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A B S T R A C T

Novel mineral prospectivity modelling presented here applies knowledge-driven feature extraction to a data-
driven machine learning approach for tungsten mineralisation. The method emphasises the importance of
appropriate model evaluation and develops a new Confidence Metric to generate spatially refined and robust
exploration targets. The data-driven Random Forest™ algorithm is employed to model tungsten mineralisation in
SW England using a range of geological, geochemical and geophysical evidence layers which include a depth to
granite evidence layer. Two models are presented, one using standardised input variables and a second that
implements fuzzy set theory as part of an augmented feature extraction step. The use of fuzzy data transformations
mean feature extraction can incorporate some user-knowledge about the mineralisation into the model. The
typically subjective approach is guided using the Receiver Operating Characteristics (ROC) curve tool where
transformed data are compared to known training samples. The modelling is conducted using 34 known true
positive samples with 10 sets of randomly generated true negative samples to test the random effect on the model.
The two models have similar accuracy but show different spatial distributions when identifying highly pro-
spective targets. Areal analysis shows that the fuzzy-transformed model is a better discriminator and highlights
three areas of high prospectivity that were not previously known. The Confidence Metric, derived from model
variance, is employed to further evaluate the models. The new metric is useful for refining exploration targets and
highlighting the most robust areas for follow-up investigation. The fuzzy-transformed model is shown to contain
larger areas of high model confidence compared to the model using standardised variables. Finally, legacy mining
data, from drilling reports and mine descriptions, is used to further validate the fuzzy-transformed model and
gauge the depth of potential deposits. Descriptions of mineralisation corroborate that the targets generated in
these models could be undercover at depths of less than 300 m. In summary, the modelling workflow presented
herein provides a novel integration of knowledge-driven feature extraction with data-driven machine learning
modelling, while the newly derived Confidence Metric generates reliable mineral exploration targets.
1. Introduction

The use of Machine Learning Algorithms (MLAs) for mineral pro-
spectivity modelling has been driven by the increasing size of individual
datasets and the range of data types available for mineral exploration.
MLAs are computationally efficient and can deal with large, high-
dimensional input datasets, non-Gaussian distributions, and generate
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robust exploration targets from few training samples (Carranza and
Laborte, 2015a, b; Rodriguez-Galiano et al., 2015). The approach re-
quires some a priori data to train the model, indicating that it is a
data-driven method. However, the number of training samples can be <

20, which is a significant improvement compared to other data-driven
methods such as Weights-of-Evidence (Carranza and Laborte, 2015b).
MLAs are now commonplace in mineral prospectivity modelling. The
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Random Forest, Support Vector Machine and Artificial Neural Network
algorithms are regularly implemented and it is the Random Forest MLA
that is proving most effective in comparison studies (Rodriguez-Galiano
et al., 2015; Sun et al., 2019).

Prospectivity modelling is often conducted at large-scale, encom-
passing national or regional areas to determine new exploration targets.
Studies have become increasingly effective due to investment in the
acquisition of high-resolution airborne geophysical, satellite and
geochemical datasets over large areas (Kreuzer et al., 2010; Bahiru and
Woldai, 2016). Furthermore, the commitment from national geological
surveys to undertake airborne geophysical surveys and geochemical
baseline studies for both mineral exploration and environmental pur-
poses has led to high-quality datasets often being freely available.

