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Abstract

Sulphate-reducing bacteria (SRB) represent a key biological component of the

global sulphur (S) cycle and are common in soils, where they reduce SO4
2− to

H2S during the anaerobic degradation of soil organic matter. The factors that

regulate their distribution in soil, however, remain poorly understood. We

sought to determine the ecological patterns of SRB richness within a nation-

wide 16S metabarcoding dataset. Across 436 sites belonging to seven contra-

sting temperate land uses (e.g., arable, grasslands, woodlands, heathland and

bog), SRB richness was relatively low across land uses but greatest in grass-

lands and lowest in woodlands and peat-rich soils. There was a shift in domi-

nant SRB taxa from Desulfosporosinus and Desulfobulbus in arable and

grassland land uses to Desulfobacca in heathland and bog sites. In contrast,

richness of other generalist anaerobic bacterial taxa found in our dataset

(e.g., Clostridium, Geobacter and Pelobacter) followed a known trend of declin-

ing richness linked to land-use productivity. Overall, the richness of SRBs and

anaerobes had strong positive correlations with pH and sulphate concentration

and strong negative relationships with elevation, soil organic matter, total car-

bon and carbon-to-nitrogen ratio. It is likely that these results reflect the driv-

ing influence of pH and competition for optimal electron acceptors with

generalist anaerobic bacteria on SRB richness.

Highlights

• Sulphate-reducing bacteria (SRB) are key but rare soil biota that may com-

pete with other anaerobes
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• As UK sulphur deposition rates fall, local populations of SRB may also

decline in soils

• Sulphate concentrations were higher in arable and wooded sites, not at

higher elevation as expected

• SRB richness was lower than generalist anaerobes, with peaks in grasslands

and a drop in lowland woods.
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1 | INTRODUCTION

Sulphate-reducing bacteria (SRB) are common soil organ-
isms, which are capable of transforming sulphate (SO4

2−)
into hydrogen sulphide (H2S) under anoxic conditions
(Bahr et al., 2005; Hines et al., 1999; Xia et al., 2014). Con-
sequently, these organisms play a fundamental role in
global sulphur (S) cycling and also in the iron (Fe) cycle
through the formation of FeS2 (Muyzer & Stams, 2008).
After waterlogging, soils are often rich in H2S, in part due
to high local abundances of SRB, leading to changes in
plant metabolism (Lamers et al., 2013; Li, Min, & Zhou,
2016; Stubner, 2004). Currently, more than 220 species of
SRB have been described, with soils often possessing
diverse SRB communities (Barton & Fauque, 2009). For
example, the number of known SRB operational taxo-
nomic units (OTUs) has been shown to range from 60 per
gram in rice-associated soils (Scheid & Stubner, 2001) to
70 per gram of landfill cover soil (Xia et al., 2014).

These bacteria may form relationships with other S-
dependent bacteria, such as green and purple phototrophic S
bacteria (Overmann & van Gemerden, 2000). Therefore,
despite their namesake, a strict assumption that SRB com-
munities are directly linked to S or SO4

2− availability and
that SRB rely on strict anaerobic conditions is overly simplis-
tic, as many SRB taxa are known to utilize nitrogenous
(Dalsgaard & Bak, 1994; López-Cortés, Fardeau, Fauque,
Joullan, & Olivier, 2006) and S compounds other than SO4

2−

as terminal electron acceptors, in addition to a wide range of
other compounds (Muyzer & Stams, 2008). Furthermore,
certain species are oxygen (O2) tolerant (Mogensen,
Kjeldsen, & Ingvorsen, 2005) or even dependent on O2 acces-
sibility (Sigalevich, Meshorer, Helman, & Cohen, 2000).
Competition between SRB and other anaerobic bacteria for
C substrates (e.g., acetate) has also been shown to strongly
influence anaerobic community compositions in laboratory
experiments and bioreactors (Oude Elferink, Visser,
Hulshoff-Pol, & Stams, 1994; Schönheit, Kristjansson, &
Thauer, 1982), and has been observed in wetland substrate
in a mesocosm experiment (Chen et al., 2014).

