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The insoluble particulate matter deposited on ice sheets provide key information to
reconstruct past climate. The low concentration of some insoluble particulate matter,
such as terrigenous particles and microfossils, challenges the efficiency of the recovery
and the representativeness of the results. Here we present a new optimized method to
extract, quantify and classify targeted low concentration insoluble particulate matter.
Particle recovery rates and particle distribution were investigated using polystyrene
particle standards filtered through Polycarbonate membrane filters and subsequently
scanned in a scanning electron microscope. Experimental results in continuous and
discrete sampling systems reveal consistent trends in the transport and removal of
particulate material inside a filtration system. Statistical simulations are used to
optimize the sample analyses required to achieve representative results. The analysis
of diatoms in ice cores using this new method uncovered their potential to hold valuable
climate records from the Antarctic Peninsula region. The data presented here evidence the
presence of a measurable amount of marine diatoms with sub-annual variations,
highlighting the potential of this record as a seasonal indicator. The new method
presented provides an optimized and statistically representative approach for
extracting, recovering and analyzing micrometre-sized, low-concentration insoluble
particulate matter in ice.

Keywords: continuous flow analysis, scanning electron microscope, insoluble particles, ice cores, dust, diatoms,
Antarctic Peninsula, climate proxies

INTRODUCTION

Ice cores are faithful recorders of changing climate over thousands of years (Alley, 2014). The
chemical composition of ice reflects changes in atmospheric composition and circulation, while
patterns in the seasonal deposition of chemical species allow accurate dating of ice cores at annual
and sub-annual resolution (Legrand and Mayewski, 1997; Alley, 2010). Ice core chronologies are
constructed from a variety of parameters, including absolute time markers and seasonal indicators
(Wolff et al., 2010). Absolute time markers can be produced by large-magnitude volcanic eruptions.
Their SO2 emissions (Sigl et al., 2015) and tephra deposits (Davies et al., 2012) have provided
numerous reference horizons in ice cores. Seasonal indicators include changes in the stable isotope
composition of the ice, changes in the concentration of impurities and changes in the physical
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properties of ice, among others (Legrand and Mayewski, 1997).
All these parameters are useful for establishing an ice core
chronology, improving the dating accuracy when considered
together.

The study of insoluble particles in ice has provided valuable
information for reconstructing past climate. Among the insoluble
particulate matter (IPM) present in ice, the insoluble particle
fraction of dust (fine particles of solid matter) is the most
abundant; hereafter, we refer to this component as ‘dust’. Dust
flux, provenance and grain-size variability have been widely
studied in ice cores (Delmonte et al., 2019). Their study has
contributed significantly to the understanding of changes in
atmospheric and terrestrial conditions over the last eight
glacial cycles (Lambert et al., 2008). Additional and distinctive
information about past environmental conditions can be
extracted from the study of dust sub-sets, hereafter referred to
as low concentration insoluble particulate matter (LC-IPM). This
group includes pollen, cryptotephra, diatoms and black carbon,
among others. Pollen in alpine ice cores has shown to present
seasonal variations, helping to improve the accuracy of ice
chronologies (Nakazawa and Fujita, 2006; Festi et al., 2015);
pollen has also been studied in Greenland and other Arctic ice
cores (Bourgeois et al., 2000; Brugger et al., 2019). The study of
cryptotephra layers in ice cores provides valuable tie-points to
link oceanic, terrestrial and atmospheric records (Dunbar et al.,
2017; Cook et al., 2018). Diatoms in ice cores have the potential to
reconstruct past atmospheric circulation (Allen et al., 2020).
Black carbon studies in ice cores allowed tracking past
variations in snow albedo and their climate forcing
(McConnell et al., 2007; Osmont et al., 2018). Altogether, the
study of LC-IPM in ice cores provides a valuable contribution to
the study of past climate.

Several methods have been developed to study the total dust
content and the particle-size distribution in ice samples (Ruth
et al., 2003). These methods have been widely tested, validated
and implemented, proving to provide accurate high-resolution
records (Vallelonga and Svensson, 2014). However, dust
measurement techniques do not differentiate the origin of
each particle in the sample, for example, marine vs. terrestrial
origin or local vs. long-range sources. Thus, they ignore the
abundance, diversity and size distribution of the LC-IPM.
Additionally, traditional methods to study dust do not analyze
morphological or textural features in particles, omitting valuable
information such as the formation of dust aggregates (Tison et al.,
2015; Baccolo et al., 2018), microfossil preservation (Warnock
and Scherer, 2015) or vesicles and shard shapes in cryptotephra
(Dunbar and Kurbatov, 2011; Dunbar et al., 2017).

Previous studies have proposed various methods to study
different LC-IPM in ice core samples. The ideal method
should continuously extract LC-IPM with minimum losses
and analyze the samples following an optimized approach to
obtain statistically representative results. Several methods have
been proposed to extract LC-IPM from discrete ice samples
(Brugger et al., 2018 and references therein), each of them
presenting different levels of performance and some
incorporating external standards which have proved to
increase the statistical representativity (Brugger et al., 2018).

However, to date, there is no standardized method for
continuous extraction.

