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Abstract

Local seismic and borehole-based mapping of the Carboniferous Pennine Coal Measures and
Warwickshire Group successions in the Canonbie Coalfield (SW Scotland) provides evidence of
repeated episodes of positive inversion, syn-depositional folding and unconformities. A Duckmantian
(Westphalian B) episode of NE-SW transpression is recognised, based on onlapping seismic reflector
geometries against NE-trending positive inversion structures and contemporaneous NNE-trending
syn-depositional growth folding. The basin history thus revealed at Canonbie is at variance with
generally accepted models in neighbouring northern England that imply subsidence was due to post-
rift thermal subsidence during late Carboniferous times. A late Westphalian-Stephanian
unconformity recognised within the Warwickshire Group succession signifies NW-SE, c. 10 % local
basin shortening during a time of major shortening in the late Carboniferous Variscan foreland,
contradicting suggestions that maximum Variscan shortening had negligible impact on Carboniferous
basins in northern Britain. Local inversion structures appear to have strongly influenced local late
Westphalian-Stephanian depocentres. In this respect, the Variscan foreland at Canonbie may have

resembled a ‘broken’ foreland system. Variations in crustal rheology, fault strength and orientation,
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and mid-crustal detachments are suggested to have played important roles in determining strain

localisation and the nature of Westphalian-Stephanian depocentres in the Canonbie Coalfield.

1. Introduction

One of UK coal mining’s legacies is the vast quantity of subsurface data that we inherit.
These data record an important chapter of the Earth’s history, the amalgamation of Pangaea, and
have the potential to be widely repurposed as the UK seeks to decarbonise and fulfil its energy
needs through more sustainable resources (Watson et al., 2019). We present a study based on
subsurface (seismic and borehole) data from the Canonbie Coalfield in SW Scotland (see Fig. 1 for
location). These coal-bearing strata were deposited in the northern British part of an expansive late
Carboniferous Variscan foreland basin system, the complex characteristics of which have been
debated for decades (Leeder, 1982; Coward, 1993; Ziegler, 1993; Woodcock and Rickards, 2003;
Underhill et al., 2008). In both modern and ancient foreland systems, syn-kinematic sedimentary
sequences can indirectly reveal the nature of the various tectonic episodes that influenced the basin
and its regional setting. In ancient foreland systems, these sequences are often absent due to later
uplift and denudation. In contrast, a near complete record of the late Carboniferous syn-kinematic
megasequence (e.g. Besly et al., 1993; Peace and Besly, 1997) is locally preserved at the Canonbie

Coalfield (Chadwick et al., 1995; Waters et al., 2011; Jones et al., 2011).

Using archived seismic and borehole datasets curated by the UK Onshore Geophysical
Library (UKOGL) and the British Geological Survey (BGS), we investigate the characteristics of the
preserved late Carboniferous syn-kinematic sedimentary sequence preserved in the Canonbie
Coalfield, and the tectonic controls that were exerted upon its depositional and post-depositional
deformation. Widely held perceptions of ancient foreland basin systems such as the Variscan
foreland, often portray these systems in broadly two-dimensional perspectives on tectonic scales.
These systems include a single collision zone adjacent to a region of subsidence occurring primarily

along a restricted, laterally migrating flexure-induced foredeep depozone. Deposition also occurs to
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lesser extents within forebulge and backbulge depozones. A simplistic laterally dissipating
compressional stress field is typically derived from a short-lived contractional episode (e.g. DeCelles
and Giles, 1996; DeCelles, 2012; Catuneanu, 2019). However, at Canonbie we demonstrate syn-
depositional faulting, folding and positive inversion exerted strong controls on early Westphalian
(Bashkirian) through to Stephanian (Kasimovian) depocentres. Such behaviour is not just at variance
with generally accepted models for late Carboniferous basin development in neighbouring northern
and central England therefore, but also with many conceptual models for generic foreland basin
systems. Evolution of the Canonbie Coalfield and its regional setting is perhaps more akin to ‘broken’
foreland systems such as in the eastern Andean retro-arc foreland of Patagonia where
sedimentation is controlled by local tectonism (e.g. Strecker et al., 2011; Bilmes et al., 2013). We
attempt to reconcile competing tectonic models for the northern British part of the Variscan
foreland and demonstrate the importance of inherited crustal structures, the relative susceptibilities
of these structures to reactivation and the influence of an evolving stress field on the characteristics

of the syn-kinematic sedimentary sequence preserved at Canonbie.

2. Regional geological setting

In northern Britain, there are two models for late Carboniferous tectonic evolution. The first
focuses upon inversion tectonics following early Carboniferous rifting and post-rifting, relating to a
dissipating stress field derived from the Variscan collision zone of central-southern Europe (Leeder,
1982; Corfield et al., 1996). The Variscan orogen formed in southern-central Europe in response to
approximately northward accretion of early Palaeozoic island arcs and continental fragments and
later Gondwanan-derived elements onto Laurussia during the prolonged late Palaeozoic assembly of
Pangaea (Warr, 2012; Murphy et al., 2016; Shaw and Johnston, 2016; Edel et al., 2018). The orogen
reached its maximum intensity during the late Carboniferous, culminating with the closure of the
Palaeotethys Ocean and the formation of the Cantabrian and central Iberian oroclines (c. 310-295

Ma) (Murphy et al., 2016). The northern margin of this belt can be traced approximately east-west
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across southern England where it separates the late Carboniferous foreland basin of southern Wales
(Burgess and Gayer, 2000) from the low-grade metamorphic external Variscan thrust belt and early
Carboniferous foredeep (Murphy et al., 2016). Within the British Variscan foreland region, the
magnitude of dominantly oblique contemporaneous thrust and fold inversion structures generally
increases towards the Variscan Front (Fraser and Gawthorpe, 1990; Corfield et al., 1996; Woodcock
and Rickards, 2003; Warr, 2012). This style of deformation is analogous to modern day shortening
exerted between orogenic collision zones and adjacent foreland regions (Copley et al., 2011,

Assumpcao, 1992), such as with the Himalayas and northern India (Powers et al., 1998).

