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SUMMARY

Electrical resistivity tomography (ERT) is widely used to image the Earth’s sub-

surface and has proven to be an extremely useful tool in application to hydrological

problems. Conventional smoothness-constrained inversion of ERT data is efficient

and robust, and consequently very popular. However, it does not resolve well sharp

interfaces of a resistivity field and tends to reduce and smooth resistivity variations.

These issues can be problematic in a range of hydrological or near-surface studies,

e.g. mapping regolith-bedrock interfaces. While fully Bayesian approaches, such as

those employing Markov chain Monte Carlo sampling, can address the above issues,

their very high computation cost make them impractical for many applications.

Ensemble Kalman Inversion (EKI) offers a computationally efficient alternative by
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approximating the Bayesian posterior distribution in a derivative-free manner. We

propose a new EKI-based framework for ERT which estimates a resistivity model

and its uncertainty at a modest computational cost. Our EKI framework uses a level

set parameterization of the unknown resistivity to allow efficient estimation of dis-

continuous resistivity fields. Instead of estimating level set parameters directly, we

introduce a second step to characterize the spatial variability of the resistivity field

and infer length scale hyper-parameters directly. We demonstrate these features by

applying the method to a series of synthetic and field examples. We also bench-

mark our results by comparing them to those obtained from standard smoothness-

constrained inversion. Resultant resistivity images from EKI successfully capture

arbitrarily shaped interfaces between resistivity zones and the inverted resistivities

are close to the true values in synthetic cases.

Key words: Ensemble Kalman methods – ERT – inversion – data assimilation –

uncertainty quantification – level sets.

1 INTRODUCTION

Electrical resistivity imaging (ERI), or electrical resistivity tomography (ERT), is an effective

method to reveal the subsurface structure of the Earth’s near-surface. It can provide a proxy

of properties of interest at spatial coverage and resolution that are not attainable by point-

based sampling methods. When used in a time-lapse manner, ERT surveys can be repeated

frequently to capture changes in the resistivity distribution, offering insight into subsurface

processes. Recent advances in instrumentation allows the deployment of ERT surveys with a

large number of electrodes and the collection of time-lapse data using autonomous systems.

ERT is widely used in a large number of environmental and engineering applications, such

as hydrological characterization, landslide monitoring, studying root water uptake, and ar-

chaeological exploration. Many applications require the identification of boundaries between

two or more subsurface zones and reliable estimates of resistivity within each zone (e.g. soil

horizons, geological facies, engineered structures, or wetting fronts). Moreover, some measures

of uncertainty to these estimates are often desirable to facilitate interpretation and decision

making.

Smoothness constrained inversion (e.g. Binley 2015) is the most commonly used method
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for ERT inversion. Although it is an efficient and robust method, it explicitly favors the

smoothest resistivity field (by L2 measure)that honors the observed data, subject to pre-

scribed constraints. In the presence of sharp changes of resistivity in the subsurface, the

interfaces between regions are often not clearly resolved. Moreover, the inverted resistivity

values tend to be in the region of the mean (linear or log) resistivity of the entire domain,

rather than in the range of the actual resistivities in each zone. This then limits our abil-

ity to use the inverted resistivities to map directly to hydrological models via petrophysical

transforms. While these issues can be alleviated partly using minimum support functionals

(e.g. Nguyen et al. 2016) or parameter disconnect if the boundaries are known (e.g. Slater

& Binley 2003; Johnson et al. 2012), a general approach is lacking to image the subsurface

with arbitrarily shaped zones. There exist approaches to derive zonal or facies membership

from smooth inverted images, mainly post-possessing the images via clustering or edge de-

tectors (Chambers et al. 2014; Ward et al. 2014), or deriving conditional probability maps

from co-located measurements from direct sampling (Hermans & Irving 2017). However, their

performance depends on the results of the smoothness-constrained inversion results. Smooth-

ness constrained inversion is also not particularly well-suited for uncertainty quantification,

especially when there are sharp boundaries. Conducting uncertainty analysis on the smoothly

varying fields allows one to understand their variability, but provides little information on the

location of potential discontinuities in the actual resistivity field.

Incorporation of geostatistical information can greatly improve inversions. Early attempts

include the sequential successive linear estimator (SSLE, Yeh et al. 2002) (see also a compar-

ison between smoothness-constrained and geostatistical inversion by Englert et al. (2016)).

More recent attempts include applying the principal component geostatistical inversion on

ERT data (Kitanidis 2015). Geostatistical approaches have largely been based on variograms

and they assume a stationary random field. This assumption is violated in systems where there

are features of strikingly different orientation and abrupt changes or discontinuities such as

those arising from stratified geologic features. Recent methods have taken advantage of the

nonstationary Matérn family of covariance functions, where variogram and spatial scales are

estimated at each location in the model domain as a stochastic process. Such method has been

used increasingly for spatial modeling in geophysics and precipitation modelling and was first

used in 2D Bayesian ERT inversion by Bouchedda et al. (2017).

With increasing interest in quantifying the uncertainty in ERT estimates and improving

the identification of features (Linde et al. 2017; Andersen et al. 2003; Ramirez et al. 2005; Irv-

ing & Singha 2010), there has been significant interest in using fully Bayesian approaches
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based on Markov Chain Monte Carlo (MCMC) to approximate the posterior probability

density function (pdf) of the unknown resistivity field (i.e. posterior of resistivity at each

pixel). Accurate approximations of the full posterior pdf are useful for quantifying the un-

certainty of all possible modelling outcomes emerging from ERT. Recent work includes the

trans-dimensional inversion concept where the number and density of parameters are esti-

mated alongside the parameter values (Galetti & Curtis 2018), which adaptively avoids over-

or under- parametrizing the given inverse problem. A related approach uses a fixed parame-

ter mesh and in each MCMC iteration, the estimates of the interface between the two zones

(i.e. a polyline) are first updated, followed by estimates of the parameter fields within each

sub-domain (de Pasquale et al. 2019). Similarly, to speed up the generation of MCMC pro-

posals and hence convergence, an area-to-point kriging approach has been proposed recently

to generate fine-scale multi-Gaussian realizations from smooth tomographic images obtained

from smoothness-constrain inversions (Nussbaumer et al. 2019).

The theory of fully Bayesian methods such as MCMC ensures that sampling approxima-

tions converge to the target (posterior) distribution. In practice, however, it is widely known

that these methods require hundreds of thousands or even millions of model runs to produce

accurate approximations. A few thousands of MCMC samples can, indeed, be used to ap-

proximate regions of high-probability. However, regions of low probability under the posterior

pdf curve can be under-sampled since most MCMC proposals are based on local-moves which

tend to reject samples that belong in those low probability regions. It comes as no surprise

that most fully Bayesian methods in the context of ERT have been only applied to 2D set-

tings and/or focus on approximating only the high probability areas which could, perhaps, be

approximated more cost-effectively with methods based on Gaussian approximations such as

the one that we introduce in this work.

Data assimilation(DA) methods such as ensemble Kalman filter has gained popularity in

the Earth sciences. Early attempts, for example in hydrogeology, uses the standard filtering

approach to update both parameter and state variables (e.g. Camporese et al. 2015; Zhou

et al. 2014) but recent work has focused on reformulating the problem to estimate model

parameters only (e.g. Song et al. 2019; Chen et al. 2013). The ensemble or Monte Carlo

nature of such methods allows them to produce uncertainty estimates but unlike MCMC, the

relatively small number of samples and the assumed multi-variate Gaussianity in the posterior

parameter space implies that they can only derive one peak for each parameter value and its

spread. Ensemble smoothers or ensemble Kalman inversion (EKI) are also sometimes seen as

an alternative to classical inversion solvers, which require the derivation of sensitivity matrices.
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For many large and complex coupled problems, this is not a trivial task while DA methods

only require the evaluation of forward model runs.

While classical geosatistical approaches treat the model domain as a continuous random

field, recent methods aim to treat the model domain as discrete facies (i.e. zones). Note

that these facies may not be geological but can also be ”geochemical or hydrological” for

modelling purposes (e.g. Sassen et al. 2012; Wainwright et al. 2014). Among them, the level

set method (Chan & Tai 2004) represents boundaries between zones or facies by using the zero

contour (the “level set”) of a scalar function. One of its earliest applications is to a simplistic

electrical resistivity imaging problem (Chung et al. 2005). Notable applications of level set

parametrization of the model parameter field includes a Bayesian inversion method of pump

test data that is extensible to geophysical data (Cardiff & Kitanidis 2009) and an ensemble

data assimilation framework for pump test and tracer data at the U.S. Hanford site (Song

et al. 2019). In addition, it has been applied to study stream bed heterogeneity in a hyporheic

exchange context (Chen & Zeng 2015).