Likewise, previous methods have analyzed targeted LC-IPM in
ice core samples. These methods have mainly focused on
scanning samples to detect single particles for chemical
analyses (Dunbar and Kurbatov, 2011), count targeted LC-
IPM in narrow sections from each sample (Budgeon et al.,
2012; Allen et al., 2020), or count targeted LC-IPM until
reaching a standard number (Brugger et al., 2018). Even
though these methods have provided valuable information,
their approach (analyzing small sections and limited
populations within each sample) challenges the reproducibility
of the results and increases the possibility of introducing biases
and errors. Therefore, current methods fail to quantify in a
statistically representative way the abundance of material and
to capture the whole diversity of material present in each sample.

In this study, we present an experimental method to extract,
quantify and classify targeted LC-IPM, providing data to
determine their abundance, diversity and to perform
morphological and textural studies. Particle recovery rates and
particle distribution were investigated using polystyrene particle
standards (microspheres) and ultrapure water. Experimental
results were subsequently tested by analyzing the diatom
content in ice core samples. Diatoms were targeted because of
their relatively low concentrations in Antarctic ice (Budgeon
et al., 2012; Allen et al., 2020), their wide species diversity and
broad varieties of shape, size and valve ornamentation (Kellogg
and Kellogg, 2005). These attributes highlight them as excellent
candidates to test a complete physical characterization. This work
aims to provide a new optimized and statistically representative
standardized method for extraction, recovery and analysis of
micrometre-sized LC-IPM.

The rest of this paper is structured as follows. SectionMethods
presents details of the experiment design and setup. Section
Results presents the main results obtained from the
microsphere experiment runs. Section Discussion presents the
interpretation of the experimental results and recommendations
for applying themethod. Based on the recommendations outlined
in section Discussion, section A Case Study: Diatoms in Ice
Core Samples presents the application of the method in a case
study. In particular, this final section presents the results obtained
after applying the method to extract, quantify and classify the
diatom content of the ice and the interpretation of those results.

METHODS

Laboratory Experiment
Microsphere Sample Preparation
An artificial ice core was constructed from discrete layers of ice
with prescribed concentrations of IPM. Three solutions of 500 ml
Milli-Q™ ultrapure water and 15 µm-sized Polybead™
Microspheres were prepared in new glass beakers. The first
solution ([1]) had 135 microspheres per 100 ml, the second
solution ([2]) had 675 microspheres per 100 ml and the third
solution ([3]) had 1,350 microspheres per 100 ml (Table 1).
Polybead™ Microspheres are monodisperse polystyrene
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microspheres combined with divinylbenzene in an aqueous
suspension with surfactants, containing 1.35 × 107 particles/
mL. Their shape, size and properties make them an ideal
material to track and simulate the presence of IPM in a
solution. Each solution was stirred with a glass rod and
poured into five 100 ml rectangular-shaped silicone moulds
(3.3 cm × 3.3 cm × 10 cm). Silicone moulds were covered and
left to freeze (−23°C) in a freezing chamber to create fifteen
microsphere ice sample strips (MI), five of each prepared
concentration. In parallel, 45 blank ultrapure ice strips (UPI)
were prepared by pouring 100 ml of Milli-Q™ ultrapure water in
a new set of 100 ml rectangular-shaped silicone moulds and left to
freeze under the same conditions as detailed above.

An additional ten 100 ml samples of liquid solutions [2] and
[3] (Table 1), five samples of each solution, were prepared as
control samples to test the reliability of the initial concentration of
each solution and to test the recovery/loss in discrete samples.
They were prepared directly inside new low-density polyethylene
(LDPE; Nalgene™) bottles (BI), and stored sealed under
controlled temperature conditions (+4°C).

Microsphere Sample Analysis
MI and UPI samples were melted using a Continuous Flow
Analysis (CFA) system (Röthlisberger et al., 2000) in the ice
chemistry lab at the British Antarctic Survey, United Kingdom.
The sampling strategy was to complete sample runs where a
single MI sample was first melted and then followed by three

rinsing cycles with the meltwater from UPI samples (Figure 1;
Table 1). All meltwater was split in the CFAmelt plate into five 2-
m long channels with identical Perfluoroalkoxy alkanes (PFA)
tubing (internal diameter: 1.58 mm), where 40% of the meltwater
went into a central “sample line” channel (SL), and the 60% left
went randomly into four “waste line” channels (WL) at the sides
of themelt plate. Meltwater was pumped using two Ismatec™ IPC
digital peristaltic pumps, one for the SL and one for the four WL.
Meltwater from the WL and SL was pumped through Polyvinyl
chloride (PVC) tubing (internal diameter: 3.17 mm) at 2.5 rpm
and 5 rpm, respectively. Meltwater at the end of the SL was
directly filtered through 13 mm diameter, 1.0 μm pore size
Whatman™ Polycarbonate membrane filter, inside clean
polypropylene Swinnnex™ filter holders. Meltwater at the end
of the WL was bottled into new low-density polyethylene (LDPE;
Nalgene™) bottles, then pumped at 10 rpm (using the same
pumps and tubing detailed above) and filtered with the same
type of filter and holder used for the SL. After filtering each MI
and UPI sample from the WL, sample bottles were rinsed three
times with 100 ml of Milli-Q™ water, and all rinsing water was
then filtered through the sample filter. During the CFA sampling,
filters, filter holders and bottles were changed after every 100 ml
ice strip was completely melted and the tubing was empty of
meltwater.

Additionally, BI samples were filtered under the same clean
setup previously described (Figure 1). After filtering each sample,
bottles were filled and rinsed three times with 100 ml Milli-Q™
water. After each rinsing cycle, the rinsing water was filtered.