However, a tectonic model that revolves solely around northward-vergent Variscan
compressional stresses does not readily incorporate parallel to oblique late Carboniferous fold and
thrust structures such as those that characterise both the Canonbie Coalfield and the northern
British Variscan foreland (Fig. 1). Copley and Woodcock (2016) calculate that such discontinuities
must have been significantly weaker (with an effective co-efficient of friction at least less than 30 %
lower) than intact country rock for them to have reactivated during Variscan compression rather
than new faults initiate. Coward’s (1993) alternative tectonic model for the Variscan foreland
highlights the influences of dextral strike-slip movement along pre-existing and long-lived NW-SE
trending thick-skinned faults; wrench movement along structures such as the Southern Upland Fault
Zone in southern Scotland accommodated westwards reinsertion of Baltica between North America
and central-southern Europe. Reinsertion is believed to have been a response to the
contemporaneous, but distal, Uralian Orogeny. The Uralian Orogeny formed as the result of
accretion of the Siberian and Kazakh plates against Baltica’s eastern (Laurussian) margin and the
closure of the Ural Ocean; orogeny began during the late Carboniferous and continued into the early

Jurassic (Bea et al., 2002; Brown et al., 2006).

3. Seismo-stratigraphic analysis of the Canonbie Coalfield

3.1 Datasets
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A number of datasets have been utilised in the study of the late Carboniferous succession at
Canonbie (Fig. 2). These include 12 UK Oil and Gas Authority and 7 UK Coal Authority onshore digital
2D seismic reflection profiles, originally acquired by Edinburgh Oil & Gas Ltd. and by the British Coal
Corporation respectively. Seismic surveys for coal exploration are typically shot at higher frequencies
(<125 Hz) and with lower depths of penetration than surveys for oil and gas exploration (20-80 Hz;
Gochioco, 1990). Seismic reflection profiles shot for coal exploration therefore enable detailed
mapping of onlapping and truncated seismic reflection geometries within sedimentary units at
shallow depths, helping to constrain the timing of various deformation events. Note that the seismic
reference datum from which the seismic reflection profiles are plotted for British Coal exploration
surveys often varies from the sea level datum typically used for oil and gas surveys. Where the coal
exploration datum was flat but shot above sea level, the reflection profile was shifted vertically in
two-way travel time, assuming a constant near surface velocity of 2400 ms™. Where the reference
datum was sloping, the reflection profile was not used for mapping in this study. These data are
supported by 19 borehole penetrations, all of which provide stratigraphic constraints and some of
which are associated with petrophysical (mainly gamma ray and acoustic) data and time-depth
calibration data. These boreholes were drilled between 1854 and 2008 for coal, oil and gas and
coalbed methane exploration purposes (Picken, 1988; Creedy, 1991; Chadwick et al., 1995). The
quality of data associated with each borehole varies accordingly. We encourage readers to follow

web links to uninterpreted versions of our seismic lines, which can be found in the figure captions.

3.2 Stratigraphy

In accordance with previously published UK literature and industrial reports, the traditional
NW European Carboniferous chronostratigraphic subdivisions have been adopted (Waters et al.,
2011; Davydov, 2004); these subdivisions and the current international subdivisions are correlated in

Figure 3.
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The Canonbie Coalfield is situated on the Scottish-English border within the northern Solway
Carboniferous Basin. The coalfield is one of few places in the UK that preserves a near complete
Westphalian stratigraphic record (Fig. 3). The Canonbie stratigraphic succession consists of <300 m
of Langsettian-Duckmantian (Westphalian) Pennine Lower and Middle Coal Measures Formations
(herein: PLCM and PMCM). Ordinarily, in north-western Europe, the base of this succession is
defined by the Subcrenatum Marine Band (Waters et al., 2011). This unit is absent at Canonbie, and
across the entirety of the Midland Valley of Scotland (Cameron and Stephenson, 1985; Dean et al.,
2011) such that the Pennine Coal Measures Group (PCM) rests disconformably upon the underlying
Namurian succession. The PCM succession is correlative across both the coalfield and NW Europe
based on frequent stratigraphically defined coal seams and marine bands. The Pennine Upper Coal
Measures Formation (PUCM) is poorly documented in historical accounts of the Canonbie Coalfield
and contains only limited amounts of coal-bearing strata that provide stratigraphic control. Similarly-
aged stratigraphy can be recognised further afield in southern Scotland as well as in Cumbiria,

courtesy of inter-bedded Spirorbis-bearing limestone beds (Mykura, 1967).

Overall upwards-coarsening and primarily ‘red-bed’ Warwickshire Group strata, conformably
overlie PCM strata at Canonbie (Fig. 3) (Jones et al., 2011). Given the poor likeness of the
Warwickshire Group strata at Canonbie with the Warwickshire Group Whitehaven Sandstone
Formation of West Cumbria, and the paucity of stratigraphically correlative strata from both
locations, three locally-defined formations are used to describe the succession at Canonbie (Jones et
al., 2011). These are the Eskbank Wood, Canonbie Bridge Sandstone and Becklees Sandstone
formations. Only strata of the Tenuis Chronozone (lower Westphalian D) have been proved within
the lowermost mudstone dominated Eskbank Wood Formation (Jones et al. 2011). No
biostratigraphically-defined age constraints are given for the remainder of the Warwickshire Group.
However, the Canonbie Bridge Formation shares petrographic characteristics with the Halesowen
Formation of the English Midlands and is believed to be of predominantly Asturian (Westphalian D)

age also (Jones et al., 2011; Morton et al., 2015). A chronostratigraphic correlation of the late
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Westphalian-Stephanian succession preserved at Canonbie across southern Scotland, northern

England and central England is included in figure 3.

3.3 Seismic horizons and time-depth conversion

Several latest Devonian to Permian-aged seismo-stratigraphic horizons were mapped in two-
way travel time. The most consistent mappable surface is the base Permian angular unconformity
against which Carboniferous reflectors truncate upwards. The Westphalian-Stephanian succession is
characterised by strong, semi-continuous seismic reflectors due to the presence of thick inter-
bedded channel sands (Jones et al., 2011) and low-density coals (Picken, 1988). Based on similar
studies within the region (Kimbell et al., 1989; Chadwick et al., 1995), a single strong, positive,
continuous reflector is believed to mark the Great Limestone Member (Alston Formation, Yoredale
Group) at the base of the Canonbie Namurian succession. Below this unit, similar inter-bedded
limestone-derived reflectors characterise the Visean succession of the Tyne Limestone Formation
(also Yoredale Group). The top Caledonian (lower Palaeozoic) basement horizon is interpreted as
being represented by a series of strong positive continuous reflectors that are believed to represent
subsurface equivalents of the Birrenswark Volcanic Formation (Inverclyde Group) (cf. Kimbell et al.,

1989).