Recognizing the advantages and limitations of current methods, we propose an ensemble

Kalman inversion combined with level set parametrization for electrical resistivity imaging.

Its Bayesian and Monte Carlo nature provides estimates of model uncertainty at a fraction of

the computation cost of MCMC inversion, allowing it to be applied readily to large 3D and

time-lapse surveys. Its level set parametrization permits the estimation of spatially varying

geostatistical parameters of the resistivity field within the inversion so that it can capture

elongated features with different orientations. Its use of Matérn covariance functions allows

estimation of spatially variable correlation lengths of the resistivity field. We describe the

methodology in the next section and demonstrate its use with a series of synthetic and field

hydrogeophysics examples, followed by a discussion and conclusions.

2 MATERIALS AND METHODS

2.1 Bayesian formulation of ERT

For any given ERT modelling setting under consideration, we denote by F : Σ → V the ab-

stract (forward) operator that maps subsurface electrical conductivity σ(x) (i.e. 1/resistivity)

into predictions of electrical potential at the electrodes V. Here Σ is the space of physically

admissible conductivities and V is the space of all possible geoelectrical measurements. As

an example, consider 3D surface ERT with a single (generic) dipole located at xA and xB

where electrical current, I, is injected. In this case, F(σ) = V = (V (xM ), V (xN )) consists of
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the predictions of electrical potential at the measurement dipole at xM and xN . Assuming

an isotropic medium, the electrical potential difference between the two points ∆V can be

obtained by solving:

−∇ · (σ∇V ) = I(δ(x− xA)− δ(x− xB)) (1)

with appropriate boundary conditions (e.g. Binley 2015).

Given a set of observations, d, collected from measurement electrodes, an ERT problem

consists of finding the subsurface conductivity, denoted by σ†(x). In the classical (determin-

istic) ERT setting, an estimate of σ†(x) is obtained by minimizing, over the space Σ, the

following functional (e.g. Binley 2015):

1

2
‖Wd(d−F(σ))‖2 +

β

2
‖Wσσ‖2 , (2)

where Wd is a matrix that assigns weights (precision) to the data, β is a tuning regularization

parameter and Wσ is often a differential operator that enforces smoothness in a minimizer

of (2). Estimating σ via minimizing (2), often using the Gauss-Newton method, is usually

called smoothness constrained ERT. Note that the
1

2
constant is usually not included in

the geophysics literature, but it is included in order to be consistent with the maximum-a-

posteriori (MAP) estimate described later.

Rather than computing a single estimate of the true σ†(x), in the Bayesian framework

(Kaipio & Somersalo 2005; Stuart 2010) we aim to compute the probability distribution of

σ(x) conditioned on the observed geoelectrical measurements, d. We assume σ(x) is a random

function with a prior distribution, P(σ), that encapsulates our knowledge of the conductivity

before the measurements are collected. Observations/data d are treated as a realization of a

random vector. Once measurements become available, the goal of the Bayesian setting is to

approximate the so called posterior distribution P(σ |d) which, from Bayes’ rule, is given by

P(σ |d) =
1

Z
P(σ)P(d|σ) (3)

where P(d|σ) is the likelihood (i.e. the probability of d given a realization σ), and Z is a

normalization factor such that P(σ |d) integrates to one. In order to define the likelihood, we

use standard assumptions in which the unknown, σ(x), and the data, d, are related via

d = F(σ) + η, (4)

where η is (unknown) measurement error. Following standard practice, we assume the distri-

bution of η is centered Gaussian: Pη(η) = N(0,Ξ), where here N(m,C) denotes a Gaussian

measure with mean m and covariance C. From this assumption and (4), and following (Kaipio
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& Somersalo 2005; Stuart 2010), (3) can be written as

P(σ |d) =
1

Z
P(σ) exp

[
− 1

2

∥∥∥Ξ−1/2(d−F(σ))
∥∥∥2 ]

(5)

where here Z denotes a (new) normalization factor that we write explicitly as follows:

Z ≡
∫

Σ
P(σ) exp

[
− 1

2

∥∥∥Ξ−1/2(d−F(σ))
∥∥∥2 ]

dσ. (6)

In order to fully determine the posterior P(σ |d) from (5), we face two substantial challenges.

The first one is to design a good prior P(σ) that not only reflects our prior knowledge of

σ, but is also capable of extracting key features of the true σ†. The second challenge is to

compute Z. Indeed, if P(σ) is specified and Z is known, then expression (5) fully determines

the posterior that can be, in turn, used to compute point estimates (e.g. mean) as well as

measures of uncertainty (i.e. variance and credible intervals) for σ(x).

Unfortunately, Z cannot be computed analytically for ERT because the underlying for-

ward operator F(σ) is nonlinear. The numerical approximation of (6), on the other hand,

is computationally unfeasible. More specifically, after discretizing σ(x) on a computational

domain, the sought unknowns become a vector with the values of conductivity at, say K,

cells/elements of the computational domain for the geoelectrical problem (e.g. eq. (1)). Then

(6) becomes an integration on a K-dimensional space which, for large-scale 3D settings, can

be as large as 106. In order to address this limitation, sampling algorithms such as MCMC

are often used, since they can produce samples of P(σ |d) without the need for knowledge of

Z. If J posterior samples, {σ(j)(x)}Jj=1, are available from a sampling a method, statistics

of P(σ |d) can be approximated via Monte Carlo sampling. For example, the posterior mean,

E[σ|d], and posterior variance, Var[σ|d], can be approximated by the sample mean and sample

variance:

E[σ|d] ≈ 1

J

J∑
j=1

σ(j)(x). (7)

Var[σ|d] ≈ 1

J − 1

J∑
j=1

(σ(j)(x)− σ(x))2. (8)

Before we proceed to the discussion on the choice of prior as well as the sampling method to

approximate the Bayesian posterior for ERT, we briefly discuss the link between the Bayesian

approach and the smoothness constrained optimization defined in terms of (2). To this end,

let us define the so-called maximum-a-posteriori (MAP) estimate which is the point estimate

of the posterior defined by

σMAP ≡ max
σ∈Σ

P(σ |d) (9)
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This quantity is often used to estimate the truth σ†(x) since the MAP can be interpreted as

the most likely estimate. Let us assume first that the prior is Gaussian, say P(σ) = N(0, Cσ).

Under this assumption, (3) can be written as

P(σ |d) =
1

Z
exp

[
− 1

2

∥∥∥Ξ−1/2(d−F(σ))
∥∥∥2
]

exp

[
− 1

2

∥∥∥C−1/2
σ σ

∥∥∥2
]

(10)

where Z is a (new) normalizing factor defined, as before, such that the posterior P(σ |d) inte-

grates to one. Maximizing the posterior P(σ |d) in (10) (i.e. computing the MAP) is equivalent

to minimizing

− log
(
P(σ |d)

)
=

1

2

∥∥∥Ξ−1/2(d−F(σ))
∥∥∥2

+
1

2

∥∥∥C−1/2
σ σ

∥∥∥2
+ Z (11)

If Wd = Ξ−1/2 and β2Wσ = C
−1/2
σ , then computing the MAP estimator is equivalent to

minimizing (2) which, in turn, leads to the smoothness constrained solution (recall Z is a

constant hence fixed through the optimization). For most common choices of prior covariance,

C
−1/2
σ , is indeed a differential operator that enforces smoothness on σ. This means that a

selection of Gaussian prior in the Bayesian approach is not the best choice when our main

concern is to characterize discontinuous conductivities via ERT.

The connection between smoothness constrained inversion and the MAP estimator can

be further generalized to non-Gaussian priors by considering an appropriate penalty term,

β
2 ‖Wσσ‖2, in (2). However, the advantage of the Bayesian approach over smoothness con-

strained is that, with the former we have the full posterior P(σ |d) that we can use to quantify

uncertainty in the estimates of σ(x).