All filters were mounted onto aluminum stubs for analyses on
a Scanning Electron Microscope (SEM) at the Earth Sciences
Department of the University of Cambridge. The entire filters
were imaged on a Quanta-650F using Back Scattered Electrons
(BSE) on a low-pressure mode. Each filter was imaged at ×200
magnification for microsphere identification and counting. The
area of each 13 mm diameter filter comprised 16 transects; each
transect was counted and the subtotals for each transect were
tallied and divided by 16 to calculate the actual meanmicrosphere
density per transect. To optimize the counting method, a Monte
Carlo Simulation was used to determine the number of transects

FIGURE 1 | Schematic illustration of the experimental setup designed for this work. After filtering BI (100 ml) and after melting and filtering MI (100 ml), the same
procedure was repeated three times with 100 ml ultrapure ice (UPI-1, UPI-2, and UPI-3) for MI and with 100 ml ultrapure water for BI. This was done to check for residual
microspheres left in the tubing.

TABLE 1 | The concentration of each solution created for the experiment. MI:
Microsphere ice; UPI: Ultrapure ice; BI: Bottle isolate.

Sample set Concentration
(particles/100 ml)

Number of samples
(MI, UPI, and BI)

Pure ice 0 45 (UPI)
[1] 135 5 (MI)
[2] 675 5 (MI)

5 (BI)
[3] 1350 5 (MI)

5 (BI)
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required to achieve a representative count. In this simulation X
number of random transects were selected, the Monte Carlo
Simulation divided the slide into X similar-sized groups of
transects with one transect randomly selected from each group
to promote greater coverage across the slide, the actual
microsphere counts for the respective transects were summed
and then divided by X to give a simulated microsphere density.
For values of X from 1 to 8 this calculation was repeated up to
10,000 times for each filter. Results for each X value were plotted
to create a progression curve. Then, progressions for each filter
were averaged to obtain a mean progression curve (Allen et al.,
2020).

Microsphere Loss Estimation
Microsphere loss was defined as the average deviation between
microspheres recovered from each sample and the microspheres
expected to be present in that sample (Table 1). To estimate
potential microsphere losses throughout the method, each of the
processes prone to produce losses was evaluated (Figure 1). These
processes were identified as: pumping meltwater from bottles to
filters, melting and transporting of the meltwater through the
CFA system, and sample preparation process (together with the
microsphere stock uncertainty). To estimate the loss, it was
assumed that the only difference between SL samples and WL
samples was the meltwater pumping process (Figure 1).
Additionally, it was assumed that all samples were equally
affected by losses associated with the sample preparation
process (such as microsphere rejection while freezing,
microsphere breaking while freezing, potential minor
variations in the initial volumes pipetted from the stock,
among others) and the microsphere stock uncertainty (SPMS).
Loss estimations were calculated using the following equations:

Pump losses (%) � average BI recovery (%)
− averageWL recovery (%) (1)

SPMS losses (%) � 100(%) − average BI recovery (%)
− pump losses (%) (2)

CFA losses (%) � 100 (%) − average SL recovery (%)
− SPMS losses (%) (3)

Ice Core Samples
To assess the performance of the standard method presented
in this paper, targeted LC-IPM were analyzed in ice core
samples following the sampling strategies detailed in section
Discussion.

Ice samples from three Antarctic Peninsula (AP) ice cores
(Jurassic, Rothschild and Smyley), provided by the British
Antarctic Survey (BAS), were analyzed. The locations of these
ice cores are shown in Figure 2 with the site information
summarized in Table 2.

Ice core samples were cut into longitudinal sections using a
band-saw with steel blade in the cold laboratory facilities at BAS.
The Jurassic ice core samples for IPM analysis were obtained
from the WL discharge from the CFA. The WL meltwater was
collected in new low-density polyethylene (LDPE; Nalgene™)
bottles at 30 cm of ice resolution. The Rothschild and Smyley ice
core samples were cut and bottled, and then the sealed bottles
were melted inside a fridge at 4°C. Once melted, all samples were
treated to remove organic remains. Between 15 ml and 102 ml of
34% Hydrogen peroxide was added to create a 6% solution and
left overnight in a warm bath at 60°C. After this, all samples were
filtered through 13 mm diameter Whatman™ Polycarbonate
membrane filters, with pore size 1.0 μm, inside pre-cleaned
polypropylene Swinnnex™ filter holders. Filters were mounted
onto aluminum stubs and then imaged on the same SEM detailed
in section Laboratory Experiment. Filters were imaged at ×800
magnification for diatom identification, counting and
classification, following the analysis strategies recommended in
section Sample Analysis Strategy. Filters were analyzed for
diatom identification as a real case study of LC-IPM analysis
in ice core samples. Duplicates were performed in Rothschild ice
core samples to test the reproducibility of the method. Eight
sample bottles from the Jurassic and Smyley cores were subjected
to additional rinsing cycles with ultrapure water. Rinsing water
was filtered and filters were imaged (following the same

FIGURE2 |Map showing the ice core sites considered in this study. The red circles show the locations of the three ice core sites. The blue stars show the location of
two United Kingdom summer-only scientific stations as reference.
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procedure previously described) to test the effective removal of
diatoms from the bottles and the system. Diatom identification
and ecological associations were based on Armand et al. (2005),
Hasle et al. (1996), Cefarelli et al. (2010), Zielinski and Gersonde
(1997) and references therein. Ecological associations were
determined for the most abundant species of each core. The
assemblage composition was determined from the species with
abundances higher than 2.0% of the whole assemblage.