Bulk sonic velocities for the Permian succession (2900 ms™), the Westphalian-Stephanian
succession (3600 ms™) and the latest Devonian-Namurian succession (4500 ms™) were used to
construct a simple velocity model. These values were derived from sonic velocity log data for the
Easton, Timpanheck and Becklees boreholes. A seismic velocity of 5000 ms* was used for the
basement (cf. Evans, 1994). The velocity model was used to convert the seismic surveys from time to
depth domain. Although uncertainty surrounding the time-depth conversion process is
acknowledged, the velocity model is deemed adequate for the purposes of the structural
interpretation reported in this study. Stratigraphic data derived from borehole reports was used to

better constrain structural interpretations of the depth converted seismic survey.
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4. Structure of the Canonbie Coalfield

To understand the late Carboniferous kinematic evolution of the Canonbie Coalfield better,
we present an integrated interpretation of the depth-converted seismic dataset, borehole data and
outcropping geology. Several key structures have been identified as a result of that analysis (Fig. 5a).
These include: 1) the NE-SW trending Bewcastle anticline and Hilltop Fault; 2) the NNE-SSW trending
Solway syncline; 3) the NE-SW trending Gilnockie Fault; 4) ENE-WSW and E-W trending normal faults
such as the Archerbeck, Rowanburn, Woodhouselees and Glenzierfoot Faults, and; 5) (N)NW-(S)SE
trending strike-slip faults such as those exposed at surface laterally offsetting the coalfield’s Permian
cover. We describe the Westphalian-Stephanian succession through a series of time-slices, focussing
upon how this succession was influenced by the combined effects of these key structures during its

deposition.

4.1 Namurian and Pennine Lower Coal Measures (PLCM)

Based on isochore thickness maps (Fig. 5b-d), and unlike the general case across the Midland
Valley of Scotland (Ritchie et al., 2003; Underhill et al., 2008), Namurian and PLCM stratigraphy at
Canonbie shows little evidence of varying significantly in thickness across the coalfield (Fig. 5b);
although, this is in contrast with the southern part of the Solway Basin where Chadwick et al. (1995)
observed mild thickening within the southern trough of the Solway Syncline and Akhurst et al. (1997)
records a localised late Namurian angular unconformity. The local PCM subcrop is bound to the
northwest by the Gilnockie Fault and to the southwest by the Hilltop Fault that both dip towards the
southeast and display net normal and reverse displacement respectively. From seismic data, Picken
(1988) interpreted a known local basal Westphalian break in deposition (represented by the absence
of the Subcrenatum marine band) as a low-angle overstepping unconformity that resulted from syn-
depositional anticlinal growth along a c. N-S compressional axis (e.g. Fig. 10 in Picken, 1988). The
originally observed outcropping example of this unconformity was argued to represent low-angle

unconformable onlap and overstep (Lumsden et al., 1967) but has recently been reinterpreted as,
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instead, representing a localized sedimentary feature, resulting from multiple phases of river
channel-bank collapse (Jones and Holliday, 2016). After careful re-examination of this seismic
dataset however, we now interpret the PLCM onlap surface of Picken (1988) as actually representing
the Gilnockie Fault, along a 2D seismic profile parallel to the fault, which offsets late Carboniferous
strata as well as the strata below it (Fig. 6). The absence of basal Westphalian stratigraphy at

Canonbie, we believe, represents a parallel disconformity.

4.2 Pennine Middle and Upper Coal Measures (PMCM and PUCM)

Variations in the thickness of PMCM and PUCM stratigraphy (Figs. 5c, d) suggest that the
NNE-SSW trending Solway Syncline acted as a significant depocentre for Duckmantian and younger
Westphalian stratigraphy (also see Fig. 7). Throughout the coalfield, these units also thicken
gradually towards the Hilltop Fault, within the fault’s footwall, but are at their thickest (<700 m)
within the Solway Syncline axial zone. This structure forms a broad, slightly asymmetrical syncline in
the south-eastern part of the coalfield (Fig. 5a). To the immediate south, a ‘minor early
Carboniferous high’ (Picken, 1988) or local strike-parallel northwards plunge of the Solway syncline
marks the southern margin of the Canonbie coalfield. The Solway Syncline continues to the south
beyond this ‘high’, where it meets the northern margin of the early Carboniferous Lake District Block
(Chadwick et al., 1995). Whilst the syncline’s eastern limb is cross-cut by the Hilltop Fault, its
western limb shallows progressively towards the north and west. In the north-western part of the
coalfield, a series of bright reflectors within the PMCM can be seen gently onlapping against similarly
bright reflectors along the syncline’s western limb (Fig. 8, and inset Fig. 8b). Based on borehole
stratigraphy, the reflector that most closely resembles the surface of onlap is thought to represent

the approximately late Duckmantian (Westphalian B) Archerbeck coal seam (also PMCM) (Fig. 4).

Synthetic and antithetic faults that merge with the Gilnockie Fault at 1-2 km depth, spatially
correlate with the upper limit of the Solway Syncline’s western limb (Fig. 8), onto which the Upper

Coal Measures and younger Westphalian stratigraphy thin gently (Fig. 5¢c, d). The Cambriense Marine
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Band (locally referred to as the Skelton Marine Band) that marks the base of the PUCM succession is
locally absent in borehole penetrations along the north-western margin of the Canonbie Coalfield
(Timpanheck, Bogra and Beckhall; Fig. 2). The underlying stratigraphic units form a series of mild,
together <2 km wide, parallel trending anticlines, which are overstepped by younger Westphalian
stratigraphy (Fig. 8). These mild folds are together tilted south-eastwards by the coalfield wide
Solway syncline. As with the Hilltop Fault, along the south-eastern margin of the coalfield, latest
Devonian-Visean units (Inverclyde and Border Groups) within the hangingwall of the Gilnockie Fault
thicken gently towards the fault, indicating normal movement at the time of latest Devonian-Visean

deposition.

Evidence from borehole stratigraphy suggests that minor thickness increases in PMCM and
PUCM units towards the ENE-WSW to E-W trending Archerbeck, Rowanburn, Woodhouselees and
Glenzierfoot Faults within their hanging walls may be tentatively interpreted based on seismic
reflection profiles, although growth of the Solway Syncline appears to have had a greater influence
on thickness distribution of Westphalian stratigraphy. These structures all appear to dip steeply
towards the south, displacing Carboniferous stratigraphy in a normal sense (Fig. 6). Latest Devonian
to early Carboniferous-aged units (Inverclyde and Border Groups) are offset normally by and may be
tentatively interpreted as gently thickening towards the Archerbeck, Rowanburn, Woodhouselees
and Glenzierfoot Faults within their hanging walls, as they do towards the major parallel fault

systems that bound the Solway Basin to the south (Chadwick et al., 1995).

