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ABSTRACT: Current methods to assess the impact of chemical
mixtures on organisms ignore the temporal dimension. The
General Unified Threshold model for Survival (GUTS) provides
a framework for deriving toxicokinetic−toxicodynamic (TKTD)
models, which account for effects of toxicant exposure on survival
in time. Starting from the classic assumptions of independent
action and concentration addition, we derive equations for the
GUTS reduced (GUTS-RED) model corresponding to these
mixture toxicity concepts and go on to demonstrate their
application. Using experimental binary mixture studies with
Enchytraeus crypticus and previously published data for Daphnia
magna and Apis mellifera, we assessed the predictive power of the
extended GUTS-RED framework for mixture assessment. The
extended models accurately predicted the mixture effect. The GUTS parameters on single exposure data, mixture model calibration,
and predictive power analyses on mixture exposure data offer novel diagnostic tools to inform on the chemical mode of action,
specifically whether a similar or dissimilar form of damage is caused by mixture components. Finally, observed deviations from model
predictions can identify interactions, e.g., synergism or antagonism, between chemicals in the mixture, which are not accounted for
by the models. TKTD models, such as GUTS-RED, thus offer a framework to implement new mechanistic knowledge in mixture
hazard assessments.

■ INTRODUCTION

Human activities release a plethora of chemicals into the
environment1 that can lead to effects on nontarget organisms.
The environmental risk assessment (ERA) for individual
chemicals is established with robust methods, including
experimental designs and data analysis methods in place.2

While risk assessment may take a chemical-by-chemical
approach, in practice, ecosystems are subject to many inputs
from agricultural, industrial, and domestic sources. These
sources result in a wide range of mixture exposure scenarios
that can affect nontarget organisms.3−5

The dominant approaches to predict mixture effects ignore
the time dimension.5 As toxicity is a process in time, so is the
action of mixtures.6 Therefore, mixture effect assessment needs
diagnostic tools that account for these temporal aspects. To
explain and predict the effects of mixtures, toxicokinetic−
toxicodynamic models (TKTD models), which simulate the
time course of processes leading to toxicity, offer a promising
approach.7−9 Previous studies have presented TKTD models
to analyze effects of mixtures on survival that have been
successfully applied to mixture datasets.10−17

In the past decade, the development of the General Unified
Threshold model for Survival (GUTS) framework firmly

established the concept of damage dynamics, which takes place
between the internal concentration and the effect.18,19 This
concept is central to the GUTS framework as it provides an
explanation for the time course of mortality, including cases
where internal concentration kinetics fail.20,21 Recently, as the
broad relevance of damage dynamics became clearer, this
concept has been applied to DEBtox modeling for sublethal
effects as well.22 To apply the toxicological assumptions of
independently and jointly acting toxicants to TKTD models
that simulate damage dynamics, a consistent mathematical
framework is needed. Jager and Ashauer19 presented initial
thoughts on how the GUTS framework can be used for the
assessment of mixture effect. However, we do not know how to
apply these ideas in practice, how well they work, and the
predictive power of such models.
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Here, we extend the GUTS framework, and specifically, the
GUTS reduced (GUTS-RED) models, for application to
mixture effects over time. GUTS-RED combines toxicokinetics
and damage dynamics into a single compartment and therefore
links external concentrations to the effect on survival. GUTS-
RED models are relatively simple with a few parameters.
Hence, they are efficient models for effect assessment because
they require a few data, no measurement of body residues, and
no other toxicokinetic information.23 To extend GUTS, we
first translate the classical mixture effect assumptions into
equivalent mechanistic concepts to be implemented into the
equations of the GUTS-RED models. We then test the
extended model assumptions and assess their predictive power
by using bespoke mixture effect data and mixture experimental
results from the literature.