Measurements of Methane sulfonic acid (MSA) were used to
estimate the temporality of each ice core record. The MSA record
was used as it has demonstrated to present a clear seasonal cycle
in Antarctic ice cores, with a broad winter trough and a sharp
austral summer maximum (Abram et al., 2013). Discrete ice
samples were cut at 10 cm resolution and analyzed in a class-100
clean laboratory using a reagent free Dionex IC-2500 anion
system.

Data from the ECMWF ERA5 reanalysis (Hersbach and Dee,
2019) were used to estimate mean precipitation (surface total
precipitation parameter in ERA5) at each site. A recent study

confirmed the high accuracy of ERA5 in representing the
magnitude and variability of near-surface air temperature and
wind regimes (Tetzner et al., 2019). Values reported in this work
correspond to the annual mean precipitation of the decade before
each ice core was drilled. The ERA5 reanalysis extends back to
1979, providing hourly data and at a 0.25° (∼31 km) resolution.

RESULTS

Microspheres
Fourteen CFA runs were completed (MI sample followed by three
rinsing cycles of UPI), producing 96 filters. Ten bottle runs were
completed (BI sample followed by three rinsing cycles of 100 ml
of ultrapure water) producing 40 filters. On each CFA and bottle
run, microspheres were recovered and counted from SEM images.
Table 3 presents the main results and the basic statistics of the
filters analyzed. Table 4 shows the relation between the expected
microsphere counts and the results obtained in the experiment.

TABLE 2 | Summary of each ice core geographical location and main features of the datasets analyzed in this study.

Core
name

Long Lat Elevation
(m a.s.l.)

Year
drilled

Total
depth
(m)

Depth
analyzed

(m)

Sample
resolution
(cm of ice)

Mean sample volume
(ml) (x ̄ ± s.d.)

Jurassic −73.06 −74.33 1139 2013 140 0–5.1 30 103 ± 21
Rothschild −72.6 −69.6 438 2006 7.6 0.8–7.6 80 160 ± 121
Smyley −78.01 −72.71 430 2006 3.02 0–3.02 20 130 ± 12

TABLE 3 | Summary of the statistics of particle recovery. n � number of samples averaged. RSE: Relative Standard Error. (*): Concentrations refer to values presented in
Table 1.

Sample source Concentration* Type of sample n Mean percentage
of the whole run (%)

RSE (%)

Sample line [2] MI 5 99.83 0.16
UPI-1 5 0.17 0.16
UPI-2 5 0 0.00
UPI-3 5 0 0.00

[3] MI 5 99.58 0.22
UPI-1 5 0.37 0.18
UPI-2 5 0 0.00
UPI-3 5 0.05 0.05

Waste line [1] MI 4 98.4 1.43
UPI-1 4 1.06 0.95
UPI-2 4 0.53 0.48
UPI-3 4 0 0.00

[2] MI 5 97.26 1.06
UPI-1 5 1.53 0.92
UPI-2 5 0.8 0.22
UPI-3 5 0.4 0.21

[3] MI 5 97.88 0.57
UPI-1 5 1.55 0.37
UPI-2 5 0.37 0.11
UPI-3 5 0.2 0.16

Bottles [2] BI 5 91.8 0.39
UPI-1 5 7.32 0.36
UPI-2 5 0.54 0.06
UPI-3 5 0.34 0.04

[3] BI 5 90.3 1.16
UPI-1 5 8.81 1.25
UPI-2 5 0.62 0.08
UPI-3 5 0.28 0.08
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Microsphere Reliability Test
Filters from bottle runs were analyzed to estimate the accuracy of
the expected initial microsphere concentration (Table 1). Total
counts from the ten runs presented on average 84% ± 4% of the
expected initial microsphere concentration, values ranging from
71% to 102%. The discrepancies obtained between the expected
counts and the SEM counts were independent (i.e., not
proportional) of the initial concentration of microspheres on
each sample (Table 4). The screening of the filter showed only
microspheres, with no presence or signs of contamination.

Microsphere Recovery
The largest number of microspheres are recovered from the
sample filters (MI and BI) as summarized in Table 3. There is
a consistent exponential decay in the microsphere counts when
transitioning from the sample filters (SL, WL, and BI) to the
rinsing cycles (UPI series) (Figure 3), regardless of the sample
type, microsphere concentration or the initial sample volume.
Despite all exhibiting the same trend, decay is faster for samples
collected from the CFA (SL and WL) than samples collected
directly from bottles (BI). A common feature is a sharp decay in
the microsphere counts to percentages below 1% of the total
particulate material after UPI-1.

There are considerable discrepancies when comparing the
total number of microspheres counted on the SEM to the
predicted number of microspheres on each run (Table 4).

SEM microsphere counts are lower than the expected number
of microsphere for each sample. The largest discrepancies are
associated with the samples collected from the CFA. Microsphere
counts in these samples exhibited a consistent average of 65% ±
3% of the expected initial microscope concentration (Tables 1
and 4). The magnitudes of the CFA disparities showed minor
variations depending on the sample source (SL � 67.5% ± 6.6%;
WL � 62.3% ± 2.0%) and no clear trend associated to the initial
concentration of microspheres on each sample set.