4.3 Warwickshire Group

Although much of the subcropping Warwickshire Group succession has been partly eroded
prior to Permian deposition, thus limiting further use of isochore thickness maps, reflector
geometries observed within the Canonbie Bridge and Becklees Sandstone Formations in the Solway
syncline trough suggest that the nature of this depocentre was altered during deposition of the

Becklees Sandstone Formation. In higher resolution coal exploration seismic reflection profiles, a
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thick succession (< 200 m) of Becklees Sandstone Formation can be observed showing angular onlap
against the Canonbie Bridge Sandstone Formation stratigraphy within the Solway syncline’s western
limb (Fig. 9). In addition, reflectors belonging to the Canonbie Bridge Sandstone Formation within
the syncline’s western limb are slightly truncated against the surface of onlap (marked u/c 3; Fig.
9b). This surface of onlap is interpreted as an angular, partially erosional, unconformity. An
additional unconformable horizon can be observed from the seismic data and down cuts into
younger Becklees Sandstone stratigraphy within the Solway syncline, truncating underlying
reflectors (u/c 4; Fig. 9b). Given that the Becklees Sandstone Formation has been interpreted as
having been deposited in a fluvial environment (Jones et al., 2011) and given the broad U-shape
geometry of the unconformity, this feature is interpreted as representing an erosive and, most likely,
confined fluvial channel set (cf. Ramos et al., 2002). Above angular unconformity u/c 3 (Fig. 9b), the
axis of the Solway syncline appears to have migrated south-eastwards towards the Hilltop Fault.
Given the discordance between reflectors within the Canonbie Bridge and Becklees Sandstone
Formations in the syncline’s western limb (Fig. 9a), this eastwards migration of the Solway syncline
depocentre is most likely associated with a steepening of this western limb. In addition, and along
the syncline’s north-western limb, the entirety of the Carboniferous succession forms a high
amplitude (<1 km) anticline with a shorter and shallowly dipping north-western limb (Fig. 9a). This
anticline correlates spatially with the Gilnockie Fault, which dips more shallowly, at least locally,
within the uppermost 800 m of the subsurface. The onlapping reflector geometries described here
within the Warwickshire Group of the Solway syncline (Fig. 9a), constrain the timing of the formation
of this anticline to to the earliest deposition of the Becklees Sandstone Formation (cf. Fig. 3) (Jones

etal., 2011).

The NNE-trending Bewcastle anticline occurs within the hanging wall block of the parallel
Hilltop Fault. Unlike the comparatively minor anticlines along the north-western margin of the

coalfield, there are no timing constraints for the formation of this anticline but it is assumed that
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they formed at similar times. The Hilltop Fault tips out within the Solway Basin around the southern

margin of the coalfield (Chadwick et al., 1995).

4.4 Stephanian-early Permian

Later Stephanian to early Permian deposits are absent from the Canonbie Coalfield, as is
generally the case in the rest of north-western Europe (see Besly and Cleal, in press). Both Permian
strata and older Carboniferous strata are offset normally by one of the steeper synthetic faults to
the Gilnockie Fault as well as ENE- to east-trending faults (Figs. 6, 8). Older Westphalian strata are
offset by a greater magnitude along this structure than Permian strata, suggesting that an episode of
normal faulting preceded Permian deposition. At least two (N)NW-(S)SE trending faults cut, with
apparent dextral offset, the Gilnockie Fault as well as the Permian-aged cover by <500 m along the
western margin of the coalfield (Fig. 5a); this pattern is consistent all across the Northumberland-
Solway Basin (de Paola et al., 2005). This group of structures is difficult to identify within seismic
reflection profiles, suggesting that their vertical displacement is minimal. A strong degree of

uncertainty surrounding the timing of these structures is acknowledged.

5. Tectonic controls on the late Carboniferous evolution of the Canonbie

Coalfield

We believe that the fragmented late Carboniferous kinematic evolution of the Canonbie
Coalfield can be constrained by at least three episodes of deformation (Fig. 10). These three
episodes of deformation can be represented by unconformities described in the PMCM and the
Warwickshire Group respectively (Figs. 8 and 9) as well as later normal fault movement prior to

deposition of the basal Permian succession at Canonbie (Fig. 6).

5.1 Pennine Coal Measures (PCM) unconformity

Based on isochore thickness distributions for PMCM and PUCM and asymmetric, low-

amplitude folding correlating spatially with the Gilnockie Fault, the local PMCM unconformity is
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interpreted to indicate significant syndepositional tectonism. Although folding of the entire
Carboniferous succession beneath the base Permian unconformity has ultimately distorted the
nature of the PMCM unconformity, 2D palinspastic cross-section restoration of a NE-SW section
through the Canonbie Coalfield and Gilnockie Fault reveals that low amplitude folding occurred at
the same time as this unconformity (Fig. 10c), resulting in 1.4 % along length shortening. Along
strike, the steeper sided limbs of asymmetric, low-amplitude folds correlate laterally with the
steeply dipping synthetic and antithetic normal faults of the Gilnockie Fault (Fig. 8), although there is
interference between adjacent folds. Previous studies of inverted basins suggest that similar
asymmetric, low-amplitude folding can be indicative of ‘mild’ positive fault inversion (sensu Song,
1997) - where the ‘null point’ or the point along an inverted fault’s length at which there is zero net
displacement (sensu Williams et al., 1989) remains at the fault’s upmost tip (cf. Butler, 1998; Jackson
et al., 2013). Mild inversion structures are strongly dominated by folding due to partial reverse
reactivation of a fault along its length, where thrusting does not accommodate a significant amount
of shortening (Jackson et al., 2013). Compressional stress at the time of folding is insufficient to
prompt full reverse reactivation of these faults. The asymmetrical nature of the local PMCM and
PUCM depocentre in the Canonbie Coalfield can be explained by these asymmetric and mild
inversion structures (Figs. 5 and 8). Oblique-slip (dextral) movement along similar NE-SW trending
structures, such as the Gilnockie and Hilltop Faults, may have contributed to the slightly oblique

NNE-SSW trending growth of the Solway syncline with respect to these faults.