■ MATERIALS AND METHODS
Toxicokinetics−Toxicodynamics. A Brief Background

of the GUTS Framework. The GUTS models simulate the
time course of processes leading to the death of an
organism.18,19 They account for the accrual of, and recovery
from, damage (toxicodynamics, TD), which forms due to the
bioaccumulation, distribution, biotransformation, and elimi-
nation of the chemicals in the organisms (toxicokinetics, TK).
In the absence of information on body residues (measurements
or predictions), the TK and TD cannot be modeled separately,
and the GUTS reduced (GUTS-RED) models, which combine
the TK and TD, are used instead. In GUTS-RED models, the
dominant rate constant kd describes the dynamics of the
“scaled” damage and will represent the one-compartment
approximation of the “true” two-compartment behavior (TK
and damage dynamics). To describe the death mechanism
related to the damage, two causations of the process affecting
survival are formalized: the stochastic death (SD) and
individual tolerance (IT) approaches. The SD approach
assumes that individuals are identical and have a probability
to die upon chemical stress, which increases with increasing
damage once some threshold damage has been exceeded. The
IT approach assumes that individuals have differences in their
sensitivity to chemical stress, and when the damage exceeds an
individual’s threshold, it dies instantly. Both approaches can
lead to different data interpretation and predictions for the
time course of effect.21 Consequently, we here use both
approaches for mixture hazard assessment, and because the

GUTS framework provides consistent mathematical formula-
tions for both, we build mixture models within that framework.

Extension of the GUTS Model for Mixture Toxicity. In
GUTS, exposure to a chemical leads to damage that in turn
leads to effects on survival. According to this assumption,
mixtures of two chemicals can lead to two basic possibilities:
the chemicals lead to the same or dissimilar forms of damage.
The first option is appropriate for chemicals with the same
mode of action and possibly also for chemicals acting on the
same physiological process (e.g., insecticides acting on the
same aspect of the nervous system). In this situation, the
damage produced by each chemical can be added up, and this
is referred to as the GUTS-RED (scaled) damage addition
(DA) model in this paper (Figure 1). For chemicals leading to
dissimilar forms of damage, the assumption is that the effects of
both chemicals are independent and that we need to multiply
their effects (i.e., the survival probabilities). This second
possibility is referred to as the GUTS-RED independent action
(IA) model (Figure 1).
When damage addition applies to a mixture, the damage

dynamics of each chemical is still characterized by its own
dominant rate constant (kd). Hence, each substance in the
mixture has different damage dynamics, but because the type
of damage produced is the same, they can be summed. For
damage addition to apply, the components in the mixture must
share parameters linking damage dynamics to survival (mw, bw,
and Fs). Because chemicals can differ in their efficiency in
causing damage, and because we worked with scaled damage,
an additional model parameter, the weight factor W, needs to
be applied to the substance-specific attributed scaled damage
before these are summed. This is similar to the concept of
relative potency for mixture effects, which has been successfully
used in the past for in vitro bioassays,24 polychlorinated
dibenzodioxins (toxic equivalency factors),25 water quality
criteria for herbicides with the same mode of action in surface
water,26 and QSAR models considering concentration
addition.27 The W factor is a new parameter that is constant
over time, and it is fitted during the simultaneous fit of the
single exposure data of both substances with the GUTS-RED
damage addition model.
The IA model is based on the assumption that the chemicals

act on different target sites, affecting different physiological
processes and, thus create different damage forms. Con-
sequently, the two chemicals have their own independent sets

Figure 1. Description of the GUTS-RED mixture models under the assumption of independent action (left panel) and same mode of action (or
same form of damage) (right panel). kd is the dominant constant rate, mw is the median of the threshold distribution, bw is the killing rate (when
considering the stochastic death approach, SD), and Fs is the fraction spread (when considering the individual tolerance approach, IT). W is a
weight factor that normalizes the scaled damage of chemical B to chemical A. The models are illustrated for a binary mixture but can be expanded
to mixtures with more components.
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of GUTS parameters, and the survival probabilities are
multiplied to create an overall survival probability due to the
mixture effect.
The equations of the GUTS-RED mixture models are

derived from the GUTS framework fully presented in Jager et
al.18 The full set of equations for both mixture models can be
found in the Supporting Information.
Choice and Assessment of the Two GUTS-RED

