ~h

m
)1

�
›

›t
1 r

� 
2g

› ~h
m

›y
1 ~Y

m

!
. (23)

The main impact of the Rayleigh damping is to slowly reduce

the amplitude of ~ym through the term proportional to r on the

lhs of (23). The coupling between modes that could be ob-

tained by the term proportional to r on the rhs of (23) is neg-

ligible unless two modes have almost the same frequency and

hence interact resonantly. Neglecting that term and the term

r2~ym on the lhs of (23) and using (17), one obtains

b2y2~y
m
2 c2m

›2~y
m

›y2
5

› ~Y
m

›t
2 f ( ~X

m
1 gD ~h

m
)2

›2~y
m

›t2
2 2r

›~y
m

›t
.

(24)

The y dependence of the solutions can be separated from the

time dependence by projecting the forcing onto the ei-

genfunctions of

d2f
m,n

dy2
2

�
b

c
m

�2

y2f
m,n

52l
m,n

f
m,n

, (25)

where lm,n is a separation constant and the eigenvalue of the

resulting second-order ODE.

Equation (25) is familiar from quantum mechanics as the

equation governing the wavefunction for a harmonic oscillator.

It has a set of complete orthogonal functions involving the

Hermite polynomials and is reduced to normal form by intro-

ducing the nondimensional coordinates ~ym and functions ~fm,n

defined by

~y
m
5

�
2b

c
m

�1/2

y, ~f
m,n

(~y
m
)5f

m,n
(y) . (26)

Equation (25) then transforms into the nondimensional form

d2~f
m,n

d~y2m
2

~y2m
4

~f
m,n

52
c
m
l
m,n

2b
~f
m,n

. (27)
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The weighting function for the orthogonal functions is again

unity, and the solutions are given by

~f
m,n

(~y
m
)5A

n
exp(2~y2m/4)He

n
(~y

m
) and

c
m
l
m,n

2b
5 n1 1/2 .

(28)

Here Hen(~ym) are the probabilists’ Hermite polynomials

(section 4.9 of Kreyszig 1979):

He
0
5 1, He

1
5 ~y

m
, He

2
5 ~y2m 2 1, and

He
3
5 ~y3m 2 3~y

m
, (29)

and An is a constant (independent of ~ym) chosen so that

ð2‘

2‘

~f2
m,n(~ym)d~ym 5 1: (30)

The solutions of (24) can be written in the form

[~y
m
, f ~X

m
, fD ~h

m
, ~Y

m
]

5 �
‘

m50

[~y
m,n

(t), ~Xf
m,n(t),D

~hf
m,n(t),

~Y
m,n

(t)]~f
m,n

(~y
m
). (31)

The ~Xf
m,n(t), D

~hf
m,n(t), and

~Ym,n(t) can be calculated from the

winds and boundary pressures by integrating meridionally over

the basin and using the orthogonality and completeness of

the solutions of (27) and (30):

[ ~Xf
m,n(t),D

~hf
m,n(t),

~Y
m,n

(t)]

5

ð‘
2‘

[ f ~X
m
(y, t), fD ~h

m
, ~Y

m
(y, t)]He

m,n
(~y

m
) exp(2~y2m/4)d~ym.

(32)

This enables (24) to be reduced to a second-order ODE for

~ym,n(t) driven by the surface winds and pressures on the

boundaries:

d2~y
m,n

dt2
1 2r

d~y
m,n

dt
1 c2mlm,n

~y
m,n

5
d ~Y

m,n

dt
2 ( ~Xf

m,n 1 gD ~hf
m,n).

(33)

Using (28), one sees that the natural, unforced and undamped,

frequency vm,n of ~ym,n is given by

v2
m,n 5 c2mlm,n

5bc
m
(2n1 1). (34)

This result agrees with (11.6.7) of Gill (1982) for zonal wave-

number k5 0. In many contexts cm 5 (gH)1/2 is a phase speed,

andwewill refer to it as such despite the absence of zonal phase

propagation in our zonally integrated equations. The meridi-

onal mode with n 5 0 is a Yanai (mixed planetary–gravity)

wavewhile themodes with n. 0 are inertia–gravity waves. The

dispersion relation (34) is only quadratic in vm,n whereas for

equatorial waves with zonal wavenumber k 6¼ 0 it is cubic in

vm,n. This can be traced back to the absence of a horizontal

pressure gradient term 2g(›~hm/›x) in the zonal component of

(16). That term leads to one in (23) that is proportional to

fg(›~hm/›x). This forces differentiation of (23) w.r.t. time to

eliminate ›h/›t using the continuity equation [(17)], which is

not necessary for the zonally integrated case. The simpler

dispersion relation can alternatively be interpreted by noting

that the very long Kelvin and Rossby waves have zero fre-

quency (i.e., v 5 0 when k 5 0).

The solutions for ~um,n can be found from those for ~ym,n by

using the zonal component of the momentum equations [the

first of (16)]

›~u
m

›t
1 r~u

m
5 exp(2rt)

›

›t
[exp(rt) ~u

m
]5 f~y

m
1 ~X

m
1 gD ~h

m
.

(35)

The projection of f~y5by~y onto the modes of ~u can be calcu-

lated using (26) and the following identity satisfied by the

Hermite polynomials

~yHe
n
(~y)5He

n11
(~y)1 nHe

n21
(~y) . (36)

e. Summary of solution procedure

In summary, (1)–(5) are solved by projecting the wind stress

and pressure forcing onto the vertical and meridional normal

modes. The vertical modes (numbered by m) are the solutions

of (18) and (19) and the meridional modes (numbered n) are

the trapped solutions of (27) given by (28) in which ~ym is a

nondimensional form of y defined by (26). The projection of

the forcing onto the vertical modes is defined by (12) and cal-

culated using (22). Its projection onto the meridional modes is

defined by (31) and calculated using (32). The amplitudes ~ym,n

of the zonally integrated velocities in mode (m, n) are also

defined by (31). They depend only on time, t, and evolve ac-

cording to the forced harmonic oscillator equation [(33)]

whose natural frequency vm,n is given by (34). The MOC is

reconstructed from the ~ym,n(t) and the normal modes, p̂m(z)

and ~fm,n(y), using (11) and (31).

3. Description of methods and simulations

a. Description of NEMO integration

The NEMO integration used is described in Blaker et al.