5.2 Warwickshire Group unconformity

The Warwickshire Group unconformity appears to represent a more significant
rearrangement of the local foreland basin system. Two-dimensional palinspastic restoration of the
NW-SE striking cross-section illustrated in figure 9 suggests that the Warwickshire Group
unconformity, seen in seismic data along the buried axis of the Solway syncline (Fig. 9), formed
because of anticlinal folding due to shallowly dipping basement-involved thrusting along the

Gilnockie Fault. This second basin reorganisation episode resulted in at least 10 % shortening (Fig.
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10b). Unlike prior inversion that occurred during the deposition of the PMCM, shortening occurring
during deposition of the younger Warwickshire Group succession appears to have been partly
accommodated by the most shallow, comparatively shallowly-dipping part of the Gilnockie Fault (cf.
Fig. 9a). As this part of the fault does not appear to have accommodated significant extension or
shortening prior to this later episode of basin inversion, this part of the fault may have originated as
a footwall short-cut (cf. Hayward and Graham, 1989). The Warwickshire Group unconformity
represents a significant rearrangement in the nature of the local Solway Syncline depocentre (Fig.
9a). Folding and thrusting appears to have caused a steepening of the syncline’s north-western limb,
and perhaps in doing so, confined the local longitudinal fluvial system causing it to become more
erosive (cf. Ramos et al., 2002; Suriano et al., 2015). Major reverse movement along the Hilltop Fault
at this time and the resulting uplift of the hanging wall may have constituted a minor lithospheric
load along the coalfield’s south-western margin (cf. Karner and Watts, 1983). This would have
perhaps prompted additional localised flexure-induced accommodation and restricted uplift of the
Solway syncline’s eastern limb and supplied the coalfield with an additional source of local clastic
detritus (cf. Jones et al., 2011). The minor Carboniferous high, that marks the southern limit of the
coalfield (Picken, 1988; Chadwick et al., 1995), may be attributed to the Hilltop Fault pinching out
laterally at a similar latitude if the depocentre immediately to the north (the coalfield) were partly

attributed to local flexure-induced subsidence.

5.3 Basal Permian unconformity and latest Westphalian-early Permian relaxation

The post-Westphalian kinematic evolution of the coalfield, prior to deposition of the
Permian succession appears to be represented by a ‘relaxation’ in compressional stresses (cf.
Dempsey, 2016). Normal offset occurs primarily along pre-existing E-W orientated faults, perhaps
indicating dextral transtension (cf. Coward, 1993; Monaghan and Pringle, 2004; De Paola et al., 2005;
Pharaoh et al., 2019) but also along the Gilnockie Fault (Fig. 8). The basal Permian angular

unconformity cuts stratigraphy below it, perhaps suggesting further uplift prior to Permian
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deposition following the late Westphalian-Stephanian (cf. Underhill and Brodie, 1993), although this

uplift event appears not to have been accommodated by fault movement.
6. A comparison with the modern ‘broken’ Northern Patagonian foreland

basin system

We suggest that syn-depostional faulting, folding and positive inversion influenced late
Carboniferous depocentres in the Canonbie Coalfield. In this respect, the coalfield provides evidence
that suggests that northern Britain during late Carboniferous times was one of many basins that did
not fit perfectly within a traditional post-rift tectonostratigraphic framework (e.g. McKenzie, 1978).
Instead, the coalfield, which was situated in the distal Variscan foreland system, evokes similarities
between the northern British part of the Variscan foreland basin system and the ‘broken’ foreland
basin systems (e.g. Bilmes et al., 2013). Whereas traditional foreland basin system models imply that
regional geodynamic processes cause expansive and largely uninterrupted basin systems (DeCelles
and Giles, 1996), in ‘broken’ foreland systems palaeodrainage, sediment routing and subsidence
trends are frequently disrupted by uplifted intra-foreland basin blocks (Strecker et al., 2011). The
archetypal example of this type of basin is the modern ‘broken’ Northern Patagonian foreland in
Argentina, which is adjacent to the Andean Mountains (Bilmes et al., 2013; Gianni et al., 2015; Lopez
et al., 2019; Bucher et al., 2019) (Figs. 11a and c). Here, several narrow Quaternary-aged
depocentres still exist oblique to the predominant collision zone and some up to 1000 km away from
the oceanic subduction zone (Gianni et al., 2015). These depocentres are defined by comparatively
uplifted intra-foreland basement blocks that have been reactivated contemporaneously with
Andean collision after having initially formed as earlier Mesozoic rift basins (Bilmes et al., 2013) (Fig.
11c). The (Neogene) syn-kinematic sedimentary sequence is characterised by stratigraphically
frequent angular unconformities, and evidence of complex palaeodrainage systems and localised

sediment routing (Lopez et al., 2019).
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As with several of the smaller depocentres that together constitute the ‘broken’ Northern
Patagonian foreland, the late Carboniferous Solway Syncline depocentre appears to have been
restricted by the uplift of the Bewcastle Anticline and the limbs of the Solway Syncline from as early
as Duckmantian (Westphalian B) times (Fig. 10). The PUCM and Warwickshire Group sediments
deposited thereafter are characterised by stratigraphically frequent angular unconformities (cf.
Lopez et al., 2019). The work of Jones et al. (2011), in particular, highlights complex sediment routing
and palaeodrainage systems during late Carboniferous times around the Canonbie area. Given the
general uncertainty surrounding the youngest Carboniferous sediments of the British Isles (e.g.
Besly, 2019), rapid lateral subsidence variations implied by unit thickness variations (Fig. 3) and
similarly complex sediment routing and palaeodrainage relationships (Jones et al., 2011), a
framework based on the ‘broken’ Northern Patagonian foreland has the potential to be expanded
across the late Carboniferous Variscan foreland basin system (Figs. 11b and d). Further work with
similar datasets across the British Variscan foreland, studying the nature of local unconformities and
thickness trends within the late Carboniferous succession is however, undoubtedly required before

previous assumptions regarding the British Isles at this time can be re-assessed.

7. Discussion

7.1 Regional tectonic implications

The two intra-Carboniferous unconformities observed in the Canonbie Coalfield
approximately correlate with long-recognised angular unconformities in the English Midlands. The
earliest PMCM unconformity at Canonbie equates very approximately with the Symon unconformity,
a diachronous and generally poorly understood unconformity (or unconformities) that locally
separates the Etruria Formation from the onlapping and overstepping Halesowen Formation in the
coalfields of Shropshire, South Staffordshire and Warwickshire (Clarke, 1901; Besly and Cleal, 1997;
Butler, 2019) (Fig. 3). Poole (1988) also makes this comparison in a comment on Picken’s (1988)

structural characterisation of the Canonbie Coalfield. Corfield et al. (1996) postulate an overall SE-
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orientated compressional stress field (g;) during late Westphalian-Stephanian times. Following the
beginning of ‘Symon deformation’, fluvial red-bed material derived predominantly from the south
and south-east began expanding into the basins of the English Midlands (Besly, 1988). Similarly
timed phases of deformation are also interpreted by Ritchie et al. (2003) within the Scottish Upper
Coal Measures Formation based on oil and gas exploration seismic in the eastern part of the Midland
Valley of Scotland and implied by an angular unconformity at the base of the Whitehaven Sandstone

Formation in West Cumbria (Akhurst et al., 1997).