2.2 Priors and parameterizations

In addition to quantifying uncertainty in the estimates that we produce, a key requirement for

our ERT framework is to be able to capture sharp interfaces between zones of different conduc-

tivity. In the Bayesian setting this can be done either by (i) a careful selection of priors P(σ)

that produces realizations of conductivity fields with discontinuities or (ii) a parameterization

of the conductivity field which incorporates discontinuous (or piecewise continuous) features.

As discussed at the end of the preceding section, a Gaussian prior will enforce smoothness via

the prior covariance. Hence, Gaussian priors are not suitable for characterizing discontinuous

(non-smooth) fields. Other priors that can be used for this purpose are the so-called edge-

preserving (i.e. Total Variation, Besov and Cauchy) priors (Arridge et al. 2019) commonly

used in image processing. However, unlike Gaussian priors, characterizing (e.g. sampling from)

these edge-preserving distributions, can be computationally complex. For this reason we fol-
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low the second approach which consists of an adequate parameterization of σ = P(u) that

we construct so that (i) it allows us to characterize multiple (unknown) zones with different

conductivity and (ii) the new level set parameter u(x) can be easily characterized under the

prior. In subsection 2.3 we revisit the Bayesian ERT formulation from subsection 2.1 in terms

of the new parameter u(x).

For the sake of exposition we consider a 3-zone example where the conductivity σ(x) is

defined for x ∈ Rd (d = 2 or d = 3 for 2D and 3D problems, respectively), but the approach

can be used for more zones. Constructing the parameterization involves two steps.

2.2.1 Level-set parameterization

First, we parameterize our unknown conductivity σ(x) in terms of four (also unknown) func-

tions ξ1(x), ξ2(x), ξ3(x), and ξ4(x), via the following expression

σ(x) = PLS(ξ1, ξ2, ξ3, ξ4) ≡


exp(ξ1(x)), ξ4(x) ≤ α1

exp(ξ2(x)), α1 < ξ4(x) ≤ α2

exp(ξ3(x)), ξ4(x) > α2

(12)

where α1 and α2 are user defined parameters. From (12) it follows that ξ4(x), to which we

refer as the level-set function, defines three regions

Ω1 = {x : ξ4(x) ≤ α1}, Ω2 = {x : α1 < ξ4(x) ≤ α2}, Ω3 = {x : ξ4(x) > α2} (13)

on which σ(x) takes the values given by exp(ξ1(x)), exp(ξ2(x)) and exp(ξ3(x)) respectively.

Note that the α1-level-set of ξ4(x) (i.e. {x : ξ4(x) = α1}) gives the interface between Ω1 and

Ω2. Similarly, the α2-level-set of ξ4(x) describes the interface between Ω2 and Ω3.

Instead of estimating σ(x) we could now reformulate the inverse problem in terms of

identifying the functions {ξι(x)}4ι=1. Solving this new problem will amount to estimating

the shape of the three zones (via ξ4(x)) of different conductivity, together with the possibly

heterogeneous conductivities within each zone. Before we tackle this new inverse problem, we

need to further parameterize {ξι(x)}4ι=1.

2.2.2 Whittle-Matérn parameterization

We introduce a second step in the parameterization of σ(x) which involves the characterization

of the spatial variability of the unknown function {ξι(x)}4ι=1 that we introduced in (12). Our

main modelling assumption is that, under the prior, all these functions are Gaussian random
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Figure 1. An illustration of the level set methods to delineate sharp interfaces. Using a higher di-

mension function allows much more straightforward description of arbitrary geometries in the original

dimension. In this illustration, the two zones can be defined simply as above or below z = 0 level of

the 3D function.

fields (GRFs) with Matérn covariance defined by

CΘ(x, x′) = τ2 1

2ν−1Γ(ν)

∥∥x− x′∥∥ν
L
Kν

(∥∥x− x′∥∥
L

)
, (14)

where ν controls smoothness of the GRFs; L = (L1, . . . , Ld) is a vector with the intrinsic

length-scales on each of the d directions, τ is an amplitude scale, Kν is the modified Bessel

function of the second kind of order ν, Γ is the gamma function, and

∥∥x− x′∥∥
L
≡

√
(x1 − x′1)2

L2
1

+ · · ·+
(xd − x′d)2

L2
d

.

The (hyper-)parameters of (14) are comprised in a vector Θ = (L, ν, τ).

Suppose that a generic function ξ(x) is Gaussian random field with mean λ and covariance

CΘ (we denote this by ξ ∼ N(λ,CΘ)). One of the most common approaches to characterize

ξ(x) is via its Karhunen-Loeve (KL) expansion given by

ξ(x) = λ+

∞∑
i=1

ζ
1/2
Θ,i vΘ,i(x)κi, (15)

where (ζΘ,i, vΘ,i(x)) is the eigenvalue-eigenfunction pair of CΘ and the κi’s are independent

identically distributed (iid) samples from a standard normal (i.e. θi ∼ N(0, 1)). The KL expan-

sion is quite general and it can be used for a more general class of covariance operators. When

CΘ is given by (14), and the GRF is defined on a domain with simple geometry (i.e. a rectan-

gular domain (Dunlop et al. 2017)), analytical expressions for the eigen-pair (ζΘ,i, vΘ,i(x)) may

be available. Constructing the eigen-pair for the KL characterization of GRFs is equivalent to
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the Stochastic Partial Differential (SPDE) approach proposed in (Lindgren et al. 2011), and

that we adopt for the present work. The SPDE approach consists of expressing a GRF with

Matérn covariance as follows

ξ(x) = PWM (λ,Θ, ω) ≡ λ+WΘ ω(x) (16)

where here ω(x) is Gaussian white noise at each grid location x and Ψ =WΘω is the solution

to the fractional Stochastic Partial Differential (SPDE)

(
I−∇ · diag(L2)∇

)(ν+d/2)/2
Ψ = τ22dπd/2

Γ(ν + d/2)

Γ(ν)

[
d∏
i=1

Li

]1/2

ω (17)

together with appropriate boundary conditions (Roininen et al. 2014). In the previous ex-

pression I denotes the identity operator and diag(L2) is a matrix (either in 2D or 3D) with

diagonal equal to L2 = (L2
1, . . . , L

2
d).

While the characterization of GRFs via (16)-(17) may seem quite involved, we should note

that the operator ∇ · diag(L2)∇ that appears in (17) is simply the anisotropic version of a

Laplacian. Thus, a discretization of A ≡ (I−∇ ·diag(L2)∇) can be relatively straightforward

using standard Finite Element or Finite Difference methods. Given the discretization of A,

the SPDE Approach from Lindgren et al. (2011) provide us with straightforward steps for

solving (17) for the case when (ν + d/2) is an integer.

We propose to characterize each of the functions {ξι(x)}4ι=1 that we introduced in (12)

via the parameterization induced by the SPDE approach. In other words, we assume each of

these functions are, under the prior, GRFs that can be written as

ξi(x) = PWM (λi,Θi, ωi) i = 1, . . . , 4 (18)

The hyper-parameters Θi = (Li, νi, τi) in (18) are crucial since they control the spatial vari-

ability of each ξi(x). The work in Chada et al. (2018) and Dunlop et al. (2017) has shown

that, prior hyper-parameters of this kind, must be estimated within the Bayesian setting to

enable accurate characterizations of physical properties. In particular, the hyper-parameters,

Θ4 for the level-set function ξ4(x) will determine the geometry of each of the regions defined

in (13) as well as the smoothness of the interface across these regions.

We combine (18) with (12) to define our parameterization of σ(x):

σ(x) = PLS(ξ1, ξ2, ξ3, ξ4) = PLS(PWM (λ1,Θ1, ω1), . . . ,PWM (λ4,Θ4, ω4)) (19)

which in compact form can be written as

σ(x) = P(u(x)), u(x) = (λ1,Θ1, ω1(x), . . . , λ4,Θ4, ω4(x)) (20)
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Rather than approximating the posterior distribution for the (log) conductivity σ(x), our goal

is to compute the posterior on u(x) and then transform back to a distribution on σ(x) via P.

The framework above gives us a natural choice for the priors P(ωi) = N(0, I) (i.e. Gaussian

white noise). Priors on λi and Θi = (Li, νi, τi) must now be specified.