(2012) and Part I. In brief the model uses an ORCA025 hori-

zontal grid with isotropic grid spacing of about 1/48within 208 of
the equator and 75 vertical levels. It is forced by 6-hourly mean

wind stresses and daily mean radiation and precipitation fields

from the CORE2 interannually varying forcing (IAF) dataset

(Large and Yeager 2009). For the period from 1 April 2006 to

31 March 2007 studied in this paper, the model outputs are

stored as 4-hourly means.

b. Calculation of basin geometry and forcing

The western and eastern boundaries of each ocean basin are

determined by following the land–sea boundary in the ocean

model’s land–sea mask at a chosen level northward or south-

ward using the Pavlidis algorithm (chapter 7, section 5, of

Pavlidis 1982). For all boundaries other than that of the west-

ern Pacific the level chosen is the surface. For that boundary

the level chosen (at all latitudes) is at 1945-m depth. This is just
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below the sill of the Indonesian throughflow. There is hence a

small normal flow through this boundary at shallower depths.

The zonal pressure gradient is recalculated at all the sea

points for each model depth from the 4-hourly mean fields and

integrated zonally to give the pressure force on the bathymetry

for each model depth. Two calculations of the pressure forces

on the bathymetry are used. First the full pressure force taking

into account the variations in the sea surface height as well as

variations in pressure with depth due to variations in density.

Second, the pressure force excluding contributions from vari-

ations in sea surface height.

The 4-hourly NEMO meridional velocities are integrated

zonally at each model depth to diagnose hy0i as a function of y

and z and the 4-hourly wind stresses output by the model are

similarly zonally integrated. The surface wind stress is assumed

to decay linearly with depth over a mixed layer depth, Hm 5
50m [see (22)]. This is shallower than the first zero depth of the

vertical modes considered in this paper and the simulations for

low vertical-mode numbers (e.g., m 5 0 and m 5 1) are rela-

tively insensitive to variations in Hm between Hm 5 25m and

Hm 5 75m. The simulations for higher vertical-mode numbers

(e.g., m 5 4 and m 5 5) are somewhat sensitive to such vari-

ations in Hm.

c. Time integration of ODEs

Equation (33), determining the evolution of ~ym,n(t), is a

simple forced oscillator problem with natural frequency vm,n

and damping coefficient 2r. The natural frequency of each

mode is much larger than r so the problem is that of a weakly

damped oscillator that can respond vigorously when ~ym,n comes

into the right phase with the forcing for a finite period of time.

As mentioned at the start of section 2a the stratification

varies somewhat with latitude, longitude and time so one

cannot precalculate the frequency of each mode exactly and

should not expect the solutions to maintain the correct phase

and amplitude for long periods. So solutions are generated for

‘‘short’’ integration periods and compared with the solutions

diagnosed from the NEMO integrations. The solutions pre-

sented in this paper have been obtained using an integration

period of 400 h (i.e., using K 5 100 data points).

The ODE (33) is solved by writing it as two coupled first-

order ODEs:

d~y
m,n

dt
5 ~q

m,n
1 ~Y

m,n
and

d~q
m,n

dt
522r (~q

m,n
1 ~Y

m,n
)2 c2mlm,n

~y
m,n

2 ( ~Xf
m,n 1D ~hf

m,n).

(37)

For each ‘‘short’’ integration period of K points, spline fits

are calculated for each of ~ym,n, ~Xf
m,n,

~Ym,n, and D ~hf
m,n for a time

series that extends three data points either side of the inte-

gration period. This allows initial values of ~qm,n and ~ym,n to be

calculated and functions for calculating smooth values of ~Xm,n,
~Ym,n, and D ~hf

m,n during the integration period to be supplied to

the function that integrates (37) over a chosen time period.

Appendix B describes a least squares method for choosing

the initial conditions for ~qm,n and ~ym,n that minimizes the sum of

the squares of the differences between the idealized simulation

and the NEMO solution. This method is used by all the inte-

grations presented in this paper.

d. A least squares method to optimize the natural frequency,
damping, and forcing

The quality of the simulation of the oscillating time series

can be expected to be sensitive to the specification of the

natural frequency [c2mlm,n in (33)] and any constant error in

the forcing. It will also depend somewhat on the amplitude of

the forcing and the Rayleigh damping coefficient. To explore

these issues it is useful to consider, instead of (33), the more

general equation

�
d2~y

dt2

�
k

522r

�
d~y

dt

�
k

a
0
2v2~y

k
a
1
1

 
d ~Y

dt

!
k

a
2

2 ~Xf
ka3

2D ~hf
ka4

1a
5
1 �

k
. (38)

Here the subscripts m, n have been suppressed, the new

subscript k will be taken to indicate the time step, a0–a5 are

constant scalar values, and �k is an error that depends on the

time step. Equations (33) and (38) are identical if ai5 1 for i#

4, a55 0, and �k5 0. Spline fits to themodel solutions allow the

first- and second-order time derivatives of the ‘‘true’’ model

solution and the forcing to be calculated, so all the terms with a

k subscript other than �k can be taken to be known. Each of the

constants a0–a5 can either be specified explicitly or taken to be

unknown.

In a time segment ofK points there areK instances of (38). If

all six values a0–a5 are taken to be unknown, they can be es-

timated by minimizing the penalty function

J
1
5 �

K

k51

��
d2~y

dt2

�
k

2�
5

i50

A
k,i
a
i

�2
, (39)

where

A
k,0

5 2r

�
d~y

dt

�
k

, A
k,1

5v2
m,n~yk, A

k,2
5

 
d ~Y

dt

!
k

,

A
k,3

52 ~Xf
k, A

k,4
52D ~hf

k, and A
k,5

5 1: (40)

Equation (38) is then integrated forward using these constant

values from the initial conditions over the period of K points

as described in the previous subsection.

A very similar least squares fit approach is used to calculate

d~um,n/dt from (35) and (36) given inputs of ~um,n, ~ym,n21, ~ym,n11

~Xm,n, and D ~hm,n. The least squares fit can provide estimates of

r and the ‘‘best’’ coefficients multiplying ~ym,n21, ~ym,n11 and
~Xm,n 1D ~hm,n, which we denote by g1, g2, and g3, respec-

tively. Time series for ~um,n are then obtained from time

series for ~ym,n21, ~ym,n11, and ~Xm,n 1D ~hm,n and the fitted value

of r by integrating (35), choosing initial conditions that

give the best fit.

e. Calculation of slowly varying solutions

A very simple solution of (33) can be obtained when the

forcing is stationary:
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~y
m,n

52
( ~Xf

m,n 1D ~hf
m,n)

c2mlm,n

. (41)

We investigate to what extent slower variations in ~ym,n than

those of the natural frequency are captured by (41). To do this

we define the ‘‘slow’’ variations of a time series by its running

mean over the period of the resonant frequency vm,n. We

compare the slow variations in time series of ~ym,n computed

from the NEMO velocities with the slow variations in ~ym,n

computed using (41).

