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1 Introduction 

Accumulated rainfall totals are an important variable for a range of hydrological 
applications, including monitoring and forecasting, and long-term planning. 

For more than three decades, the National Hydrological Monitoring Programme 
(https://nrfa.ceh.ac.uk/nhmp) at UKCEH has produced the monthly Hydrological 
Summary for the UK.  A key component of this publication, a strategically important 
output with a wide readership, is a table of rainfall accumulations over a range of 
durations to present, and an assessment of the rarity of wet and dry periods in the 
context of rainfall data back to 1910.  However, there is a need to update the 
methodology used to derive rainfall return periods, and to assess the rainfall 
frequencies more accurately, particularly from a low rainfall perspective. 

At the same time, for long-term water resources planning there is a requirement to 
stress test water supply systems against increasingly extreme dry periods.  The 
latest industry trends are focused on 1-in-200-year and 1-in-500-year drought 
events, a particularly challenging exercise when observational data until recently 
spanned only around 100 years and, despite recent advances in data rescue and 
digitisation (Hollis et al. 2019), still only cover the last 150 years.  Previous 
approaches to characterising such extreme events have been necessarily pragmatic 
by their own admission (e.g. the Drought Vulnerability Framework – Counsell et al. 
2017).  

The Drought Libraries developed through the UK Drought & Water Scarcity 
Programme combined state-of-the-art observational (HadUK, Hollis et al. 2019) and 
simulated (weather@home 2, Guillod et al. 2017) datasets into an interactive 
application to assist water resource managers in evaluating present and future risk 
from severe droughts.  Despite the additional data included, provisional return 
periods in the Drought Libraries were calculated similarly pragmatically, though 
recognising the need for further research into more robust methodologies for 
assessing rarity. 

The above applications approach the same question from different perspectives.  For 
the Hydrological Summary, the interest is in calculating the return periods of 
observed rainfall accumulations.  For long-term planning (e.g. Drought Libraries), the 
focus is on determining the system response that corresponds to certain return 
periods (e.g. 1-in-200 or 1-in-500 years).  Nevertheless, both applications will benefit 
from a renewed assessment of the frequency estimation methodology.  Furthermore, 
a nationally consistent approach is beneficial for both applications.  In the 
Hydrological Summary, a simple pragmatic approach is sought in which the actual 
return period value is not stated precisely; instead, an interval is presented to 
account for uncertainty.  For long-term planning, a nationally consistent approach for 
assessing rainfall rarity will help support the recent shift in focus within the water 
industry towards regional and national scale planning, through initiatives such as the 
regional groupings (e.g. Water Resources South East) and the Environment Agency 
led National Framework.  There is a need to adopt consistent approaches in order to 
tackle the important questions of the future, such as inter-regional water transfers 
and enhanced resilience.  While the latest round of guidance specifies resilience to 
extreme droughts (e.g. 1-in-500 years) should be assessed in terms of water supply 
system metrics rather than hydrometeorological inputs, there remains a fundamental 

https://nrfa.ceh.ac.uk/nhmp
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need for consistent approaches to indexing extreme rainfall deficits, to understand 
the propagation of drought severity from rainfall inputs through runoff/recharge to 
system response (Environment Agency, 2020). 

The aim of this report is to identify the most appropriate approach to quantifying 
return periods of long duration rainfall.  The Data and Methods sections describe the 
data used to test the range of distributions and goodness-of-fit measures.  Results 
are presented which identify the most appropriate distribution for nationally 
consistent applications, before the key findings are summarised. 
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2 Data 

This study uses the HadUK gridded rainfall dataset (Hollis et al. 2019), which 
represents the state of the art in observed, nationally consistent rainfall data.  Time 
series of rainfall from 1862 to 2017 for 18 regions (Figure 1) were extracted by 
averaging gridded rainfall over the spatial domains.  Rainfall data were accumulated 
over varying periods, producing a range of time series.  The final set of accumulated 
rainfall time series encompassed one series for each combination of the 18 regions, 
13 accumulation periods (1, 2, 3, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60 months), and 
12 start months (Jan-Dec). 

 

 

 

Figure 1 Regions over which HadUK gridded rainfall was averaged. 
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2.1 Assumptions 

The parameter estimation of theoretical distributions depends on a number of 
assumptions, and therefore the power of hypothesis tests to evaluate the 
goodness-of-fit of a distribution, and the estimated return periods themselves, also 
depend on these assumptions.  The assumptions that events are independent and 
identically distributed, i.e. that data are independent from each other and of time, are 
explored further.  

2.1.1 Autocorrelation 

Autocorrelation, also referred to as serial dependence, is the correlation of events 
with prior events, suggesting the events do not occur randomly.  Figure 2 shows 
some examples of how autocorrelation varies within the HadUK accumulated rainfall 
time series (Venables and Ripley, 2002; R Core Team, 2019).  The degree of 
autocorrelation does not appear to be dependent on the start month.  However, 
autocorrelation does vary regionally and by accumulation period length, as 
discussed further below.  

Figure 2 demonstrates the increasing presence of autocorrelation within the rainfall 
series as the accumulation period increases, with a more elaborate example given in 
Appendix 1.  This serial dependence is to be expected, as accumulated periods of 
more than 12 months overlap, and thus are not independent.  However, the 
presence of autocorrelation also in accumulation durations of 12 months or shorter 
shows that overlapping is not the only source of autocorrelation.  

Whilst evidence of autocorrelation exists in all regions, the extent of autocorrelation 
is higher in Forth and Welsh than in the other regions presented in Figure 2. 
Appendix 2 shows the autocorrelation across all the analysed regions for 36-month 
accumulated rainfall beginning in October.  Autocorrelation appears to be more 
common in the north and west of the UK.  This is possibly due to the relationship 
between long-period, large-scale atmospheric circulation, such as the North Atlantic 
Oscillation (NAO), and rainfall in the North West (e.g. Svensson et al. 2015).  