Mixture Model Fits and Predictions (DA and IA). For
most chemicals, it will not be known if they will create the
same or dissimilar forms of damage. Studying the adverse
outcome pathway, at the subindividual level, on chemical
effects can lead to insights.28 For example, for chemicals known
to act on the same target, it is expected that the DA model
provides better results. However, for many chemicals, we have
insufficient knowledge about the type of damage they cause.
The application of the DA model implies that the related

mortality model parameters, i.e., those linking the sum of
scaled damage to survival, are shared by the chemicals in the
mixture: mw, bw, and Fs. This offers a possibility to check if the
DA model is appropriate for mixture applications even before
performing mixture tests. The parameter values (mw, bw, and
Fs), derived by calibrating the GUTS-RED model to data from
each substance separately, can be examined to explore the
possibility that chemicals share the same value of the model
parameters. Considering IT, the threshold mw provides no
information on whether the DA model is possible, but the
parameter Fs does because if chemicals induce the same form
of damage, the distribution of tolerances across individuals to
these damages must be the same. Therefore, Fs should be
similar (or at least the CIs should overlap). Considering SD,
the product mw × bw should be similar (or at least an overlap of
their CIs) because in GUTS models, we do not know the true
level of damage, and it is usual to work with the scaled damage,
meaning that the damage levels are divided by the unknown
partition coefficient between internal concentration and
damage.19 Therefore, mw and bw have the unit of the external
concentration and differ from the “true” mw and bw by a factor:
the partition coefficient. This unknown value of the partition
coefficient returns as a factor by which mw is divided and bw is
multiplied, and hence, their product should be the same for
additive chemicals. Therefore, the first step (Figure 2) is to
plot the single substance-derived Fs for IT and mw × bw values
for SD to evaluate if it is appropriate to use the DA model for
the considered mixture. If the plotted CIs for the parameters
for the individual substances overlap, then DA is a possibility
to consider; if they do not overlap, then DA is not appropriate.

In a second step (Figure 2), for all tested binary mixtures, we
fitted simultaneously the two single exposures with the DA and
IA models. It is important to note that the log-likelihood of a
simultaneous fit for two chemicals with the IA model will be
equal to the sum of the log-likelihoods of fits for the single
chemicals separately because no parameters are shared. The
simultaneous fit of the single exposures with the DA model is
more interesting since parameters need to be shared between
the compounds. Because the DA model is, when only
considering single exposures, nested in the IA model, this
allows for a formal statistical test to assess if the DA model is a
possibility (the sum of the log-likelihoods for the independent
fits can be compared to the simultaneous fit in a likelihood-
ratio test).
The third step, and ultimate test (Figure 2), is in the

prediction of the mixture effect with both the IA and DA
models. Since the IA and DA models, applied to mixtures of
chemicals, are not nested, their predictions cannot be
compared in a formal likelihood-ratio test. Instead, they are
compared more qualitatively by their r-square (r2) value and
the Akaike information criterion (AIC). We hypothesize that
these three steps together provide information on whether
chemicals share the same mode of action and allow model
selection for the prediction of mixture effects.

Test Organism, Experimental Design, and Chemicals.
Enchytraeus crypticus (Enchytraeidae; Oligochaeta; Annelida)
were originally sourced from the laboratory of the Department
of Ecological Science, Vrije Universiteit, Amsterdam, The
Netherlands, and were maintained in culture at the UK Centre
for Ecology and Hydrology, Wallingford (UK). For all
experiments, adult individuals were exposed at 15 °C in the
darkness, in 1 mL of artificial fresh water29 in 24-well plates,
with one individual per well (24 animals per treatment), for 96
h. Survival was monitored at 3, 6, 24, 48, 72, and 96 h for a
total of seven time points. Individuals were classified as dead if
they did not respond to repeated touching with a pin.
To test the IA model, we selected two chemicals with

different modes of action for which preliminary data indicate
that there was no interaction. The first is MGK 264 (CAS:
113-48-4), and the second is glyphosate (CAS: 1071-83-6),
both obtained from Sigma Aldrich (St. Louis, MO, US). To
test the DA model, we selected two fungicides from the same
class that have the same putative mode of action and without
any potential interaction (based on preliminary experiment):
prochloraz (CAS: 67747-09-5) and triflumizole (CAS: 68694-
11-1), both obtained from Santa Cruz Biotechnology (Dallas,
TX, US). Both fungicides inhibit the sterol biosynthesis in

