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Abstract. Submerged landscapes on continental shelves archive drainage networks formed during periods of
sea-level lowstand. The evolution of these postglacial drainage networks also reveals how past climate changes
affected the landscape. Ice-marginal and paraglacial drainage networks on low-relief topography are susceptible
to reorganisation of water supply, forced by ice-marginal rearrangement, precipitation and temperature varia-
tions, and marine inundation. A rare geological archive of climate-driven landscape evolution during the tran-
sition from ice-marginal (ca. 23 ka) to a fully submerged marine environment (ca. 8 ka) is preserved at Dogger
Bank, in the southern North Sea.

In this study, our analysis of high-resolution seismic reflection and cone penetration test data reveal a chan-
nel network over a 1330 km? area that incised glacial and proglacial lake-fill sediments. The channel network
sits below coastal and shallow marine sediments and is therefore interpreted to represent a terrestrial drainage
network. When mapped out, the channel form morphology reveals two distinct sets. The first set comprises two
low-sinuosity, wide (> 400 m) channels that contain macroforms of braid and side bars. These channels are in-
terpreted to have originated as proglacial rivers, which drained the ice-sheet margin to the north. The second
set of channels (75-200 m wide, with one larger, ~ 400 m wide) has higher sinuosity and forms a subdendritic
network of tributaries to the proglacial channels.

The timing of channel formation lacks chronostratigraphic control. However, the proglacial rivers must have
formed as the ice sheet was still on Dogger Bank, before 23 ka, to supply meltwater to the rivers. Ice-sheet retreat
from Dogger Bank led to reorganisation of meltwater drainage and abandonment of the proglacial rivers. Palaeo-
climate simulations show a cold and dry period at Dogger Bank between 23 and 17 ka. After 17 ka, precipitation
increased, and drainage of precipitation formed the second set of channels. The second set of rivers remained
active until marine transgression of Dogger Bank at ca. 8.5-8 ka. Overall, this study provides a detailed insight
into the evolution of river networks across Dogger Bank and highlights the interplay between external (climate)
and internal (local) forcings in drainage network evolution.
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1 Introduction

Postglacial drainage patterns in the North Sea have become a
focus of interest in recent years since the growth in archaeo-
logical exploration of the submerged landscapes of the north-
west European continental shelf (Bailey et al., 2017; Coles,
1998; Flemming et al., 2017). The adoption of seismic re-
flection data acquired for oil and gas exploration by the ar-
chaeological community has allowed mapping of extensive
terrestrial drainage networks throughout the southern North
Sea (Fitch et al., 2005; Gaftney et al., 2007, 2009; Hepp
et al., 2017, 2019; van Heteren et al., 2014; Prins and An-
dresen, 2019; Tappin et al., 2011). These subsurface mapping
projects focused on rivers as they are likely sites of human
occupation. Core- and sediment-based palacoenvironmental
research has augmented seismic mapping studies (Brown et
al., 2018; Gearey et al., 2017; Tappin et al., 2011) and put
human-landscape interaction into the wider context of Late
Quaternary landscape evolution of the North Sea during a
period of changing climate (Bicket et al., 2016; Bicket and
Tizzard, 2015; Phillips et al., 2017; Tizzard et al., 2014).

Previous explorations of submerged landscapes have used
low-resolution 2D or 3D seismic reflection surveys de-
signed to target deeper oil and gas reservoirs (Fitch et al.,
2005; Gaffney et al., 2007, 2009) or combine oil and gas
datasets with sparse high-resolution 2D seismic reflection
data (Coughlan et al., 2018; Hepp et al., 2017, 2019; Prins
and Andresen, 2019). Whilst this enables drainage networks
to be identified, there is little information to constrain sed-
imentary and geomorphic processes and therefore the con-
trols on landscape evolution. The availability of new, high-
resolution datasets from wind-farm site investigation allows
more detailed investigation of shallower submerged land-
scapes (Cotterill et al., 2012, 2017a). Dogger Bank is cov-
ered by a large (1500 km?), 2D seismic reflection data grid
and geotechnical logs acquired as a site investigation for the
Forewind wind-farm projects.

The evolution of the terrestrial landscape of Dogger Bank
over 10kyr timescales, during a period of marked climate
and far-field base-level change, has mainly focused on glacial
(Cotterill et al., 2017b; Emery et al., 2019a; Phillips et al.,
2018) and coastal stratigraphy (Emery et al., 2019a). Prins
and Andresen (2019) established a transition from subglacial
channel to terrestrial drainage in a study area 150 km north-
east of Dogger Bank, but detail of the terrestrial landscape
evolution at Dogger Bank during and after ice-sheet retreat
has yet to be established. Furthermore, the link between ex-
ternal, climatic changes at Dogger Bank and the internal
processes of drainage reorganisation, such as river piracy
(Bishop, 1995; Shugar et al., 2017) and landscape evolution,
is explored for the first time in this study with the integration
of palacoclimate model simulations.

In this study, our aim is to describe in detail the timing
and processes of formation of channel networks observed
in the seismic reflection data using stratigraphic relation-
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ships, alongside palaecoclimate model simulations, to identify
changes in temperature and precipitation at Dogger Bank.
We identify, for the first time, the evolution of a low-gradient
terrestrial drainage network on the low-relief topography at
Dogger Bank under changing climate and global mean sea-
level rise. We explore the role of ice-sheet meltwater and sub-
sequent precipitation changes in forming a well-developed
channel network on a land surface with low topographic re-
lief. This regional picture of changing drainage patterns in
the North Sea during the Late Pleistocene and Holocene has
implications for human populations and migration during
this period of climatic warming and global mean sea-level
rise.

2 Setting

Dogger Bank, in the southern North Sea (Fig. 1), is a present-
day bathymetric high (15-30 mb.m.s.l. — below mean sea
level) surrounded by deeper water (> 50 mb.m.s.1.). Site in-
vestigations for wind-farm construction on Dogger Bank
(Fig. 1) have provided a wealth of high-resolution 2D seis-
mic reflection data and geotechnical boreholes, split into two
tranches: A and B. Tranche B is the focus of this study
(Fig. 1). Dogger Bank comprises a stratigraphically complex
archive of environmental change from at least the last inter-
glacial period (Marine Isotope Stage (MIS) Se, ca. 125ka)
through to the present day (Cameron et al., 1987, 1992; Cot-
terill et al., 2017b; Gibbard et al., 1991). The onset of glacia-
tion at Dogger Bank was likely to have been during MIS 3,
around 30 ka (Carr et al., 2006; Clark et al., 2012; Hughes et
al., 2016; Phillips et al., 2017; Roberts et al., 2018; Sejrup
et al., 2000), with Dogger Bank fully deglaciated before ap-
proximately 23 (+2)ka (Emery et al., 2019a; Roberts et al.,
2018). A large proglacial lake was present during deglacia-
tion, which initially filled with sediment and then was sub-
aerially exposed, along with thrust-block moraine complexes
and outwash fans, after the ice retreated (Cotterill et al.,
2017b; Emery et al., 2019a; Fig. 1). Channels incised into
the glaciogenic sediments formed during this period of sub-
aerial exposure (Cotterill et al., 2017b). These channels form
part of the extensive networks of post-Last Glacial Maxi-
mum North Sea channel fills mapped by the North Sea Palae-
olandscape Project (Fitch et al., 2005; Gaffney et al., 2007,
2009) and other studies (Cameron et al., 1987; Coughlan et
al., 2018; Hepp et al., 2017, 2019; van Heteren et al., 2014;
Hijma et al., 2012; Prins and Andresen, 2019; Salomonsen,
1993). The channel network was buried during subsequent
marine transgression which began at around 10ka at Dog-
ger Bank, with complete inundation occurring around 8.5-
8ka (Brooks et al., 2011; Emery et al., 2019b; Shennan et
al., 2000; Sturt et al., 2013). Shallow marine sand, varying
in thickness from Om up to 25 m, was then deposited dur-
ing the Late Holocene (Cotterill et al., 2017b; Emery et al.,
2019b).The stratigraphy provides an archive of the transition
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Figure 1. (a) Location of the study area and other geographical features of the southern North Sea basin. (b) Seismic section showing
the stratigraphic architecture established in previous studies (Cotterill et al., 2017b; Emery et al., 2019a, b), with the incised channels and