Classical prospectivity modelling has been dominated by theWeights-
of-Evidence and Fuzzy Logic methods. MLAs are a more effective data-
driven method compared to Weights-of-Evidence but are dependent on
an effective set of training data and their ability to generalise unseen data
when defining new deposits. The Fuzzy Logic technique is knowledge-
based and founded on fuzzy set theory. The approach allows user-
knowledge to be incorporated into the model through various data
transformations chosen by the user (Zadeh, 1965; An et al., 1991; Bon-
ham-Carter, 1994). The advantage of this is the ability to weight different
data and to introduce some dependencies between variables that may be
inferred by the user but not captured in the data within a conceptual
deposit model. Until recently, this technique has been considered highly
subjective, but work by Nyk€anen et al. (2015, 2017) provides a means of
guiding the data processing by iteratively tuning evidence layers using an
evaluation metric. Another method by Burkin et al. (2019) incorporates
feature evidence into the initial evidence layer to mitigate interpretative
bias of the conceptual model by the user. This approach allows multiple
evidence layers to be produced from the same data – mimicking the
interpretation of several users – and subsequently combines these
through an objective approach (Burkin et al., 2019). The quantitative
approaches of the former and qualitative approaches of the latter are
often complementary during feature extraction. In this study we use
fuzzy transformations as part of the feature extraction step in MLA
modelling. We take the approach of Nyk€anen et al. (2015, 2017) to
ensure the user-knowledge that is introduced to potentially improve a
data-driven analysis is quantifiable.

MLAs also offer key post-hoc metrics to evaluate the model beyond the
standard accuracy metrics. These include model variance and information
entropy, which have been investigated, respectively, by Cracknell and
Reading (2013) and Kuhn et al. (2018). Cracknell and Reading (2013)
demonstrated the value of assessing model variance for a multi-class
problem when mapping lithology to highlight fault zones, whereas Kuhn
et al. (2018) used information entropy to guide field sampling campaigns
to assist with geological mapping. These metrics are useful for highlighting
potentially erroneous aspects of a model, which cannot be found when
evaluation is based on a single accuracy metric, but have not been
implemented within a mineral prospectivity modelling framework.

Herein, we demonstrate the use of fuzzy set theory for feature
extraction, as well as post-hoc metrics, for tungsten mineralisation in SW
England using a Random Forest MLA. We explore how incorporating
knowledge-driven principles as part of feature extraction within a data-
driven modelling workflow can improve the final results and compare
this to a model using standardised (zero mean and equal variance) input
variables. Furthermore, the models are spatially evaluated using model
variance and a newly derived Confidence Metric which are applied to
generate robust targets for mineral exploration with a refined area.
Finally, legacy mining data are used to further validate new targets and
give a depth estimate to mineralisation.

1.1. Geological framework

SW England is a world-class tin-tungsten province and provides an
excellent case study location for prospectivity modelling due to the
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recent acquisition of high-resolution airborne geophysical and
geochemical datasets (Beamish et al., 2014; British Geological Survey,
2016). The regional geology (Fig. 1) is dominated by low-grade region-
ally metamorphosed Devonian–Carboniferous successions that were
deformed during the Variscan Orogeny; these were subsequently
intruded by the Early Permian Cornubian Batholith (Leveridge and
Hartley, 2006; Scrivener, 2006; Shail and Leveridge, 2009; Simons et al.,
2016). The batholith is closely associated with a tin-tungsten orefield
that has also been exploited for copper, zinc, lead, silver, antimony,
arsenic, uranium and a number of other subordinate metals (Jackson
et al., 1989). Tungsten vein mineralisation was governed by the coeval
post-Variscan regional tectonic and structural development and the
magmatic and magmatic-hydrothermal evolution of the batholith; these
are outlined briefly below.

1.1.1. Regional tectonics and structural geology
The regional structural geological evolution records two episodes of

deformation (D1 and D2) relating to Variscan convergence and conti-
nental collision, e.g. Sanderson and Dearman (1973), Rattey and Sand-
erson (1984), Alexander and Shail (1996). These were associated with
the development of NNW-directed thrust faults and NNW–SSE transfer
faults within Devonian and Carboniferous successions (Dearman, 1963,
1970; Coward and Smallwood, 1984; Shail and Alexander, 1997).