It is unclear to what extent different edaphic factors reg-
ulate SRB populations in soil, in particular the availability
of SO4

2− and major regulators of microbial community
structure such as pH. Major SO4

2− inputs to agricultural
land include inorganic fertilizer addition (e.g., ammonium
and potassium sulphates), soil amendments (e.g., calcium
sulphate) and livestock waste (Abdelmseeh, Jofreit, &
Hayward, 2008; Allison, Fowler, & Allen, 2001; Carvalho &
van Raij, 1997; Pan, Lam, Moiser, Lou, & Chen, 2016).
Atmospheric S deposition from anthropogenic and marine
sources is a major source of SO4

2−, especially at higher ele-
vations in wetter climates (Stevens, Ormerod, & Reynolds,
1997). Subsequently, one might expect richness and/or rela-
tive abundance of SRB to increase with elevation owing to
an increase in anaerobic niches in upland sites and SO4

2−

availability. Indeed, Drenovsky, Steenwerth, Jackson, and
Scow (2010) demonstrated with phospholipid fatty acid
analyses that the proportion of Desulfobacter biomass
increased with soil moisture in California. It is also possible
that SRBs may be used as an environmental indicator of
ecosystem recovery from acid deposition (Review of Trans-
boundary Air Pollution, 2012), which is now declining in
many industrialized countries (Kirk, Bellamy, & Lark,
2010; Reynolds et al., 2013). This, however, requires an
understanding of the key factors that regulate SRB commu-
nities across a wide range of land uses.

Across Europe, S deposition rates have declined sig-
nificantly following a shift away from coal-powered
energy generation (Grennfelt & Hov, 2005; Review of
Transboundary Air Pollution, 2012). There has been a
steady decrease in S deposition over the past 40 years
across the UK (Review of Transboundary Air Pollution,
2012; Stevens et al., 1997), driven by a shift away from
unabated coal-fired electrical power, which is expected to
be eliminated by 2025 (DEFRA, 2018). In Wales, histori-
cal S-deposition levels were higher at greater elevations
(Stevens et al., 1997), suggesting that upland and alpine
habitats may have previously supported robust SRB
populations. However, it is unclear whether these areas
remain hotspots for SRB following these changes in
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emissions or if increasing local SO4
2− inputs from point

sources or agriculture have created other SRB-favourable
habitats.

Recent studies have highlighted a range of inconsis-
tencies between the scales required for soil biodiversity
sampling and those used for mapping (Hendershot, Read,
Henning, Sanders, & Classen, 2017; George et al., 2019;
Seaton et al., 2020). Thus lately, research has focused on
soil properties, aboveground habitat (Seaton et al., 2020)
and anthropogenic land uses (George et al., 2019) as deter-
minants of microbial community composition, rather than
soil type defined from soil classification (e.g., Avery, 1980).
As a result, land-use categories have proven a better deter-
minant of microbial richness in national-level soil surveys
(George et al., 2019). In particular, the Aggregate Vegeta-
tion Class (AVC) system (Bunce et al., 1999) has proven to
be an effective method of assessing soil biota in British
soils (Black et al., 2003; George et al., 2019; Griffiths et al.,
2011). This method involves creating high-level aggrega-
tions of plant communities based on plant species data at
the plot level (Bunce et al., 1999). These land uses are fur-
ther clustered in order of soil productivity, from highest in
arable and grassland sites to lowest in upland heathlands
and uplands (Bunce et al., 1999). Therefore, we expect that
assessments of SRB richness and distribution across land
uses will be more informative as they incorporate both soil
type and aboveground factors.

Here, we use a national-level metabarcoding dataset to
determine the distribution of SRB richness in soil. We
hypothesized that land use would be a major driver of SRB
richness and therefore we expected richness and relative
abundance to increase in acidic and anoxic soils from
upland low-productivity areas (i.e., wetlands and heath-
lands) as compared to agricultural areas (i.e., arable and
grasslands). Because other anaerobic microbes can directly
compete with SRBs (Muyzer & Stams, 2008), we also inves-
tigated this same relationship between some common
anaerobic bacterial taxa and the aforementioned land uses.
In addition, we assessed proportional abundances of SRB
and common anaerobic taxa to look for shifts in commu-
nity compositions across land uses. We finally hypothesized
that richness of both SRB and other anaerobic bacteria
would be positively correlated with increasing acidity, SO4

2

− concentration and elevation, because these variables are
expected to increase in wetland/heathland areas.