Figure 2. Work flow for data analysis with the GUTS independent action and damage addition models to identify the most appropriate model and
assumptions.
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membranes and act on the same target site (erg11/cyp51)30

and the target site is present on the genome of E. crypticus.31

Based on preliminary testing and results, we selected a range
of concentrations for testing expected to lead to effects on
survival (Table S1). The single exposures (one chemical) were
designed to calibrate the GUTS-RED mixture models and to
predict the binary (two chemicals) mixture effects. Therefore,
we chose concentrations to cover the toxic effect from no effect
to 100% mortality. According to the toxicity profile and the
expected recommended model used for the prediction of the
mixture (DA or IA), we next selected a relevant range of
concentrations in the mixture experiment. For the two
fungicides (DA), we exposed individuals to half of the
concentration of each fungicide as used in the single exposure
(e.g., single exposure: 10 mg L−1, binary mixture: 5 + 5 mg L−1

of each fungicide; Table S1). For the assessment of the IA
model, glyphosate showed a strong threshold effect, meaning
that once the concentration exceeds the threshold, the effect
on survival was high (100% mortality), while MGK 264
showed a slow increase in the effect with exposure

concentration. Based on these preliminary results, we chose
to increase the concentration of these two chemicals in the
mixture but kept the glyphosate concentration under the
threshold. If the hypothesis of independent action is correct,
then the addition of glyphosate should not increase the
expected effect due to MGK 264. Single and mixture exposures
were performed at the same time to minimize interexper-
imental variability. Finally, to further test the two different
GUTS-RED mixture models, we extracted suitable available
data from the literature. We used data from Robinson et al.32

who exposed the western honeybee Apis mellifera to single and
mixture treatments of arsenic and cadmium (see also Hesketh
et al.33 for more details) and data from Loureiro et al.34 who
exposed Daphnia magna to single and mixture treatments of
imidacloprid and thiacloprid. All concentrations were trans-
lated into μM units in the model for more consistency
especially for the DA model, which adds up the damage with
an external concentration unit.

Model Calibration and Prediction. All calculations were
performed in Matlab 2020a. The Wilson score interval was

Figure 3. Comparison of the GUTS mortality-related parameters between (A) MGK 264 and glyphosate, (B) prochloraz and triflumizole, (C)
arsenic and cadmium, and (D) imidacloprid and thiacloprid. For each comparison, the left plot is for the stochastic death approach (SD) with the
product of the median of the threshold distribution (mw) and the killing rate (bw), and the right plot is for the individual tolerance approach (IT)
with the fraction spread (Fs). The yellow point is the best-fit value with the 95% confidence intervals. For (A), the value for MGK 264 is 0.59 (CI,
0.31−2.58), and for glyphosate, the value is 2.03 × 105 (CI, 172 to 2.96 × 105). For the GUTS-RED damage addition model to be used, the two
chemicals need to share their GUTS mortality parameters and thus need to show overlap of the parameter samples, as in (B) and (D). If no overlap
is observed, then the GUTS-RED independent action model is more appropriate, as in (A) and (C).
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used to express the uncertainty in the survival data, which
allows confidence intervals (CIs) to be plotted for each data
point.35 The DA and IA models were implemented in the
BYOM modeling platform (www.debtox.info/byom.html).
The optimization of the parameter values was performed
with the parameter space explorer.36 This algorithm is
optimized for GUTS analyses and combines grid search, a
genetic algorithm, and likelihood profiling, giving the CIs of
the parameter values. To produce CIs on the model curve, a
sample from the parameter space explorer is used. The
parameter space explorer was also used to produce CIs for the
product of bw × mw (Figure 3): the algorithm returns a sample
from the parameter space for error propagation. Then, the
product bw × mw is calculated for each element of this sample
and used as a new sample, and the edges of this new sample are
the CIs for the product. This is fully analogous to the CIs on
model predictions as explained by Jager.36

For all calibrations, the background mortality (hb) was fitted
to the survival in the control treatment and kept fixed while
fitting the toxicity parameters. For all fits and predictions, we
provided the model efficiency with the r2 (i.e., observed vs
predicted) and Akaike information criterion (AIC) value. For
the calculation of the AIC for the prediction, we used the
number of toxicity parameters (5 for DA and 6 for IA).