Post-convergence NNW–SSE extension (D3) commenced in the latest
Carboniferous and brought about reactivation of Variscan thrust faults.
Continued extension generated new higher angle extensional faults
through much of the Early Permian (Fig. 2; Shail and Wilkinson, 1994;
Alexander and Shail, 1995, 1996). Subsequent minor, Permian, ENE–WSW
(D4) and NNW–SSE (D5) intraplate shortening events are also recognised
(Hobson and Sanderson, 1983; Rattey and Sanderson, 1984; Shail and
Alexander, 1997). The D3–D5 events spanned batholith construction and
mineralisation and their brittle expression, as faults and tensile fractures,
were essential for the migration of magmatic-hydrothermal fluids and the
development of lodes and sheeted veins (Shail and Wilkinson, 1994; Shail
and Alexander, 1997). Tungsten deposits formed in cuspate bodies of
granite and their immediately adjacent host rock (Hosking and Trounson,
1959; Jackson et al., 1989; Ball et al., 1998). These deposits are commonly
proximal to major NW–SE faults, e.g. Hemerdon, Redmoor, Cligga Head
(Fig. 3), that have acted as strike-slip transfer faults during Early Permian
NW–SE extension, and appear to have influenced both magmatism and
mineralisation (Shail and Wilkinson, 1994; Shail et al., 2017).

1.1.2. Permian granite batholith
The Cornubian Batholith comprises five principal granite types: G1,

two-mica granite; G2, muscovite granite; G3, biotite granite; G4, tour-
maline granite; G5, topaz granite (Simons et al., 2016). The association
between granite type and mineral prospectivity is not well-constrained;
granite types close to surface are sometimes older than, and unrelated
to, the mineralisation they host, e.g. Carnmenellis Granite (Moscati and
Neymark, 2020). Nevertheless, there is a strong association between W
mineralisation and muscovite granites (G2); these typically form small
stocks and have been interpreted as a differentiation product of two-mica
(G1) granites, which also have an association with W mineralisation
(Simons et al., 2016, 2017). Tourmaline granites (G4) are common in
areas of significant tin mineralisation and have been interpreted as the
precursor differentiated magmas that released Sn-bearing magma-
tic-hydrothermal fluids (e.g. Müller et al., 2006). Topaz granites (G5)
host very low-grade disseminated Sn–W–Ta–Nb mineralisation and have
been inferred to be the source of substantial tourmalinisation haloes and
associated Sn–W mineralisation in the surrounding host rocks (Manning
and Hill, 1990).

1.1.3. Tungsten mineralisation and exploration
Tungsten mineralisation in SW England, as reported in the British

Geological Survey (BGS) GeoIndex (2018), is shown in Fig. 3. Additional
tungsten occurrences are known, and described in Dines (1956), but are



Fig. 1. Summary geology of SW England
showing Devonian–Carboniferous sedimentary
host rock in grey, granite outcrop in red and
depth-to granite contours based on the granite
surface model by Willis-Richards and Jackson
(1989). Black lines represent regional lineaments
derived by Yeomans et al. (2019) from Tellus
South West airborne geophysical data.
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not readily available in digital form and so were used solely for quali-
tative evaluation.

Tungsten mineralisation is overwhelmingly hosted by sheeted veins
Fig. 2. Schematic illustrations of the kinematics and structures generated durin
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and lodes. Wolframite is the dominant ore mineral; scheelite is often
present but usually minor (Jackson et al., 1989). Sheeted veins typically
comprise quartz � tourmaline � K-feldspar � tourmaline-wolframite �
g Permian–Triassic extension (D3–D6). After Shail and Alexander (1997).



Fig. 3. Schematic outline of extractive areas in
SW England showing tin, copper and tungsten.
Data from BGS GeoIndex (2018) are based on
historic production values from known mines,
deposit and prospect localities as well as reported
mineral showings and panned concentrates.
Important tungsten producers are labeled based
on data from Dines (1956) and Jackson et al.
(1989). Key mining areas are highlighted on the
map: a ¼ St Just, b ¼ Camborne-Redruth, c ¼
Breage, d ¼ St Austell, e ¼ Bodmin, f ¼ Tamar
Valley.
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cassiterite � arsenopyrite and commonly display greisened margins.
They occur in well-exposed stocks or dykes of muscovite (G2) granite,
and their immediately adjacent host rocks, and have been described in
detail, e.g. Cligga Head (Hall, 1971; Moore and Jackson, 1977), St Mi-
chael’s Mount (Dominy et al., 1995) and Hemerdon (Cameron, 1951;
Dines, 1956; Shail et al., 2017). The Hemerdon deposit was recently
operated by Wolf Minerals Limited and produced tungsten and tin con-
centrates during 2015–2018. Lode mineralisation usually occurs in two
mica (G1) granites, e.g. Carnmenellis and Bodmin Moor, and muscovite
(G2) granites, and their immediately adjacent host rocks; assemblages
can be similar to those in sheeted veins, e.g. East Pool and Agar Mine and
Castle-an-Dinas Mine (Dines, 1956). However, wolframite also occurs in
complex polymetallic lodes comprising quartz� tourmaline� chlorite�
fluorite � cassiterite � arsenopyrite � chalcopyrite � sphalerite, e.g.
Roskear Complex Lode (Dines, 1956).