2 | MATERIALS AND METHODS

2.1 | GMEP topsoil survey

This work was undertaken by analysing the meta-
barcoding dataset of soil biodiversity across Wales, UK,

collected as part of the Glastir Monitoring and Evaluation
Programme (GMEP) presented in George et al. (2019)
(Supplementary Material). Soil samples were collected
across Wales (n = 436) between late spring and early
autumn in 2013 and 2014 (Figure S1). Sampling protocols
followed the UK Countryside Survey (Emmett et al.,
2010), whereby samples were collected from randomly
selected 1 km2 squares. Within each 1 km2 square, up to
three samples were collected; for further details see
Emmett et al. (2010). Soil physicochemical properties,
including pH (measured in 0.01 M CaCl2), organic matter
(% loss-on-ignition), total C and nitrogen (N) (%), C:N
ratio, phosphorus (P) (mg kg−1), bulk density (g cm−3)
and moisture content (g water g−1), were measured from
4-cm-diameter soil cores at 15-cm depth. Geographic
coordinates and elevation (m) were also collected. Mean
annual precipitation (ml) at each site was extracted from
the CHESS dataset (E. L. Robinson et al., 2017). Sulphate
concentrations (mg kg−1) were determined using 1:5
(w/v) distilled water extracts (Tabatabai, 1996), followed
by analysis by ion chromatography (Metrohm Ltd, Heri-
sau, Switzerland).

At each sample site, land use was classified using
plant species assemblages into one of seven AVCs as
described by Bunce et al. (1999). Briefly, samples were
grouped into AVCs based on clustering of aboveground
plant community composition based on detrended corre-
spondence analysis. There were seven AVCs present in
our dataset, namely: Crops/weeds (n = 9), Fertile grass-
land (n = 98), Infertile grassland (n = 162), Lowland
wood (n = 17), Upland wood (n = 44), Moorland-grass
mosaic (n = 54) and Heath/bog (n = 52) (Supplementary
Material; Table S1). The clustering of AVCs follows a gra-
dient of soil nutrients (highest in Crops/weeds; lowest in
Heath/bog), from which land-use intensity and produc-
tivity can also be inferred (Supplementary Material).
Maps of S deposition from non-marine (2013–2015;
Figure 1a) and marine sources (Figure 1b) were made by
the UK Centre for Ecology and Hydrology using annual
monitoring data (Smith, Dore, Tang, & Stedman, 2018).
Summarized environmental and soil property data across
AVCs from George et al. (2019) are presented in
Table S2.

2.2 | Soil microbial community analysis

Soil cores were collected for metabarcoding analyses. The
sampling strategy, DNA extraction and bioinformatics
analyses are described in George et al. (2019). Briefly,
DNA was extracted in triplicate from 0.25 g of soil via
mechanical lysis using MO-BIO PowerLyser PowerSoil
DNA Isolation Kits (Qiagen, Hilden, Germany), following
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homogenization from being passed through sterilized
sieves. A pre-treatment of 750 μl of 1 M CaCO3 (Sagova-
Mareckova et al., 2008) was used for all DNA extractions
as this has been shown to improve PCR performances of
DNA extracted from acidic soils. Extracted DNA was
pooled and sequenced using a two-step Illumina Mi-Seq
(San Diego, CA, USA) amplicon sequencing protocol.
Amplicon libraries were created in triplicate on a DNA
Engine Tetrad® 2 Peltier Thermal Cycler (BIO-RAD Lab-
oratories, Hercules, CA, USA) using the V4 region of the
16S rDNA gene with the 515F/806R universal primers
(Caporaso et al., 2011) at Bangor University and the Liv-
erpool Centre for Genomic Research in 2013 and 2014,
respectively. First-round PCR amplification began at
98�C for 30 s, followed by 10 cycles of 98�C for 10 s; 50�C
for 30 s; 72�C for 30s; with a final extension stage of 72�C
for 10 min and held at 4�C for a further 10 min. For the
second-round PCR, 12 μl of first-round product was
mixed with 0.1 μl exonucleaseI, 0.2 μl thermosensitive
alkaline phosphatase and 0.7 μl of water and cleaned in
the thermocycler with a programme of 37�C for 15 min
and then 74�C for 15 min, followed by a hold at 4�C.
Next, Illumina Netera XT 384-way indexing primers were
added and amplified with an initial denaturation at 98�C
for 3 min; followed by 15 cycles of 95�C for 30 s; 55�C for
30 s; 72�C for 30 s; and a final extension at 72�C for 5
min and then held at 4�C. These products were subse-
quently purified using an equal volume of AMPure XP
beads (Beckman Coulter, Brea, CA, USA).