To minimise autocorrelation in the time series, distributions were fitted to 
non-overlapping data.  This was achieved by extracting multiple time series from 
accumulation periods exceeding 12 months.  The start month was lagged by a year 
iteratively until the start month matched the start of the second accumulation period 
in the original time series (Figure 3).  This produced a number of non-overlapping 
datasets, the number and size of which are demonstrated in Table 1. Estimates 
derived from the frequency curve, such as return period and return level, were 
subsequently averaged over the multiple non-overlapping time series to produce 
single estimates.   

Comparisons of Figure 2 and Figure 4 demonstrate the considerable reduction in 
autocorrelation caused by removing overlapping data from the time series. Whilst 
detectable, the extent of autocorrelation is minimal across different lengths 
accumulation period, start months and regions.   
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Figure 2 Autocorrelation plots of overlapping accumulated rainfall time series demonstrating how autocorrelation varies by; 
accumulation period in Forth, beginning in October (1st row), start month in 36-month accumulations in Forth (2nd row), and region 
in 36-month accumulations beginning in October (3rd row). 
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Figure 3 Time series sampling method. This example shows the data included in each of the three non-
overlapping time series that can be extracted for the 30-month duration. 

 

  Table 1 The number of non-overlapping monthly-averaged  
  rainfall data included in each extracted time series. 

Accumulation 
Period 
(months) 

Number 
of time 
series 

Number of monthly averages 
in each time series (TS) 
TS 1 TS 2 TS 3 TS 4 TS 5 

1 1 156 - - - - 
2 1 156 - - - - 
3 1 156 - - - - 
6 1 156 - - - - 
12 1 156 - - - - 
18 2 78 77 - - - 
24 2 78 77 - - - 
30 3 52 51 51 - - 
36 3 52 51 51 - - 
42 4 39 38 38 38 - 
48 4 39 38 38 38 - 
54 5 31 31 30 30 30 
60 5 31 31 30 30 30 

Time series 3 

Rainfall 

1998 1999 2000 2001 2002 2003 2004 2005 

Time series 1 

Time series 2 
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Figure 4  Autocorrelation plots of non-overlapping accumulated rainfall time series demonstrating how autocorrelation varies 
by; accumulation period in Forth, beginning in October (1st row), start month in 36-month accumulations in Forth (2nd row), and 
region in 36-month accumulations beginning in October (3rd row)
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2.1.2 Stationarity 

The second assumption investigated is whether data are identically distributed.  In 
hydrological data this assumption is typically breached by data showing seasonality, 
or by there being a temporal trend in the data.  Here, we extract data series of fixed 
durations, starting at the same time of year for all the values in the same series, thus 
ensuring that all the data in a particular series have the same seasonal 
characteristics and thus are identically distributed with regards to season.  If instead, 
say, 1-month duration rainfalls had been extracted regardless of season, then the 
data for months in the rainy season might tend to be larger than the data for months 
in the dry season, making the data series non-identically distributed over time.  

Another aspect of non-stationarity is when data increase or decrease over longer 
time periods, say, because of climate change or because of long-period oscillations 
such as the North Atlantic Oscillation (NAO).  The dependence on time can also 
show up as serial dependence in data if trends are reasonably pronounced. In this 
section we explore if there are any temporal trends in the extracted non-overlapping 
data series.  

Figure 5 shows examples of how accumulated rainfall changes with time.  In general, 
these examples demonstrate little visual evidence of trends in the rainfall data.  

To further explore possible trends in the data, Mann-Kendall trend statistics and their 
significance were estimated for time series beginning in October and in March using 
the Kendall v2.2 R package (Mann 1945; McLeod 2011).  The first non-overlapping 
time series was extracted from accumulation periods exceeding 12 months 
according to the process outlined above. The full time series was used for time 
series with up to 12-month accumulation periods, as they do not overlap and were 
therefore the extraction of multiple non-overlapping time series was not necessary. 
This enabled the general presence/absence of trends to be assessed, as well as 
variation with accumulation period length and region. The results are shown in 
Figure 6 and Figure 7. Statistically significant trends (indicated by an asterisk) were 
identified across all accumulation periods.  However, trends are more prominent in 
rainfall time series with longer accumulation periods.  The presence of trends also 
appears to vary spatially, with statistically significant trends being more common in 
the North and West of the United Kingdom.  This agrees with the autocorrelation 
analysis, which was concentrated in the North West, and again suggests a link with 
the NAO which mainly affects rainfall in this part of the country 
(e.g. Svensson et al. 2015). 

Trends for accumulation periods beginning in March and October demonstrate 
similar variation in significance across accumulation periods and regions.  Both 
exhibit higher frequency of significant trends in the North and West, and for longer 
accumulation periods.  Significant trends were more common in rainfall accumulation 
periods beginning in October (87/234) than March (68/234).  

Despite the presence of trends in the data, and the potential for this to influence the 
fitted statistical distributions, developing a non-stationary frequency model was 
beyond the scope of this study.  Therefore, the temporal trends in the North and 
West in winter are ignored, with the caveat that frequency estimates for this part of 
the country may not be representative of a future period. The development of non-
stationary drought frequency models remains an important topic for further research.  
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Figure 5 Non-overlapping accumulated rainfall time series plotted against time demonstrating variation by; accumulation 
period in Forth rainfall beginning in October (1st row), start month in 36-month accumulated rainfall in Forth (2nd row), and region in 
36-month rainfall beginning in October (3rd row). 
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Figure 6 Trends in accumulated rainfall beginning in October across 
accumulation periods and regions. 

  

∗     p < 0.05 
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Figure 7 Trends in accumulated rainfall beginning in March across 
accumulation periods and regions. 
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3 Methods 

3.1 Distribution Fitting 

3.1.1 Probability Distributions 

Extreme value analysis enables the estimation of rare events using extreme value 
distributions.  Annual Maximum/minimum and peak-over-threshold (POT) 
approaches are common approaches to rare event probability estimation.  However, 
both methods are sensitive to sample size, and in cases where data are limiting, 
other approaches may be deemed a more robust. In the present study, the HadUK 
gridded rainfall dataset contains 156 years of data.  However, with the subsetting of 
the data in order to avoid serial dependence, the sample sizes can become as low 
as 31.  Therefore, other distributions are also investigated here, and compared with 
the distributions in the extreme value distribution families. 