These magmatic-hydrothermal systems are Early Permian in age and
synchronous with batholith construction, based on Ar–Ar dating of
muscovite wallrock alteration and U–Pb dating of cassiterite (Chen et al.,
1993; Chesley et al., 1993; Moscati and Neymark, 2020; Tapster and
Bright, 2020). Fluid inclusion studies, on vein quartz and cogenetic
wolframite-cassiterite, indicate typical magmatic-hydrothermal fluids
temperatures in the range of 300–400 �C (Jackson et al., 1977, 1989;
Campbell and Panter, 1990; Smith et al., 1996). The majority of vein and
lode systems formed in response to Early Permian N–S regional extension
(Moore, 1975; Shail and Wilkinson, 1994) but coeval NW–SE transfer
faults also appear to have influenced magmatism and mineralisation (e.g.
Shail and Wilkinson, 1994; Shail et al., 2017).

Exploration has been selective and focused around known tungsten
deposits. Andrews et al. (1987) conducted soil geochemical studies
around the Hemerdon deposit, which involved three transects and
identified geochemical anomalies, although no follow up trenching is
known. Geochemical exploration at Redmoor, which made use of an
extensive diamond and percussive drilling campaign as well as samples of
float (rock fragments in soil), attempted to define an alteration halo
(Newall and Newall, 1989; Newall, 1994). The work used factor analysis
to identify a “mineralisation factor” for the elements As, Cu, W, Sn, Na*
and Zr (where * indicates a negative correlation). Beer et al. (1986)
identified clear geochemical anomalies for tungsten, based on percussive
drilling along traverses, near to the Castle-an-Dinas tungsten lode. The
Mulberry and Wheal Prosper area was investigated by Bennett et al.
(1981) who found both tungsten and tin soil geochemical anomalies, in
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proximity to Meadfoot Group calc-silicate units. Regional investigations
were undertaken by Moore and Camm (1982) and James and Moore
(1985) using space-borne Landsat MSS and Seasat data to map regional
structures associated with tungsten mineralisation.

2. Data and methods

The workflow illustrated in Fig. 4 shows the steps required to incor-
porate knowledge-based feature extraction into a data-driven modelling
workflow to generate spatially refined robust targets for mineral explo-
ration. These include defining the conceptual deposit model, initial data
preparation (see Supplementary Information), feature extraction using
fuzzy transformations and machine learning modelling. It should be
noted that, herein, the terms evidence layer and input variable are used
interchangeably.
2.1. Conceptual tungsten deposit model

The conceptual mineral deposit model enables the user to identify key
exploration criteria. These are represented by evidence layers, generated
from available datasets. Regional geological, geochemical and geophys-
ical datasets have been incorporated in this work to identify tungsten
mineralisation in SW England. The contribution of these evidence layers
to the conceptual deposit model is described below.