Horizon Z observed in this study.

from MIS 5 marine sediments, through to glacial and terres-
trial environments, followed by a return to marine conditions
during MIS 1, 11.7ka to present (Cotterill et al., 2017a, b;
Emery et al., 2019a, b; Phillips et al., 2018). These new high-
resolution data have helped to constrain the timing and extent
of glaciation and subsequent landscape evolution at Dogger
Bank. From oldest to youngest, the lithostratigraphic forma-
tions encountered in the study area belong to the Dogger
Bank formation (glaciotectonised and glacial outwash sed-
iments), the Botney Cut formation (proglacial lake-fill sed-
iments, an unnamed formation (the channel fills), and the
Nieuw Zeeland Gronden Formation (shallow marine sand;
Cotterill et al., 2017b; Emery et al., 2019a; Stoker et al.,
2011).

https://doi.org/10.5194/esurf-8-869-2020

3 Methods

A large, integrated subsurface dataset of 2D seismic reflec-
tion profiles and geotechnical logs acquired for site investiga-
tion of Tranche B of the Forewind wind-farm project (Fig. 1)
was used in this study.

3.1 Seismic reflection data and interpretation

A dense, 2D grid of shallow, single-channel seismic
reflection data was available to this study, totalling
17 000 line kilometres in Tranche B (Cotterill et al., 2017b);
629 NE-SW-oriented lines (mainlines) are spaced at 100 m
intervals, and 75 NW-SE-oriented lines (crosslines) are
spaced at 500-1000 m intervals. Two ships were used, em-
ploying the same 1.6 kJ sparker source. Data were recorded
in StrataView, then imported to ProMAX for processing,
where a bandpass filter with a 100 Hz low cut and an 800 Hz
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high cut was applied, followed by F-k filtering and time
migration, then exported to SEG-Y. The sparker source has
a maximum vertical resolution of approximately 1.25ms,
which gives a vertical resolution of ~ 1 m at 1600ms~! in
the shallow section. Reflections are resolvable until 180 ms
(~ 150 m), below which the signal becomes too weak to re-
solve.

Seismic reflection data were interpreted using IHS King-
dom Suite. Maps were generated from interpreting seismic
grid lines in two-way time (TWT). P-wave velocities derived
from local geotechnical data were used to convert TWT to
depth (Cotterill et al., 2017a). Seawater velocity was taken
to be 1505 ms~!, and a sediment velocity of 1600 m s7! was
used (Cotterill et al., 2017a). Seismic horizons were gridded
to maps with a 10 m grid square using the flex gridding al-
gorithm in Kingdom Suite, then exported to QGIS for in-
terpretation and display. A 10 m grid was chosen as a com-
promise to maintain the necessary level of detail from the
high horizontal resolution (0.73 m at 1600 m s™h along the
seismic lines whilst maintaining a reasonable correlation be-
tween data points on lines spaced at 100 m.

Seismic interpretation was undertaken by identifying dis-
tinct seismic facies and major bounding surfaces between
them. Seismic facies were identified and named based on
Mitchum et al. (1977), with interpretation of glacial sedi-
ments using terminology based on Emery et al. (2019a). Seis-
mic facies were correlated to sedimentary facies interpreted
from geotechnical logs to establish a seismic stratigraphic
framework for the study area. This framework was used to
identify the transition from glacial to terrestrial to marine and
to map the major bounding surfaces between the different
sedimentary environments.

3.2 Geotechnical logs

Eighty-three cone penetration tests (CPTs; Fig. 3), up to 50m
below seabed, were acquired throughout Tranche B (Cotterill
et al., 2017b). These tests provide cone resistance (qc) mea-
surements that were used, uncorrected, as a grain-size proxy
through the sediments, with low resistance corresponding to
clay and high resistance corresponding to sand, as used by
Emery et al. (2019a). CPTs were used to calibrate sedimen-
tary information to seismic facies observed in the seismic
reflection data to constrain sedimentary environment. CPT
depth was converted to TWT by using the sediment velocity
of 1600ms~!.

3.3 Geomorphic interpretation

Channel networks were digitised from the gridded seismic
horizon interpretation to polygon shapefiles in QGIS by map-
ping channel forms where underlying reflections are trun-
cated. Each channel or channel network was ascribed an
individual shapefile. Centre lines for each of the channels
were digitised as line shapefiles. The shapefiles were pro-
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jected in WGS84/UTM 3IN. Centre-line shapefiles were
then imported into a Python script (Grieve, 2020) that mea-
sured centre-line length and the straight-line distance from
the shapefile start to end from UTM coordinates. These two
lengths were used to calculate sinuosity. Centre-line shape-
files were also used to extract the channel base long profiles
from the depth-converted seismic horizons. As the seismic
horizon was gridded at 10 m long profile points were auto-
matically extracted by the QGIS Profile Tool plugin every
10 m, then visually smoothed to remove effects of seismic
line mistie and any interpolation bias.

3.4 Palaeoclimate modelling

Palaeoclimate simulations provide an estimate of chang-
ing climate at Dogger Bank since the Last Glacial Max-
imum. These equilibrium-type simulations were run with
the coupled ocean—atmosphere—vegetation general circula-
tion model, the Hadley Centre Coupled Model version 3
(HadCM3; Gordon et al., 2000; Pope et al., 2000; Valdes
et al., 2017). They broadly follow the protocol described by
Ivanovic et al. (2016), opting for a melt-uniform freshwa-
ter scenario that conserves water across the deglaciation in
accordance with the prescribed ice sheets. Two sets of sim-
ulations were analysed; one uses the global ICE-6G_C ice
sheet reconstruction (Peltier et al., 2015) performed at 1000-
year intervals from 26 to 21 ka and 500-year intervals from
21 to Oka (the same simulations are described in more de-
tail by Morris et al. (2018) in their Supplementary Materi-
als and Methods), and the other uses the GLAC-1D global
ice-sheet reconstruction (Briggs et al., 2014; Ivanovic et al.,
2016; Tarasov et al., 2012, 2014; Tarasov and Peltier, 2002)
at 500-year intervals from 26ka to present that are other-
wise identical to the ICE-6G_C set. From these simulations,
we extracted 50-year climate means for annual precipita-
tion, total annual evaporation, and annual temperature for
the 0.5° x 0.5° model grid square centred at 55° N, 3.75°E,
which covers Dogger Bank.