Raw sequences were de-multiplexed, filtered, quality-
checked and clustered using the USEARCH v. 7.0 (Edgar,

2010) and VSEARCH v. 2.3.2 (Rognes, Flouri, Nichols,
Quine, & Mahé, 2016) software. Operational taxonomic units
(OTUs) were made using open-reference clustering at 97%
similarity (George et al., 2019). Sequences with a maximum
error >1 and shorter than 200 bp were removed from analy-
sis. The subsequent OTU table was generated using QIIME
1.9.1 (Caporaso et al., 2010) and analysed using the phyloseq
package (McMurdie & Holmes, 2013) in R v. 3.5.1 (R Core
Team, 2018), removing all OTUs identified as chimeras or
non-bacterial taxa using the GreenGenes 13.8 database
(DeSantis et al., 2006), as well as singletons. Read counts
were normalized through rarefaction. The OTU table was
rarefied 100 times at 40,000 read depth and mean richness
recorded. Next, we compared SRB taxa from the literature to
our dataset and found OTUs identified as 17 SRB genera
(Desulfatiferula, Desulfarculus, Desulfofacinum, Desul-
fitobacter, Desulfobacca, Desulfobotulus, Desulfobulbus,
Desulfocapsa, Desulfococcus, Desulfomonile, Desulforhabdus,
Desulfosarcina, Desulfosporosinus, Desulfotomaculum, Des-
ulfovibrio, Desulfovirga and Desulfuromonas), and three gen-
eralist anaerobic bacteria (Clostridium, Geobacter, and
Pelobacter) were selected for further analysis. Sequences can
be accessed at the European Nucleotide Archive (primary
accession code: PRJEB27883).

2.3 | Statistical analyses

Linear mixed models were created using the package nlme
(Pinheiro et al., 2019) and tested with ANOVAs and Tukey's
HSD post hoc tests from the multcomp package (Hothorn,

FIGURE 1 Maps of Wales showing sulphur deposition from (a) non-marine (2013–2015) and (b) marine (2014–2016) sources as well as
(c) elevation
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Bretz, &Westfall, 2008), and effect sizes (ES) based on Cohen's
d from the emmeans package (Lenth, 2020) were used to
assess differences between richness of SRB and previously
mentioned anaerobic bacteria across AVCs. For richness
models of both SRB and anaerobic taxa, AVC was the inde-
pendent variable. Identities of 1 km2 squares (the 1 km2

square in which samples were located) were used as a random
factor. Effect sizes (ES) between land uses are also reported.
Relationships between environmental variables and the rich-
ness of both SRB and anaerobic bacteria were assessed using
linear mixed models, which again used 1 km2 square identity
as a random factor. The final models were selected based on
stepwise reduction in terms based on best AIC values. Soil
properties and environmental variables were normalized via
logarithmic or square root transformations where appropriate.

3 | RESULTS

3.1 | Proportional abundance of SRB
in soil microbial communities

Of the 29,690 OTUs recorded in the complete dataset,
179, comprising 47,141 sequences, were assigned to SRB

taxa (<0.01% of total) and 629, comprising 155,560
sequences, to the generalist anaerobic bacteria of interest
(0.02% of total). Although absolute numbers of OTUs were
low, we were still able to detect 17 SRB genera. Of these,
Desulfosporosinus had the highest proportional abundance
across most AVCs (Figure 2). This was especially true in
the Lowland wood category, where Desulfosporosinus
made up 71.5% of SRB OTUs. Desulfobublus was also a
major component of grassland and arable sites. In con-
trast, Desulfobacca replaced Desulfosporosinus as the dom-
inant SRB taxa as productivity of land uses fell.
Desulfomonile also exhibited this pattern to a lesser
degree. Other taxa, such as Desulfacinum, Desflovirga and
Desulfuromonas, although present, had minor contribu-
tions to SRB populations across land uses (Figure 2).

3.2 | Proportional abundance of
anaerobic organisms

Geobacter dominated generalist anaerobe populations in
all AVCs, with the exception of Upland woods, where
Clostridium was dominant (Figure S2). When the SRB and
anaerobic taxa were studied as a whole, we found an
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FIGURE 2 Proportional abundance of sulphate-reducing bacteria (SRB) genera across land uses. OTU, operational taxonomic unit
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inverse relationship between proportional abundances of
SRB and generalist anaerobic taxa across AVCs (Figure 3).
The proportion of SRB taxa increased with decreasing
land-use productivity. However, the proportion of anaer-
obes did not fall below 25% even in Heath/bog sites domi-
nated by SRB, whereas anaerobes outnumber SRB by
�90% in high productivity AVCs (Figure 3).