The Warwickshire Group unconformity, which is observed in seismic, crops out along the
River Esk, within the study area, and was recognised by Jones et al. (2011) who observed polygonal
cracks penetrating the underlying Canonbie Bridge Sandstone filled by markedly more poorly-sorted
and quartz-rich arenitic Becklees Sandstone Formation, suggesting a prolonged depositional hiatus.
Given the great magnitude of shortening and the general absence of pre-Permian compressional
deformation accommodated by the Becklees Sandstone Formation in the Canonbie Coalfield, we
argue that this unconformity, previously only recognised in outcrop, represents the final major pulse
of Variscan inversion in the British Isles (e.g. Peace and Besly, 1997). Tectonostratigraphically
equivalent (post-inversion) units in the British Isles may therefore be represented by the Clent
Formation of the English Midlands, which unconformably rests on top of the Enville Member (Salop
Formation) in South Staffordshire, or the Kennilworth Sandstone Formation, which locally rests
unconformably on top of the Tile Hill Mudstone and Salop formations in Oxfordshire (approximately
40 km SE) and conformably upon the Tile Hill Mudstone Formation in Warwickshire (Besly and Cleal,
1997; Peace and Besly, 1997) (Fig. 3). This may suggest a younger age (Autunian or Gzhelian-
Asselian) for the Becklees Sandstone Formation than anticipated prior to this study (cf. Besly and
Cleal, in press) and that either the polygonal cracks observed by Jones et al. (2011) represent a time-
gap of up to 8 My or, more likelier, that the Canonbie Bridge Sandstone Formation represents a
condensed (200 m thick) time-equivalent unit relative to the far thicker Warwickshire Group

successions of central England (>1 km thick) (Fig. 3). Additional sedimentary accommodation in
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central England may have been a flexural isostatic response to the Variscan Mountains, further to
the south. This latest episode of deformation correlates approximately with the c. 310-295 Ma
(Murphy et al., 2016) formation of the Iberian and Cantabrian oroclines. Therefore, an alternative
more SSW-orientated compressional stress direction could be implied. The Solway syncline has

traditionally been associated with Variscan shortening (Chadwick et al., 1995).

Attributing late Carboniferous growth of the NNE-SSW trending syncline to either SE or SSW
shortening axes (Fig. 5a), creates a series of geometric problems, particularly so in a lower strain
setting (cf. Copley and Woodcock, 2016). Folding of the NNE-trending Solway Syncline may have
alternatively been accommodated by dextral movement along NE-SW trending thick-skinned
structures and kinematic strain partitioning (cf. De Paola et al., 2005; Leslie et al., 2015). The
schematically illustrated two-dimensional strain ellipse for dextral strike-slip movement along NE-
SW orientated deep basement faults incorporates simultaneous broadly east-west shortening and
broadly north-south extension, echoing early Westphalian growth of the NNE-SSW trending Solway
Syncline and mild inversion of the Gilnockie Fault, as well as extension across the broadly east-west
trending Rowanburn, Woodhouselees and Glenzierfoot faults (inset Fig. 5a). The structural
framework represented by this strain ellipse also accommodates simultaneous strike-slip movement
of conjugate faults oblique to the main NE-SW trending faults (e.g. Fig. 6). The localised stress field
may have been caused by dextral movement along basement involved faults such as the Gilnockie
and Hilltop faults within our study area (Fig. 9), or by distant movement along major thick-skinned
faults such as the Southern Upland and Highland Boundary fault systems to the north (Fig. 1). If so,
these movements may represent responses to a longer-lived stress regime, derived perhaps from
the Uralian Mountains to the east (cf. Coward, 1993), which was interrupted sporadically throughout
late Carboniferous times by phases of supposed Variscan deformation. Along both the Solway
Syncline and across the Midland Valley of Scotland, NNE- to NE-orientated growth folding is proven
to have occurred prior to these phases of deformation at Canonbie and throughout Namurian times

by unit thickness variations (e.g. Read, 1988; Chadwick et al., 1995), perhaps suggesting pre-
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Westphalian NE-SW dextral transpression (e.g. Underhill et al., 2008). The preferential intrusion of
Early Permian igneous material along tensile and approximately ENE- and WNW-orientated faults
and pre-Permian normal activation of these faults perhaps suggests post-Westphalian and

Stephanian NE-SW dextral transtension (e.g. De Paola et al., 2005).

7.2 Strain localisation along obliquely orientated structures

Given the important role that faulting, folding and positive inversion appears to have played
in determining the characteristics of late Carboniferous depocentres in the Canonbie Coalfield, we
consider the localisation of strain along depocentre defining structures. In northern Britain, the
localisation of strain along obliquely orientated structural trends with respect to the apparent,
approximately N-S compressional stress orientation requires fault damage zones significantly weaker
(>30 %) than intact bedrock (Copley and Woodcock, 2016). Having possibly undergone reverse
(dextral) reactivation during Namurian times and reverse reactivation during deposition of the
PMCM, albeit only partial reactivation along fault length (Fig. 6), NE-SW trending faults such as the
Gilnockie Fault are likely to have remained susceptible to further reverse reactivation, even in a
contrasting lateral sense, during deposition of the Warwickshire Group. There is limited evidence to
suggest that approximately E-W trending structures that were roughly perpendicular to the
orientation of maximum compressional stress, at Canonbie or in the immediately surrounding
region, accommodated significant basin shortening during this period (Fig. 6) (De Paola et al., 2005).
Three-dimensional sandbox models and modern day analogues for inverted basins suggest that
steep faults orientated perpendicular to the orientation of maximum compressive stress are unlikely
to accommodate significant shortening in low-strain settings (Keller and McClay, 1995; Di Domenica
et al., 2014). With this in mind, E-W structures that were perpendicular with respect to
compressional stress, may have remained ‘frozen’ during this period, leaving more oblique, recently

active and, therefore, mechanically weaker structures to accommodate preferential shortening.