4 Results

4.1 Seismic stratigraphic interpretation

Three seismic stratigraphic units were established based on
previous investigation of the stratigraphic architecture of the
study area (Cotterill et al., 2017b; Emery et al., 2019a, b).
The basal unit (basal seismic unit) is separated from the
younger two units (channel-fill unit, upper seismic unit) by
a major unconformable surface (Horizon Z) that is mapped
across the study area.

4.1.1 Basal seismic unit

The basal seismic unit comprises three main seismic facies,
with minor contributions of other seismic facies. Generally,
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Figure 2. (a) Seismic facies of the basal seismic unit subcropping Horizon Z. (b) Isopach map of the upper seismic unit. Areas of grey
hatching are areas where Horizon Z (top basal seismic unit) has been subsequently eroded and/or is coincident with the seabed.

the area east and southwest of the study area is characterised
by high-amplitude, varying frequency reflections and asym-
metric and symmetric serrate, inclined, patchy and sporadic
reflections (see Emery et al., 2019b, for description of termi-
nology), termed sub-unit 1 (Fig. 2a). The central study area
is dominated by high-frequency, medium-amplitude parallel
reflections that onlap or drape previous stratigraphy, infill-
ing a depocentre (Fig. 1), termed sub-unit 2 (Fig. 2a). The
northwest of the study area mainly comprises low-amplitude,
low-frequency variable to transparent seismic facies, termed
sub-unit 3 (Fig. 2a). The basal seismic unit is bounded above
by Horizon Z.

4.1.2 Horizon Z — unconformable surface

Horizon Z is present across the study area and truncates the
underlying basal seismic unit and, therefore, represents an

https://doi.org/10.5194/esurf-8-869-2020

unconformity (Figs. 1 and 2b). Channel forms mantle Hori-
zon Z and incise the basal seismic unit. Commonly, Hori-
zon Z is coincident with the seabed (Figs. 1, 2, and 5b). The
depth to Horizon Z, relative to mean sea level, is shown in
Fig. 3. In seismic section, Horizon Z is generally identified
by a continuous, medium- to high-amplitude reflection, es-
pecially where coincident with the seabed. In the north of the
study area, Horizon Z loses reflectivity and can only be inter-
preted by differences in seismic facies above and below. In
some areas, Horizon Z is high-amplitude and overlain by a
thin unit of further high-amplitude reflections (e.g. centre of
Fig. 3b).

4.1.3 Channel-fill seismic unit

The channel fills above Horizon Z comprise varying seis-
mic facies. Channel forms vary in size and morphology,
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as described further in Sect. 4.4. Larger channel fills often
cause acoustic blanking of the underlying seismic reflections
(Fig. 9). Channel-fill architecture is variable. The dominant
channel-fill seismic facies comprise high-frequency, high-
amplitude, continuous reflections that are generally sub-
parallel to the base of the channel, or horizontal, which
varies in thickness between and along channels (Figs. 4b
and 5b). High-amplitude reflections can also be mounded
externally with parallel to tangential oblique reflections in-
ternally (Fig. 4b). Typically, above this high-amplitude fill is
a low-amplitude to transparent, low-frequency fill with paral-
lel and horizontal, draped, or sigmoidal reflections (Figs. 4b
and 5b and c). In some cases, the fill is divergent in the
high-amplitude section and comprise stacked channel fills
(Fig. 4b). Prograding fill is observed in the low-amplitude,
low-frequency section of some of the channel-fill seismic fa-
cies (Fig. 4c). In other channels, the fill pattern is divergent
in the basal high-amplitude reflections, which are overlain by
low-amplitude to transparent fills (Fig. 5b and c).

Earth Surf. Dynam., 8, 869—891, 2020

4.1.4 Top channel-fill horizon

The horizon separating the channel-fill seismic unit from the
overlying upper seismic unit is variable. Typically, this hori-
zon comprises a single medium- to high-amplitude horizon-
tal reflection (Figs. 3b and 4b) but can also be draped over the
partial channel fill (Figs. 4c and 5b and c). Where channels
are absent, this horizon is coincident with Horizon Z.

4.1.5 Upper seismic unit

The youngest seismic unit is present between the seabed
and Horizon Z and sometimes partially fills the channels
(Figs. 1b, 3b, 4c and 5b and c). This upper seismic unit com-
prises low-amplitude to transparent seismic facies. In central
and northern parts of the study area, where the upper seis-
mic unit is thickest (Fig. 2b), low-frequency, low-amplitude,
west- or southwest-dipping sigmoidal-to-tangential oblique
and shingled reflections are present. The upper seismic unit
is absent where Horizon Z is coincident with the seabed.
Two large, elongate features, oriented approximately
NNW-SSE, up to 2.5km wide and 15km long, are also
present in the centre of the study area that incises into Hori-
zon Z and the basal seismic unit (Fig. 2). In the north of the
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study area, the largest elongate feature can be observed to

4.2 Geotechnical log interpretation

incise through the channel-fill unit and into the basal seis-

mic unit (Fig. 9¢), suggesting that these erosive features are
younger than the channel-fill unit.

https://doi.org/10.5194/esurf-8-869-2020

Ten CPTs intersect the channel fills of Horizon Z (Fig. 3).
Low cone resistance correlates to clay, and high cone re-
sistance correlates to sand (Robertson, 1990). CPT facies of
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channel morphology, with stacked channels and braid bars, and seis-
mic units implying differing sediment fills.

each of these 10 geotechnical logs, plus two logs that did not
penetrate channel fills, were interpreted for each seismic unit
by correlating CPTs to the seismic reflection data. This cor-
relation was made by converting CPT depth to TWT using
the sediment velocity of 1600 m s~! (Cotterill et al., 2017a).

The upper seismic unit has high cone resistance values,
as seen in CPTs H, I, K, M, V, and W (Fig. 3), which im-
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Figure 5. (a) Detailed map of main river channel 3, showing the
more sinuous morphology of the channel and its tributaries. Seismic
sections (b, ¢) show the more simple, single-channel morphology of
the rivers.

plies a sand-rich unit. The basal seismic unit is highly vari-
able depending on which sub-unit is encountered. Sub-unit 1
has mostly low cone resistance values, suggesting it is clay-
rich (CPTs H and O) but can also be interbedded with more
sand-rich layers (CPT N; Fig. 3). Sub-unit 2 is dominated
by clay-rich sediments with rare thin layers of coarser ma-
terial (CPTs I, K, P, V, and W; Fig. 3). Sub-unit 3 is vari-
able but dominated by high cone resistances intercalated with
intermediate responses, implying silty and sandy sediments
(CPT R; Fig. 3, Robertson, 1990).