■ RESULTS AND DISCUSSION
Using TKTD Evidence to Provide Information on the

Chemical Mode of Action. The comparison of the
mortality-related parameters for the chemicals is not only
useful to choose between the DA and IA but also as a powerful
tool to explore whether two chemicals may share the same
mode of action. Essentially, this analysis helps one understand
if it is possible that different toxicants cause the same form of
damage. For all tested mixtures showing no overlap in their CIs
of the mortality parameters (Figure 3), the simultaneous fit on
the single exposures was significantly better with the IA model
(Table 1). This supports the conclusion that the DA model is
not applicable for the mixture. For the prochloraz and
triflumizole experiment, the simultaneous fits of the single
exposures with the DA model were good (Figure 4A and
Figure S1A) and consistent with the putative similar forms of
damage; even if for the IT approach, the simultaneous fits of
the single exposures were significantly better with the IA model
(Table 1). It is important to note that the simultaneous fit of
the single exposures with the IA model will always result in the
best fits (in terms of MLL) because the chemicals are
independent of their own GUTS parameters. In other words,
the fits of the IA model are equivalent to the fits on the single
exposures taken separately. In contrast, the DA model forces
the different chemicals to share parameters, which constrains
the model behavior, and thus always leads to comparatively
worse fits. For this fungicide mixture, the prediction from the
DA models for combined exposure, with both the SD and IT
approaches (Figure 4B, Figure S1B, and Table 1), surpassed
those for the IA models, which considerably underestimate the
observed effects (Figure S2 and Table 1). The plot of the
mortality parameters, the simultaneous fit of the single
exposures, and prediction for the mixture effects together
identify the DA model as more appropriate for this mixture
with putative similar mode of action, consistent with our
underlying theory for model development. At this stage, a
mixture toxicity test is required to deliver the ultimate proof
about the chemical mode of action. However, the analyses of

the single-chemical data will show cases where the DA model
can be excluded a priori, if the data are accurate enough, and
repeatable. For situations where the DA model is a possibility,
and without data on the mixture, both models should be
considered from a risk assessment perspective.
For the effect of the mixture of MGK 264 and glyphosate on

the survival of E. crypticus, two lines of evidence confirm that
damage addition is not the appropriate model. The DA model
fits for the two chemicals in single exposures were considerably
worse than the fits with the IA model (Table 1). This can be
attributed to the expectation that these two chemicals lead to
different forms of damage, meaning that they do not share the
mortality-related parameters (Figure 3). As a result, the
simultaneous fit, forcing the product mw × bw to be the
same, led to a poor fit on the data. Finally, the DA model

Table 1. Assessment of the Simultaneous Fits of the Single
Exposures and the Predictions of the GUTS-RED-SD and
IT Independent Action (IA) Model and the GUTS-RED-SD
and IT Damage Addition (DA) Model for the Binary
Mixtures: Prochloraz (PCZ) and Triflumizole (TRI), MGK
264 (MGK) and Glyphosate (GLY), Arsenic (As) and
Cadmium (Cd), and Imidacloprid (IMI) and Thiacloprid
(THI)a

mixture models assessment

simultaneous fits on single exposures
likelihood-ratio
test (IA vs DA) conclusion

PCZ + TRI GUTS-RED-SD-IA;
GUTS-RED-SD-DA

0.6101 DA is
possible

GUTS-RED-IT-IA;
GUTS-RED-IT-DA

0.00433 DA not
supported

MGK + GLY GUTS-RED-SD-IA;
GUTS-RED-SD-DA

<2.2 × 10−16 DA not
supported

GUTS-RED-IT-IA;
GUTS-RED-IT-DA

<2.2 × 10−16 DA not
supported

As + Cd GUTS-RED-SD-IA;
GUTS-RED-SD-DA

0.004427 DA not
supported

GUTS-RED-IT-IA;
GUTS-RED-IT-DA

0.004053 DA not
supported

IMI + THI GUTS-RED-SD-IA;
GUTS-RED-SD-DA

0.4386 DA is
possible

GUTS-RED-IT-IA;
GUTS-RED-IT-DA

0.3482 DA is
possible

mixture models assessment

prediction of the mixture
AIC (IA
vs DA)