The solution for ~ym,n in (41) is independent of time when the

forcing is stationary even when r 5 0. This case is of some in-

terest because r is likely to be weak. The zonal flow given by

(35) has a steady solution when r is nonzero, but when r5 0 the

zonal flow grows at a constant rate.

f. Description of simulations performed

Table 1 summarizes the four types of simulations of ~ym,n,

denoted by the lettersA–D, that will be presented. Simulations

of typeA have no wind or pressure forcing. TypeB simulations

are forced only by surface wind stresses. Type C and type D

simulations are forced by wind stresses and pressures on the

boundaries. Type C simulations use the baroclinic pressure

(not including the surface pressure), and type D simulations

use the full pressures. None of the simulations uses any

Rayleigh damping, r 5 0.0, because the simulations are

relatively short and the influence of Rayleigh damping is

relatively weak in consequence.

Table 1 also summarizes the three kinds of simulations,

denoted by subscripts N, H, and F, that may be presented for

any type of simulation. Subscript N (for natural) indicates that

the simulations are solutions of (33) with the natural frequency,

v determined from (34). There is no ‘‘adjustment’’ of the

forcing or natural frequency in these simulations. Subscript H

(for half fit) indicates that the simulations are solutions of (38)

with the amplitudes of the forcing parameters (a2, a3, and a4)

set to 1 and only the parameters a1 and a5 (relating to the

frequency and a constant offset, respectively) adjusted to find

the best fit. Subscript F (for full fit) indicates that the simula-

tions are solutions of (38) with the five parameters (a1–a5)

adjusted to find the best fit. In all these simulations there is no

Rayleigh damping (a0 5 0).

The simulations of ~um,n are of typeD; that is, they are forced

by surface winds and full pressures. Two kinds of simulation

are presented. Both use the value of r obtained using the least

squares fit described in section 3d above. Subscript F indicates

simulations in which the least squares fit coefficients g1–g3 are

used to multiply the ‘‘forcing’’ terms in the time integration of

(35). Simulations in which these three amplitudes are set to 1

are denoted by subscript N. For simplicity, both simulations

use ~ym,n calculated directly from the NEMO integration.

g. Description of statistics presented

The statistics for ~ym,n that are presented are based on the

segments described in section 3c. The variance of the NEMO

time series of ~ym,n is computed separately for each segment and

its mean value, VT (T standing for time series), is taken to

represent that of the whole time series. The variance of the

difference between a simulation and the NEMO time series is

also calculated separately for each segment. Its mean valueRT,

divided by VT, is denoted by ST; ST is the mean value of the

fraction of the variance of the NEMO time series that is not

accounted for by the simulated time series. The fraction of the

variance that is accounted for by a time series is the square of

the correlation coefficient rC, so r2C 5 12S and ST 5 0.1 cor-

responds to a value for rC5 0.95. For the reader’s convenience,

Table 1 provides a summary description of VT and ST. Similar

statistics have also been calculated for d2~ym,n/dt
2 but for rea-

sons explained in section 4f the presentation here focuses on

the fit of ~ym,n.

For the ~um,n solutions, VA (A standing for acceleration) de-

notes the mean value of (d~u/dt)2 for the whole time series, RA

denotes the mean of the square of the residual in d~u/dt after

the least squares fit and SA 5 RA/VA.

4. Results

a. Sample time series

Figure 1b presents time series of ~y1,0, the amplitude of

the first baroclinic vertical mode and meridional mode zero,

(m, n)5 (1, 0), in the Pacific for the full year starting on 1 April

2006. The black line is calculated directly from the NEMO

meridional velocities. The red dashed lines are the natural

solutions with full pressure forcing (simulation DN) and the

TABLE 1. Descriptions of the four types and three kinds of simulations performed and the statistical quantities calculated.

Description

Type

A No surface wind or pressure forcing

B Surface wind forcing only

C Surface wind and baroclinic pressure forcing

D Surface wind and full pressure forcing

Kind

N ‘‘Natural’’ solutions; no parameter adjustments

H ‘‘Half fit’’ solutions; adjustment of natural frequency and constant offset

F ‘‘Full fit’’ solutions; adjustment of amplitude of forcings, natural frequency, and constant offset

Statistic

VT The mean variance of the time series segments

ST The mean value of the fraction of the variance of the segments not accounted for by the simulated time series
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blue lines are the least squares fit solutions with full pressure

forcing and the amplitude of the forcing held fixed (simulation

DH). The calculation of cm in the natural solutions, DN, is de-

tailed in the next subsection. The red circles indicate the start

and end of the time segments; there are 20 time segments each

containing 100 four-hour periods. The simulations generally

follow the black curve very well, though there are some dis-

crepancies visible around 100, 205, and 300 days. Simulations

using integration periods that are twice as long (i.e., 800 h) give

time series that look qualitatively similar. Figure 1c presents

the power spectra for the black and red lines presented in

Fig. 1b. There is a high level of agreement particularly in the

strongest peaks.

The time series for the Atlantic and Indian Oceans in Fig. 3

corresponding to those in Fig. 1b have similar characteristics.

The idealized simulations again follow the NEMO simulations

very well. The oscillations have frequencies and irregular

variations in amplitude similar to those in the Pacific but the

amplitude of the oscillations is larger in the Pacific than the

other basins. Similarly high levels of agreement to those in

Fig. 1c are obtained for the power spectra of mode (1, 0) in the

Atlantic and Indian Oceans (not shown).

Figure 4a is the same as Fig. 1b except that it presents results

for mode (m, n) 5 (2, 2). These simulations are shown later to

be typical of the poorest simulations for modes withm# 3 and

n # 2. The frequency of oscillations in Fig. 4a is much higher

than that in Fig. 1b, but the quality of the time series simulation

still appears to be rather good. The agreement between the

power series is again very good in the strongest peaks (not

shown). Figure 4b is the same as the top panel except that it

presents mode (m, n) 5 (5, 3). As discussed later, this mode is

one of the most poorly simulated ones. Simulation DN (red

line) reproduces the modes quite well at times (e.g., from days

230 to 290) but poorly at others (e.g., from days 110 to 130).