2.3 Ensemble Kalman inversion (EKI) for the parameterized ERT problem

In this section we apply the Bayesian framework to the new parameter u(x) that we introduce

earlier to characterize discontinuous σ(x) via the mapping σ = P(u). We re-formulate the

Bayesian ERT problem in terms of the push-forward of P(u|d) (i.e. the posterior on u(x))

under the parameterization map P. In plain words, if we are able to produce samples from

P(u |d), say {u(j)}Jj=1, then the corresponding conductivities, σ(j) = P(u(j)), are samples of

the ”push-forward” density that we denote by Py(σ). This is analogous to the posterior on

σ(x) introduce in the subsection 2.1 and comprises the statistical information of σ(x) while

enforcing the 3-zone assumption encoded in P(u).

The posterior on u(x) is given, again, by Bayes rule

P(u |d) =
1

Z
P(u)P(d|u) (21)

where P(u) is the prior on u and P(d|u) is the likelihood. We define the composition map

G(u) = F ◦P(u) = F(σ) that maps the parameter u(x) into the prediction of the geoelectrical

model F(σ) = V. We use the parameterization σ = P(u) as well as the definition of G in (4)

to find

d = F(σ) + η = F(P(u)) + η = G(u) + η.

Using again our assumption on Gaussian measurement noise η ∼ N(0,Ξ), we rewrite (21) as

P(u |d) =
1

Z
P(u) exp

[
− 1

2

∥∥∥Ξ−1/2(y − G(u))
∥∥∥2 ]

, (22)

2.3.1 EKI algorithm

In order to approximate the posterior P(u |d) in (22), we consider the ensemble Kalman

inversion (EKI) algorithm of Iglesias et al. (2018). EKI is based on the tempering scheme which

consist of introducing a sequence of N intermediate densities between prior and posterior:

P0(u)→ P1(u)→ . . .PN (u)→ PN+1(u) = P(u |d)

Each intermediate density is defined by

Pn(u) ∝ P0(u) exp
[
− φn

2

∥∥∥Ξ−1/2(d− G(u))
∥∥∥2 ]

, (23)
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where {φn}Nn=1 are tempering parameters that satisfy:

φ0 ≡ 0 < φ1 < φ2 < · · · < φN < φN+1 ≡ 1. (24)

Note that n = 0 and n = N + 1 in (23) corresponds to the prior, P0(u), and posterior,

PN+1(u) = P(u |d), respectively. The following recursive formula can be obtained from (23):

Pn+1(u) ∝ Pn(u) exp
[
− 1

2

∥∥∥(αnΞ)−1/2(d− G(u))
∥∥∥2 ]

, (25)

where

α−1
n = φn+1 − φn. (26)

From (24) it follows that

N∑
n=0

α−1
n = φN+1 − φ0 = 1, (27)

EKI is an iterative algorithm that, at each of the n-th iteration, produces samples from

a Gaussian approximation of Pn(u). The algorithm is initialized with an ensemble of inputs

{u(j)
0 }Jj=1 drawn from the prior P(u), measurements d and error covariance Ξ. Set n = 0 and

θ−1 = 0

At each iteration n,

(1) Compute G(j)
n = G(u

(j)
n ), j ∈ {1, . . . , J} by running the forward model.

(2) Compute αn via

α−1
n ≡ min

{[
1

M

1

J

J∑
j=1

∥∥∥Ξ−1/2(d− G(j)
n )
∥∥∥2
]−1

, 1− θn−1

}
(28)

where M is the number of measurements (i.e. length of vector d) and set θn ← θn−1 +

α−1
n . The choice of regularization parameter αn is crucial to inversion performance; here we

follow the approach proposed recently in Iglesias & Yang (2020).

(3) Update each particle (a realization of the ensemble) according to:

u
(j)
n+1 = u(j)

n + CuGn (CGGn + αnΞ)−1(d+
√
αnη

(j)
n − G(u(j)

n )), j ∈ {1, . . . , J} (29)

where η
(j)
n ∼ N(0,Ξ) is artificial noise that we generate with the same assumed statis-

tics of the measurement error. In eq. (29), CuGn and CGGn are model-data covariance and data

auto-covariance matrices respectively, which are formed empirically based on the evaluation
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of the forward models {G(u
(j)
n )}Jj=1. Specifically, they are given by:

CGGn ≡ 1

J − 1

J∑
j=1

(G(u(j)
n )− Gn)⊗ (G(u(j)

n )− Gn) (30)

CuGn ≡
1

J − 1

J∑
j=1

(u(j)
n − un)⊗ (G(u(j)

n )− Gn) (31)

with un ≡ 1
J

∑J
j=1 u

(j)
n and Gn ≡ 1

J

∑J
j=1 G

(j)
n .

(4) Set n← n+ 1

The iterative loop continues until convergence which is controlled by the criterion in (27),

which is equivalent to while θn−1 < 1 is not true. At convergence, we yield {u(j)
n+1}Jj=1 as an

ensemble approximation of the posterior.

2.4 Summary of Methods

To summarize the above, the key point of our method is that we do not directly invert for

a distribution of conductivity fields. Rather, we invert for parameters u and use a mapping

P to convert them to conductivity fields. The level set function is a good choice for P to

handle sharp boundaries but we want to parametrize it using hyper-parmeters such as length

scales and smoothness. So for each of the level set functions, we rewrite them based on

Matérn covariance functions and the SPDE approach (16-18). The end results is that we

can parameterize the level set functions ξi(x) and thus the conductivity fields σ(x) through

the Whittle-Matérn hyper-parameters for each of the i-th zone Θi = (Li, νi, τi) via eqn.(18).

Recall that Li, νi, and τi are the controls the length scale, smoothness, and amplitude of

the level set functions respectively, alongside the mean conductivity of each zone λi and the

Gaussian white noise at each grid location wi(x). Prior conductivity fields are generated by

specifying λi and Θi. For examples of prior conductivity fields, refer to Fig. 4.

The parameters are updated by EKI. The general concept is to update an ensemble of

model realizations using ensemble Kalman filter-like updates. By computing the data misfit

between the ensemble (obtained by running the forward model for each realization) and the

observed, the mean of the ensemble is iteratively driven to the solution of the inverse problem.

At each iteration, the regularization parameter αn is updated. It effectively allows more reg-

ularization when the data misfit is large, while letting it decreases gradually as the ensemble

evolves closer to the solution.

To estimate a conductivity field assuming there is no within-zone heterogeneity, we update

u(x) = (λi,Θi, wi(x)) via EKI. λi is the homogeneous conductivity value for each zone. Note
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that although λ and Θ are scalars, we are estimating their distributions (and hence their

means and variances).

It is noteworthy that the flexibility of EKI means we may omit certain hyper-parameters

or include more if needed. In the deep Earth seismic EKI work of Muir & Tsai (2020), they

are confident about their priors (i.e. the hyper-parameters they set) and the assumed zonal

seismic slownesses so these parameters are not updated. In one of their examples, they added

a hyper-parameter to account for the potential presence of a fault, which allows them to

recover the fault geometry clearly. Since our examples also estimate the length scales, we call

our approach ”multi-scale”, or ”hierarchical EKI (Chada et al. 2018)”. Although EKI is a

Bayesian method, Muir & Tsai (2020) used it pragmatically as a fast and flexible optimizer

to replace the Jacobian and they did not report any uncertainty estimates.

Estimating a conductivity field with within-zone heterogeneity can be achieved by also

estimating the spatially varying length scales of within-zone heterogeneity at each direction

and at each grid cell. We demonstrate this in one of our synthetic examples.

2.5 Implementation notes

For the ERT forward modelling, we use a grid that extends laterally several times the dimen-

sion of the ERT imaging area to simulate an infinite earth in field studies. For convenience,

here we discretize the parameter grid used for inversion is a grid consists of squares/cubes

covering the entirety of the imaging area. For the field hillslope example (section 3.2.1), the

parameter grid is distorted to quadrilaterals based on surface elevations. At each iteration,

the parameter grid is interpolated to the forward modelling grid to obtain simulated ERT

data. In all the examples, the number of realizations used for each iteration is set to 300. For

this paper, we implement the EKI method in MATLAB(R) and its statistics and machine

learning toolbox as well as its built-in parallel tool. However, it can be implemented rather

straightforwardly in other scripting languages.

Priors are given in log space and are assumed a uniform distribution. One of the zone is

assigned to be the background zones such that its mean value is assigned for cells that are

outside the parameter estimation grid.