Prior mineral exploration and geological investigations provide a
substantial body of research on which to build a regional conceptual
tungsten deposit model for SW England (Hosking and Trounson, 1959;
Hall, 1971; Moore and Jackson, 1977; Moore and Camm, 1982; Andrews
et al., 1987; Jackson et al., 1989; Newall and Newall, 1989; Newall,
1994; Ball et al., 1998, 2002; Shail et al., 2017). Based on these obser-
vations, a conceptual deposit model has been developed to capture the
common characteristics of known tungsten deposits (Fig. 5). The model is
based on a range of readily available geological, geochemical and
geophysical datasets. Geological data comprises: (1) the mapped extent
of granite plutons based on British Geological Survey 1:50,000 data, and
(2) a depth to granite layer determined from the LiDAR Digital Terrain
Model (DTM) and the granite surface model, based on regional gravity
data, created by Willis-Richards and Jackson (1989). Geochemical
datasets include soil and stream-sediment data from the G-BASE survey
(British Geological Survey, 2016), Tellus South West airborne geophys-
ical surveys (Beamish et al., 2014; Ferraccioli et al., 2014) and lineament



Fig. 4. Mineral prospectivity modelling workflow for combining knowledge-based feature extraction into a data-driven machine learning approach to generate
spatially refined and robust targets for mineral exploration.

Fig. 5. Conceptual deposit model for tungsten mineralisation in SW England
showing the main geological phenomena targeted by the pro-
spectivity modelling.
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data (Yeomans et al., 2019).
The evidence layers generated from these datasets have been pre-

pared within the ESRI ArcGIS Desktop software package. These data were
resampled to a common extent and resolution based on the airborne
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geophysical data (40 m pixels), and standardised to zero mean and equal
variance; as is usual in many machine learning approaches (Camps-Valls
et al., 2007; Hastie et al., 2009; Cracknell and Reading, 2014, 2015). The
data preparation steps for each layer are presented in the Supplementary
Information (S1).

2.1.1. Geological evidence layers
The geological exploration criteria defined here are based on the

observation that tungsten mineralisation generally occurs, in granites or
their host rocks, close to the margins of “cuspate” granite bodies or cu-
polas, at the roof of the batholith (Hosking and Trounson, 1959; Beer
et al., 1975; Dominy et al., 1995; Ball et al., 1998). An evidence layer for
proximity-to granite was prepared using the British Geological Survey
1:50,000 data to capture the XY locations of granite contacts. A
proximity-to granite layer was also prepared to capture the depth to the
granite contact in areas that may have blind mineralisation. The granite
surface from the 3D model created by Willis-Richards and Jackson
(1989) is subtracted from the LiDAR DTM and included as a proximity-to
layer that captures the proximity-to granite in Z (depth) to identify
shallow granite bodies. Due to some areas of the model protruding above
surface, the evidence layer was classified into seven groups to allow
down-weighting of the protruding areas.

Structural information was also included, based on observations by
Shail et al. (2017), using regional lineament data derived from the
airborne geophysics by Yeomans et al. (2019). A proximity-to structures
layer using a Euclidean distance algorithm was prepared based on
NW–SE lineaments with lengths >1200 m; these lineaments are inter-
preted to be primarily fault-controlled. Furthermore, a density map of all
NW–SE lineaments was created to capture areas of high fracturing that
may favour mineralisation.

2.1.2. Geochemical evidence layers
Regional soil and stream-sediment geochemical data from the G-BASE

survey (British Geological Survey, 2016) were used to derive geochem-
ical evidence layers. The soil samples were collected at a depth of 0–20
cm and sieved to 2 mm. Stream-sediment samples were analysed using
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X-ray Fluorescence Spectroscopy with no digestive reagent. Strict Quality
Assessment and Quality Control was conducted by the British Geological
Survey prior to release through the G-BASE survey; detailed by Wragg
et al. (2018).

Geochemical evidence layers have been created through an Inverse-
Distance Weighting (IDW) algorithm based on preparation steps by
Carranza (2010) and are summarised in Table 1. Geochemical evidence
layers are duplicated for both soil and stream-sediment datasets dis-
cussed below, excluding the K/(Zr/Eu) layer. This ratio is exclusive to the
stream-sediment data due the absence of rare earth element analyses for
soil samples. These data are considered in three groups representing
mineralisation, aureole and granite geochemistry.