The next three subsections investigate the dependence of

the simulations and their quality in more detail. First, we

quantify the dependence of the phase speeds, cm, and hence the

frequencies, vm,n, on the background stratification. Second, we

FIG. 3. The amplitudes of meridional mode zero (n5 0), first baroclinic vertical mode (m5 1) as in Fig. 1b, but for

the (a) Atlantic and (b) Indian Oceans.

FIG. 4. As in Fig. 1b, but (m, n) are equal to (a) (2, 2) and (b) (5, 3).
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show how the solutions depend on the kind and type of simu-

lation. Third, we summarize how the quality of the simulations

depends on the vertical- and meridional-mode numbers. We

then illustrate how the modes contribute to the meridional

overturning circulation. The last two subsections discuss the

slow mode solutions for ~ym,n and solutions for the zonal

velocities.

b. Calculation of vertical modes and their eigenvalues

Figure 5 displays evaluations of the phase speeds cm of the

first six baroclinic vertical modes computed using monthly

mean zonally averaged data from the NEMO model inte-

gration giving equal weight to all data within 108 of the

equator. Values plotted in different colors have been

slightly offset along the x axis to aid legibility. Figure 5a

displays values for the full width of the Pacific in April

calculated using two alternative reference depths for the

potential densities and two alternative ‘‘maximum’’ depths,H.

The phase speeds increase with both H and the reference

depth, the largest proportionate increase being in c1, which

ranges from 2.57 to 3.02 m s21; c6 ranges from 0.45 to

0.56 m s21. It is not clear which choice of reference depth

and H is best. From (34), the natural frequencies v are

proportional to the square root of cm, so the choice ofH and

reference depth can change the natural frequency for mode

1 by up to 10% and for mode 6 by up to 5%.

Figures 5b and 5c illustrate the dependence of cm on H and

the reference level used for s for the Atlantic and Indian

Oceans. Comparing Fig. 5a to Fig. 5c, we see that the phase

speeds for the full Indian and Pacific Oceans are generally

quite similar while the phase speeds for m # 2 in the Atlantic

are slower. The variation of the phase speeds withH, s0 and s2

in each of the three full basins is comparable. In all the figures

of this paper—other than Figs. 5a–c—we use H 5 4191m and

s2 as ‘‘standard’’ values. We occasionally comment on results

obtained using alternative choices.

FIG. 5. Phase speeds of the first six baroclinic vertical modes cm, calculated using April monthly mean data for the full (a) Pacific,

(b) Atlantic, and (c) IndianOcean basins. Values are plotted for two choices ofH and for potential density referred to the surface (s0) and

to 2000m (s2). Also shown is (d) phase speeds for the Pacific calculated using H 5 4191m and s2 monthly mean potential densities for

April or October and for the whole Pacific or its eastern or western halves. In all panels, values in different colors have been slightly

offset along the x axis to aid legibility.
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Figure 5d displays values calculated using that choice for two

months (April and October) and three regions (the full Pacific,

its eastern and its western halves). The phase speeds are

smaller in the west Pacific than the east Pacific, c1 in April

varying from 2.68m s21 in the west to 3.19m s21 in the east

Pacific. The seasonal variation in cm for the full Pacific is of

order 2% for c1 and 1% for c6 whereas it is of order 10% for c1
in the west Pacific. The seasonal variations in cm for the full

Atlantic and Indian Oceans are of similar magnitudes to those

for the full Pacific. It would be possible to calculate the vertical

modes using the correct monthly mean values but the impact

on the results would be smaller than variations that could arise

from longitudinal variations in the region where the oscilla-

tions have maximum magnitude. In all figures of this paper

other than Fig. 5d we have used April monthly mean data to

calculate cm.

Figure 6b displays the structure of the first six normalized

vertical modes, pm(z), for our standard choices (April s2 po-

tential densities with H 5 4191m) in the Pacific. We note that

the first baroclinic mode is surface intensified and that the

other modes also resemble the product of cos(mpz) and an

envelope profile that reduces in amplitude with depth. This is

because, taking l to be a Lagrange multiplier, the vertical

modes minimize

J[

ð0
21

"
1

N2

�
dp

dz

�2

2lp2

#
dz

for functions that satisfy the same boundary conditions as the

vertical modes. The values of N22 increase markedly with

depth below the thermocline and variations in dp/dz in the

vertical modes are increasingly suppressed below the thermo-

cline as depth increases.

The structure of the first six meridional modes, ~f(y), as a

function of latitude for the first baroclinic mode is displayed in

Fig. 6a. Mode n5 0 has a simple Gaussian shape and is largely

confined to within 58 of the equator. The higher lateral modes

are much less tightly confined to the equator. As illustrated in

Part I, the meridional modes for higher vertical modes are

more tightly confined to the equator than those for the m 5 1

mode. Figures 6c and 6d illustrate the two-dimensional struc-

ture of modes (1, 0) and (2, 1), respectively. One can see that

quite complex spatial patterns can be constructed from linear

combinations of even fairly low numbered meridional and

vertical modes.

c. Dependence of solutions on the kind and
type of simulation

Figure 7a shows how ST (the fraction of the variance not

captured by the idealized simulations, defined in section 3g and

Table 1) depends on the four types of forcing and the three

kinds of simulations (described in section 3f and Table 1) for

the first two vertical and meridional modes (four modes in all)

in the Pacific. For each mode, ST is plotted for the four types of

forcing,A toD, from left to right. No forcing (typeA) using the

natural frequency (kindN) gives ST greater than 0.35 in all four

cases. Even with no forcing theH and F simulations give ST ,
0.1 for all modes. For the natural solutions (black dots), in all

four cases the full forcing, type D, gives the lowest value of ST
and this value is comparable with that obtained using theH and

F simulations with no forcing. The DF simulation also has the

smallest value of ST in all cases thoughDF is only clearly better

than CF for the (2, 0) mode. The BN simulations forced just by

winds perform better (worse) for n 5 0 (n 5 1) than the CN

simulations that include baroclinic pressure forcing.