The suitability of nine probability distributions was evaluated; Gaussian, 
Generalised Gaussian, Gamma, Generalised Extreme Value (GEV), Generalised 
Logistic, Gumbel, Log-Gaussian, Pearson Type III and Weibull.  Of these, the GEV, 
Gumbel, and Weibull are extreme value distributions (Table 2).  

The Gaussian, Generalised Gaussian, Pearson Type III, Generalised Logistic, 
Generalised Extreme Value and Gumbel distributions do not have a lower bound at 
zero, unlike observed precipitation.  However, because a single month’s 
accumulation of rainfall in the UK rarely approaches zero, these probability 
distributions were included in the analysis despite their lack of a lower bound at zero.  

 

Table 2 Statistical distributions investigated. 

 

Distribution Abbreviation Extreme 
value 
distribution 

R 
package 

Reference 

Gaussian gau  stats R Core Team, 2019 
Generalised 
Gaussian 

gno  gnorm Griffin, 2018 

Gamma gam  stats R Core Team, 2019 
Generalised Extreme 
Value 

gev ✔ evd Stephenson, 2002 

Generalised Logistic glog  SCI Gudmundsson & 
Stagge, 2016 

Gumbel gum ✔ evd Stephenson, 2002 

Log-Gaussian lno  stats R Core Team, 2019 
Pearson Type III pe3  SCI Gudmundsson & 

Stagge, 2016 
Weibull wei ✔ stats R Core Team, 2019 
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3.1.2 Parameter estimation 

The maximum likelihood estimation (MLE) method was used to estimate the 
probability distribution parameters.  MLE was bounded where necessary.  Starting 
values were generated using L-moments for all distributions using the ‘lmom’ R 
package.  L-moment estimations of zero-bounded parameters that were below zero 
were set to 0.1. 

3.2 Goodness-of-fit 

Goodness-of-fit tests are often used to identify the most appropriate statistical 
probability distribution for a given empirical frequency distribution.  These tests 
enable the agreement between the observed and assumed distributions to be 
assessed.  Although a number of tests exist, the Anderson-Darling test is particularly 
appropriate since it utilises a weight function that emphasises agreement between 
the observed and assumed probability distribution in the tails (Anderson and Darling 
1952).  

The Anderson-Darling test assigns equal weight to both tails.  However, since the 
focus of this report is on dry weather events, a modification of the Anderson-Darling 
test was also used to determine goodness-of-fit (Sinclair et al. 1987; 
Sinclair et al. 1990).  This modification gives higher weighting to the lower tail. 

3.2.1 Confidence Intervals 

Estimation of uncertainty in the parameter estimates, and therefore (original and in 
the Modified) Anderson-Darling test statistics is required in order to determine 
whether the theoretical distribution fits the empirical distribution.  Parametric 
bootstrapping is a regularly implemented method in which the uncertainty of 
distribution parameters can be estimated (Kharin and Zwiers 2000; Paeth and Hense 
2005; Kyselý 2007). 

Parametric bootstrapping was applied here by extracting n random values 
10,000 times from the probability distributions, where n refers to the sample size of 
the empirical distribution.  Theoretical distribution parameters were estimated 
according to the method outlined in Section 3.1.2, and a goodness-of-fit score (the 
Anderson-Darling test statistic) was calculated for each of the 10,000 bootstrapped 
samples.  The 5th and 95th quantiles of these goodness-of-fit scores were then 
extracted, and this 90% confidence interval was used to determine whether or not 
the theoretical distribution fitted the empirical distribution.  Hence, the null hypothesis 
that the observed empirical distribution comes from the theoretical distribution 
can/cannot be rejected at the 10% significance level.  The null hypothesis was 
accepted in cases where the goodness-of-fit score derived from the observed, 
empirical distribution falls within the 90% confidence interval. 

Accumulation periods exceeding 12 months 
For 1 to 12 month accumulation periods the parametric bootstrapping method 
outlined in Section 3.2.1 was performed on a single time series, extracted according 
to the method outlined in Section 2.1.1.  However, as multiple time series were 
extracted from accumulation periods exceeding 12 months to prevent overlapping, 
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each time series was bootstrapped separately.  This produced multiple 90% 
confidence interval bands and thus goodness-of-fit of each extracted, non-
overlapping time series was evaluated separately. 

Using multiple non-overlapping series means that the number of goodness-of-fit 
tests carried out will be greater than one for accumulation periods exceeding 
12 months.  Therefore the proportion, rather than the total number, of null 
hypotheses accepted was used.  The sum of proportions of null hypotheses 
accepted, and how they vary by accumulation period, start month, and region are 
explored throughout the remainder of this report to give an indication of the suitability 
of each distribution for describing the behaviour of accumulated rainfall in the UK.  
This will be referred to as the null acceptance score for the rest of this report.  

3.2.2 Visual goodness-of-fit 

Goodness-of-fit was also assessed visually to provide insights into the limitations of 
certain distributions, as well as to identify systematic differences in goodness-of-fit.  
This included plotting empirical versus theoretical quantiles, probability density 
functions superposed on histograms, and return levels versus return periods. 

3.2.3 Goodness-of-fit variation 

Sources of variation in goodness-of-fit was investigated for all distributions to enable 
the investigation into how well different distributions fit different types of data.  The 
effect of accumulation period, region, and starting month was determined by 
comparing the number of null hypotheses accepted for each. 
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4 Results 

4.1 Most accepted distributions 

4.1.1 Overall goodness-of-fit  

Anderson-Darling 

The Anderson-Darling goodness-of-fit test puts equal weight on both the upper and 
lower tails when evaluating how well a theoretical distribution fits the data sample.  
The Pearson Type III distribution had an Anderson-Darling null acceptance score of 
2,685 out of a possible 2,808, when considering all accumulation periods, start 
months, and regions.  This score was higher than for any other distribution.  
However, Figure 8 demonstrates the relatively high Anderson-Darling null 
acceptance scores for several of the distributions.  The Gamma distribution had the 
second highest score, 2,556.15.  In contrast, the Generalised Gaussian, Weibull and 
Gumbel distributions had very low null acceptance scores of 1,827.62, 1,631.98, and 
1,791.85, respectively.   