The channel-fill signatures differ between each CPT, vary-
ing from clay-rich to sand-rich, and are commonly interbed-
ded. In CPT W, the channel fill is clay-rich at the top, be-
tween 6 and 14 m, and sand-rich to the base of the channel
fill at 19 m. This correlates to the difference in seismic fa-
cies within the channel-fill seismic unit, where the clay-rich
unit correlates to low-frequency, transparent seismic facies,
and the sand-rich unit correlates to high-amplitude, parallel
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reflections (Fig. 3). In contrast, CPT V contains no clay-rich
layers, solely comprising intermediate cone resistances, im-
plying a silty to sandy fill. CPTs I, L, M, and P comprise low
cone resistance responses, implying clay-rich facies. CPTs H
and N are also dominated by clay but have irregularly spaced,
1040 cm thick, intercalated silts. The general trend within
CPT N shows fining upwards. CPTs K and O are highly vari-
able in cone resistance throughout the channel-fill seismic
unit, with a sandy base, a clay-rich middle, and a sandy top.

4.3 Sedimentary environments

The three seismic units and Horizon Z, when correlated to
CPT log facies, suggest a transition between three distinct
sedimentary environments.

4.3.1 Glacial and proglacial deposits

The wide range of seismic and CPT facies within the basal
seismic unit implies a complicated depositional setting. Sub-
unit 1 has varying seismic facies that include serrate, patchy,
inclined, and sporadic reflections and correlates to fine-
grained, clay-rich facies with siltier interbeds and some sand,
such as in CPTs H, O, V, and W (Fig. 3). The nature of the
reflections implies deformation of this sub-unit, which is in-
terpreted to be glaciotectonic compression of subglacial and
glacial outwash sediments deposited at the margin of an ice
sheet (Cotterill et al., 2017b; Emery et al., 2019a; Phillips
et al., 2018). The rhythmic, parallel, high-frequency reflec-
tions within sub-unit 2 correlate to clay-rich CPT facies in
CPTLPL,V,and W (Fig. 3). The fine-grained, rhythmic de-
posits suggest deposition in a low-energy environment, and
the basin-filling geometry of the sub-unit supports an inter-
pretation that these are lake-fill sediments. The third sub-unit
is characterised by low-amplitude reflections whose geom-
etry implies aggradation at low angles. CPT R (Fig. 3) has
a variable but generally high cone resistance, implying in-
terbedding of sand and siltier units. Sub-unit 3 has varying
thickness; it is thicker in the west of the study area, thinning
to a lobate geometry to the east, where it overlies sub-unit 1,
and is onlapped by sub-unit 2. Sub-unit 3 is interpreted to be
glacial outwash deposited subaerially in outwash fans dur-
ing ice-sheet retreat. A full description of these glacial and
proglacial sedimentary environments and their implication
for landscape evolution during ice-sheet advance and retreat
is provided in Emery et al. (2019b).

4.3.2 Terrestrial and fluvial

Horizon Z is an unconformable surface, into which channel
forms have incised. These channel forms vary in length and
width but form a connected network of channels (Fig. 6).
There are three main channels, which generally have smaller
tributary channels joining them. The high aspect ratio chan-
nel fills (50 : 1 up to 100 : 1) are shallow (up to 15 m deep)
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but wide (up to 1 km width). Where Horizon Z is not coinci-
dent with the seabed, the channel forms are observed to run
parallel to the centre line of low-relief valleys (Fig. 3d).

Horizon Z is interpreted to represent a composite terres-
trial surface that formed after retreat of the ice sheet and in-
filling of the proglacial lake (Cotterill et al., 2017b; Emery
et al., 2019a). The channels might have originated as a tun-
nel valley network, such as that interpreted to the east of
Dogger Bank (Prins and Andresen, 2019). Tunnel valleys are
generally much deeper than the channels observed incising
Horizon Z, with lower aspect ratios (10 : 1) and highly un-
dulating thalwegs (Livingstone and Clark, 2016; O Cofaigh,
1996; Ottesen et al., 2020; Prins et al., 2020). Furthermore,
if the channels were of a tunnel-valley origin, their strati-
graphic position would require a late-stage ice-sheet read-
vance over the proglacial lake-fill sediments. However, no
evidence of deformation related to readvance is recorded
within the proglacial lake-fill sediments or anywhere else
throughout Tranche B, and there are no glaciogenic deposits
or glacial geomorphology at the stratigraphic level of the
channel network (Emery et al., 2019a). Subglacial channels
in the Dogger Bank area are either smaller than (tens of me-
tres wide; Emery et al., 2019a) or of a similar width to these
channels but markedly deeper, up to 100m deep (Fig. 9).
Therefore, we favour a fluvial origin for these channels that
incised into Horizon Z.

The CPT logs have mixed responses within the channel-
fill seismic unit, implying different infill histories. Sandy and
silty channel-fill sediments are frequently encountered to-
wards the base of the channels (CPTs K, N, O, V, and W),
implying a moderate- to high-energy sedimentary environ-
ment. Fining upwards is also apparent in CPTs K, N, and W,
which is characteristic of bar deposits in channel fills. Clay-
dominated facies (CPTs H, I, L, M, P, and the upper sec-
tion of CPT W) suggest a low-energy sedimentary environ-
ment. The clay-dominated facies could also represent brack-
ish or marine deposition during marine transgression. With-
out detailed sedimentary information provided by cores, and
palaeoenvironmental analyses, such as microfossil assem-
blages, it is not possible to confirm the depositional environ-
ment of these clay-rich facies.

4.3.3 Shallow marine

The generally low-amplitude to transparent seismic facies
of the upper seismic unit imply a relatively homogeneous
sediment. The CPT logs that correlate to the upper seismic
unit, such as CPTs V and W, have high cone resistance val-
ues (~ 30-50 MPa), suggesting the unit is sand-rich. The ho-
mogeneous sand and generally eastward-dipping sigmoidal
reflections are interpreted to represent progradation of sand
in a shallow marine depositional environment across Hori-
zon Z after marine transgression. This interpretation is fur-
ther corroborated by shallow marine sands recovered from
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Figure 6. Map of channel network interpreted from Horizon Z showing the three main channels, seven smaller streams, and their tribu-
taries. Numbers correspond to the sinuosity of each individual channel. The outline of the proglacial lake-fill sediment subcrop is shown.
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vibrocores in the southeast of this study area, such as vibro-
core 213 (Fig. 2), as shown in Emery et al. (2019a).

4.4 Geomorphology

Three main channel fills are identified above Horizon Z,
whose widths are greater than 400 m and up to 1000 m wide
and 15 m deep (Fig. 6). Main channel fill 1 runs from west to
east and is located in the east of the study area. Main chan-
nel fill 2 runs from north to south in the centre of the study
area. Main channel fill 3 runs from northwest to southeast
in the west of the study area (Fig. 6). A tributive network of
smaller channel fills associated with the large channel fills
also exists, whose widths are up to 250 m and depths up to
10 m. Longer, isolated channel fills of a similar scale are also
observed within the study area.

Two forms of channel cross section are observed. The first
form corresponds to main channel fills 1 and 2, with a wide
channel incision that comprises numerous smaller erosion
surfaces separated by shallower and generally horizontal sec-
tions at its base (Fig. 4). The second form, corresponding to
the tributaries, main channel 3, and the isolated channels, is
generally U- or V-shaped with a single deep incision (Fig. 5).