The forcing of the ~ym,n solutions by the zonal wind stresses

and the full pressures forces on the western and eastern

boundaries can be calculated using (22), (32), and (33). These

time series for modes (1, 0) and (1, 1) in the Pacific are plotted

in Fig. 8. For mode (1, 0) the full pressure forces on the

boundaries are almost negligible. For mode (1, 1) the full

pressure forces vary less rapidly in time than the zonal wind

forcing but are not negligible, and slow variations in them

appear to partially compensate slow variations in the zonal

wind forcing. Slow variations in forcing can be largely captured

in the least squares fit solutions by variation of the amplitude of

a5 in (38). The relative impact of variations in the pressure

forcing and the wind forcing within a time integration period

on the quality of the solutions can be assessed by comparing the

residuals for the least squares simulations AH, BH, and DH in

which the amplitudes of the forcings are held fixed. Figure 7a

shows that for these solutions (the red crosses), the improve-

ment in fit between simulations AH and BH, due to including

the wind forcing, is significantly greater than that between

simulations BH and DH, due to including the pressure forcing.

This is true for all modes with m # 4 and n # 3 (not shown).

The time series of d ~Ym,n/dt for these modes are also plotted

as gray lines on the same figures because they also drive the

ODE for ym,n, (33). These time series are evidently very

noisy and appear to play a minor role in driving longer period

variations in ym,n. This noise in the spline representation of

dYm,n/dt contributes noise to d2~y/dt2 and limits its accuracy.

This is one of the two main reasons why our presentation fo-

cuses on ST (rather than SA) as a measure of the quality of the

simulation. The second reason for focusing on ST is that it is a

more direct overall measure of the quality of the time series fit.

An alternativemethod to splines for the calculation of d ~Ym,n/dt

could give less noisy calculations of this term and either im-

prove the least squares fit solutions or at least make their re-

sults easier to interpret.

It is perhaps difficult to gauge from these figures how con-

vincing the agreement really is. For this reasonwemention that

at one stage we corrected the exp(2~y2m/4) term in (28) that had

previously read exp(2~y2m/2). This reduced the value of ST in the

N and H kinds of simulations for most of the leading modes

by a factor of 2–3. The least squares method was a useful tool

for finding errors and improving the results.

Figure 7b indicates how the best fit parameters, a3 and a2,

multiplying the forces along the x and y axes in simulation DF

compare with the value of 1 expected from the ‘‘physical’’

theory. The 20 segments are used to calculate a mean value,

m, for each parameter. The standard deviation of this mean,

sm, is calculated from the standard deviation of the pa-

rameter values, sp, assuming that the samples are inde-

pendent: sm 5sp/
ffiffiffiffiffi
19

p
. The mean values, m (full lines) and

m 6 2sm (dashed lines) are presented in the figure. The
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parameters for the force along the x axis (red lines) have a

fairly large standard deviation so the departure of the mean

from the expected value of 1 does not appear to be particularly

significant. The parameter multiplying the meridional forcing

has a much smaller standard deviation. Although the mean

value of this parameter (blue line) lies fairly close to 1, between

1.1 and 1.15, it appears to be significantly larger than 1.

Simulations with HM 5 25m have mean values for this pa-

rameter in the same range while those with HM 5 100m have

larger values. So the reason for this discrepancy is unclear.

Figure 7c indicates how the squared frequencies v2 selected

by the least squares fit in simulation DF compare with the

FIG. 6. The amplitudes of the first six nondimensional modes for the Pacific: (a) the meridional modes f1,n(y) for

the first baroclinic mode as a function of latitude, (b) baroclinic vertical modes p̂m(z) as function of dimensional

depth z, (c) 3D projection showing the depth–latitude structure of mode (1, 0), which corresponds to the thick red

curve in (b) (m 5 1) and the thick blue curve in (a) (n 5 0), and (d) 3D projection showing the depth–latitude

structure of mode (2, 1), as in (c), but with m 5 2 and n 5 1.
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values, v2
m,n, predicted by the theory. The mean and estimated

uncertainty ofv2/v2
m,n in simulationDF, calculated as in Fig. 7b,

are presented as the blue lines in Fig. 7c. The mean squared

frequencies for the least squares fit are consistent with the

theory (with our choice of H and s2). The red dashed lines

display the ratios cm(EP)/cm(P) and cm(WP)/cm(P), where EP,

WP, and P denote the east Pacific, west Pacific, and full Pacific

regions and the phase speeds have been calculated using the

April data. A solid red line plots cm(P)/cm(P) 5 1. The least

squares fit frequencies appear to be comparable with the range

of variation expected from the variation in density stratification.

d. A survey of the quality of the solutions

Before assessing the quality of the simulations for a wider

range of modes, it is useful to note how the variance VT in the

modes varies with the vertical and meridional wavenumbers.

Figure 9a presents VT for the first five vertical and meridional

modes in the Pacific calculated by projecting the NEMO me-

ridional velocities directly onto them. Although the lowest

meridional and vertical modes clearly have the largest vari-

ances, the variances of these modes decrease fairly slowly with

vertical andmeridional wavenumber. In the case of the vertical

modes this is not surprising because none of these modes varies

greatly within a mixed layer that is 50m deep.

Figure 9b presents ST for the same set of modes calculated

by simulations DN (solid lines) and DF (dashed lines). For the

first four vertical and meridional modes all (sixteen) DF solu-

tions have ST , 0.12. For the first two (three) vertical and

meridional modes allDN solutions have ST , 0.09 (ST , 0.15).

The values of ST for the higher modes are larger but this is

partly because the variance of these modes is smaller (Fig. 9a);

the largest values of VTST are in fact obtained for modes with

m 5 1 or m 5 2 (not shown).

Simulations using H 5 5120m and s0 give smaller values of

ST for the first and second baroclinic modes but larger values of

ST for the higher vertical modes (not shown). Indeed the values

for ST for the DN solutions with m 5 1 and 2 # n # 4 are half

those obtained using H 5 4191m and s2. The improved per-

formance for the first baroclinic mode may be because it is

near-surface intensified. The best solutions for these modes are

obtained using the largest value ofH5 5596m that is common

to all latitudes [in other words, the smallest value of Hmax(y)].