 

Figure 8 The sum of proportions of accepted distributions across all 
combinations of accumulation period, start month, and region, based on the 
Anderson-Darling goodness-of-fit test.  
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Modified-Anderson-Darling-Lower 

The focus of this report is on low rainfall events.  Therefore, the 
Modified-Anderson-Darling-Lower test is the primary focus of the results section, as 
this test puts more weight on the lower than on the upper tail of the distribution.  
Anderson-Darling results are not presented in the remainder of this report due to the 
considerable agreement between Anderson-Darling and 
Modified-Anderson-Darling-Lower results (Figure 8; Figure 9).  

Instead, the remainder of this report documents the comparison of each distribution’s 
Modified-Anderson-Darling-Lower null acceptance scores, the sum of proportions of 
null hypotheses accepted for each combination of accumulation period, start month, 
and region, to determine the relative suitability of each distribution for estimating the 
frequency of occurrence of UK accumulated rainfall events. 

The Modified-Anderson-Darling-Lower null acceptance score was highest for the 
Pearson Type III distribution (Figure 9).  The Pearson Type III had a null acceptance 
score of 2,694, out of a possible 2,808.  The Gamma distribution had the second 
highest score, 2,572. 

Figure 9 demonstrates the relatively poor overall suitability of the Generalised 
Gaussian and Weibull distributions for estimating return periods of accumulated 
rainfall events in the UK.  The Generalised Gaussian and Weibull distributions had 
associated scores of 1,822 and 1,611, respectively. 

The results presented in Figure 9 suggest that a number of distributions may be 
suitable for low rainfall event return period estimation in the UK.  The 
Modified-Anderson-Darling-Lower null acceptance scores for Gamma, 
Pearson Type III, Generalised Logistic, and Generalised Extreme Value distributions 
varied from 2,508-2,694 out of 2.808.  
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Figure 9 The sum of proportions of accepted distributions across all 
combinations of accumulation period, start month, and region, based on the 
Modified-Anderson-Darling-Lower goodness-of-fit test.  

 

4.1.2 Modified-Anderson-Darling-Lower goodness-of-fit for different 
accumulation periods, start months and regions 

The observed (empirical) rainfall distributions vary according to the accumulation 
period, start month, and region they come from (Figure 10).  The degree of 
skewness varies between time series, such as 1-month accumulated October rainfall 
from the Southern region, which was more skewed towards the left than 12-month 
October-September rainfall from Southern.  There is also variation in kurtosis, with 
12-month October-September rainfall from Yorkshire exhibiting lighter tails than 
12-month October-September rainfall from the Welsh region.  

The variation in observed distributions results in varying degrees of null acceptance 
scores of the fitted theoretical distributions according to accumulation period, region, 
and start month (Figure 11). 

Accumulation Period 

The Pearson Type III distribution had the highest, or equal highest, null acceptance 
scores for 6 of the 13 accumulation periods.  The GEV had the second highest score 
across accumulation periods, having the highest, or equal highest, score for 
3 accumulation periods.  

Pearson Type III was the most appropriate distribution for 1, 2, 3, 6, 12, and 
24 month accumulation periods.  Although Pearson Type III did not have the highest 
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null acceptance score for other accumulation periods, the score difference between 
Pearson Type III and the highest scoring distribution was 5 or less for all 
accumulation periods excluding 54- and 60-months.  The Generalised logistic 
distribution had the highest null acceptance score for the 54- and 60-month 
accumulation periods, 214.8 and 215 out of a possible 216.  Pearson Type III had a 
null acceptance score of 203.8 and 209.2 for 54- and 60-month accumulation 
periods, respectively. 

Start month 

Pearson Type III had the highest, or equal highest, null acceptance score for all start 
months, excluding June.  Gamma had a null acceptance score of 225.45 for time 
series beginning in June.  Whilst this was higher than other distributions, the 
difference between Gamma and Pearson Type III scores was less than 0.5, as 
Pearson Type III had a score of 225.0.  No other distribution had the highest, or 
equal highest, null acceptance score for any start month. 

Region 

Regionally, the results also suggest Pearson Type III is the most appropriate 
distribution for accumulated rainfall approximation in the UK.  Pearson Type III had 
the highest, or equal highest, null acceptance score for 15 of 18 regions.  Gamma 
had the highest score in Yorkshire, Anglian, and Forth.  The Gamma scores for 
these regions were 147.3, 149.8 and 147.3, respectively.  Pearson Type III had 
associated score of 146.8, 148.3 and 146.1.  Therefore, whilst Pearson Type III did 
not have the highest score for these regions, it was 0.34%, 1.05% and 0.78% lower 
than the respective Gamma scores. 
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Figure 10 Examples of observed distributions of rainfall for different accumulation periods in Southern Region rainfall beginning 
in October (1st row), start months in 12-month accumulated rainfall in Southern (2nd row), and region in 12-month rainfall beginning 
in October (3rd row). 
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Figure 11 Null acceptance score for each distribution for different accumulation periods, start months, and regions. 
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4.1.3 12-months or shorter accumulation periods 

Section 4.1 demonstrates the suitability of the Pearson Type III distribution for 
estimating return periods and levels when considering all the time series together, as 
well as across accumulation periods, start months and regions (Figure 8; Figure 9; 
Figure 11).  However, shorter accumulation periods typically exhibit higher skewness 
than longer durations due to the lower variation exhibited in longer accumulation 
periods.  Therefore, a closer look was taken at the performance of distributions at 
accumulation periods of 12-months or less.  This included 1-, 2-, 3-, 6-, and 12-month 
accumulation periods. 

Generally, Pearson Type III appears to be the most suitable distribution for 
accumulation periods of 12 months or shorter.  According to the 
Modified-Anderson-Darling (lower) test, 96.5% (1042/1080) of observed time series 
are acceptably described by a Pearson Type III distribution (Figure 12).  The GEV 
also performed well in terms of the Modified-Anderson-Darling-Lower test, with 
95.2% of null hypotheses accepted. 