7.3 Strain location within rheologically weaker crustal rock
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Line-length restoration suggests that at least 10 % cumulative shortening occurred along a
NW-SE axis throughout the prolonged late Carboniferous inversion phase (Fig. 9). In reality, basin
shortening is likely to have been larger due to both sub-seismic scale shortening and out-of-plane
deformation. This shortening occurred in a region widely regarded as having occupied a low-strain
setting within the Carboniferous foreland (Corfield et al., 1996; De Paola et al., 2005). In the Midland
Valley of Scotland, steeply dipping faults such as the Highland Boundary and Southern Upland fault
systems are believed to have exerted a strong control on the magnitude of shortening (Ritchie et al.,
2003; Underhill et al., 2008). A dissipating stress field derived from these faults may have
contributed towards the localised stress field at Canonbie. However, despite their shared proximities
to these fault systems, as well their similarly orientated structural fabrics, based on regional studies
subsurface studies and accounts of outcropping geology (cf. Chadwick et al., 1995; Lumsden et al.,
1967), there is a large disparity between the high magnitude of basin shortening observed at
Canonbie compared with the Scottish Southern Uplands or the Lake District (Fig. 1). The Solway
Basin and the Canonbie Coalfield is underpinned by relatively weak upper crustal rock, composed
predominantly of thick Carboniferous sediment and weakly metamorphosed Ordovician-Silurian
slate and phyllite (Rickards and Woodcock, 2005; Stone et al., 2012). This contrasts with the thinner
Carboniferous successions preserved immediately to the south and north of the coalfield that are
underpinned by mechanically strong granitoid basement rock in the Lake District and partially
granitic, greywacke dominant basement rock in the Southern Uplands of Scotland (Bott et al., 1967;
Allsop et al., 1987; Howell et al., 2019, 2020). As a result, the Solway Basin may have therefore also
accommodated shortening for a wider region, including those mechanically stronger regions that
were less able to accommodate basin shortening, just as the Solway Basin likely accommodated

early Carboniferous extension for a wider region.

High magnitude seismic-scale folding and thrusting is often accommodated by a shallow to
mid-level crustal detachment (Coward et al., 1999). The northwards dipping lapetus suture zone

that, prior to Caledonian collision of Avalonia and Laurentia, separated present day Scotland from
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northern England (cf. Freeman et al., 1988; Soper et al., 1992) constitutes such a detachment. This
detachment is undoubtedly at a relatively shallow depth beneath the Canonbie Coalfield and Solway
Basin, regardless of the contrasting interpolations of the onshore lapetus suture zone (Fig. 1)
(Chadwick et al., 1995; De Paola et al., 2005). Furthermore, our cross-section restorations of the
Solway Syncline through the Canonbie Coalfield suggest a detachment at 6 to 7 km depth below
surface (Fig. 9) that may reflect this suture. Along with the locally mechanically weak crustal rock
underpinning the region, the favourable (slightly oblique) structural fabric orientation and the weak
(following dextral reactivation) accommodating NE-trending faults, this detachment may therefore
have also been able to aid the accommodation of greater localised basin shortening with respect to

adjacent areas.

7.4 Implications for decarbonisation and low carbon subsurface energy resources in northern England

and southern Scotland

Over the past century, coal including that sourced from the Canonbie Coalfield fuelled the
bulk of the UK’s electricity and heating. Due to both the increased availability of domestic natural
gas and the UK'’s recent effort to decarbonise its energy supply, this is no longer the case. On the
contrary, the use of coal is widely condemned by western media as coal is now regarded as the
‘dirtiest’ fossil fuel because of the associated CO; and other pollutant emissions. However, UK coal
mining has left a legacy of abandoned infrastructure that has the potential to be repurposed as the
UK seeks to further decarbonise its energy supply (Andrews et al., 2020). At the time of writing, the
British Geological Survey are constructing and operating a research site in Glasgow to further
understand the potential of water from abandoned coalmines for geothermal energy (Watson et al.,
2019). Coupled CO; sequestration and enhanced coal bed methane recovery offers a further, if
riskier, low carbon subsurface energy prospect for northern England and southern Scotland (Jones et
al., 2004). This technology remains in its infancy although the Canonbie Coalfield itself was
investigated as recently as 2015 for coal bed methane purposes. Development plans were

abandoned due to, amongst other factors, the ‘structural complexity’ of the coalfield. To date, three
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deliberate deep geothermal wells have been drilled in neighbouring northern England, penetrating
Carboniferous strata (Gluyas et al., 2018). Thus far, the most encouraging of these wells was the
Eastgate borehole which intersected high permeability basement faults and fractures (Manning et
al., 2007). Carboniferous tectonism is widely believed to have been underpinned by steeply dipping
thick-skinned, basement involved faults such as those intersected by the Eastgate borehole (Corfield
et al., 1996). Our cross-section restorations for the Canonbie Coalfield, however, suggest that
deformation in this area was instead accommodated by more shallowly dipping structures that are
sub-horizontal at c. 6-7 km depth. Given that this study has revealed inconsistencies between past
assumptions made regarding the bedrock that hosts these potential resources and reality, and that
investments such as those highlighted are already being made, would it therefore not be worth
investing time exploring pre-existing and publicly available datasets in order to reduce uncertainties

surrounding the UK subsurface?

8. Conclusions

Local seismic and borehole-based mapping of the late Carboniferous succession in the
Canonbie Coalfield (SW Scotland) provides evidence of repeated episodes of positive
inversion, syn-depositional folding and unconformities within the Westphalian (Bashkirian-
Moscovian) to Stephanian (Kasimovian) Pennine Coal Measures and Warwickshire Group
successions.

Positive inversion and syn-depositional folding dictated Westphalian-Stephanian
depocentres at Canonbie. The basin history thus revealed is at variance with generally
accepted models in neighbouring northern England that state these basins subsided due to
post-rift thermal subsidence during the late Carboniferous.

A Stephanian (?) unconformity within the Warwickshire Group succession at Canonbie,
which approximately correlates with ~10 % local basin shortening, documented further

major basin shortening throughout the late Carboniferous Variscan foreland and the
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formation of the Cantabrian and Iberian oroclines in southern Europe, also contradicts
observations that maximum Variscan shortening at this time had minimal impact on late
Carboniferous basins in northern England.

Our mapping of the Westphalian-Stephanian succession at Canonbie evokes similarities
between the local Variscan foreland basin system and ‘broken’ foreland systems, where
sedimentation is controlled by local tectonism, such as the North Patagonian broken
foreland in South America.