Figures 9c and 9d present ST(m, n) for the Atlantic and

Indian Oceans, respectively. Comparing them with Fig. 9b for

FIG. 7. (a) The ST (i.e., the fraction of the variance not captured

by the idealized simulations) for three kinds of simulation (see

labels) and four types of forcing, from A (no forcing) on the left to

D (full forcing) on the right. Also shown are the mean (full lines)

and the mean 6 2 standard deviations (dashed lines) of (b) the

amplitudes multiplying the wind stresses along the x (blue) and y

(red) axes and (c) v2/v2
m,n (blue) obtained in simulation DF. In

(c), the red dashed lines display the ratios cm(EP)/cm(P) and

cm(WP)/cm(P), where EP, WP, and P denote the east Pacific,

west Pacific, and full Pacific regions, and the full red line is

cm(P)/cm(P)5 1. All panels show results for the first four modes

(m, n) in the Pacific with m # 2 and n # 1.
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the Pacific, one sees that the simulations in the Indian Ocean

are generally somewhat better and those in the Atlantic

somewhat worse than those in the Pacific. The DN simulations

with m 5 5 and n 5 1 in the Atlantic, n 5 1 or n 5 3 in the

Pacific Ocean and n 5 0 or n 5 2 in the Indian Ocean have

relatively large values of ST. Mode (5, 3) in the Pacific has ST5
0.425 and 0.134 for simulationsDN andDF, respectively, and is

one of the most poorly simulated modes. The time series for

FIG. 8. Time series for the Pacific of the forcing ~Xf
m,n by the zonal winds (red), gD ~hf

m,n by pressures on the boundaries

(blue), and d ~Ym,n/dt by the meridional winds (black) for modes with (m, n) equal to (a) (1, 0) and (b) (1, 1).

FIG. 9. (a) The VT for the first five meridional modes (abscissa) and the first five vertical modes (see the labels)

calculated by projecting the NEMO Pacific meridional velocities directly onto the modes. Also shown is ST for the

same modes in simulations DN (full lines) and DF (dashed lines) for the (b) Pacific, (c) Atlantic, and (d) Indian

Oceans.
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DN and DH are illustrated in Fig. 4b. Simulation DN (red line)

reproduces themodes quite well at times (e.g., from days 230 to

290) but poorly at others (e.g., from days 110 to 130). It appears

from Fig. 4b that the simulation of this mode is poor mainly

because it fails to follow the slow variations in the amplitude

accurately. This also appears to be the case for the other poorly

simulated modes noted above.

Similarly (as alluded to earlier) the time series for (m, n) 5
(2, 2) in the Pacific plotted in Fig. 4a has the largest value of ST
(and is in this sense themost poorly simulated) for bothDN and

DF of all time series for the Pacific with 1#m# 3 and 0# n# 2

(i.e., the first 9 modes). Careful examination of Fig. 4a and of

the corresponding slow solution (not shown) shows that the

slow variations in the (2, 2) mode in the Pacific are also not

accurately represented by the DN or the slow solution.

Particularly for the natural solutions, the statistical fit of the

time series ST for integration periods of 800 h is less good than

those for the 400 h integration periods just discussed. As

mentioned in section 3g, a measure of the quality of the sim-

ulation of d2~y/dt2 has also been calculated. This measure has

some merit in that it is much less sensitive to the length of the

segment used in the calculations. For the segment length pre-

sented the results for this measure (not shown) are qualita-

tively similar to those already presented. The pros and cons of

the two measures are discussed further in section 4f.

e. Projection onto MOC

The ~ym,n modes described above combine to generate quite

complex patterns in the MOC streamfunction. The upper-left

panel of Fig. 10 illustrates the MOC streamfunction at a single

time as a function of latitude and depth and the panels to its

right show reconstructions using the DH simulations progres-

sively including more vertical and meridional modes. As more

modes are included the reconstruction captures more of the

complexmeridional structure of the streamfunction. The lower

panel, which shows time series of the same reconstructions and

NEMO integration on the equator at 1583-m depth, shows that

the richer modal reconstructions are required to capture the

full variation of the peaks and troughs in the MOC at the

equator. An animation of the information presented in Fig. 10

shows clearly how the addition of higher vertical and meridi-

onal modes to the solution results in an increasingly realistic

representation of the MOC variability at all depths and lati-

tudes (see Fig. S1 in the online supplemental material). Part I

presents alternative sections through these 3D reconstructions

and statistical analyses that confirm that, as the number of

meridional modes used in the reconstruction increases, the

fraction of the NEMO MOC accounted for by the linearized

simulations increases, particularly at higher latitudes and

greater depths.

f. Slowly varying solutions in the Pacific

We now investigate the slow solutions, described in section 3e,

obtained for the Pacific by applying to ~ym,n calculated using

(41) a running mean whose length is the period of the natural

frequency of the mode. The red dashed lines in Fig. 11 show

these slow modes for (m, n) equal to (1, 0) in Fig. 11a and (1, 1)

in Fig. 11b. The black solid lines are the time series calculated

by applying the same time filter to the amplitudes calcu-

lated directly from the NEMO velocities. In both cases the

FIG. 10. (top) MOC streamfunction for the Pacific Ocean as a function of latitude and depth on day 22 (time step 130) (left) calculated

directly from theNEMO integration, and reconstructed from a simulation of typeDHwithH5 5495m using (left center)mode (1, 0) only,

(right center) all modes with m # 3 and n # 2, and (right) all modes with m # 6 and n # 5. (bottom) Time series of the MOC stream-

function for the Pacific on the equator at 1583-m depth for theNEMO integration (black),mode (1, 0) only (red), all modeswithm# 3 and

n # 2 (bright blue), and all modes with m # 6 and n # 5 (green/blue).
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agreement is good, particularly on longer time scales; the black

lines have residual amplitudes at fairly high frequencies.

Figure 12a displays the mean square values of these filtered

NEMO ~ym,n values (the black lines in Fig. 11) and the mean

square values of the difference between them and the slow

mode solutions (the difference between the black and red lines

in Fig. 11). The normalized residuals (the ratio of the dashed

and the solid lines) are small for m # 2 and n # 4 but increase

rapidly for larger values ofm (particularly for even values of n).

The red and blue lines in Fig. 8 show respectively the wind
~Xf
m,n and pressureD

~hf
m,n terms that contribute to the numerator

on the rhs of (41) for the same modes as presented in Fig. 11.

FIG. 11. Time series for the Pacific obtained by applying a running mean, of length equal to the period of the

resonant frequency, to the amplitude of modes obtained directly from the NEMO ~ym,n velocities (black solid line)

and from the slow solution obtained from (41) (red dashed line) for (a) mode (1, 0) and (b) mode (1, 1).

FIG. 12. (a) Mean square values of running means of NEMO

modes (full lines) and their mean square differences from the slow

~ym,n solutions for the Pacific given by (41) (dashed lines). (b) The

VA (solid) and RA (dashed), and (c) SA (solid) and g3 (dashed) for

DF simulations of ~um,n in the Pacific.
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For mode (1, 0) the pressure term makes only a very small

contribution but for mode (1, 1) its contribution is important.