3.3 | Relationships of SRB and anaerobes
with environmental variables

Contrary to our expectations, based on S-deposition data
(Figure 1), SO4

2− concentrations were highest in the
Crops/weeds and woodland AVCs, rather than in high
elevation Moorland grass-mosaic and Heath/bog sites
(Table S2). Indeed, mean SO4

2− levels of 124.6 mg kg−1

were observed in Crops/weeds sites, whereas mean values
for Moorland grass-mosaic and Heath/bog sites were 49.4
and 55.2 mg kg−1, respectively (Table S2). Linear mixed
models were constructed to investigate the relationships
between environmental variables and both SRB and
anaerobe OTU richness. Stepwise model selection

produced a model of SRB richness where moisture con-
tent, pH, mean annual precipitation, total N, elevation,
SO4

2− concentration and C:N ratio were retained as inde-
pendent variables. For anaerobe richness, the same variables
were selected, except SO4

2− was dropped during stepwise
model selection. For these analyses, total N was normalized
by log-transformation, whereas C:N ratio and SO4

2− concen-
tration were square root transformed (Table 1). Again,
both models used 1 km2 square identities as random
effect variables.

Model outputs demonstrated that SRB OTU richness
was significantly related to all variables (Table 1). The
strongest interactions were with total N (F1,193 = 9.35,p =
.003), pH (F1,193 = 11.46; p = .001) and moisture content
(F1, 193 = 33.61; p < .001). There was also a significant
positive interaction between SRB richness and sulphate
concentration (F1,193 = 5.5; p = .02). Richness of anaero-
bic taxa was strongly positively correlated with pH (F1,268
= 123.36; p < .001) and strongly negatively correlated
with C:N ratio (F1,268 =;29.76; p ≤ .001). Full accounts of
both models are summarized in Table 1.

3.4 | Relationships of SRB and anaerobes
with vegetation cover

Richness of SRB OTUs was greater (F6,272 = 5.44,
p < .001) in Fertile grasslands, Infertile grasslands and
Moorland grass-mosaic than in both Lowland and
Upland woods (Figure 4a). Richness was significantly
lower in Upland wood than in Fertile grasslands (ES =
−0.76, p < .001), Infertile grasslands (ES = −0.64, p =
.005) and Moorland grass-mosaic (ES = 0.86, p = .002).
Similarly, SRB richness in Lowland wood was lower than
in Fertile grasslands (ES = −0.92, p = .007), Infertile
grasslands (ES = −0.80, p = .03) and Moorland grass-
mosaic (ES = −1.02, p = .01).

Larger differences were observed in anaerobe rich-
ness across AVCs (Figure 4b). Unexpectedly, richness
of anaerobes was significantly (F6,272 = 27.31,
p < .001) greater in the high-productivity AVCs,
including Crops/weeds and both Fertile and Infertile
grasslands, than in low-productivity AVCs. Anaerobe
richness was greater in Crops/weeds than in both
types of woodland (Lowland wood, ES = 1.67; Upland
wood, ES = 1.49; both p < .001), Heath/bog (ES =
1.56, p < .001) and Moorland grass-mosaic AVCs (ES
= 0.99, p = .03). Anaerobe richness was also greater
in Fertile grasslands than in these same four AVCs
(Lowland wood, ES = 1.81; Upland wood, ES = 1.63;
Heath/bog, ES = 1.70; Moorland grass-mosaic, ES =
1.14; all p < .001). This was also true of Infertile
grasslands (Lowland wood, ES = 1.50; Upland wood,
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FIGURE 3 Proportional abundance of sulphate-reducing

bacteria (SRB) and anaerobic taxa across land uses. OTU,

operational taxonomic unit
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ES = 1.32; Heath/bog, ES = 1.40; Moorland grass-
mosaic, ES = 0.83; all p < .001). There was also sig-
nificantly greater anaerobe richness in Moorland
grass-mosaic sites than in Heath/bog (ES = 0.57,
p = .01) samples (Figure 4b).