Putting all of the above together, our approach can be summarized as a flowchart in Fig. 2.

The unknown parameters are level set parameters and they are converted to conductivity fields

at the beginning of each iteration before being run through the ERT forward code to obtain

simulated ERT data.

In all the examples, we compare the inversion results from EKI to smoothness-constrained
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Figure 2. Overview of the EKI method

inversion. The parameter grid used here is the same as the forward modelling grid. R2 and

E4D are used for inversion of 2D and 3D data, respectively.

3 EXAMPLE APPLICATIONS

In this section, we report EKI inversion results from a series of synthetic and field examples. In

these examples, 2% Gaussian noise is added to the data and a 2% data errors are assumed in

the inversions. For 2D modelling, we use R2 (http://http://www.es.lancs.ac.uk/people/

amb/Freeware/R2/R2.htm) for forward modelling because of its ease to setup the problem,

particularly with the help of the the ResIPy interface (Blanchy et al. 2020). For 3D modelling,

we use E4D (Johnson et al. 2010) as the forward solver because of its efficient parallel capabil-

ities. For each problem, either a rectangular grid is used or a triangular(2D)/tetrahedron(3D)

mesh is generated using tetgen (Si 2015).

http://http://www.es.lancs.ac.uk/people/amb/Freeware/R2/R2.htm
http://http://www.es.lancs.ac.uk/people/amb/Freeware/R2/R2.htm
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3.1 Synthetic examples

3.1.1 2D cross-borehole survey

In this example, two boreholes, 16m apart are installed for cross-borehole ERT imaging

(Fig. 3). Along each borehole, 16 regularly separated electrodes are installed. In total, 204

ERT measurements (i.e. quadrupoles) are collected. The forward modelling grid includes 6336

rectangular cells while the parameter grid for inversion consists of 64 regularly spaced square

cells in each direction (4096 total), spanning x = [−8, 8]m and z = [−8, 8]m. The background

resistivity is 100Ωm and that of the inclusion is 1Ωm. The prior resistivity ranges for zone 1

(background) and 2 are [75, 200]Ωm and [0.1, 30]Ωm respectively.

The resistivity map obtained from commonly used smoothness constrained inversion is

extremely smooth (Fig. 3a) and the resistivity range (note the range of values) is very small.

Users familiar with smoothness constrained inversion can appreciate this image may contain

a sharp target but it is difficult to communicate this to non-geophysicist. The mean resistivity

estimates from EKI (Fig. 3b), in contrast, recovers the two zones very well(with the exception

of the corners of the target) and obtains the zonal resistivity value perfectly. The estimated

target appears to be shifted to the left slightly from the true rectangular interface–this is

due to a rather coarse parameter grid being used. In contrast, the smoothness constrained

inversion returns a smoothed images with variations of resistivity values across the image. It

also does not give a correct estimate of the resistivity values in neither the background region

nor the inclusion.

A helpful feature from EKI is the ability to obtain zonal probability maps of across the

estimated resistivity models. Here, since a 2-zone formulation is used, each cell belongs to

either the background or the inclusion zone. As can be seen in Fig. 3c, the probability map

for zone 1 is highly variable at the first iteration and the values are all between 0.9 to 1.0,

reflecting our assumption of a background region. The posterior map (Fig. 3d),however, shows

very high zone 1 probability in most of the domain, very low probability at the center of the

inclusion, and a probability of between 0.4 and 0.7 around the interface of the two zones.

3.1.2 2D surface survey

In this example, a surface ERT line is deployed to image a layered with system with a vertical

fault (The true model is shown in Fig. 4a). The layers can be conceptualized as a bedrock

overlaid by a less resistive topsoil. 25 regularly separated electrodes (2m spacing) are installed.

In total, 117 dipole-dipole measurements are simulated. The forward modelling grid includes
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Figure 3. ERT inversion results of the 2D cross-borehole example: (a)The resistivity model estimated

by smoothness-constrained inversion. Notice the smaller resistivity range than the estimates from EKI.

(b) The mean resistivity model estimated by EKI, where the rectangular bounding box shows the true

location of the 1 Ω m inclusion (c) The prior estimated probability of zone 1 (i.e. the background) (d)

The posterior estimated probability of zone 1. In each sub-figure, the true boundary of the two zones

are marked by a red line.

10752 rectangular cells while the parameter grid for inversion consists of 25600 square cells

spanning x = [−24, 56]m and z = [−20, 10]m, with 320 and 80 regularly spaced cells in the X

and Z directions respectively. The background resistivity (zone 1) is 2500Ωm and that of the

topsoil (zone 2) is 250Ωm. Fig. 4) also shows a few selected realizations of the prior resistivity

fields. They are generated by the level set functions given prior ranges of length scales and

resistivity values of the two materials.

Fig. 5 shows the results from a smoothness constrained inversion and a L1 (or blocky)

inversion (Loke et al. 2003), respectively. The smoothness constrained inversion shows a more
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Figure 4. (a) True model for the 2D surface example, which comprises of two layers and a vertical

fault. The black circles denotes the electrode locations. (b-h)Example realizations of prior resistivity

field and the corresponding realization number.

resistive region at depth greater than 5m and the resistivity variation is gradual and smooth.

For the L1 inversion, a flat topsoil layer is recovered, while the bedrock to the right of the

fault is found (mistakenly) to be less resistive than that to its left. In both inversions, the

resistivity value of the bedrock is underestimated.

In this example, EKI with both 2 zone and 3 zone formulations are compared. In layered

systems such as this one (i.e. a laterally extended topsoil with different electrical signatures to

the rest of the domain), there may be issues in using a 2 zone formulation since the apparent

resistivity of most measurements is close to neither zones. Therefore, a formulation with a

third zone with a resistivity ranges that is lower than zone 1 and higher than zone 2 is also

tested. In the 2 zone example, the prior resistivity of zone 1 (background) and zone 2 are

[2000, 3000]Ωm and [200, 300]Ωm respectively. Fig. 5 shows some example realizations of prior

resistivity fields.

The results for EKI (2 zone) is reported in (Fig. 5c,e,g). It gives a mean estimates of back-

ground/bedrock(zone 1) and topsoil (zone 2) resistivity of 2362Ωm and 243Ωm respectively,

which are very close to the true values (2500 and 250Ωm). It also captures the resistivity

structure very well–although the recovered fault structure does not appear to be perfectly

vertical, the estimate zone boundaries and resistivity values are close to the true ones. As
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shown by Muir & Tsai (2020), the EKI can be formulated so that fault parameters (e.g. loca-

tion and dip angle) are estimated explicitly and return more explicit fault geometry (see also

discussions in Section 2.4 and 4.3). The variance maps shows the uncertainty (both in terms

of variance and coefficient of variation (CV)) is the highest around the interface between the

two zones, which is helpful for interpretation and for uncertainty propagation to subsequent

analysis steps. The uncertainty is also lower for the topsoil, partly because it is a lower resis-

tivity layer, but also because of its proximity to the surface electrodes. It is also noteworthy

that the left half of the image is subject to higher uncertainty . Recall that the fault system

is set up so that the topsoil to the left is 2m thicker than that to the right. This observation

highlights the attenuation effects of ERT signals due to topsoil thickness.

In the 3 zone formulation (Fig. 5d,f,h), the prior resistivity ranges of zone 1, zone 2

(background) and zone 3 are [2000, 3000]Ωm, [700, 900]Ωm and [200, 300]Ωm respectively.

The results from EKI (2 zone) and EKI (3 zones) share many common features. EKI (2 zone)

gives a mean estimates of bedrock, background and topsoil resistivity of 2372Ωm, 798Ωm and

242Ωm respectively, which are very close to the true values and the background value is almost

identical to the geometric mean of the other zones. However, the mean estimates designate

the cells around the interface between the two zones the moderate background zones. This

can be helpful in practice when propagating uncertainty because if the contrast between the

two zones are too high, a wrong estimation of zone membership may have serious effects. The

variance and CV maps in the 3 zone formulation also show bands of high uncertainty near

the 2 interfaces of the estimated zones.

We repeated our analysis with wider parameter ranges and obtained very similar results.