Neglecting it would give a very poor simulation of the slowly

varying solution for ~ym,n.

g. Solutions for the zonal velocities in the Pacific

Figure 13 presents time series of the zonally integrated zonal

velocities ~um,n for modes (1, 0), (1, 1), and (3, 1) in the Pacific.

The linearized simulations have been calculated as described in

the last paragraphs of sections 2d and 3f. The solutions for

modes (1, 0) and (1, 1) are remarkably different; the high-

frequency variations in mode (1, 1) are much larger than those

in mode (1, 0) and the reverse is true for the low-frequency

variations. In both cases, both the least squares fit simulations,

DF, and the natural simulations,DN, generally capture both the

short-period and slower variations rather well. Mode (3, 1) has

small-amplitude, short-period variations that are also well

captured but the two simulations of the slower variations are

both poor. Figures 12b and 12c summarize the dependence of

the quality of the solutions on the meridional- and vertical-

mode numbers. Figure 12b shows that the mean value of

(d~u/dt)2 (VA, solid lines) is largest in vertical modes 1 and 2 and

that the residual RA is smallest in these modes. Figure 12c

shows that the ratio RA/VA (SA, solid lines) increases rapidly

with vertical-mode number and increases slightly as the

meridional-mode number decreases. It also shows that the

least squares fit coefficient g3 multiplying ~Xm,n 1D ~hm,n (dashed

lines) is close to its expected value of 1 form# 2 and n# 2 and

generally is inaccurate for other values of m. As discussed in

the next section, further work would be required to relate these

results to variations in the equatorial undercurrent and the

equatorial countercurrents.

5. Concluding summary and discussion

The large-amplitude, high-frequency oscillations in the

zonally integrated meridional circulations near the equator,

that are found in the Pacific, Indian, and Atlantic Oceans in

NEMO simulations and described in some detail in the first

part of this study, have been shown to arise from the projection

of the zonally integrated surface wind and bottom pressure

forcing onto the vertical and meridional (equatorially trapped)

normal modes of motion. For the first few meridional and

vertical modes, it has been shown that the frequencies of the

oscillations and amplitude of the response can be well simu-

lated even though the horizontal variations in the stratification

and time-mean currents are neglected. It is shown in Part I,

using the calculations explained in this part of the paper, that

the high-frequency variations in the MOC near the equator

can be accurately reproduced in the top 2000 (3000) m within

FIG. 13. Time series for the Pacific of (a) ~u1,0, (b) ~u1,1, and (c) ~u3,1. The full black lines are calculated directly from

NEMO data. The red dotted and blue dashed lines are simulations of types DN and DF, respectively.
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58 (7.58) using only 3 (6) vertical and meridional modes. Slower

variations in modes (with periods exceeding 10 days) with

vertical- and meridional-mode numbers m# 2 and n# 4 have

also been shown to be well reproduced by ‘‘quasi-stationary’’

solutions for these modes. The accompanying variations in the

zonal velocities have been shown to be well captured for the

first and second baroclinic vertical modes (at least for the first

three meridional modes) but poorly represented for higher

vertical modes.

It is worth noting that we have used ‘‘classical’’ baroclinic

modes in our calculations rather than the surface modes pro-

posed by LaCasce (2017). We have repeated our calculations

using the surface modes’ boundary condition, hp0i 5 0 rather

than hw0i5 0 at z52H, and find that this roughly doubles the

size of the residuals between the idealized and the NEMO

simulations. We suggest that two reasons may account for this.

First, our solutions do not require the ocean bottom to be flat

but only that Hmax(y) (the maximum bathymetric depth as a

function of y) be independent of y. Second, we suggest that a

sufficiently good approximation to the bathymetry that con-

strains the motions can be specified for which this is true

(noting that we obtain our best results using a maximum ba-

thymetry that disregards the deep-ocean trenches).

It is conceivable that the fluctuations studied in this paper

are more damped in reality than they are in the NEMO inte-

grations. The fact that Farrar and Durland (2012) found sig-

nificant power in TAO mooring data in long zonal wavelength

modes of similar periods to theYanai and internal gravity wave

modes that we have simulated in this study gives some reas-

surance that the fluctuations occur in reality. But suitable

quantitative comparison between the TAO data, the NEMO

integrations, and the idealized simulations are needed to give

further evidence on whether the fluctuations in the MOC

simulated in this paper are indeed of realistic amplitude.

The relationship of the slow solutions to theories of the

equatorial undercurrent, summarized for example by Vallis

(2017), may also be worth further study. The use of (41) as a

simplified balance equation for the meridional flow is very at-

tractive, but the separation of the specification of the boundary

pressure forces from the solution is an obvious limitation in this

context and the convergence of the slow modes expansion may

need careful consideration. It would also be interesting to in-

vestigate the slowly varying vertical velocities associated with

the normal modes. These vertical velocities penetrate deep

into the water column and could play an important role in the

upwelling of water from mid-depths into the thermocline or

near surface waters.

The limited skill of the higher vertical andmeridional modes

found in this study also applies to similar analyses of low-

wavenumber Rossby–Haurwitz waves in the atmosphere

(Madden 1979). In the atmosphere, however, the agreement of

the phase speeds is usually considered to be limited to the

modes of lowest wavenumber because only those modes have

fast enough phase speeds for the zonal wind velocities to be

negligible. In our case it does not make sense to superimpose a

zonal flow on the solutions because the zonal flow would not

satisfy the boundary conditions but it is plausible that the

higher vertical and meridional modes interact more with the

zonal flows, particularly in critical layers. Another problem

with the simulation of the higher modes may be that the pro-

jection onto them assuming a ‘‘fixed’’ mixed layer depth of

50m is not accurate enough; projection of the wind stresses in

the vertical using a more accurate (spatially and temporally

varying) representation of the mixing layer depth for mo-

mentum may give better results. Use of the local time-mean

stratification rather than a ‘‘global’’ average, in themanner of a

WKBJ approximation, may also possibly give better results.

One might also need to use normal modes that are calculated

consistently with the numerics of the NEMO model (Thuburn

and Woollings 2005).