 

 

 

 

Figure 12 Total numbers of distribution fits to rainfall accumulation (1, 2, 3, 6, and 
12 months) time series that were not rejected by the Modified-Anderson-Darling-
Lower test. 
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4.1.4 Modified-Anderson-Darling-Lower goodness-of-fit variation – 
12-months or shorter accumulation periods 

As discussed above, and presented in Figure 10, the observed rainfall distributions 
vary according to the accumulation period, start month and region.  This variation 
drives differences in the ability of distributions to fit the observed distribution, 
according to accumulation period, start month and region. 

Accumulation Period 

Pearson Type III was the most accepted distribution for all accumulation periods. 
GEV null hypotheses were accepted less than the Pearson Type III and Gamma for 
all accumulation periods.  Gamma, however, was accepted for 211 of 216 12-month 
accumulated rainfall time series, equal to the number of Pearson Type III 
distributions accepted. 

Start month 

The Pearson Type III distribution was the most accepted, or equally accepted, in all 
start months except April and June.  The GEV null hypotheses were accepted for 
89 of the 90 time series beginning in April and June, making it the most accepted 
distribution for these two months.  The Pearson Type III null hypotheses were 
accepted in 88 time series for both April and June. 

Region 

The null acceptance score was higher for the Pearson Type III than any for any other 
distribution in 13 of the 18 regions.  The GEV was the most accepted distribution in 
Yorkshire, South West, North East, Solway, and Northern Ireland.  However, the 
number of accepted GEV null hypotheses only exceeded that of the Pearson Type III 
distribution with 1 in Yorkshire, South West, North East and Solway.  The difference 
in Northern Ireland was 2. 

 

Modified-Anderson-Darling-Lower goodness-of-fit variation – 1-3-month accumulation 
periods 

As previously mentioned, this analysis includes a number of unbounded distributions.  
Neither the Pearson Type III nor the GEV distribution have a lower bound at zero.  
Whilst this is not an issue for long accumulation periods where rainfall totals are 
never even close to zero in the UK, fitted theoretical distributions for short 
accumulation periods exhibiting left skewness or leptokurtosis may produce negative 
return level estimates.  Therefore, unbounded distributions were deemed 
inappropriate for 1-3-month accumulation periods, and not assessed.  

Parametric bootstrapping was performed to determine if unbounded distributions 
were appropriate for estimating 1-3-month accumulated rainfall return periods.  The 
25th percentile (the value which is exceeded in ~75% of cases) of the 500-year return 
level for every combination of start month and region was analysed for 2- and 
3-month accumulation periods. The 25th percentile was below zero in 9 of 216 
2-month accumulation periods.  However, only one 3-month accumulation period 
time series produced a 500-year return level interquartile range that crossed 0.  The 
500-year return period for 3-month accumulated rainfall beginning in March, in 
Southern had a 25th percentile of -0.01mm.  Therefore, the above analysis was re-run 
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for the Gamma, Log-Gaussian and Weibull distributions for 1-3-month accumulation 
periods. 

The Gamma distribution was accepted by the Modified-Anderson-Darling-Lower test 
in 520 of 648 (80.2%) cases of 1-3-month accumulation period time series.  This is 
more than for the Weibull (419) and Log Gaussian (239) distributions. 

Whilst the Pearson Type III distribution exhibits a higher 
Modified-Anderson-Darling-Lower null acceptance score than Gamma, it was 
deemed inappropriate due to its unbound nature, and therefore not reported on 
further.  

The support for the Gamma distribution is consistent across the regions and 
accumulation periods.  The Gamma distribution was the most accepted distribution 
for 2 of the 3 accumulation periods, 10 of the 12 start months, and 16 of the 
18 regions.  The Weibull distribution null hypotheses were accepted more than the 
Gamma distribution null hypotheses for the 1-month accumulation period, 
accumulation periods beginning in July and August, and accumulation period time 
series in Thames, and Wessex. 
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4.2 Sensitivity 

The null hypothesis that the observed distribution comes from a Pearson Type III 
distribution was accepted for 12-month accumulated rainfall in the Northumbrian 
region, starting in October.  However, the GEV null hypothesis was rejected, 
suggesting the rainfall time series does not come from a GEV distribution.  Figure 13 
demonstrates the fits of both distributions.  The sensitivity of return period estimates 
to the choice of distribution is evidenced in Figure 14. 

According to Pearson Type III, a 12-month rainfall event in the Northumbrian region, 
starting in October, with a spatial average rainfall of 48.09mm is a 1 in 250 year 
event.  However, an average of 48.09mm is associated with a 1 in 559.5 year event 
according to the GEV distribution.  Average rainfall of 45.83mm and 44.56mm is 
associated with 500 and 750 year return periods, respectively, according to 
Pearson Type III. However, according to GEV, these events would be 1 in 1568 and 
2953 year events.  

The large change in return period for seemingly small changes in rainfall amount 
mean that return level estimates appear less sensitive to the choice of distribution 
than return periods do.  A spatial average rainfall of 48.09mm over 12-months, 
October-September, in the Northumbrian region is associated with a 250 year return 
period according to Pearson Type III, while for the GEV the 1 in 250 year event is 
only slightly larger, at 50.07mm.  According to the Pearson Type III rainfall estimates 
of 45.83 and 44.56mm correspond to 1 in 500 and 750 year events, respectively.  
The corresponding GEV return level estimates are 48.36 and 47.42mm of rainfall.   