The bases of main channels 1 and 2 show cross-channel
depth variations (Fig. 4) from narrow, deep channel sec-
tions separated by wider, flat-topped, mounded shallow sec-
tions elongated parallel to the channel with internal oblique
reflections that dip downstream (Fig. 4c). The deeper sec-
tions split and rejoin, with between one and three deep chan-
nel sections across the main channel width (Fig. 4). The
main channels 1 and 2 have low sinuosity (channel 1 = 1.06,
channel 2 = 1.05; Fig. 7). The tributaries, main channel 3,
and isolated channels observed have similar sinuosity (mean
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of 1.25) and average channel widths (100-150m; Fig. 7),
which differ from those of main channels 1 and 2. The tribu-
taries are between 2 and 4 times smaller than main channels.
There is a large variation in sinuosity of the tributaries, rang-
ing from 1.07 to 1.53, and the isolated channels are straighter,
with sinuosity between 1.16 and 1.43. Main channel 3 has a
sinuosity of 1.22. The tributaries join the main channels at
angles around 90° (Fig. 6), implying a perpendicular flow di-
rection to the main channels.

Long profiles of the three main channels and their longest
tributaries were drawn from the centre lines of the deepest
point of the channel base relative to the channel edge and
smoothed to reduce issues of seismic mistie and interpolation
bias (Fig. 7). The profiles undulate but show overall decrease
in elevation towards the east (channel 1), south (channel 2),
and southeast (channel 3). The tributary channel bases also
decrease in elevation (Fig. 7) and sometimes become steeper
from the tributary head to the confluence with main channels,
such as in main channel 1 (Fig. 7), implying these channels
were cutting down to the main channels. The flow direction
of the rivers is interpreted to be the same as the direction
of decrease in elevation (Fig. 7). Therefore, the network of
channels is a dendritic to subdendritic river drainage network
(Zernitz, 1932) draining from tributaries into main channels,
then out of the study area. The maximum elevation of this
drainage network is —32m, and the minimum elevation is
—56 m. The average gradient for the main channels ranges
from 0.2 to 0.9 mkm™~! (0.01 to 0.05°).

4.5 Palaeoclimate modelling

The palaeoclimate simulation outputs for the two model
runs using GLAC-1D and ICE-6G_ C ice sheet reconstruc-
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Figure 7. (a) Sinuosity and (b) average channel width for the main categories of channels. Main channels 1 and 2 have a distinct morphology
when compared to the other channels. Long profiles for channels 1 (¢), 2 (d), and 3 (e) show the direction of flow from right to left, and the
interaction of tributaries, cutting down and steepening into the main channels. X—X’, Y-Y’ and Z—Z’ are shown in Fig. 6.

tions for the time span of 26ka to present are shown in
Fig. 10. Generally, the climate simulations show similar
trends through the Holocene but differ through the Late Pleis-
tocene. The climate simulation using GLAC-1D has much
higher precipitation than the equivalent simulation with ICE-
6G_C between 26 and 18 ka, but the climate with ICE-6G_C
shows much higher precipitation than with GLAC-1D be-
tween 18 and 11 ka. The temperature profiles are largely sim-
ilar between the GLAC-1D and ICE-6G_C runs, except be-
tween 26 and 20 ka, where the ICE-6G_C run gives temper-
atures consistently 5 °C higher.
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5 Discussion

5.1 Landscape evolution

The northward retreat of the ice sheet from Dogger Bank
left a landscape of glaciotectonites, glacial outwash, and
proglacial lake-fill sediments (Cotterill et al., 2017b; Emery
et al., 2019a; Roberts et al., 2018). The resulting landscape
surface is likely to have been modified where the seabed and
Horizon Z are coincident, and therefore reconstructing the
original topographic template is challenging, although it is
likely that the topography was low relief, as part of this land
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Figure 8. Conceptual landscape evolution model for the study area, showing a single, representative proglacial channel. (1) Initial drainage
of meltwater into the proglacial lake. (2) Proglacial lake gradually infilled with fine, draped sediments. Subsequently, proglacial lake accom-
modation filled, proglacial river channel incises into the fill. (3) Ice-sheet retreat and drainage reorganisation abandons the proglacial river
channels. (4) Temperature and precipitation increase, tributaries incised. (5) Marine transgression floods the river channels first. (6) Final
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surface beyond the channels is planar (Fig. 3). This is in con-
trast to the landscape exposed in Tranche A of the Dogger
Bank Forewind wind-farm project, to the west of this study
area, which had an undulating surface of moraine highs and
drainage channel lows (Cotterill et al., 2017b; Phillips et al.,
2018). During this period of exposure, the land surface would
have been a periglacial tundra with limited vegetation (Cot-
terill et al., 2017b), resulting in desiccation and overconsoli-
dation of the sediments (Cotterill et al., 2017b; Emery et al.,
2019a; Mesri and Ali, 1999).

The morphology and low sinuosity of main channels 1
and 2 reflects modern proglacial braided river channels (Car-
rivick and Russell, 2013), such as Icelandic glacial outlet
rivers, e.g. Jokulsd 4 Fjollum (Alho et al., 2005; Bristow
and Best, 1993; Carrivick et al., 2007; Maizels, 1989; Mar-
ren, 2005; Marren and Toomath, 2014; Vandenberghe, 2001).
Braided river channels often form in cold climates, such as
proglacial settings, with a high sediment throughput, where
there is little vegetation and the channels are unconfined
(Bristow and Best, 1993; Marren, 2005). The individual Dog-
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ger Bank channels within the main channel body are sepa-
rated by shallower sections, interpreted as braided channels
separated by mounded braid bars with internal cross-bedding
implying downstream accretion (Fig. 4c). Given the similari-
ties in morphology to modern systems, we interpret that these
channels formed in a proglacial setting, with meltwater con-
taining a high sediment supply from the retreating ice sheet to
the north, leading to erosion of tundra-plain surface (Fig. 8,
stages 1 and 2). However, the width of the braid plains (400-
1000 m) is modest and remains constant, which is in con-
trast to unconfined braid plains from modern day settings,
such as Skeidardrsandur, Iceland, which are generally wider
(> 1000 m) and distributive. This relatively constant width
implies the existence of a topographic constraint, such as the
low-relief valleys (Fig. 3d), with the possibility that these val-
leys were once deeper, and the surrounding higher topogra-
phy has been subsequently removed through wave ravine-
ment during marine transgression (Emery et al., 2019b). It
is difficult to test whether significant erosion has taken place
due to the lack of a stratigraphic datum to correlate within
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the proglacial lake sediments, and such a correlation would
require high vertical and spatial resolution of stratigraphic
detail from borehole logs and seismic data that are beyond
the capability of this dataset.

The location of the proglacial channels was influenced by
antecedent topography. The location of channel 1 parallels a
subtle topographic high formed by a tunnel valley fill over-
lain by proglacial lake-fill sediments (Fig. 9). The tunnel
valley fill has a ~90° bend (from N-S to W-E trend) di-
rectly underneath an erosional feature that removes the head
of channel 1. We suggest that channel 1 also changed trend
here from flowing north—south to flowing west—east, to ex-
plain why channel 1 does not reappear beyond the erosional
feature (Fig. 9). These features eroded to a deeper point than
the base of the channel reaches, implying the channel was
removed, as opposed to not being visible below the erosional
features. Antecedent topography also affected the location
of channel 2, which flowed down the axis of the former
proglacial lake, and is located at the base of a shallow val-
ley (Fig. 3d). This location implies there was a topographic
constraint formed by the top surface of the former proglacial
lake-fill sediments, which limited lateral migration and de-
velopment of a distributive character. The topographic con-
trol may have been exacerbated by the clay-rich, overconsol-
idated, cohesive lake-fill sediments, which would reduce the
ability of channels to migrate laterally.