The key role played by oceanic inertia–gravity and Yanai

waves in the response of the zonally integrated circulations to

the wind forcing, raises obvious questions about their role in

fluxing momentum input by variable surface winds into the

ocean interior. Large-amplitude, relatively low-frequency

inertia–gravity waves could be generated by (fluctuating)

wind stresses along the equator. ‘‘Shear-spiking’’ events

(Crawford and Large 1996; Jochum et al. 2013) could gen-

erate downward propagating waves carrying westward mo-

mentum. These waves could contribute to the generation of

the vertically stacked zonal jets and basin modes discussed

by Greatbatch et al. (2018). Holmes et al. (2016) and

Delorme and Thomas (2019) have recently proposed that

inertia gravity waves near the equator generate significant

abyssal diapycnal mixing and upwelling. They might also

preferentially release their momentum below the base of the

mixed layer. It would be interesting to investigate whether this

plays a significant role in the momentum balance along the

equator and the turbulence below themixed layer measured by

Pujiana et al. (2018). If it does, the representation of these

processes within ocean models would be an important issue.
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APPENDIX A

Calculation of the Boundary Terms

The derivations presented in section 2 can be extended to

cover the case whenA and B are nonzero. Separating variables

by extending (11) with

A5�
m

p̂
m
(z) ~A

m
and B5�

m

dp̂
m

dz
~B
m
, (A1)
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one can derive an extended form of (33) that includes A and B
only in the form of their first-order time derivatives ›A/›t

and ›B/›t.
Diagnosing the additional forcing terms derived fromA and

B using the model outputs, however, is not entirely straight-

forward. This is partly because the model side boundaries

follow the cell boundaries and hence have corners where their

derivatives are discontinuous. So we describe here an approach

that follows the calculations made by the numerical model

more closely. This approach suggests that the terms corre-

sponding to A and B are likely to provide mainly noisy forcing

similar to that from the meridional winds (shown in Fig. 8).

It could be used to calculate the additional forcing terms

explicitly.

For brevity we consider only the terms (corresponding toA)

that arise from the zonal averaging of the meridional compo-

nent of themomentum equations.We start our derivation from

the zonally integrated shallow water equations [(16) and (17)]

with r set equal to zero:

›hu0i
›t

2 f hy0i5 hXi1 g(h0
W 2h0

E) , (A2)

›hy0i
›t

1 f hu0i5 hYi2 g

�
›h0

›y

�
, and (A3)

›hh0i
›t

1H
›hy0i
›y

5 0: (A4)

Note that in (A3), the zonal integral applies to ›h0/›y rather

than to h0. The numerical model’s equations are formulated

using the C-grid shown in Fig. A1 with (A3) calculated at the

y points marked by upward pointing arrows and (A4) cal-

culated at the h points (where tracers are held) marked by

circles. The equations are solved by taking ›/›t of (A3) and

substituting (A2) and (A4) into it. Terms corresponding toA in

the continuous equations arise because at steps in the land–sea

boundary, such as that at the land boundary between rows j and

j 1 1, the zonal integral of ›h0/›y in (A3) does not contain the

same grid points as the zonal integrals of h0 at adjacent lati-
tudes. In (A3), h›h0/›yi at the y points on row j1 1/2 in Fig. A1

involves h0 only at the points on rows j and j 1 1 that are

marked by solid circles. In (A4), hh0i on row j1 1 involves h0 at
the point marked by an open circle as well as the points marked

by solid circles. The fact that hi and ›/›y do not commute in this

case gives rise to a correction to the zonal integral of ›h0/›t. The
correction consists of the sum of ›h0/›t terms at the points that

lie adjacent to a boundary either to the north or the south of the

row (the ones that would be marked by open circles following

the notation of Fig. A1). So ›/›t of (A3), with (A2) and (A4)

substituted into it, results in

›2hy0i
›t2

1 f 2hy0i2 gH
›2hy0i
›y2

5 fg(h0
E 2h0

W)1 g�
xEi

›h0
Ei

›t

Dx
Ei

Dy

2 g�
xWi

›h0
Wi

›t

Dx
Wi

Dy
2 f hXi1 ›hYi

›t
.

(A5)

Figure 7a shows that the improvement to the quality of the

natural solutions ST when the first of the boundary pressure

terms, fg(h0
W 2 h0

E), is taken into account is large for some

modes, particularly those with (m, n) 5 (1, 1) and (2, 1). This

can be seen by comparing the black dots (natural solutions) for

solutions of types B and D. By contrast, the improvement be-

tween types B and D in the ‘‘half fit’’ solutions (red crosses),

which allow adjustment of a constant offset, is very modest.

This shows that the main impact of this pressure force on the

solutions is due to a slowly varying zonal pressure difference,

the slow mode solution, about which the solution oscillates.

The additional boundary pressure forces probably have a rel-

atively minor impact on the quality of the solutions because

they involve only the time derivative of the pressures at the

boundaries. The situation is likely to be similar to that in Fig. 8,

which shows that the forcing by the zonal winds (red dots) and

the boundary pressures provide coherent forcing whereas the

forcing by the time derivative of the meridional winds (gray

curve) fluctuates around zero in a noisy manner.

APPENDIX B

ALeast SquaresMethod toOptimize the Initial Conditions

Suppose that we wish to choose the initial conditions to

obtain the best fit solution to (37) for given values of r, cm and

forcing. Because (37) is linear in ~ym,n, the sum of particular and

homogeneous solutions of (37) are also solutions. We will find

the linear combination that minimizes the square of the errors.

To simplify notation, we drop the m, n subscripts in what

follows.

The particular solution ~yp of (37) that we use is the one with

~y5 ~q5 0 at the initial time. The homogeneous equation for

(37) is

d~y

dt
5 ~q,

d~q

dt
522r~q2 c2l~y . (B1)

The first homogeneous solution ~yA that we use has ~yA 5 1 and

~qA 5 0. The second homogeneous solution ~yB has ~yB 5 0 and

~qB 5 1. Because (37) is linear in ~y,

FIG. A1. Illustration of the differing points included in two zonal

integrals. The zonal integral of ›/›t of (2) at the y velocity points on

model row j 1 1/2 includes the points marked by upward-pointing

arrows. The zonal integral of ›2h/›y›t at these points involves the

values of ›h/›t at the tracer points marked by solid circles. The

zonal integral of ›h/›t on row j1 1 also includes the point at i2 1,

j1 1 marked by an open circle. The shaded box is covered by land.
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~y5 ~y
p
1A~y

A
1B~y

B
(B2)

is also a solution of (37) for any choice ofA and B. So we use a

least squares solver to minimize

J
2
5 �

K

k51

(~y
k
2 ~y

pk
2 ~y

Ak
A2 ~y

Bk
B)

2
, (B3)

The least squares solver provides the amplitudes of A and B

that minimize J2.
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