In all the examples, convergence was achieved between 10-12 iterations. The computation

was performed on an Intel i7 laptop (quad core) laptop and the time required for the entire

inversion is less than 2 hours. The R2 run for the same problem takes less than a minute on

the same machine. Finally, we compare our results with a smoothness-constrained inversion

(Fig. 5g), which shows a very smooth interface. Similar to EKI, a 1m × 1m parameter grid

was used.

We also considered the performance of EKI to estimate a rather heterogeneous resistivity

field. The true field (Fig. 6a) has the same zone boundaries but there are within-zone hetero-

geneities. The EKI algorithm is set to allow within-zone variations in resistivity values. The

EKI algorithm recover the two zones in the true field (Fig. 6b-d), with the exception of a few

misidentified small pockets in the top layer. Again, the uncertainty is found to be higher at
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Figure 5. ERT inversion results of the 2D fault example using a 2-zone formulation: (a) The mean

resistivity model estimated by EKI (b) The posterior estimated variance. (c) The posterior estimated

coefficient of variation (d-f) shows the above by repeating EKI by assuming a 3-zone formulation.(g)The

resistivity model estimated by smoothness-constrained inversion. In each sub-figure, the true boundary

of the two zones are marked by a red line. The boundary of the two zones is marked with a red line.

the estimated interfaces between zones. The computation cost for EKI here is comparable to

that in Fig. 5.

3.1.3 3D complex structure

In this 3D example, the true model is a cylinder of 2m radius and 8m in height, which mimics

structures such as an abandoned well or mine shaft that is backfilled with sediments (Fig. 7).

Three surface ERT lines (5 m separation), consisting of 16 electrodes (1 m separation), are

used for data collection. The background resistivity is 200Ωm and that of the inclusion is

10Ωm. The ERT grid consists of 62002 tetrahedron cells. For EKI, we set the initial guess

vertical length scale hyperparameters (L) to be three times larger than the horizontal ones

than to speed up convergence, but note that all of them are updated by EKI. The computation

was performed on a DELL PowerEdge cluster.

The smoothness constrained inversion recovers a rather smoothed structure of which the

interface between the two zones are not clearly shown. The cylinder appears as a conductive
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Figure 6. ERT inversion results of the 2D fault example with heterogeneity within each zone: (a)

The true resistivity field (b) The mean resistivity model estimated by EKI (c) The posterior estimated

probability of zone 1 (i.e. the background zone) (d)The posterior variance estimated by EKI. In each

sub-figure, the true boundary of the two zones are marked by a red line. The boundary of the two

zones is marked with a red line.

blob near the surface, making it difficult to interpret if the true resistivity model were not

known.

In contrast, the extent of the inclusion is very well recovered by EKI. The mean esti-

mated resistivity for each zone is 200Ωm and 10Ωm, which are very close to their true values.

The variance maps shows the confidence of facies/zone estimation and allows propagation

of uncertainty for subsequent analysis. The evolution from prior to posterior variance maps

shows a reduction in uncertainty by conditional the potential resistivity models with data.

The posterior variance is higher near the interface between the two zones. Similarly, the Zone

2 probability allows intuitive visualisation of zone membership and its uncertainty.
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Figure 7. ERT inversion results of the 3D complex structure example: (a) The true resistivity model

(b) The resistivity model estimated by smoothness-constrained inversion (c)The mean resistivity model

estimated by EKI (d)The prior and (e) posterior variance map obtained by EKI (f) The posterior zone

2 probability map obtained by EKI. The location of the electrodes are marked as orange cubes.
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3.2 Field examples

3.2.1 Borth peat bog, Wales, UK

Comprised of 98% organic matter, peatlands are one of the largest reservoirs of carbon in the

carbon cycle and are a major source of atmospheric methane. The existence of water logging

and anaerobic condition slows down decomposition of plant materials, which in turn leads to

the accumulation of peat. Estimating the extent and thickness are important to understand

the hydrological and biogeochemical processes that occur in peatlands and geophysics has

proved to be extremely useful in this regard (Slater & Reeve 2002; Comas & Slater 2004;

Comas et al. 2004).

A series of field hydrogeophysical surveys and laboratory was conducted at Cors Fohno,

a peat bog located at Borth in Wales, UK (52o 32’ N 04o 00’ W) (Asunbo 2007). GPR, ERT,

IP and direct sampling measurements are taken at the site. In this example, we focus on a 2m

electrode spaced ERT survey conducted along a 94m length of board walk at the site. The

dataset consists of 397 dipole-dipole measurements with a dipole spacing of one electrode and

up to 10 survey levels. The forward modelling grid comprises of 7904 rectangular cells while

the EKI parameter grid consists of 300 and 60 cells (0.5 m spacing) in the X and Z directions

respectively. A 5% measurement error is assumed for the inversions and a 2 zone formulation

for EKI is used. The prior resistivity of zone 1 (background) and zone 2 are [70, 125]Ωm and

[140, 200]Ωm respectively.

Fig. 8a shows the results from smoothness-constrained inversion, which shows the resistiv-

ity decreases gradually with depth. Fig. 8b-d shows the results for EKI. Two almost perfectly

horizontal zones are identified, which is expected from Fig. 8a and from other geophysical and

core measurements taken at the site. The lower boundary is found to be about 4m deep by

EKI, which agrees with direct sampling results of Asunbo (2007), which shows the presence of

peat down to 4-5m, underlained by dark organic-rich electrical conductive sediment down to

6.5-6.9m. This last boundary designates the peat’s base which consists of blue (marine) clay.

Fig. 8c-d shows that the high uncertainty areas (on zone membership) are at the boundaries

of the zones and also at some locations at depth and on the right-hand-side of the panel. The

higher complexity on the right-hand-side is also reported by Asunbo (2007).

In this example, convergence was achieved in 10 iterations. The computation was per-

formed on an Intel i7 workstation (quad core) laptop and the time required for the entire

inversion was less than 3 hours.
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Figure 8. ERT inversion results of the Borth field example: (a) The resistivity model estimated by

smoothness-constrained inversion reported in Asunbo (2007).The inset shows a photo of the ERT line.

(b) The mean resistivity model estimated by EKI (c) The probability of a cell being in zone 2 estimated

by EKI (d) The standard deviation map obtained by EKI. The location of the surface electrodes are

marked as black circles in panels (b-d).

3.2.2 Chenqi catchment hillslope, SW China

The example data used here is from a survey conducted at Chenqi catchment in Guizhou

Province, China in April 2017 (Cheng et al. 2019). An ERT line was deployed along a hillslope

and the goal of the ERT survey was to identify the hydrostratigraphy of the hillslope in order

to improve a hydrological conceptualization of runoff processes within the karstic catchment.

The 2D profile consists of 48 electrodes and separated by about 5m. The exact position of the

electrodes were surveyed and recorded. A dipole-dipole measurement configuration was used

with dipole spacings of one, two, and three electrodes and up to 11 survey levels. A full set

of reciprocal measurements of the data were taken for error analysis. The dataset consists of

1569 reciprocal measurements. A 5% measurement error is assumed for the inversions. Fig. 9a

shows the resistivity map obtained from smoothness constrained inversion, which shows a
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thin layer of conductive topsoil and several very smooth resistive regions. The latter can be

interpreted as either horizontal layers or local inclusions.

We run inversion using EKI as a 3 zone problem and its results inform the choice of

prior ranges of resistivity values based on smoothness constrained inversion results. For EKI,

we use a parameter grid consisting of 1 × 1 grid cells spanning an area of 250m by 140m

is used for parameter estimation. The prior resistivities of zone 1, zone 2 (background) and

zone 3 are [800, 3000]Ωm, [150, 650]Ωm and [10, 100]Ωm respectively. The posterior mean

estimates of the three zones are 1717.4Ωm, 431.4Ωm and 36.2Ωm respectively. Since we allow

zonal resistivity values to vary between realizations, Fig. 9e shows the histogram of posterior

estimates of resistivity values for each zone. They do not vary greatly, as the structure of

resistivity field is the main control of the ERT response. Fig. 9b shows an image of the

mean resistivity estimates from EKI, which shows clearly the interfaces between zones. The

bottom resistive zone is more extensive than estimated by smoothness-constrained inversion,

while the two resistive zones at the upper left corner of the domain appears to be localized

inclusions. EKI also captures a localized conductive zone at X = 170m, which does not appear

in the smoothness-constrained inversion image. The resistivity maps obtained from EKI better

captures the weathered features and soil infills that are expected in karstic systems like the

ones at Chenqi, making the interpretation of the geometry of geological features from ERT

images more intuitive. The high resistivity zone agrees with the occurrence of a very flat,

slightly dipping mudstone in geological maps for the site (Cheng et al. 2019).