Microsphere Loss Estimation
Microsphere losses were estimated on each of the processes
performed while applying the method. The highest loss was
associated with the preparation of the CFA strips, and the
melting and transport of the meltwater through the CFA
(21.7% ± 10.2%). Conversely, the lowest loss was associated
with the pumping process (5.2% ± 6.9%). The loss associated
with sample preparation processes and the microsphere stock
uncertainty (SPMS) was estimated to be 10.8% ± 7.8%.
Additionally, the loss of each sampling source was
estimated (independent of the SPMS). For samples
recovered from SL and BI, their losses correspond to the
CFA (21.7% ± 10.2%) and to the pumping process (5.2% ±
6.9%), respectively. The loss for samples recovered from
the WL is estimated to be the coupled loss from the CFA
and the pumping process (26.9% ± 12.3%).

TABLE 4 | Comparison between expected microsphere content and microsphere counts obtained from filters analyzed in SEM. RSE: Relative Standard Error. (*):
Concentrations refer to values presented in Table 1.

Sample source Concentration* [C0] Counts expected Mean SEM
counts

Mean percentage
of the

expected (%)

RSE (%)

Sample line [2] 270 170 63 11.0
(40% [C0]) [3] 540 389 72 7.3
Waste line [1] 81 50 62 3.5
(60% [C0]) [2] 405 239 59 4.4

[3] 810 535 66 1.7
Bottles [2] 675 590 87 4.0

[3] 1350 1094 81 6.3

FIGURE 3 | Mean trends of microsphere recovery rates from each sample source. Red triangles represent results obtained from low-concentration samples [1],
green squares show results obtained from mid-concentration samples [2] and yellow circles show results from high-concentration samples [3]. λ: exponential decay
constant.
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Microsphere Distribution
On each of the thirty-four sample filters, microspheres were
counted in transects and subtotals for each transect were
tallied to reflect the distribution of microspheres across the
whole sample. Microsphere counts per transect were
transformed onto a percentage of the total filter count.
Transect percentages from all of the sample filters were
used to calculate mean values per transect to determine the
mean percentage contribution of each transect to a whole
filter.

The mean microsphere percentage per transect profile shows
a “plateau-shaped” distribution, where the central plateau
extends between the fourth and 13th transect (Figure 4). This
filter area presents a quasi-uniform distribution with a mean
value (Relative standard error (RSE)) of 8.75% (±0.62%),
representing 87.5% of the total counts in the filter.
Conversely, transects beyond the plateau section (transects 1
to 3 and 14 to 16) present a sharp exponential decay toward the
outer transects of the filter. These outer areas present a mean
value (RSE) of 2.05% (±0.33%) and represent 12.5% of the total
counts in the filter.

A Monte Carlo simulation was run to determine the
optimum number of transects required to achieve
representative counts, using transect counts from the thirty-
four sample filters. Given their small contribution to the total
counts, transects outside the plateau section were excluded
from the simulation. The Monte Carlo simulation showed an
increase in the representativeness of the counts (p) with the
number of transects counted (n) (Figure 5). There is a steady
increase in p until n � 3 (p � 99.7%, Stdev: ±11.327%, RSE:
±1.9%), when p stabilizes at ≈99%. Even though p becomes
stable, the standard deviation of p shows a minor decreasing
trend until n � 8.

DISCUSSION

Microsphere Extraction, Loss and Recovery
The study of LC-IPM in ice samples requires a standardized
method capable of recovering all the material present in the initial
samples to ensure consistency and accuracy of the results. Our
experiments to extract and recover microspheres from ice
samples have shown consistent trends but slightly different
levels of performance depending on the procedure used.

Extraction and Loss
An interesting result is the considerable discrepancy between the
number of microspheres counted and the expected number of
microspheres on each run. The calculated difference between the
percentages recovered on the bottle runs (x ̄ � 84% ± 4%) and on
the CFA runs (x ̄ � 65% ± 3%), implies major microsphere losses
in the CFA system. This is confirmed by loss estimation, which
presents the CFA as the main source of loss in the method
(21.7% ± 10.2%). However, the absence of a cumulative increase
in the counts from each CFA run (and the consistently low
returns on the rinsed samples (UPI)) rules out the possibility of
large numbers of microspheres getting lodged or temporally
trapped in the CFA melt plate or inside the peristaltic pump
system. Therefore, we suggest only a minor fraction of the
missing microspheres is temporally trapped inside the CFA
system. A major fraction could be potentially lost during the
CFA sample preparation (MI) and/or during sample handling
(minor scraping off uneven surfaces before loading the ice
sample on the CFA). In particular, we propose that many
microspheres could be fragmented during the sample freezing
(a process not recommended by Polysciences, Inc., the
manufacturer of Polybead® Microspheres) and lost while
filtrating or that some fragments were ignored during SEM
scanning. If the effects of freezing are pervasive, microsphere
fragmentation could account for a considerable fraction of the
CFA losses, a loss not accounted in the SPMS loss estimation
(Eq. 2). Either way, our preliminary estimation sets an upper
threshold for a CFA loss estimation.

FIGURE 5 | Monte Carlo simulated microsphere density per number of
transects analyzed. Gray dashed line indicates the 100% limit.