r2 (IA vs
DA)

best
model

PCZ + TRI GUTS-RED-SD-IA;
GUTS-RED-SD-DA

937.16;
292.4

0.16;
0.94

DA

GUTS-RED-IT-IA;
GUTS-RED-IT-DA

393.88;
269.87

0.54;
0.93

DA

MGK + GLY GUTS-RED-SD-IA;
GUTS-RED-SD-DA

338.62;
2262.9

0.91;
(−0.99)

IA

GUTS-RED-IT-IA;
GUTS-RED-IT-DA

331.51;
1467.56

0.92;
(−2.5)

IA

As + Cd GUTS-RED-SD-IA;
GUTS-RED-SD-DA

309.96;
334.98

0.95;
0.86

IA

GUTS-RED-IT-IA;
GUTS-RED-IT-DA

300.43;
313.87

0.97;
0.93

IA

IMI + THI GUTS-RED-SD-IA;
GUTS-RED-SD-DA

379.89;
251.78

0.48;
0.81

DA

GUTS-RED-IT-IA;
GUTS-RED-IT-DA

418.58;
252.29

0.46;
0.81

DA

aThe simultaneous fits have been assessed with the likelihood-ratio
test (significant at p < 0.05, in bold font). The prediction efficiency is
quantified with the AIC and r2 value (smaller value for AIC and
higher value for r2, best in bold font).
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provided a poor prediction of the mixture effects (Figure S4
and Table 1), compared to the IA model (Figure 5B, Figure
S3B, and Table 1).
The first step of reanalyzing data from the literature with the

GUTS-RED mixture model followed the same workflow to
choose between DA and IA by looking first at the mortality-
related parameters (Figure 3). The plotting of the mortality
parameters for arsenic and cadmium for the A. mellifera dataset
suggested use of the IA model as the most appropriate choice,
and it indeed provided significantly better fits of the survival
effect in the single exposures than did the DA model (Table 1).
This result was in accordance with the hypothesis of dissimilar
mode of action of these two metals.32 Further, the prediction
of the mixture effect was slightly better with the IA model
(Table 1, Figure 6, and Figure S5). Based on these data,
Robinson et al.32 concluded that the classic IA model provided
a slightly better prediction of the mixture than the CA model,
which is in accordance with our TKTD modeling results.
Imidacloprid and thiacloprid are both systemic neonicoti-

noids acting on the acetylcholine receptor (nAChR) in D.
magna. Therefore, the DA model was likely appropriate to
predict the joint effect of this mixture on D. magna. This
hypothesis was confirmed with (i) the plot of product of mw,
bw, and Fs parameters (Figure 3), (ii) the simultaneous fits of
the single exposures (Table 1), and (iii) the prediction of the

mixture, which was better with the DA model (Table 1 and
Figures S6 and S7). Loureiro et al.34 used the classical mixture
approach to test the mixture effect of these two neonicotinoids
and identified a potential synergistic interaction. Our TKTD
approach supports the analysis as there is an underestimation
of the predicted effect with both DA and IA models. This
observation is consistent with additional toxicity beyond that
which either model, damage addition (DA) or survival
probability multiplication (IA), can account for (Figures S6
and S7).

Low Dose Effects Is the Key to Assess Mixture Effect.
An important finding is that the differences in predictions
between the DA and IA models appear mainly when chemicals
are applied at low concentrations in the mixture, even below
the threshold for the effects of single exposures. Considering
low concentrations of prochloraz and triflumizole in mixture
(e.g., 12.5 mg L−1), the DA model provided a very accurate
prediction of the mixture (Figure 4), while in contrast, the IA
model predicted no effect (Figure S2). This clear difference
contrasts with that at higher concentrations, where even
though the prediction of the DA model was better, the IA
model was still able to provide an adequate prediction of the
effect close to that for the DA model (Figure S2). We observed
the same pattern of difference at low concentrations and near
similarity at high concentrations for the DA and IA predictions