4 | DISCUSSION

4.1 | Relationships between atmospheric
S deposition and soil SO4

2− content

Within Wales, the areas of greatest atmospheric-derived
S-deposition are consistently at high elevation, where dry
and wet deposition is greatest (Smith et al., 2018), includ-
ing the Snowdonia and Brecon Beacons National Parks
(Figure 1). Within our soils, however, SO4

2− concentra-
tions were highest in Crops/weeds (arable) and woodland
AVCs, which tend to be associated with low altitudes.
This was surprising, because SO4

2− deposition rates are
known to increase with elevation (Lovett, Thompson,
Anderson, & Bowser, 1999; Stevens et al., 1997). Decom-
position releases SO4

2− from organic matter into the soil
(Muyzer & Stams, 2008). Although arable and woodland
AVCs had lower levels of organic matter, this could be a
reflection of high-processing rates resulting in higher
than expected SO4

2− concentrations. Previous assess-
ments of mesofauna at these sites showed that
mesofaunal abundance was highest in woodlands; how-
ever, it was lowest in arable sites (George et al., 2017) and

so the higher SO4
2− concentrations in arable soils require

further explanation. It is possible that arable sites were
subjected to amendment with fertilizers containing SO4

2−

(Allison et al., 2001; Pan et al., 2016); however, without
detailed land-management histories we cannot be confi-
dent in this explanation.

4.2 | Relationship between SRB and
anaerobic microbial communities

Our analyses showed that grasslands supported greater
SRB OTU richness than woodlands and did not follow
our prediction of increasing richness in more acidic and
moist land uses. Greater richness in grasslands may
reflect the presence of dormant SRB (e.g., Gandy & Yoch,
1988), which can be detected by metabarcoding analyses
(Wang, Mayes, Gu, & Schadt, 2014). Similarly, this could
reflect taxa-specific specialization. Desulfobulbus, for
instance, was present across a wider range of land uses
than other SRB taxa. We ascribe this to its ability to fer-
ment ethanol and lactate in the absence of sulphates
(Biswas, Taylor, & Turner, 2014). Indeed, Desulfobulbus
can ferment exogenous ethanol and lactate into propio-
nate and acetate, which can be further utilized for energy
(Widdel & Pfennig, 1982). These compounds may prove
to be more available in some soil environments than
SO4

2−, although we were unable to assess the prevalence
of these compounds in the present study. However, as
expected based on our assumptions of increasing SRB

TABLE 1 Linear mixed model

outputs for relationships between

richness of both sulphate-reducing

bacteria (SRB) and anaerobes and soil

properties and environmental variables,

ranked in order of greatest to least F

value

SRB (df = 193)

Environmental variable Slope (effect size) F p

Moisture content (g g−1) 1.53 33.61 <.001

pH (CaCl2) 2.06 11.46 <.001

Mean annual precipitation (ml) 0.01 10.20 .002

Total N (%)L 5.42 9.35 .003

Elevation (m) −0.03 6.78 .01

SO4
2− (mg kg−1)S 0.27 5.51 .02

C:N ratioS −5.16 5.04 .03

Anaerobes (df = 268)

Environmental variable Slope (effect size) F p

pH (CaCl2) 16.65 123.36 <.001

C:N ratioS −25.69 29.76 <.001

Elevation (m) −0.11 13.96 <.001

Moisture content (g g−1) 2.65 9.96 <.001

Mean annual precipitation (ml) 0.02 3.37 .07

Note: L denotes log-transformed variables; S denotes square root transformed variables.
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richness in upland water-logged sites, there was a mar-
ked increase in relative abundance of SRB OTUs in wet
Moorland grass-mosaic and Heath/bog areas, which is
supported by the positive correlation between SRB and
moisture content.

Unexpectedly, richness of the anaerobic bacteria
highlighted in this study did not increase in stereotypi-
cally anaerobic sites, such as Heath/bog. This is espe-
cially surprising given the strong relationships observed
between anaerobic richness and pH and elevation, as was
expected. This is likely to be due to the generalist nature
of these anaerobic bacteria. For example, Geobacter
sp. are a ubiquitous component of soil bacterial commu-
nities, as they are able to utilize a wide range of alterna-
tive electron acceptors (Lovley et al., 2011). Similarly,
Clostridium sp. are common constituents of soil

communities (Jeong et al., 2004). Although Hausmann
et al. (2016) have previously highlighted the importance
of SRB in the rare biosphere in peatlands and associated
sites, we found a surprising amount of SRB taxa in our
grassland sites.