EKI also return the uncertainty estimates. Fig. 9c shows the probability map of a given

cell to be a member of zone 2. A low value means a high probability of being a member

of either zone 1 and 3. In the cropped region displayed in Fig. 9, there are no cells that

has a non-zero probability of belonging to both zones 1 and 3 (or all three zones), making

the zone 2 probability map a helpful way to visualize uncertainty. It appears for most cells

that the zone 2 probability is either 0 or 1. Alternatively, uncertainty can be visualized as

a map of standard deviation across realizations of the posterior estimates (Fig. 9d). A high

standard deviation is observed around interfaces, which is expected because in those cells

there is significant probability for them to belong to more than one zone. This is expected in

most ERT problems as the uncertainty within a structure is low and that along the interface

of zones is high.

In this example, convergence was achieved in 29 iterations. The computation was per-

formed on an Intel i7 workstation (quad core) laptop and the time required for the entire

inversion was less than 5 hours, while a R2 inversion run takes less than two minutes.
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Figure 9. ERT inversion results of the Chenqi field example: (a) The resistivity model estimated by

smoothness-constrained inversion.The inset shows a photo of the ERT line. (b) The mean resistivity

model estimated by EKI (c) The probability of a cell being in zone 2 estimated by EKI (d) The

standard deviation map obtained by EKI (e) A histogram of the EKI-estimated resistivity values of

each zone across realizations. The location of the surface electrodes are marked as black circles.
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3.2.3 Eggborough, Yorkshire, UK

At Eggborough (National Grid Reference SE 570 232), ERT and GPR surveys were con-

ducted in 1999 (Binley et al. 2002; Cassiani & Binley 2005) to study the use of geophysical

measurements for the parameterization of unsaturated hydraulic parameters. The data were

later used to study the utility of joint inversion of ERT and GPR data (Linde et al. 2006;

Bouchedda et al. 2012) and the influence of prior information on vadose zone parameters

estimation in stochastic inversion (Scholer et al. 2011). Cores were collected at Eggborough

to study petrophysical models for direct current resistivity and induced polarisation (Binley

et al. 2005; Tso et al. 2019). In this example, we focus on the cross-borehole ERT survey

for the panel R3-R4, where both surface and subsurface electrodes were used. The dataset

consists of 6690 reciprocal measurements. The forward modelling grid consists of 3596 rect-

angular cells. The EKI parameter grid is 40m × 30m, comprised of 19200 grid cells that are

uniformly spaced at 0.25m. The prior resistivity ranges of zone 1, zone 2 (background) and

zone 3 are [10, 80]Ωm, [120, 180]Ωm and [200, 400]Ωm respectively. A 5% measurement errors

is assumed for the inversions.

Fig. 10a shows the resistivity estimates from a smoothness constrained inversion, using

a 10 to 1 prescribed horizontal anisotropic ratio. Fig. 10b shows the mean resistivity map

estimated by EKI, and the mean estimates of resistivity values of the three zones are 15.66,

108.52, and 265.46 Ω m. Without any of the information of the resistivity structure pre-

defined, EKI was able to estimate a highly layered resistivity field. Its estimates also appears

to be more realistic by showing irregular edges while the smoothness-constrained inversion

shows almost horizontal layers. EKI also returns uncertainty estimates in Fig. 10c-d. The

uncertainty appears to be particularly high at corners of zone boundaries.

Gamma logs and cross-hole radar measurements were also taken at Eggborough are com-

pared against the EKI ERT results (Fig. 10b). Two shallow (4m to 5m depth) high gamma

counts region appear on R4 and E4 logs and appear to extend, albeit with a weaker signal,

towards E3. This suggests a localized thickening of two clay rich (siltstone) units towards E4.

Elevated moisture content in this zone (due to the vertical impedance of water movement

caused by lower permeability) is also revealed by the low radar velocity between R3 and R4.

These two shallow siltstone units align with the low resistivity zone in the inverted model;

this feature does not extend to E3. The deeper high gamma counts region at 12m also ap-

pears in the resistivity maps but is somewhat weaker because the moisture content is lower

(as show in the radar profile). Finally, zone 1 at depths greater than 10m correspond to a

well-drained /coarser sandstone. The radar profile indicate dry zones around 12m and 15m,
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which corresponds the zone 1 locations at R3 and R4. The comparison here illustrates the

zones identified by EKI may not be the same geological unit throughout and care must be

taken in their interpretation. Specifically, a EKI ERT inversion only define zones based on

electrical signatures. It is expected that two or more facies of similar electrical signatures will

be considered as the same zone by EKI.Andy will add interp.

The resistivity structure at Eggborough is complex and unlike a smoothness constrained

inversion, EKI does not favor the simplest structure so it is possible to obtain multiple equally

likely solutions. By re-running EKI using a different random seed for data noise, a alternative

solution to Fig. 10 is obtained in Fig. 11. The solutions are very similar in terms of zonal

resistivity values and they are both highly layered. However, the greater extent of the high

resistivity zone (mean = 275.96Ω m) and a less resistive zone 2 (mean = 86.22Ω m) in Fig. 11

was compensated by the fact that Fig. 11 has only a small very low-resistivity zone (mean =

5.83Ω m)). Both runs converge to the same misfit in the same number of iterations (Fig. 11d).

The above implies some challenge to interpret EKI results but both cases honors the ERT

data and other data at the site. If the resistivity of each zones are known, fixing them may

help improve EKI performance.

In this example, convergence was achieved in 19 iterations. The computation was per-

formed on an Intel i7 workstation (quad core) laptop and the time required for the entire

inversion is less than 3 hours.

4 DISCUSSION

4.1 Interpreting EKI results

An ensemble Kalman inversion has been applied to ERT inversion, for the first time, to ob-

tain resistivity images of the Earth’s subsurface. It has been shown in previous theoretical

studies that EKI can be treated as both a Gaussian approximation in sequential Monte Carlo

approaches (Iglesias et al. 2018) and a regularizing, iterative optimizer that is an approxima-

tion to the Levenberg-Marquardt solution (Iglesias 2016; Muir & Tsai 2020). This shows that

EKI has preserved some for the strengths for both MCMC-type inversions and smoothness-

constrained inversion. The level set parameterization improves the performance of EKI in

terms of both improving the well-posedness of the inverse problem (Iglesias et al. 2014) and

allowing better estimation at interfaces (Iglesias et al. 2016).

In the presence of two or more materials with distinct resistivity ranges, it is well-known

that the smoothness-constrained inversion will return a smoothed resistivity image and the
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Figure 10. ERT inversion results of the Eggborough field example: The resistivity model estimated

by smoothness-constrained inversion (a) with a 10:1 vertical anisotropy constraint and (b) without

anisotropy constraint. (c) The mean resistivity model estimated by EKI (d) The probability of a cell

being in zone 2 estimated by EKI (e) The standard deviation map obtained by EKI (f) The EKI mean

resistivity from (b) is compared against gamma-ray logs and cross-borehole ground penetrating radar

(GPR) results. The black circles in (a-e) denotes electrodes locations. Note that the surface electrodes

extends for 5m more in each direction.
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Figure 11. An alternative ERT inversion results of the Eggborough field example: (a) The mean

resistivity model estimated by EKI (b) The probability of a cell being in zone 2 estimated by EKI (c)

The standard deviation map obtained by EKI (d) The convergence behaviour of the two results are

compared.

range of resistivity values are much smaller than the true range. This is because a sharp change

in resistivity can be seen as a violation of assumption of the smoothness constrained inversion

so the algorithm tries to restrict it as much as possible. Such features can limit the use of

inverted resistivity values for further analysis (e.g. via petrophysical transforms). We observe

from the results reported here that EKI tends not to suffer from these issues. The zone bound-

aries are well-recovered (even if they are arbitrarily shaped), the inverted resistivity values are

in the same range as the actual ones, and the high uncertainty areas are not pre-dominated by

their distance from the electrode array. Unlike smoothness constrained inversion, sharp inter-

faces are built into the prior distribution of prior models so the inverted resistivity image does

not rapidly lose resolution when there is a sharp change in resistivity. EKI estimates is also

affected by losing resolution away from electrodes, but less so than smoothness-constrained

inversion. In our examples, we observe areas with pronounced artefacts in our EKI results,

but they are located outside of the ERT imaging regions and are cropped out.
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EKI provides useful estimates of uncertainty by means of posterior variance maps and

zonal probability maps. When repeating smoothness constrained inversion runs with per-

turbed data using Monte Carlo analysis, the uncertainty areas tend to be highest near the

electrodes and decreases further away (Tso et al. 2019, 2017), which conveys more about the

geometry of the electrode array than the uncertainty pattern of the ERT problem. This pat-

tern is caused by low resolution in the smoothness-constrained inversion away from electrodes

(as shown, for example, from a plot of the diagonal of the resolution matrix). These apparent

low uncertainty zones are very misleading for uncertainty analysis (Tso et al. 2019; Tso 2019).