Figure 4. Observed and simulated survival over time of E. crypticus exposed to prochloraz (PCZ) and triflumizole (TRI) as a single exposure (A)
and in mixture (B). The two top rows of plots (panel A) show the calibration of the GUTS-RED-SD damage addition model to the survival in the
single exposures. The bottom row of plots (panel B) shows the prediction of the mixture effect using the model parameters that resulted from
calibration with the single exposures. Observed fractions of survivors (points, bars show Wilson score confidence intervals) are overlaid with model
simulations (solid lines, confidence intervals as a blue area for the fit and a green area for the prediction). The dashed lines are the background
mortality, fitted to the control treatment.
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for the effect of the arsenic and cadmium mixture on A.
mellifera. Thus, the differences between the prediction of the

DA and IA models on this dataset were predominantly found
at low concentration (3.48 mg L−1 As and 1.04 mg L−1 Cd;

Figure 5. Observed and simulated survival over time of E. crypticus exposed to MGK 264 and glyphosate as a single exposure (A) and in mixture
(B). The two top rows of plots (A) show the calibration of the GUTS-RED-SD independent action model to the survival in the single exposures.
The bottom row of plots (panel B) shows the prediction of the mixture effect using the model parameters that resulted from calibration with the
single exposures. Observed fractions of survivors (points, bars show Wilson score confidence intervals) are overlaid with model simulations (solid
lines, confidence intervals as a blue area for the fit and a green area for the prediction). The dashed lines are the background mortality, fitted to the
control treatment.

Figure 6. Observed and predicted survival over time of A. mellifera exposed to arsenic (As) and cadmium (Cd) in mixture with the GUTS-RED-IT
damage addition model (top row of plots) or with the independent action model (bottom row of plots). Observed fractions of survivors (points,
bars show Wilson score confidence intervals) are overlaid with model simulations (solid lines, confidence intervals as a green area). The dashed
lines are the background mortality, fitted to the control treatment. Data from Robinson et al.32
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Figure 6 and Figure S5). The same observation was made with
the prediction of the effect of imidacloprid and thiacloprid in
mixture on D. magna, for which DA provided a better
prediction at low concentration, but the prediction of both
models at high concentrations was equivalent (Figures S6 and
S7). One consequence of these findings is that when analyzing
the mixture effect, the low-medium concentration effects
contain more information, while the information about the
mode of action can be obscured in the data from the higher
tested concentrations. This finding should be considered not
only to understand the impact of chemicals on a nontarget
organism but also because low exposure concentration is the
regular scenario in the field.37

Advantages, Usefulness, and Limits of the GUTS-RED
Mixture Models. The two dynamic GUTS-RED mixture
models presented in this study bring new tools to investigate
whether chemicals lead to the same or different forms of
damage and therefore which model is more appropriate (DA
or IA) for predicting mixture effects. First, comparing the
GUTS model parameters of each toxicant to see if there are
overlaps (Figure 3) provides a new diagnostic tool to quickly
assess if the toxicants are likely to produce the same form of
damage. This information is used within the model framework
to select the most appropriate mixture model out of DA or IA
but also has a wider value for application in mechanistic
toxicology. Within this framework, both the SD and IT
approaches are complementary and need to be considered. If
both show no overlaps, then it is unlikely that the chemicals
lead to the same form of damage and the IA model is
recommended. In contrast, if overlaps are found with the SD
or IT approach only (e.g., prochloraz and triflumizole; Figure
3) or both (e.g., imidacloprid and thiacloprid; Figure 3), then
the DA model should be considered as well. Second, the
assessment of the simultaneous fits with the DA model
compared to the IA model with the predictions can be used to
support conclusions on the mode of action of the chemicals in
the mixture relating to whether they cause effects through the
same or dissimilar forms of damage.
The predictions of the model were especially good for our