The braided proglacial rivers must have formed prior to the
retreat of the ice sheet down from Dogger Bank. Retreat of
the ice down the retrograde, northern slope of Dogger Bank
lowered the ice-sheet basal elevation from —60 to —110m
(Emery et al., 2019a), therefore preventing meltwater from
flowing onto and over Dogger Bank. The proglacial rivers
formed when the retreating ice sheet was still on the topo-
graphic high of Dogger Bank, but after its retreat off the topo-
graphic high, the meltwater and sediment supply would have
been insufficient to form rivers of this size and type. The ice
sheet retreated from Dogger Bank prior to 23 ka (Emery et
al., 2019a; Roberts et al., 2018), implying that the lake filled
and the proglacial river channels developed prior to this date
(Figs. 8 and 11). The ice sheet retreating northwards down
the retrograde slope would have resulted in drainage cap-
ture by the northern slope of Dogger Bank. A similar sit-
uation of drainage reorganisation due to glacial retreat has
been observed in the present day over decadal timescales
(Bishop, 1995; Carter et al., 2013; Shugar et al., 2017). Melt-
water would have rerouted parallel to the ice sheet margin
and along the northern slope of Dogger Bank, resulting in
ponding of meltwater in a ribbon lake to the north of Dogger
Bank, supported by observations of proglacial lake-fill sedi-
ment accumulation to the north of Dogger Bank (Roberts et
al., 2018). The topographic control on drainage and reduc-
tion of meltwater supply to the proglacial rivers on Dogger
Bank would have resulted in flows that were underfit to the
size of the proglacial river channels or their abandonment in
the case of total meltwater switch-off. These proglacial rivers
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were therefore likely short-lived (possibly less than 1 kyr) as
major conduits, between the proglacial lake filling and ice
sheet retreat off the Dogger Bank topographic high. This
short lifespan of the river highlights the interplay between
ice-sheet retreat and stream reorganisation in controlling the
hydrological evolution of a proglacial landscape.

Discharge variability fundamentally controls the geomor-
phology of river channels (Fielding et al., 2018; Nicholas et
al., 2016). The coefficient of variance (CVQp) of a river sys-
tem depends on the ratio of annual peak discharge divided by
the mean peak discharge. Generally, in modern river systems
with highly variable peak discharges (high CVQ,), macro-
form structures such as braid bars are not formed or pre-
served (Amos et al., 2004; Fielding et al., 2009, 2018). In
contrast, low-CVQ, rivers readily form and preserve large
macroforms with cross-bedding also well preserved. Cross-
bedding is rarely seen in the seismic facies as it is likely
to be below seismic resolution but is occasionally present
(Fig. 4c). However, large braid bars are well-preserved and
visible in the seismic data (Fig. 4), with some evidence of in-
terbedding in CPT logs (e.g. CPTs H, K, O, and W; Fig. 3),
and therefore appear to have been stable with limited rework-
ing during the lifespan of the river. This preservation and
bedform scale suggests that the river had a steady meltwater
supply and low discharge variability, but preservation may
have been enhanced by the sudden reduction in discharge
when meltwater supply was switched off during northward
ice-sheet retreat. It may be expected that rivers experiencing
jokulhlaup flood events will have high CVQ, values com-
pared to annual peak discharge in non-jokulhlaup years (Rus-
sell et al., 2006). The steady meltwater supply implies that
this sector of the retreating ice sheet did not produce jokulh-
laups, whose discharge variability results in geomorphologi-
cal characteristics similar to those of rivers with high CVQ,
(Carrivick et al., 2004b; Carrivick and Rushmer, 2006, 2009;
Guan et al., 2015; Maizels, 1989, 1997; Marren, 2005; Mar-
ren et al., 2009; Staines et al., 2015). However, the relation-
ship between CVQp, and geomorphological characteristic has
not yet been tested in rivers experiencing jokulhlaups (Field-
ing etal., 2018) and remains a topic for future research. There
is no evidence within the preserved proglacial river channels
or surrounding landscape of glacial outburst floods from the
ice-sheet margin at this time (Carrivick et al., 2004a, 2013),
which may support the interpretation of macroform and geo-
morphic preservation being a result of low discharge variabil-
ity, implying a lack of outburst flood activity. Furthermore,
limited aggradation of proglacial sediments contrasts with
the transient landscape and associated sediment accumula-
tions of proglacial forelands of jokulhlaup glaciers (Duller et
al., 2014). A lack of outburst activity implies a well-ordered,
efficient subglacial drainage system, and this is supported by
evidence presented by Emery et al. (2019a) from ice stream-
ing and small-scale subglacial meltwater channel morphol-
ogy. It also may explain why there is a lack of Late We-
ichselian (MIS 2) tunnel valleys in the Dogger Bank area,
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contrasting with the tunnel valleys formed during previous
episodes of ice sheets in this section of North Sea (Cotter-
ill et al., 2017b; Lonergan et al., 2006; Praeg, 2003; Stewart
et al., 2013; Stewart and Lonergan, 2011). The tunnel valley
adjacent to, and controlling the location of, channel 1 (Fig. 9)
is of unknown age but predates stratigraphy related to MIS 2
ice-sheet retreat and may be related to ice-sheet advance dur-
ing MIS 3.

The isolated channels and tributaries, and main channel 3,
have different morphologies to the two proglacial river chan-
nels (1 and 2). The isolated channels are all very similar and
are therefore interpreted to have the same origin as tribu-
taries that joined the main channels outside of the study area.
The higher sinuosity (Fig. 7) of these smaller channels sug-
gests formation under different conditions to the proglacial
channels. The direction of drainage of the tributaries and
streams is often perpendicular to the flow of the main chan-
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nels (Fig. 6), following pre-existing slopes, such as the val-
ley to the main proglacial channels (Fig. 3d). These smaller
channels also have heads within the study area, unlike the
proglacial channels, which suggests that they did not form
due to meltwater. The long profiles of these tributaries show
them to cut down to the base of the main channels (Fig. 7).
The subdendritic pattern of these smaller channels, combined
with their smaller size and higher sinuosity, and that they
steepen into the main channels, suggests they formed later
(Fig. 8, stage 4). The increase in sinuosity is interpreted to
represent a warmer climate, with a more erodible substrate
no longer bound by permafrost. The large, flat areas of high
seismic amplitude (e.g. centre of Fig. 3b) are interpreted to
represent marshy areas with the same seismic character as
areas from which marshy plant macrofossils have been re-
covered (Wessex Archaeology, 2014). These marshy areas
mainly occur over the proglacial lake-fill sediments, imply-
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point.

ing a low-permeability substrate that would have prevented
groundwater flow of rainwater (Fig. 8). This in turn led to the
development of the subdendritic drainage network, which is
most developed and best preserved over the proglacial lake-
fill sediments (Fig. 6), except for main channel 3, which de-
veloped over basal sub-unit 1, which consists of glaciotec-
tonised and overconsolidated clays.