FIGURE 4 | Mean microsphere percentage per transect profile and
transect spatial distribution.
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Similar losses have been previously reported in methods
designed to extract and recover pollen from ice samples
(Brugger et al., 2018). In particular, our CFA microsphere loss
estimation is consistent with particle losses reported in filtration-
based methods to recover pollen from ice cores (24%) (Short and
Holdsworth, 1985; Brugger et al., 2018). Moreover, our method
presents an equivalent performance to the best performing
method designed to extract and recover pollen (22.1%)
(Brugger et al., 2018). However, it must be acknowledged that
our results are based on the performance of microspheres as
analogues of real LC-IPM. Thus, the analysis of real LC-IPM
could have higher or lower losses than those found in our
experiments.

Previous studies have used polystyrene particles as standards
to calibrate instruments or to test particle recovery (Wu et al.,
2009; Ellis et al., 2015; Simonsen et al., 2018). However, their
analyses have been limited to qualitative observations, instead of a
percentile loss/recovery approach. Thus, the loss found here to be
caused by sample preparation processes and microsphere stock
uncertainty (10.8% ± 7.8%) provides a first quantitative estimate
of the concentration uncertainty. Our loss estimation is in close
agreement with the uncertainties reported in other particle
markers (Lycopodium: 7%, Brugger et al., 2018). However,
future experiments should be performed to determine the
uncertainty of microsphere concentrations accurately when
they are used in solutions as tracers.

Overall, our preliminary loss estimations provide a first
approach to quantify the particles that are effectively reaching
sample filters or CFA detectors traditionally used to analyze dust
(Abakus, Coulter-Counter). Additionally, estimating the loss on
each of the processes involved in the method allows comparing
datasets obtained with different methods (continuous analysis
(CFA) vs. discrete analysis (bottles)).

Recovery
Results from the SEM analyses have shown that despite the losses
discussed in section Extraction and Loss, most of the recoverable
fraction of microspheres is retrieved directly after filtering the
sample (>90.3% ± 1.2%). Nevertheless, a small fraction of
microspheres remains inside the tubing, even after the end of
sample pumping (before the rinses). In particular, our results
show that transporting and removing microspheres from a
peristaltic pump system follows a consistent exponential decay
trend. This trend indicates the existence of processes that hinder
the transport of particles from the ice sample to the sample filter.
A possible explanation for this exponential trend is the eventual
lodging of a minor percentage of microspheres inside the tubing
due to surface roughness or turbulence between the flow and the
inner walls of the tubing. Our results are consistent with previous
studies from related fields. In particular, exponential decay trends
have been identified in studies related to the cleanout of residues
from tanks and pipes (Fan, 2014; Osborne et al., 2015).

The exponential trend has important implications for
successive sample processing, depending on the sampling
setup. On the one hand, discrete sampling leaves behind up to
9.7% ± 0.6% of the particles after filtering the sample and
underestimates the number of particles in the original ice

sample. However, the exponential trend guarantees that
remnants are almost entirely removed after one rinsing cycle,
leaving behind less than 0.9% of the recoverable particles.
Therefore, we recommend including at least one rinsing cycle
(100 ml of Milli-Q™) to ensure more than 99% of the particles are
collected in the sample filter. On the other hand, continuous
sampling in a CFA system will produce a “memory effect” that
will be passed through consecutive samples. Even though the
memory effect in the SL will be negligible (<0.5% ± 0.2%), the
memory effect in the CFAWL must be considered as it can reach
up to 2.8% ± 1.1%. The extent of the memory effect will ultimately
depend on the sampling resolution. The trend observed in our
experiment demonstrates that WL samples with a sampling
resolution of less than 10 cm of ice will produce a bias of
>1.5% ± 0.4% in the consecutive sample. The effect on
subsequent samples could be considered as negligible
(<0.8% ± 0.2%). Therefore, we recommend 10 cm (≈100 ml)
as a minimum threshold for sampling resolution with this
method, mainly to ensure the memory effect is only affecting
the consecutive sample. Additionally, if sampling firn, the
sampling resolution must consider changes in the volume of
meltwater transported by the WL due to the increase in density
with depth. Memory effects, similar to the one previously
described, have already been identified in CFA systems (Du
et al., 2018).

Our results provide initial evidence of particle loss after the
samples have been completely pumped through. This evidence
suggests that dust (or LC-IPM) records could be slightly biased.

Sampling Recommendations
Based on our experimental results, we suggest different sampling
strategies depending on the concentration of the targeted LC-IPM
to be analyzed, the amount of ice available to sample, the
sampling resolution and the time efficiency. The CFA SL has
been shown to give the best performance to recover LC-IPM from
ice samples. However, in a traditional ice core CFA campaign,
meltwater from the SL is split into several detectors, reducing
significantly the total volume of undisturbed meltwater that can
be sampled (<20% of the initial SL volume). Even though the CFA
SL presents the best performance, the final volume of water will
become a limitation for CFA SL-derived LC-IPM analyses. We
recommend that the SL is used only if the targeted LC-IPM is
highly concentrated or if the sampling resolution is coarse enough
to produce a significant volume of water to filter.