However, it is important to note that the relatively high sensitivity of return period 
estimates is in part due to how it is calculated.  Return periods are the reciprocal of 
the probability of exceedance.  Therefore, the GEV probability of exceedances for 
Pearson Type III 500 and 750 year return levels (0.002 and 0.0013 probability of 
exceedance) are 0.00064 and 0.00034, respectively.  The differences in probability of 
exceedance are 0.0014 and 0.001.  The differences in return periods are 1068 and 
2203 years, respectively.  Between October 1958 and September 1959 an average 
of 45.6mm of rain fell in each month in the Northumbrian region.  Figure 14 shows 
the difference in return period estimates for this event for the two distributions.  
According to Pearson Type III, this was a 1 in 695 year event, whereas according to 
the GEV it was a 1 in 1,755 year event.  These are large differences which should be 
borne in mind for practical applications – although in practice, uncertainty will always 
be very high for such extreme events in the tails of the distribution. This is evidenced 
by the difference in plotting position of the two lowest magnitude rainfall events, and 
the associated distribution estimated return periods (Figure 14). This may be due to 
the uncertainty associated with plotting position estimates and/or distribution derived 
estimates. However, it is also possible these two points are the result of a separate 
process to that driving the distribution we see in the rest of the data. If determined to 
be the case, Peak-Over-Threshold (POT) may be more appropriate, as this would 
separate data below the threshold from the rest of the data. However, adopting a 
POT approach would limit the whole-rainfall regime focus and national applicability 
that is core to this approach. 
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Figure 13 Northumbrian Region 12-month accumulation period beginning in 
October: histogram with overlaid density functions of fitted Pearson Type III (pe3) 
and Generalised Extreme Value (GEV) distributions, and the corresponding QQ 
plots. 
 

 

Figure 14 Northumbrian 12-month accumulation period beginning in October: 
return period plots for The Pearson Type III (pe3) and Generalised Extreme Value 
(GEV) distributions, with associated 95% confidence interval bands, and highlighted 
return periods corresponding to 48.09, 45.83, and 44.56 mm of rainfall per month. 
Points correspond to the Weibull plotting positions of the observed rainfall 
accumulation data. 
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5 Hydrological Summary Case Study 

The UK Centre for Ecology & Hydrology (UKCEH) and the British Geological Survey 
(BGS) co-developed the National Hydrological Monitoring Programme in 1988 to 
monitor the hydrological conditions in the UK, and identify and interpret hydrological 
trends.  This led to the development of the Hydrological Summary. 

The Hydrological Summary, which is published monthly, documents the hydrological 
conditions in the UK, and places them in a historical context.  This includes rainfall, 
river flow, groundwater, and reservoir data.  Rainfall data are derived from 5km 
resolution gridded data, acquired from the Met Office National Climate Information 
Centre (NCIC).  These data are grouped into large-scale hydrological regions, which 
for consistency through time are different from current measuring authority 
boundaries (in effect they are aligned to those used by the National Rivers Authority, 
pre-dating the Environment Agency and Natural Resources Wales, and earlier 
incarnations of Scottish Environment Protection Agency boundaries).  Regional 
rainfall data are compared with 1981-2010 averages to enable the estimations of 
deviations from ‘normal’.  Return periods are also estimated to quantify the rarity of 
four accumulation periods.  

One of the aims of this project was to improve the current procedure employed to 
produce the hydrological summary return periods.  Therefore, the Pearson Type III 
distribution was fitted to monthly rainfall data (averaged daily rainfall over the month).  
Due to the challenges with using a distribution without a lower bound at zero, for 
events that approach zero, the Gamma distribution is recommended for estimating 
return periods of short accumulation periods of 1-3 months.  However, as the 
shortest accumulation period used for return period estimation in this particular case 
study was 6 months, the Pearson Type III distribution was used for all return period 
estimates. 

We used the March 2012 Hydrological Summary for this case study.  March 2012 
was selected because there were above normal rainfall conditions in the North of the 
UK, while the South experienced below normal conditions.  This allows the 
demonstration of the impact of the updated method on both the high and low tails of 
the distribution. 

Return periods were estimated according to three methods, and are presented only 
in the form of intervals (Table 2), as this is how the return periods are currently 
presented in the Hydrological Summary.  The Summary uses intervals, rather than 
the precise return period estimate, to acknowledge the uncertainty in the estimates.  

 

Method 1: The current Hydrological Summary method 

In Table 2, HS 2012 refers to estimates using the current Hydrological Summary 
method. Rainfall data were accumulated for 6-, 13-, 18-, and 24-month periods, with 
respective start dates of October, March, October, and April.  The Generalised 
Gaussian distribution (Griffin 2018) was fitted to the data, with parameters estimated 
using the method of moments.  Return periods were then estimated according to the 
multiplicative inverse of the exceedance probability: 

𝑇 = 1/𝑝 



A Nationally Consistent Approach to Assessing Accumulated Rainfall Rarity 

 

30 

where 𝑝 is estimated using the Generalised Gaussian cumulative distribution function 
(Griffin 2018).  Finally, uncertainty bands are assigned to each return period 
estimate, and presented in Table 3.  Although the upper and lower limits of these 
bands vary in a consistent manner with the magnitude of the return period estimate, 
there is no clear rule for how they are derived, and in this sense the uncertainty 
bands can be considered arbitrary. 

 

Method 2: The Hydrological Summary method, but with a different distribution 

Return period bands were also estimated according to a slightly modified method, to 
determine the impact of distribution selection.  Pearson Type III parameters were 
estimated according to the method of moments, and the Pearson Type III cumulative 
distribution function used to estimate the exceedance probability.  All other methods 
were identical with the HS 2012 method.  These results are presented in Table 3 as 
HS (pe3). 

 

Method 3: The proposed new method 

Finally, to demonstrate the impact of switching to the approach outlined in this report, 
return period bands were estimated according to the methodology documented in 
Section 3.  Non-overlapping time series were extracted from the Met Office NCIC 
data.  Multiple time series were extracted for accumulation periods exceeding 
12 months according to the process described in Section 2.1.1.  Pearson Type III 
distributions were then fitted to each of the individual time series using maximum 
likelihood estimation.  The bootstrapping process outlined in Section 3.2.1 was 
performed to extract the 50% confidence intervals (interquartile range), which was 
used in place of the arbitrary bands as an estimate of the uncertainty.  These 
uncertainty bands are presented in Table 3 as New.  Finally, the return periods and 
interquartile ranges were averaged over the constituent non-overlapping time series 
to obtain a single estimate for each accumulation period exceeding 12 months.  