Local variations in crustal rheology, inherited fault strengths and their variation over time,
fault orientation with respect to the evolving dominant stress field and mid-crustal
detachments are suggested to play important roles in strain localisation and ultimately the

nature of Westphalian-Stephanian depocentres at the Canonbie Coalfield.
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Figure 1

Fig. 1: (top) A simplified onshore geological map of northern Britain depicting the outcropping
Carboniferous succession. Major compressional structures are annotated in bold, many of which in
northern England and southern Scotland are oblique with respect to roughly north-south orientated
Variscan compressional stress (Corfield et al., 1996). Numbered annotations indicate areas of
northern Britain where Warwickshire Group (or age equivalent stratigraphy) has been observed
cropping out (Powell et al., 2000; Waters et al., 2007; Jones et al., 2011) (also see Fig. 3). MVS =
Midland Valley of Scotland; M-LS = Midlothian-Leven Syncline; BA = Bewcastle Anticline; SS = Solway
Syncline; DF = Dent Fault; MD FTB = M6n-Deemster Fold and Thrust Belt. Mapping data courtesy of
the British Geological Survey. (bottom) A schematic NE-SW cross-section from the Southern Uplands,

through the Solway Basin and to the Lake District.
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Figure 2

Fig. 2: A summary of the seismic and borehole data from the Canonbie Coalfield used in this study.
All seismic data was accessed through UKOGL (UK Onshore Geophysical Library). Borehole data was
accessed through the UK OGA (QOil and Gas Authority), IHS Markit and the BGS’s (British Geological

Survey) archives at Keyworth.
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Figure 3

Fig. 3a: (left) Stratigraphic columns showing international and regional Stage units of the late
Carboniferous. (right) Chronostratigraphic correlation of the Pennine and Scottish Coal Measures,
and Warwickshire Group from the Canonbie coalfield to southern Scotland, north-west England and
the English Midlands. Based primarily on petrographical work conducted by Jones et al. (2006;
2011), augmented by the seismic and regional interpretations of this study and data presented in
Picken (1988), Powell et al. (2000) and Waters et al. (2007). The correlation of regional
Carboniferous stages of Davydov (2004) is adopted, along with the palynozone subdivisions of
Waters et al. (2011). SLCM = Scottish Lower Coal Measures (Fm.); SMCM = Scottish Middle Coal
Measures; SUCM = Scottish Upper Coal Measures; PLCM = Pennine Lower Coal Measures; PUCM =
Pennine Upper Coal Measures; Esk. = Eskbank Wood; Can. = Canonbie Bridge Sandstone; Beck. =
Becklees Sandstone; WSF = Whitehaven Sandstone Formation; WSM = Whitehaven Sandstone
Member; MBM = Millyeat Beds Member. 3b: Locations of chronostratigraphically correlated Scottish
Coal Measures, and Warwickshire Group successions in the British Isles and relative to the late
Carboniferous Variscan thrust front (location of thrust front taken from Corfield et al., 1996). 3c:
Depth correlations for the Pennine and Scottish Coal Measures, and Warwickshire Group from the
Canonbie coalfield to southern Scotland, north-west England and the English Midlands. Unit
thicknesses are taken from Waters et al. (2011). The Clent Formation and Kennilworth Sandstone
Formation (in green) are those interpreted by Peace and Besly (1997) to have been deposited after

an alleged final phase of Variscan inversion tectonics in the English Midlands.
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Figure 4

Fig. 4: (left) Stratigraphic columns showing international and regional Stage units. (right) A seismic
well tie for the Becklees borehole. Gamma ray, density, sonic and lithological logs (based on Jones
and Holliday, 2006; Jones et al., 2011) are shown along with synthetic and observed seismic traces. A
= Langsettian; B = Duckmantian; C = Bolsovian; D = Asturian; Gr. = Group; Fm. = Formation; TVD =

True Vertical Depth.
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Figure 5

Fig. 5: Depth map to base Pennine Coal Measures Formation in metres in the Canonbie coalfield. The
dominant structural trends interpreted in the Canonbie Coalfield can be accounted for by dextral
wrenching along NE-SW orientated faults (inset top-left; 2D strain ellipse illustrating predicted
discontinuity trends after dextral wrench on NE-SW orientated faults). 5b, c and d: Isochore
thickness maps for the Pennine Lower, Middle and Upper Coal Measures Formations respectively,
based on the seismic interpretations of this study. Thickening during deposition of the Pennine
Middle and Upper Measures Formations is controlled dominantly by growth within the Solway

Syncline structure.
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Figure 6

Fig. 6: An interpreted SW-NE orientated seismic profile from the Canonbie Coalfield (Seismic line
ED86-04), depicting normal faulting and strike-parallel plunge of the Solway Syncline. For section

location, see Figure 2. Uninterpreted profiles for all the seismic sections included in this study can be

previewed at ukogl.org.uk.
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Figure 7

Fig. 7: A wireline (gamma ray) correlation panel for the late Carboniferous successions of the
Becklees, Glenzierfoot and Broadmeadows boreholes in the Canonbie Coalfield. Gamma ray curves
for the Glenzierfoot and Broadmeadows boreholes are derived from Jones et al. (2011). Gr. = Group;
Fm. = Formation; TVD = total vertical depth.
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Figure 8

Fig. 8: An interpreted NW-SE seismic profile (Seismic line ED86-02) depicting folding of the Solway
Syncline, mild inversion along antithetic and synthetic normal faults of the Gilnockie Fault, onlapping
Pennine Middle Coal Measures (PMCM) against mild inversion folds and normal offset along the
Gilnockie Fault. For section location, see Fig. 2. Uninterpreted profiles for all the seismic sections

included in this study can be previewed at ukogl.org.uk.



927

928

929

930

931

932

933

934

935

Figure 9

Fig. 9a: An interpreted NW-SE orientated seismic profile depicting folding of the Solway Syncline
(Seismic line 80-CAN-54). 9b: A closer look at the reflector geometries belonging to the Becklees
Sandstone Formation (Warwickshire Group) within the axis of the Solway Syncline. A series of
reflectors are shown onlapping against the western limb of the Solway Syncline. Erosional truncation
of reflectors occurs within the axis of the Solway Syncline and is interpreted as representing down
cutting, fluvial strata. For section location, see Fig. 2. Uninterpreted profiles for all the seismic

sections included in this study can be previewed at ukogl.org.uk.
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Figure 10

Fig. 10: Two-dimensional palinspastic cross-section restorations for the NW-SE orientated section
presented in Figure 9. Timings of deformation events are constrained by onlapping reflector
geometries. The cross-section can be restored by incorporating a sub-horizontal detachment at
around 6-7 km depth. Restorations are performed using the unfolding, move-on-fault and

decompaction modules in MOVE (Petroleum Experts) structural model building software.
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Figure 11

Fig. 11a: A plate tectonic setting map for the North Patagonian Andes and the North Patagonian
broken foreland (based on Gianni et al., 2015). A Stephanian-Autunian palaeogeographic
reconstruction of the Variscan foreland basin system of the British Isles based partly on Peace and
Besly (1997) and the findings of this study. 11c: A schematic cross-section of the North Patagonian
Andes, the North Patagonian fold and thrust belt (FTB), North Patagonian foredeep and the North
Patagonian broken foreland (from Bilmes et al., 2013). 11d: A schematic late Westphalian
reconstruction of the Variscan collision zone, external Variscides, Variscan fordeep and the northern
British broken foreland. LDB = Lake District Block; ISZ = lapetus Suture Zone; SSU = Scottish Southern

Uplands; MVS = Midland Valley of Scotland.
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