Only the proglacial river channels show evidence for
aggradation of sediment within the channels (Fig. 4), with
little evidence in the tributaries or overbank deposits (Fig. 5).
These smaller river channels are only partially infilled by al-
luvial sediments, with the rest of the infill being shallow ma-
rine sand (Fig. 5). Models of relative sea-level rise suggest
that inundation of the North Sea basin began around 16 ka
(Brooks et al., 2011; Kuchar et al., 2012), resulting in a base-
level rise for the drainage network (Fig. 10), which should
result in aggradation within the drainage network. The lack
of aggradation may be due to low discharge and sediment
flux, with only a small local supply, or due to the drainage
network being distant from the base-level rise, draining into
a local depocentre, i.e. the previously abandoned proglacial
river channels.

Marine transgression occurred in the study area between
9.5 and 8.5ka (Cotterill et al., 2017b; Emery et al., 2019b;
Shennan et al., 2000), inundating the incisional channel net-
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work first (Fig. 8). The small size and limited drainage basin
area would not have been sufficient for aggradation under a
rising base level to outpace the inundation by marine waters.
This may explain the fine-grained channel-fill sediments ob-
served in some CPTs (e.g. CPT L, CPT W; Fig. 3), as marine
transgression would have modified the sedimentary environ-
ment in the sheltered estuaries to low-energy tidal mudflats,
as observed elsewhere in the North Sea during Holocene
marine transgression (Coughlan et al., 2018; Gaffney et al.,
2009; Hepp et al., 2017, 2019; Prins and Andresen, 2019).
The final stage of regional landscape evolution was contin-
ued marine transgression, with associated ravinement of the
pre-existing topography (Figs. 3 and 8; Cotterill et al., 2017b;
Emery et al., 2019a). The large, elongate features that incise
into Horizon Z, the channel fills, and underlying basal seis-
mic unit are interpreted to have formed at this stage as large
tidal scours (Fig. 9c). Continued relative sea-level rise and
the transport of sediment, shown by the broadly west to east
dip direction of sigmoidal to oblique reflections in the upper
seismic unit (Fig. 4c), resulted in the deposition of shallow
marine sand that completed the infill of the channels and the
tidal scour features.
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5.2 Impact of changing palaeoclimate on terrestrial
landscape evolution

Between deglaciation of Dogger Bank (> ca. 23 ka) and ma-
rine transgression at ca. 8ka, the landscape was subaeri-
ally exposed for a 15kyr period during which the chan-
nel network formed. By linking palaeoclimate model data
to the stratigraphic observations, it is possible to infer cli-
matic changes that led to the formation of the channels in
the absence of age constraints. The overconsolidation of the
proglacial lake-fill sediments in the study area has been in-
terpreted as a response to desiccation during subaerial expo-
sure, rather than loading by ice-sheet readvance, as supported
by their stratigraphic position above subglacial and glacio-
tectonised sediments, and the lack of glaciotectonic defor-
mation within the lake fill (Cotterill et al., 2017b; Emery et
al., 2019a). The desiccation would have required low pre-
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cipitation, most likely under periglacial conditions. How-
ever, the presence of the more sinuous, dendritic channel net-
work incising into the desiccated lake-fill sediments suggests
an increase in precipitation. Radiocarbon dates from water-
logged marshland plant remains in boreholes in Tranche B
give Bglling—Allergd Interstadial dates (14 890-14 010 and
13 810-13480 cal BP), which contain cold-temperate plant
pollen such as transitional Pinus and dwarf birch Betula nana
species and sedge, rush, and bogbean recovered in the same
sample (Wessex Archaeology, 2014). These plant and pollen
assemblages are similar to those observed to the east at Slot-
seng, Denmark (Mortensen et al., 2011). This is in line with
observations from records throughout the North Sea basin
(Brown et al., 2018; Gearey et al., 2017; Smith et al., 2007,
Tappin et al., 2011). The pollen suggests a transition from
arid, periglacial conditions responsible for desiccation of the
glacial sediments to a wetter climate that allowed formation
of marshes and river channels, at some point prior to 15ka
(Bglling—Allergd Interstadial).

Two palaeoclimate simulations using the GLAC-1D and
ICE-6G_C ice-sheet models were run, giving differing re-
sults. The GLAC-1D ice-sheet model uses the DATED-1
chronological database for the Eurasian Ice Sheet (Hughes
et al., 2016), which gives a realistic reconstruction of the ice
sheet and palaecogeography of the British Isles, and thus pro-
vides the more up-to-date chronology for Eurasian Ice Sheet
evolution. However, the DATED-1 database shows Dogger
Bank to be glaciated until 19 ka, as opposed to deglaciated by
23 ka (Emery et al., 2019a; Roberts et al., 2018). Therefore,
the climate evolution simulated in the Dogger Bank area may
be biased and simulated as too young during this early time
window (23-19ka). Nevertheless, it should provide a more
faithful representation of climate thereafter.

Effective precipitation (precipitation minus evaporation)
trends from the GLAC-1D simulations show a general de-
crease in precipitation from 26 to 17 ka, whereas the ICE-
6G_C runs show an increase from 22ka to a maximum at
14ka (Fig. 10). The fluctuating, high precipitation outputs
from GLAC-1D may be related to the local presence of a
modelled ice sheet during this time, when it should have been
largely deglaciated. During the same time period, mean an-
nual temperature (MAT) increased from —12°C at 21ka to
0° C at around 17.5 ka (Fig. 10), driven by rising atmospheric
CO; and increasing summer insolation. Between 17 ka and
marine transgression at ca. 8 ka, MAT and precipitation con-
tinued to increase to 10 °C and ~ 750 mm yr~!, respectively.
Notably, the large climate excursions documented for the
Bglling—Allergd and Younger Dryas periods (e.g. as recorded
in the NGRIP ice core record; Fig. 10; Andersen et al., 2004)
are not captured by either set of simulations due to the nature
of the experiment design. These are equilibrium-type simu-
lations spaced at 500-year intervals, and therefore the simu-
lations do not have the temporal resolution to capture abrupt
climate events and meltwater pulses from ice melt (such as
have been used to simulate these events in the past, e.g. Liu
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et al., 2009). Nonetheless, the ICE-6G_C model run shows
a peak in rainfall during the Bglling—Allergd period, when
the North American ice sheet undergoes rapid deglaciation
in the ICE-6G_C reconstruction, represented by the removal
of large segments of the ice sheet between time steps in the
reconstruction, which is captured by the climate model, af-
fecting surface energy balance and atmospheric circulation
(e.g. Lofverstrom and Lora, 2017). Important for the Dogger
Bank region, the GLAC-1D runs, which have the more ac-
curate local deglaciation history after 19ka (see Sect. 3.4),
show a steady increase in precipitation from 17 to 11 ka, fol-
lowed by a rapid increase in precipitation during the Early
Holocene.