 

The estimation of uncertainty bands enabled improved characterisation of long return 
periods.  In the current, and HS (pe3) methodologies, return period estimates 
exceeding 500 years are assigned the longest category, >>100.  This is replaced in 
the New methodology, with a series of rules.  The return period is estimated to be 
>>250 if the 25th percentile (Q25) of the return periods from the bootstrap is above 
250 years.  If the 75th percentile (Q75) is above 250, but Q25 is below 250, the return 
period is estimated to be >>Q25 (i.e. the Q25 estimated for that particular case).  

 

Results  

As shown in Section 4.1, more Pearson Type III null hypotheses were accepted by 
the goodness-of-fit tests than any other distribution investigated in this study.  These 
results were consistent across accumulation periods, start months, and regions.  
Therefore, the goodness-of-fit of the distributions to the particular dataset used in the 
March 2012 Hydrological Summary is not evaluated further here.  Instead, the 
difference in return period estimates is compared between the original method (fitting 
a Generalised Gaussian distribution using the method of moments), and two new 
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methods (Pearson Type III – HS (pe3), and Pearson Type III with updated 
processing and parameter estimation – New), to show the impact that an update of 
the Hydrological Summary methodology may have. 

Merely replacing the Generalised Gaussian with the Pearson Type III distribution 
resulted in a different return period band estimation in 29 of 72 cases (Table 3). Of 
these, 17 estimates were higher than the Generalised Gaussian estimates, resulting 
in 12 cases where Pearson Type III produced lower return period band estimates 
than the Generalised Gaussian. 

However, the difference in return period estimates between the Hydrological 
Summary (HS 2012) and Pearson Type III (HS (pe3)) methodology is relatively minor 
compared to differences between HS 2012 and the updated methodology (New).  
The replacement of the Hydrological Summary methodology with the updated 
methodology had considerable effects on return period estimates.  This is made 
evident by the lack of concurrence between the HS 2012 and HS (pe3) return period 
estimates presented in Table 3.  The difference in estimates varies according to 
accumulation period and region (Figure 15).  Whilst the differences in return period 
estimates typically increases with accumulation period, there is no clear spatial 
pattern, with considerable differences between return period estimates observed 
across the country.  Comparison of the two heatmaps presented in Figure 15 
demonstrates that larger differences also typically occur in more extreme events.  
Therefore, the apparent relationship between return period estimate difference and 
accumulation period may instead be a product of rarer events having larger 
differences.  
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Table 3.  Rainfall accumulations and return period estimates using the Hydrological Summary method and two updated methods. 

 

Area Rainfall Mar 
2012 

Oct11-Mar12 Mar11-Mar12 Oct10-Mar12 Apr10-Mar12 

  RP (years)   RP (years)   RP (years)   RP (years) 

  
HS 
2012 

HS 
(pe3) New   

HS 
2012 

HS 
(pe3) New   

HS 
2012 

HS 
(pe3) New   

HS 
2012 

HS 
(pe3) New 

North West mm 29 643 
2-5 2-5 2-3 

1293 
2-5 2-5 4-5 

1856 
2-5 2-5 4-5 

2352 
2-5 2-5 5-6 

  % 29 93 101 99 100 

Northumbria mm 17 323 
15-25 15-25 16-27 

793 
5-10 5-10 14-23 

1254 
2-5 2-5 7-11 

1595 
5-10 5-10 9-13 

  % 25 71 88 98 96 

Midlands mm 23 286 
20-30 15-25 20-34 

543 
>100 >100 >>185 

823 
>100 >100 >>250 

1140 
80-120 >100 >>203 

  % 39 70 66 70 75 

Yorkshire mm 22 349 
5-10 5-10 8-11 

688 
15-25 20-30 35-80 

1078 
10-15 10-20 22-41 

1384 
15-20 15-25 27-52 

  % 33 77 78 85 85 

Anglian mm 32 193 
25-40 25-40 27-53 

421 
>100 >100 >>225 

655 
70-100 70-100 >>115 

944 
30-50 30-50 65-228 

  % 70 63 65 72 78 

Thames mm 25 235 
20-35 25-40 23-42 

512 
40-60 50-80 >>74 

794 
50-70 60-90 >>97 

1060 
40-60 50-80 >>95 

  % 46 62 68 74 76 

Southern mm 29 283 
20-35 20-35 21-38 

571 
80-120 80-120 >>232 

959 
25-40 20-35 46-145 

1222 
30-50 25-40 >>67 

  % 49 62 68 78 78 

Wessex mm 28 328 
20-30 20-30 19-33 

680 
40-60 30-50 >>76 

1029 
70-100 80-120 >>122 

1326 
80-120 70-100 >>171 

  % 41 65 73 75 77 

South West mm 31 543 
10-15 10-15 11-16 

968 
30-50 40-60 >>250 

1484 
50-80 70-100 >>250 

1907 
40-70 60-90 >>250 

  % 32 72 74 76 79 

Welsh mm 31 621 
8-12 8-12 8-12 

1169 
10-20 10-20 38-109 

1730 
25-40 20-35 47-128 

2271 
15-25 15-25 35-83 

  % 29 77 82 81 86 

Highland mm 79 1309 
10-20 10-20 13-20 

2399 
60-90 50-80 >>143 

3115 
10-15 10-15 19-32 

3801 
10-15 8-12 18-31 

  % 49 120 128 111 111 

North East mm 16 428 
10-15 10-15 10-14 

1096 
2-5 2-5 4-5 

1574 
2-5 2-5 4-5 

2102 
2-5 2-5 5-7 

  % 20 80 107 106 111 
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Tay mm 34 726 
2-5 2-5 2-3 