The above issue can be solved partially by bootstrap sampling(Yang et al. 2014), nevertheless

it is an uncertainty analysis on smooth images. Unlike smoothness constrained inversion, these

maps appear to be more realistic and do not show the misleading correlation between prox-

imity to electrodes and variance of inverted resistivity. Nevertheless, the posterior uncertainty

tends to be very low away from the interfaces (or zonal membership very close to 0 or 1). It

is important to note that EKI uses a small ensemble and each of the ensemble member move

towards the misfit minima (and we have not specified anything to keep them apart). So the

value of the uncertainty estimates should not be treated as the full parameter uncertainty.

Such considerations should be taken account when interpreting EKI uncertainty estimates,

especially if they are propagated to subsequent analysis (e.g. they may need to be inflated).

Nevertheless, the uncertainty pattern returned by EKI is very helpful to guide interpretation

and further analysis.

The prior resistivity ranges of the different zones do not seem to show a great impact to

the EKI results. However, resistivity ranges between zones should not overlap in order for the

level set parametrization to work properly. We set the tuning factor to 30 in all our examples

in this work—its selection is critical to the performance of the method. Our method also works

best when sharp interfaces are expected and there are known contrasts between the resistivity

of the two zones. It is possible that it will mistake a gradual change in resistivity for an abrupt

one. Precautions should also be taken when interpreting low-uncertainty regions returned by

EKI. For example, when EKI estimates gives low variance and zonal probability equals 0 or 1.

It only represents the uncertainty given the inverse problem setup (e.g. assumptions or number

of zones and prior resistivity ranges). These factors needs to be taken into consideration when

interpreting (and propagating) EKI uncertainty maps.
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4.2 Comparison with MCMC methods

As mentioned in the introduction, smoothness-constrained inversions are not suitable for un-

certainty quantification because it tends to show low sensitivity areas as low variance (i.e.

uncertainty) areas. Therefore, such uncertainty estimates are not helpful when used to propa-

gate uncertainties in subsequent analysis. While there have been efforts to mitigate such issues

by post-possessing smoothness-constrained inversion results, they only highlight potentially

high uncertainty areas qualitatively.

In contrast, MCMC inversion has been considered as the gold standard for uncertainty

modelling in many disciplines including hydrogeophysics. Many consider it as fully Bayesian

and has advantages such as thoroughly sampling the parameter space and allowing estimation

of posterior pdfs with multiple modes. However, its very high computing effort (i.e. normally

requiring 103 − 106 model runs) prohibits its use in most practical ERT applications.

In the trans-dimensional MCMC ERT inversion of Galetti & Curtis (2018), ”uncertainty

loops” (i.e. high uncertainty bands) have been observed near the interface between zones. Since

their method obtains a very detailed full posterior pdf, these ”uncertainty loops” (Galetti et al.

2015) are areas where the posterior pdf is flat and multiple modes are present. The loops are

helpful to visualize uncertainty in parameter estimation and they have not been reported using

other methods. Although the EKI cannot obtain the full posterior pdf as in Galetti & Curtis

(2018), we observe regions of high uncertainty (i.e. variance) around the zonal interfaces in

our synthetic examples. This shows that the EKI method can offer a decent approximation of

the extent of ”uncertainty loops”.

4.3 Applicability and potential extensions

In the last couple of years, EKI or ensemble Kalman filter (EnKF) methods have been used

increasingly in hydrogeophysics. For example, Tso et al. (2020) used ensemble smoother for

multiple data assimilation (ES-MDA, Emerick & Reynolds (2013)) to estimates leak parame-

ters for field-scale leak events from ERT data. Kang et al. (2018, 2019) used EnKF to estimate

DNAPL distribution from ERT data of sandbox experiments. Claes et al. (2020) used ES-MDA

to calibrate zonal K values of a watershed model from ERT data. However, EKI/ES-MDA has

not been used for ERT or geophysical inversion or imaging before (although derived ERT data

such as travel times or spatial moments have been used). Without the level-set parameteri-

zation, many geophysical inversion problems would have too many unknowns to be practical.

However, as highlighted above that EKI/ES-MDA are well suited for solving coupled inverse
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problems thanks to its derivative-free formulation. EKI with level set formulation may open

up future opportunities for coupled hydrogeophysical inversion of heterogeneous fields.

As proposed by Cardiff & Kitanidis (2009) in the groundwater/hydrogeophysics literature,

the level set parameterization is an extensible framework for facies detection that is suitable for

joint or coupled inversion (e.g. hydraulic head and seismic veolcity) and uncertainty quantifi-

cation. However, the uptake has been slow and it has not been used in practical ERT problems

(although they have been included in theoretical work (e.g. Aghasi et al. 2011; Chada et al.

2018; Chung et al. 2005) ). As shown here, EKI significantly reduces the computation cost and

thus lower the barrier for Bayesian inversion and uncertainty quantification. The use of EKI

as a parameter estimation method makes it computationally much less intensive than other

level set methods previously reported in the hydrogeophysics literature (Cardiff & Kitanidis

2009). EKI is also much very flexible to incorporate data from different modalities due to the

”black-box” nature (i.e. derivative-free) of its inversion formulation. It has been increasingly

recognized that one can constrain a smoothness constrained inversion by geostatistical data

(by modifying the a priori model covariance matrix) (e.g. Hermans et al. 2012). As shown in

Muir & Tsai (2020) recently in their deep-earth seismic work, this can be done within the

EKI but with much greater flexibility (see also comments in section 2.4).

A straightforward extension of this work is to consider its best formulation in time-lapse

ERT problems. Difference inversion (Labrecque & Yang 2001) has been a standard for smooth-

ness constrained inversion of time-lapse ERT surveys. Future studies should verify whether

the current EKI formulation is suitable for time-lapse ERT studies and whether a difference

inversion can further improve the method for time-lapse ERT use. Likewise, the examples

considered here contains extensive features (e.g. inclusions, layers). Given the flexibility of its

parameterization, it will be worth considering its use in imaging discrete features (e.g. planar

hydraulic fractures) (Wu et al. 2019).

Smoothness constrained inversion will probably continue to be the most popular method

for ERT inversion. It is a very helpful tool to evaluate ERT data in the first instance. However,

the EKI method described here has significantly lower the barrier of entry for performing

uncertainty quantification and reliably identify zonal interfaces for ERT inversion. Its use

should be encouraged to improve the interpretability of ERT.

5 CONCLUSIONS

We have described an efficient method, based on ensemble Kalman inversion with level set

parametrization, for ERT inversion that is suitable for uncertainty quantification and imaging
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(potentially discontinuous) multi-scale features. In particular, our field examples show that

it can handle arbitrarily shaped layers and inclusions (without specifying anisotropy). Our

method is efficient enough for solving 2D problems in a personal computer and 3D prob-

lems in a small computer cluster. Its computational cost is a fraction of that of MCMC

methods, while also circumventing apparent issues with uncertainty quantification when us-

ing smoothness-constrained inversions. Importantly, it produces uncertainty estimates that

are helpful for interpretation and are fit-for-purpose for uncertainty propagation. The level

set parametrization we use provides a flexible framework to handle spatially varying changes

in the resistivity field and it does not require strong assumptions on the length scales or

structure of the resistivity fields. Such method contributes to the continuing effort to improve

resistivity imaging of material interfaces and to broaden the use of uncertainty quantification

in ERT applications. It is our intention that it will serve as a useful tool in a wide range of

hydrogeophysics applications.
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