We interpret the time period from deglaciation at 23 ka to
MAT reaching 0°C and precipitation increase at 17ka, as
an arid, periglacial environment. During these 6000 years,
desiccation of the glacial sediments occurred, with limited
tributive channel development (Fig. 10). After 17 ka, rising
CO; and summer insolation along with the strong climatic
influence of the deglaciating Northern Hemisphere ice sheets
drives increased precipitation and temperature, which would
have resulted in elevated humidity and the onset of ponding
and drainage of precipitation on Dogger Bank, as recorded by
the marshy, waterlogged areas in borehole records, and the
incision of the channel network and drainage into the previ-
ously abandoned large channels over ca. 9 kyr (Fig. 10). The
uncertainty in the early part of the palaeoclimate simulations
due to ice-sheet models, from 26 to 17 ka, could potentially
allow for a change to a more humid, higher-precipitation cli-
mate from earlier than 17 ka. This would allow more time for
the dendritic drainage channel network to form but less time,
with little precipitation, for the desiccation of the glaciogenic
sediments. On the balance of these two factors, we prefer the
interpretation of 17 ka being the onset of a warmer climate
with more precipitation, which initiated marshland and the
drainage network on top of desiccated proglacial lake-fill and
glacial outwash sediments.

5.3 Where did the water go? Palaeogeography of the
southern North Sea

Numerous studies have identified Late Pleistocene to
Holocene channel networks of a similar stratigraphic po-
sition to those in this study (Busschers et al., 2007; Fitch
et al., 2005; Gaffney et al., 2007, 2009; Hepp et al., 2017,
2019; Hijma and Cohen, 2011; Prins and Andresen, 2019).
During this period, main channels 1 and 2 were active as
proglacial channels draining the margin of the Eurasian Ice
Sheet into the Late Weichselian North Sea lake, a large
proglacial lake proposed to have existed to the south of Dog-
ger Bank (Becker et al., 2018; Hjelstuen et al., 2017; Jansen
et al., 1979; Murton and Murton, 2012; Roberts et al., 2018;
Sejrup et al., 2016; Toucanne et al., 2010). The proglacial
channels would have drained directly into this lake (Fig. 11),
until the ice retreated off the topographic high at ca. 23 ka
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to cut off the meltwater and sediment supply. The Late We-
ichselian North Sea lake drained rapidly ca. 18.7 ka through
the Elbe Palaeovalley mouth (Becker et al., 2018; Hjelstuen
et al., 2017), leaving the Oyster Ground subaerially exposed.
After lake drainage, there were two drainage outlets to the
ocean: (i) the Fleuve Manche system draining south and
westwards (Bourillet et al., 2003; Gibbard et al., 1988; Mel-
lett et al., 2013; Toucanne et al., 2010, 2015), which drained
the Rhine—Meuse and Thames, and (ii) the Elbe Palaeoval-
ley, which drained the Elbe, Weser, and Ems rivers (Figge,
1980; Gibbard et al., 1988; Hepp et al., 2017; Toucanne et
al., 2015) into the Norwegian Trough (Fig. 11). A third out-
let opened after marine transgression inundated the lower-
elevation areas north and west of Dogger Bank, eventually
inundating the Outer Silver Pit between 12 and 10 ka (Brooks
et al., 2011; Shennan et al., 2000; Sturt et al., 2013).

The large areas that remain uncovered by similar datasets,
especially in relation to the area formerly covered by the
Late Weichselian North Sea lake, make the location of where
the rivers in the study area drained challenging to constrain
(Fig. 11). Most rivers interpreted from seismic data during
the North Sea Palaeolandscape Project (Fitch et al., 2005;
Gaftney et al., 2007, 2009) drain into the Outer Silver Pit lake
(separate to the Late Weichselian North Sea lake), but it is not
known in what direction. The present-day bathymetry of the
Oyster Ground shows little topography, with no evidence of
transgressed drainage networks expressed at the seabed. The
rivers of Dogger Bank may have drained into the Outer Silver
Pit lake. Then, it drained northwards into the gradually trans-
gressing northern North Sea via the Wash-Inner Silver Pit
and Humber rivers, southwards into the Fleuve Manche sys-
tem, or eastwards into the Elbe Palaeovalley (Fig. 11). The
general direction of palaeoriver flow identified east of Dog-
ger Bank (Hepp et al., 2017, 2019; Prins and Andresen, 2019)
is towards the Elbe Palaeovalley, similar to that observed in
our study area and the northern area of the North Sea Palae-
olandscape Project, south of Dogger Bank (Fitch et al., 2005;
Gaftney et al., 2007, 2009). We propose that the proglacial
rivers initially drained into the Late Weichselian North Sea
lake. After the drainage network began to form at ca. 17 ka,
the Elbe Palaeovalley became the mostly likely outlet for the
palaeorivers of Dogger Bank (Fig. 11). Further investigation
of seismic reflection data over a wider area will permit the
postglacial stratigraphic evolution of the drainage networks
in the southern North Sea basin to be better constrained, with
implications for understanding human interaction and migra-
tion through the landscape during the Late Pleistocene.

6 Conclusions
Investigation of the high-resolution, integrated dataset of the
2D seismic reflection grid lines and CPT logs has revealed

an environment in transition from glacial through terrestrial
to marine conditions, marked by Horizon Z, a prominent un-
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conformity present across the area. Mapping of Horizon Z
revealed a network of channels that incise and therefore post-
date glaciogenic and proglacial lake sediments but are buried
under shallow marine sand. These channels, along with Hori-
zon Z, are interpreted to represent the terrestrial landscape at
Dogger Bank that developed during the period between ice
sheet retreat and marine transgression.

Two different types and generations of river channels with
distinct morphologies have been defined. The first chan-
nel set comprises two ~ 400 m wide, low-sinuosity braided
rivers. These braided rivers are interpreted to have formed
as proglacial meltwater-fed rivers, which drained the mar-
gin of the ice sheet prior to its retreat from Dogger Bank
at 23 ka. Good preservation of macroforms and evidence of
cross-bedding may imply that annual mean discharge vari-
ability was low or were preserved either partly or entirely
due to sudden abandonment. Potential low discharge vari-
ability may suggest a lack of glacial outburst floods, although
modern-day analogues have not been studied in terms of dis-
charge variability in rivers susceptible to outburst floods. Fur-
thermore, there is no evidence of outburst floods for the ice-
sheet margin at this time. The second set of river channels
is more sinuous and generally narrower (~ 200 m), forms
a subdendritic network, and cuts down perpendicular to the
larger river channels, implying they formed later. Palaeocli-
mate modelling showed a cold, arid period between ice sheet
retreat at 23 and 17 ka, after which the climate became in-
creasingly warm and wet, which correlates to marsh environ-
ments at Dogger Bank ca. 14.9—13.5 ka. The second channel
set formed during the time period from 17 ka prior to marine
transgression at ca. 8ka, during a period of increased pre-
cipitation. The first channel set is likely to have drained into
the Late Weichselian North Sea lake, which drained rapidly
through the Elbe Palaecovalley at 18.7 ka. The second set of
channels is likely to have drained through the former Late
Weichselian North Sea lake basin and out through the Elbe
Palacovalley. Overall, this transition from proglacial rivers
to terrestrial drainage with increased precipitation, and the
subsequent preservation of the channels, is rarely observed
in sedimentary archives and offers a valuable insight into
the controls of topography and climate on landscape evolu-
tion. The evolution of the Late Pleistocene drainage system
also provides an opportunity to target submerged sites that
can help to improve understanding of how humans interacted
with this low-relief landscape.
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