1617 
15-25 10-20 27-56 

2295 
10-15 8-12 16-26 

2847 
10-15 8-12 18-32 

  % 29 92 117 112 112 

Forth mm 39 654 
2-5 2-5 2 

1430 
10-15 10-20 25-48 

2052 
10-15 10-20 45-171 

2539 
8-12 8-12 20-36 

  % 38 97 116 113 112 

Tweed mm 26 470 
2-5 2-5 4-5 

1138 
2-5 2-5 6-8 

1676 
5-10 5-10 10-14 

2067 
2-5 2-5 5-6 

  % 32 86 110 112 108 

Solway mm 52 960 
5-10 5-10 7-10 

1840 
30-50 30-50 >>68 

2591 
20-30 15-25 >>250 

3164 
10-20 10-20 33-77 

  % 43 112 120 114 112 

Clyde mm 74 1343 
25-40 40-60 32-65 

2440 
>100 >100 >>250 

3286 
30-40 30-50 67-220 

3960 
15-25 20-35 >>63 

  % 46 125 129 117 114 
Northern 
Ireland 

mm 22 694 
5-10 5-10 6-8 

1264 
2-5 2-5 7-10 

1749 
2-5 2-5 4-5 

2257 
2-5 2-5 4-5 

% 23 108 105 100 102 
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Figure 15 Return period estimate from the HS (pe3) method, and difference in 
return period estimates between the New and HS (pe3) methods described above. 

 

The replacement of the arbitrary return period bands with the new boostrapped 
interquartile range resulted in larger uncertainty ranges for long return periods.  This 
demonstrates the difficulty in accurately estimating the return period of rare extreme 
events.  In contrast, short return period estimates exhibited relatively narrow 
uncertainty bands compared with the original method.  This provides evidence-based 
support for confidence in precise short return period estimates, while estimates of 
long return periods are more uncertain. 

Figure 16 visualises an example of the differences exhibited in Table 3.  A visual 
inspection of Figure 16 suggests the differences in the median return period 
estimates derived from the “New” method, and the return period estimates derived 
from the original “HS 2012” method are minimal.  However, when investigating actual 
return level magnitudes, the original methodology underestimates the 250, 500 and 
750 year return levels compared with the updated methodology.  Furthermore, the 

>250 
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stepped change in uncertainty band estimates is removed in the updated 
methodology, producing a more realistic, evidence-based estimate of uncertainty. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16 Return periods and corresponding return levels for March-October 
(6-months) rainfall accumulations in the Midlands.  Plots vary in their estimation 
methodology (left – updated (“New”); right – original (“HS 2012”)).  Dashed lines 
correspond to the 250, 500 and 750 year return levels estimated using the updated 
methodology.  
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6 Summary 

The results provided in this report provide a foundation for improved return period 
estimation for the Hydrological Summary and the Drought Libraries.  They could 
provide useful guidance more generally for appraising the rarity of n-month rainfall 
accumulations for the assessment of drought severity.  However, it is important to 
note that this is only one approach to drought severity assessment, and other 
methods could yield different results for the same drought event.  In particular, our 
approach focuses on n-month accumulations with a defined start or end month – 
return period assessments for n-month accumulations starting in any month would 
inevitably be lower (Reed 2011).  Moreover, there are many definitions of drought 
and correspondingly different indicators used for drought characterisation 
(e.g. Bachmair et al. 2016). Use of other indicators (such as the Standardised 
Precipitation Index, SPI, e.g. Svensson et al. (2016) for UK applications) to quantify 
meteorological drought severity could also lead to different outcomes.  Similarly, here 
our focus is exclusively on meteorological drought and, more narrowly, precipitation, 
rather than evaporative demand, as is included in some indicators such as the 
Standardised Precipitation and Evapotranspiration Index (SPEI, 
Vicente-Serrano et al. 2010) or other Aridity Indices (Marsh et al. 2007).  Return 
Period assessments incorporating evapotranspiration, or based on hydrological 
indicators (river flow, groundwater) or metrics of water supply system performance, 
could lead to different results.  Finally, and in keeping with the need for the 
Hydrological Summary to characterise the whole range of variability, we note that 
here we have focused on applying probability distributions to whole time series of 
n-month rainfall, incorporating wet as well as dry extremes.  Other approaches to 
return period assessment take a different approach and apply a peak-over-threshold 
model to focus on the dry extremes (e.g. Burke et al. 2010). 

However, the results presented here demonstrate potential to inform best practice 
when estimating drought return periods for durations up to 5 years in the UK.  The 
Pearson Type III distribution was accepted (using the Modified-Anderson-Darling 
test) more often than any of the other probability distributions when grouping all 
rainfall data together.  This supports the use of the Pearson Type III distribution for 
drought return period estimation in the UK.  Whilst the null acceptance rate of the 
Pearson Type III distribution varied across the country and over the different 
accumulation periods, it remained the most appropriate distribution for estimating the 
rarity of long-duration rainfall in the UK. 

The Gamma distribution, the zero-bounded version of the Pearson Type III 
distribution, was deemed more appropriate for short accumulation periods due to its 
ability to fit the observed data and prevent the production of negative return levels.  
Overall, the Gamma, Generalised Logistic and Generalised Extreme Value 
distributions also exhibited relatively high acceptance rates.  This was paired with 
certain distributions outperforming the Pearson Type III in specific cases.  However, 
there is a benefit to adopting a nationally consistent approach, particularly in bringing 
simplicity and facilitating inter-comparisons between regions for the purpose of 
improved national planning.  Therefore, the consistency of performance of the 
Pearson Type III distribution across all accumulation periods, start months and 
regions, and the Gamma distribution for 1 to 3-month accumulation periods, supports 
the adoption of Pearson Type III for estimating the frequency of low-magnitude 



A Nationally Consistent Approach to Assessing Accumulated Rainfall Rarity 

 

37 

rainfall events exceeding 3-month accumulation periods, and the Gamma distribution 
for the frequency estimation of 1 to 3 month low-magnitude accumulated rainfall 
events.   
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9 Appendices 

9.1 Appendix 1 – Autocorrelation plots of Forth accumulated rainfall events 
beginning in October, varying by accumulation length.  The time series consist 
of overlapping events for durations of 12 months or more.  The x-axis shows 
units of events. 
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9.2 Appendix 2 – Autocorrelation plots of 36-month (overlapping) accumulated 
rainfall events beginning in October, in each of the 18 regions.  The x-axis 
shows units of events, that is, in this case a 3-year period.  
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