If the initial concentration of the targeted LC-IPM is low, we
recommend sampling meltwater either from discrete LDPE
bottles or from the CFA WL, depending on the availability of
ice to sample. If ice is limited, we recommend sampling the
meltwater from WL during a CFA campaign, reusing meltwater
that otherwise would be discarded. However, sample bottles must
be rinsed at least once and there will be a constant memory effect
that must be acknowledged. Additionally, when sampling from
the CFAWL, the abundance and diversity of the targeted LC-IPM
must be assessed due to the potential contamination from the
outer parts of the longitudinal CFA ice core samples.
Alternatively, if ice is not limited or if the use of a CFA is not
possible, we recommend creating discrete samples by cutting and
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bottling ice for subsequent melting and filtering. This sampling
strategy will still require sample bottles to be rinsed at least once,
but without the need to correct for a memory effect. However, it
must be acknowledged that this method will be the slowest and
possibly unfeasible for processing a large number of samples.

Sample Analysis Strategy
There is need to develop an optimized strategy for the analysis of
LC-IPM samples, which traditionally is time-consuming. For this,
first, it is necessary to determine how LC-IPM are distributed in
sample filters. The mean microsphere distribution profile
obtained from the sample filter counts shows a homogenous
distribution of the material in the central area of the filter. Even
though the material is distributed homogenously, the standard
deviation of the central transects suggests that the analysis of a
single transect could lead to significantly biased results. Results
from the Monte Carlo simulation showed the analysis of three
central transects (≈25% of the filter area and ≈26% of the material
in the filter) produced the most representative results, with no
significant improvements in the representativeness over this
number. The optimum number of transects to analyze to
obtain accurate results is three (99.7%, Stdev: ±11.3%, RSE:
±1.9%). Compared to other methods, this strategy presents a
substantial reduction in the analysis time and more than two-fold
increase in the area of the sample covered (Budgeon et al., 2012;
Allen et al., 2020). Additionally, the considerable increase in the
area covered by this strategy provides a more accurate
representation of the diversity of material present on each
sample (Allen et al., 2020). Altogether, these findings present
an optimized strategy to study LC-IPM in filters, without the need
to analyze the whole sample to get representative results.
However, these estimations will have a 1.9% relative standard
error associated with randomly selecting three transects from the
central area of the filter. The error percentage in this analysis

strategy is comparable to errors calculated from dust analysis
techniques such as Laser particle detection-Abakus (<10%)
(Ruth, 2002; Simonsen et al., 2019) and Coulter Counter (5%)
(Simonsen et al., 2019).

Microspheres are a useful material for studying the behavior of
particles and to calibrate instruments. However, their perfectly
spherical shape do not accurately represent the morphological
diversity present in IPM (Lambert et al., 2008; Simonsen et al.,
2018). This highlights the need to validate our experimental
results with real LC-IPM samples.

A CASE STUDY: DIATOMS IN ICE CORE
SAMPLES

Diatom Analyses
Thirty-five ice core samples were analyzed following the
recommendations and strategies presented in section
Discussion. A total of 1,424 diatoms valves and fragments
were found among all samples. There was an increasing trend
in the mean diatom size from coastal to inland sites (Figure 2),
ranging from 9.1 µm (Rothschild) to 21 µm (Jurassic). Identifiable
diatoms were classified based on their genus level or higher.
Diatoms were well preserved, without evidence of dissolution in
their ornamentation (Warnock and Scherer, 2015). Ecological
affinities of the identified diatom taxa indicate an almost
exclusively marine assemblage, largely dominated by
Fragilariopsis spp. and Thalassiosira spp., two abundant genus
in the Southern Ocean. Even though diatom assemblages show
variations in the AP ice cores, results are consistent in showing
that Fragilariopsis cylindrus is the most abundant diatom species
across all three ice core sites (Figure 6). The observed diatom
diversity suggests the seasonal sea-ice zone as the likely dominant
diatom source (Pike et al., 2008; Esper and Gersonde, 2014). This

FIGURE 6 |Main diatom ecological associations obtained from each of the AP ice cores. Percentages reported in this figure were normalized to the main species
present on each core. Group 4, Group 7, and Group 34, each corresponds to a particular diatom species that was not identified.
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agrees with regional atmospheric circulation showing that most
air masses reaching the ice core sites on the AP travel over the
Bellingshausen Sea and the English coast (Thomas and
Bracegirdle, 2015), areas with the consistent presence of winter
and summer sea ice (Abram et al., 2013). Our results agree with
previous studies showing the wide presence of marine diatoms in
snow and ice samples from the Antarctic ice sheet (Kellogg and
Kellog., 1996; Budgeon et al., 2012; Allen et al., 2020).

The AP ice cores differ in their mean diatom abundance. The
Jurassic and Rothschild ice cores present similar mean diatom
abundance values, while the Smyley core presents considerably
higher values (Figure 7). Mean diatom abundances in the AP
cores appear to be comparable with results obtained fromWilkes
Land (0–180 L−1) and Ellsworth Land (0–140 L−1) (Budgeon
et al., 2012; Allen et al., 2020). The diatom abundance depth-
profiles show regular sinusoidal short-scale variations down-core
(Figure 7). This evidences that the effective deposition and burial
of diatoms in the snow is not a constant feature. The ERA5
reanalysis estimates that the mean precipitation rates in
Rothschild, Smyley and Jurassic are 95.9, 98.5, and 101.8 cm of
water equivalent per year, respectively. Based on reanalysis
estimates and MSA concentration profiles, the short scale-
variations identified down-core could be indicative of
significant inter-annual and intra-annual variations in the
diatom deposition. In particular, considering the presence of
sharp summer MSA peaks and the slight underestimation in
ERA5 precipitation (Tetzner et al., 2019), it is likely that short-
scale variations in the diatom record are indicative of intra-
annual variations. Inter-annual variations in the ice core diatom
record have already shown the potential to be a proxy of wind
strength (Allen et al., 2020). However, if the variations seen in the
AP cores are also representative of seasonal changes, the
diatom record in ice cores could hold the potential to be used
as an independent seasonal marker within ice core
chronologies. Furthermore, if the diatom record is

seasonal, the inter-annual wind proxy could be biased by
this effect.