dedicated experiments with E. crypticus (Figures 4 and 5) but
were also possible when using literature data from experiments
with D. magna and A. mellifera, which were not specifically
designed for this modeling approach (Figure 6 and Figures
S5−S7). We here focused on binary mixtures and the two
different models showed that according to the mode of action
of the chemicals involved, they lead to very different
predictions (Figure 4B and Figure S1B vs Figure S2, and
Figure 5B and Figure S3B vs Figure S4), highlighting that two
models are required to predict binary mixture effects over time.
The approach can be, in theory, extended to multiple
compounds and it would work in the exact same manner:
the similar compounds are added with weight factors (one
weight factor less than the number of similar compounds) to
yield a prediction of survival probability over time. The effects
of groups of similar compounds are then combined with effects
of any remaining dissimilar compounds into an IA analysis. An
extensive program of work would be needed to underpin any
such developments, with dedicated experiments, to explore the
predictive power of the GUTS mixture model on multiple
mixtures involving chemicals with the same and dissimilar
mode of action.
The classic approach for predictive mixture hazard assess-

ment is largely based on the concentration addition and

independent action models using information derived from
single time-point dose−response curves, thus ignoring the time
dimension. The time dimension can only be included into the
classic descriptive approach by repeatedly fitting the dose−
response model at every time point, which would require many
more parameters in total to analyze experimental datasets.
Such an analysis does not help us understand the processes
underlying the mixture response and therefore does not allow
us to predict effects due to exposure scenarios that are untested
in the lab (e.g., longer timescales or changing mixture ratios
through time). GUTS provides this possibility because GUTS
models have biologically meaningful parameters that can be
used to analyze and predict mixture effects over time. This is
important because we know that chemicals can differ
substantially in their toxicokinetics and/or toxicodynamics
and this can have implications for the resulting time course of
the mixture effect. In contrast to other mixture effect models,
the GUTS model can deal with mixtures that vary in
concentration over time or when chemicals are applied
sequentially, which can lead to very different effects (e.g.,
Figure S8).15 Hence, our proposed framework provides a
process-based simulation that is more mechanistically based
and more widely applicable than conventional dose−response
approaches. Once calibrated, a GUTS model with a few
parameters can be applied on real, time-variable mixture
exposure scenarios without the need for additional exper-
imental work.38

TKTD models are powerful tools for the prediction of
mixture toxicity as it has been previously demonstrated.39−41

However, the previous TKTD models were species-dependent,
such as PBPK models designed for specific chemicals, while
our approach is generic and will work with very much standard
toxicological data. Furthermore, because GUTS unified all
previous TKTD models for survival, our GUTS mixture model
also presents a unification of the mixture models based on
those previous TKTD models for survival.10,14,17 Risk
assessment needs such a generic approach, applicable in an
efficient way to different organisms and thousands of chemicals
in the environment.1 The European Food Safety Authority
(EFSA) recently recognized the GUTS framework as ready to
use in ERA,23 and we here formalized for the first time the
GUTS framework for mixture toxicity assessment.
Potentially moving beyond straightforward additive or

independent effects, the GUTS-RED mixture models can
also be a suitable tool to find interactions in mixtures. These
occur when the model prediction deviates from the mixture
effect observed over time, as with the data from Loureiro et
al.34 When such interactions are found, the classical approach
cannot provide mechanistic explanations of the synergism or
antagonism, while a GUTS model has the potential to achieve
this understanding (although that goes beyond the models
presented in this study). For example, Cedergreen et al.42

highlighted that the biotransformation of the insecticide
cypermethrin was reduced in the presence of the fungicide
propiconazole, leading to a higher concentration of cyper-
methrin in D. magna, leading to stronger effects in combined
exposure. The modeling of these data with a full GUTS model
provided a good prediction of the mixture effect, accounting
for the interaction between the two chemicals. GUTS-RED
models can be refined to predict the joint effect of mixtures
with interaction. The interaction can involve toxicokinetic
and/or toxicodynamic processes,43 and when the mechanisms
of these interactions are understood, they can be incorporated
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into TKTD models. Such next-generation TKTD mixture
effect models will also be able to accurately predict mixture
effects with interactions. In this way, synergism and
antagonism will be recognized as artifacts of underdeveloped
null models44 and can be seen as an incentive for model
improvement based on mechanistic underpinning, instead of
the final result of an analysis.
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