Overall, richness of anaerobic taxa followed the over-
arching trend of microbial richness declining with soil
productivity across Wales, as found by George et al.
(2019). As expected, there were significant relationships
between SRB and anaerobic taxa with pH and elevation.
However, the directions of these relationships did not
conform to our expectations that richness would increase
with acidity in higher elevation sites. Furthermore, we
observed significant relationships between SO4

2− and
SRB richness only. Previous analysis has confirmed the
driving influence of pH on bacterial richness across
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FIGURE 4 Richness of

sulphate-reducing bacteria (SRB)

(a) and selected generalist anaerobe

operational taxonomic units (OTUs)

(b) across land uses. Boxes represent

the first and third quartiles, whereas

horizontal lines denote medians.

Black dots are outliers beyond the

whiskers, which display 1.5× the

interquartile range
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Wales (George et al., 2019) and the globe (Delgado-
Baquerizo et al., 2018; Lauber, Hamady, Knight, &
Fierer, 2009). This relationship is evident in the distribu-
tion of selected anaerobes in the present study that have
a strong negative relationship between richness and pH,
which is translated into low abundances in more acidic
sites. Both anaerobes and SRB demonstrated the signifi-
cant positive relationships, although with differing
strengths, with pH. The relatively constant richness of
SRB across agricultural and grassland AVCs, including in
the uplands, however, may indicate that the AVC system
may obfuscate sulphate-rich areas, such as waterlogged
rhizosphere communities (Lin et al., 2010). It must be
recognized that the low contributions of SRB taxa
(<0.01%) and generalist anaerobes (0.02% of total) means
that both groups belong to the rare biosphere as they con-
tribute <0.1% relative abundance of the total bacterial
community (Pedrós-Alió, 2012), exemplifying how com-
ponents of the rare biospheres can drive important eco-
system functions (Hausmann et al., 2016). It is possible
that despite making up a low proportion of species diver-
sity, SRB were highly abundant, although as we were not
able to calculate abundance we will not speculate on this
possibility.

4.3 | Relationship between SRB and
anaerobic microbial communities and
land use

There was a shift in SRB communities across land uses.
Desulfosporosinus and Desulfobulbus dominated high-
productivity land uses, especially arable and grassland
sites. Desulfosporosinus is commonly found in soil-water
interfaces, such as rice root systems and soils contami-
nated by industrial processes (Vatsurina, Badrutdinova,
Schumann, Spring, & Vainshtein, 2008). Desulfobulbus
can utilize lactate and ethanol in the absence of sulphate
(Biswas et al., 2014), which may facilitate their prevalence
across so many different land uses. In low-productivity
land uses, specifically Moorland grass-mosaic and Heath/
bog sites, Desulfobacca and Desulfomonile supplanted
these as the dominant taxa. Both of these genera are
important members of the rare biosphere in peatlands,
where they contribute to SO4

2− reduction, especially at
greater depths (Hausmann et al., 2016; Tsitko et al., 2014).

To our knowledge, there has not been a meta-
barcoding survey targeting SRB in soils. We recognize
that the use of general prokaryote primers may have not
detected some SRB taxa from our sites. Furthermore, we
recognize that our inability to quantify the amount of
SRB present at each site limits our analyses to measures
of diversity (Bouchez et al., 2015). Nevertheless, we

present our findings as preliminary analyses, from which
future quantitative work can be derived.

There are qPCR protocols that target dissimilatory
sulphite reductase genes for the study of SRB populations
(e.g., Agrawal & Lal, 2009; Biswas et al., 2014). Targeting
this gene region may provide more clarity on the number
of SRB taxa in Wales, although it would make compari-
sons with other taxa more difficult. Similarly, we did not
detect any sulphate-reducing archaea, which are currently
known from thermophilic taxa (Jay et al., 2016; Stetter,
1988), although an ever-increasing number of archaeal
taxa with a wide range of functional diversity are being
described from soils (Timonen & Bomberg, 2009).

4.4 | Conclusions

Our findings demonstrate a relatively constant richness
of SRB across diverse temperate land uses. In addition,
we found that the distribution of anaerobic bacteria
followed previously described trends within our study
area. The integration of real-time PCR techniques
targeting dissimilatory sulphite reductase genes in future
analyses could help elucidate the discrepancies between
SRB richness, abundance, activity and S supply. Nonethe-
less this work highlights the use of national-scale envi-
ronmental DNA biodiversity inventories in investigating
localized microbial populations.
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