The method presented in this work provides an effective way
to recover and analyze diatoms from ice core samples. The high
abundance of diatoms in the AP cores, the proximity of their
source and the significant variations seen in the depth profiles
highlight the potential of these records to provide valuable
climate information.

Method Validation
Three tests were conducted in the AP ice core samples to evaluate
the performance of the method. To test the reproducibility of the
method, duplicates from the Rothschild ice core were analyzed.
Duplicates were created covering the same depth and the same
water volume. Duplicate diatom counts and diatom abundance
show a high degree of correspondence with the original samples
(R2� 0.99, p < 0.01) (Figure 8). Even though duplicate counts are
slightly higher than the original counts (+8.8%), this magnitude
remains within the ±11.3% standard deviation margin predicted
by the filter analysis strategy presented in section Sample
Analysis Strategy. Additionally, duplicate analyses present a
strong agreement with the mean diatom size and the diatom
diversity observed in the original sample (Figure 8).

To test the efficiency of removing material from the system, six
sample bottles were rinsed for a second and a third time. After
each rinsing, water was filtered to scan for the presence of
remaining material in the system. Only two diatoms were
found in the second rinsing cycle of the 0.4 and 0.6 m-deep
samples from the Smyley core. These samples originally yielded
79 and 142 diatom counts, respectively. The presence of one
diatom in each sample after a second rinsing cycle agrees with the
magnitude predicted by the exponential decay observed in section
Microspheres.

To test the consistency in the distribution of particles in the
central transects (4th–13th) of the filters (Figure 4), diatom

FIGURE 7 | Diatom abundance variations down-core and MSA concentration profiles. Gray dashed line indicates the mean diatom abundance on each core. Gray
bands indicate data gaps. Red dashed line indicates temporal horizons based on the austral summer maxima in MSA. (*) Temporal horizon estimation based on the
record of a 4-metre Automatic Weather Station installed in Smyley in January 2005 and completely buried under the snow by January 2006.
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counts per transect were recorded on each filter to determine a
mean distribution. Mean values (RSE) show that each of the three
central transects holds 36% (±3%), 30% (±2%) and 34% (±3%) of
the diatoms counted on each filter. The uniformity of the mean
values and the percentile fraction of their relative standard errors
match the mean distribution profile presented in section
Microsphere distribution.

Studying the presence of diatoms in ice cores has provided
a real case study to test the experimental results of our
standard method. Even though some studies have cataloged
microspheres as unrealistic for this purpose (Simonsen et al.,
2018), our experimental results have shown that our proposed
method accurately predicts the analytical precision of
recovering diatoms from ice samples, validating the use of
microspheres for this kind of analyses. These results highlight
the potential of our standard method to be applied in the study
of other LC-IPM’s in ice cores. Adaptations to our standard
method may be necessary when it is applied to different kinds
of LC-IPM.

CONCLUSION

The study of LC-IPM in ice has provided distinctive and
valuable information to study the Earth’s past climate. A
new standard method to sample, recover and analyze LC-
IPM from ice samples has been tested in discrete and
continuous analysis setups. Both setups are effective in
recovering particles from the sample with quantifiable

particle losses. More than 90% of the particles is directly
recovered after filtering. The removal of the remaining
fraction of the sample follows an exponential decrease trend,
with more than 99% of the sample recovered after rinsing the
system. This trend predicts a memory effect of up to 2.8% in
samples retrieved from the continuous analysis setup.

Particles recovered from the sample present a homogeneous
distribution in the sample filters. A statistical analysis of their
distribution determined that the analysis of 25% of the filter area
lead to representative results (99.7% ± 1.9%). Thus, this
procedure optimizes the estimation of particle abundance and
diversity.

This method was tested and validated using diatoms in ice
cores. The results show a particularly high abundance of diatoms,
a traceable marine source and significant variations down-core.
Altogether, this demonstrates the existence of a valuable record
for future research on past climate, uncovering the high potential
of the diatom record from Antarctic Peninsula ice cores.

Overall, the new optimized method presented in this work has
demonstrated itself to be effective at extracting, recovering and
analyzing micrometre-sized LC-IPM to obtain statistically
representative results. This standard method offers the
opportunity to produce robust quantitative studies of LC-IPM
in samples directly extracted from a CFA. Additionally, the
systematic assessment of the method reveals consistent and
quantifiable particle loss that most likely reflects the
underestimation of the raw microsphere concentration and
reveals that a single rinse after sample extraction ensures a
>99% extraction.

FIGURE 8 | Rothschild duplicates. Diatom abundance variations and main diatom associations obtained from the original Rothschild core and the duplicate. Blue
dashed line indicates the mean diatom abundance of the original Rothschild core. Red dashed line indicates the mean diatom abundance of the duplicate Rothschild
core. Group 34 and Group 35, each corresponds to a particular diatom species that was not identified.
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