For mineralisation geochemistry, data on W as well as Sn, due to their
common association, is included (Cameron, 1951; Dines, 1956; Hall,
1971; Moore and Jackson, 1977; Jackson et al., 1989). The use of As, Bi,
Sb, Na*, Rb and Cs (where * indicates a negative correlation) is based on
the previous exploration campaigns.

As, Bi and Sb are used as indicators for mineralisation where tungsten
and tin may be unobserved. They occur at distance from the deposit
(Andrews et al., 1987), therefore, these elements may be a vector element
in soil geochemistry for mineralisation at depth (or laterally) where the
main tungsten mineralisation is undercover and assuming there has been
minimal soil transport. Sb was considered to be an unreliable indicator
element by Ball et al. (2002) but is included in this study to determine its
importance.

The inclusion of Na*, Rb and Cs and ratios such as K/Rb* and K/Cs* is
based on aureole geochemistry and alteration in mineralised country
rocks surrounding granite cupolas (Newall and Newall, 1989; Ball et al.,
1998). Other elements that are enriched include Li and F (Andrews et al.,
1987; Newall and Newall, 1989; Newall, 1994; Ball et al., 1998), but
there are insufficient analyses for these elements across the region and
they have therefore not been included.

Lithogeochemical evidence layers are focused on granite types and
these are defined using two ratios. Ti/Sn* is useful for determining a
general granite signature (Ball et al., 1984, 1998) but fails to separate
granite types. By interrogating geochemical data from Simons et al.
(2016), an indicator ratio has been determined, K/(Zr/Eu), that separates
the G2 granite from other granite types (Fig. 6), albeit with some close
associations with the G1a type. Other useful ratios have been identified,
such as Zr/Fe2O3, Nb/Zr and Ba/Rb, but they are not effective discrim-
inators of G2 granites (Simons et al., 2016). Potential indicator elements
for G2 granite types include Be and Li (Simons et al., 2017); however,
these are not included in the available soil and stream-sediment
geochemical datasets for the region.

2.1.3. Geophysical evidence layers
The geophysical evidence layers defined in the conceptual deposit

model incorporate airborne radiometric data from the Tellus South West
project. The magmatic-hydrothermal aureole around granite plutons in
SW England is highlighted by tan�1(K/eU*). It is included to capture
hydrothermal alteration where elevated uranium concentrations indicate
that mineralising fluids may have circulated; as with geochemical ratios
the evidence layer is an inverse relationship. The inverse tangent
Table 1
Geochemical data included as evidence for tungsten mineralisation. The
geochemistry are grouped into three phenomena describing the mineralisation,
granite aureole and granite type.

Phenomenon Elements Sources

Mineralisation W, Sn, As, Bi, Sb Andrews et al., 1987; Newall and
Newall, 1989; Newall, 1994; Ball et al.,
2002

Aureole
Alteration

Rb, Cs, Na*, K/Rb*,
K/Cs*, K/eU*

Ball et al., 1984, 1998; Newall and
Newall, 1989; Newall, 1994

Granite
Composition

Ti/Sn*, K/(Zr/Eu) Ball et al., 1984, 1998; Simons et al.,
2016
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function is applied to the ratio and results in a non-linear normalisation
with the data scaled from –1.57 to þ1.57, which limits the effects of
outliers and potentially infinite values (Schetselaar, 2002; IAEA, 2003).

2.1.4. Training and validation data
A set of 34 known regional tungsten occurrences was compiled from

the Mineral Occurrence Database, maintained by the BGS GeoIndex
(2018), and were used as true positive samples. True negative samples
are also necessary to accurately model and validate unfavourable areas in
the prospecitivity models. An equal number of true negative samples
were randomly generated to ensure balanced training classes and mini-
mise error rates (Mellor et al., 2015). A minimum buffer of 400 m was
applied to minimise spatial correlation with true positive samples and
other true negative samples. Furthermore, instead of one set of true
negative samples, 10 sets of 34 true negative samples generated as sug-
gested by Nyk€anen et al. (2017).

These sample sets were randomly subset 70:30 into 23 training and
11 validation data for use in the fuzzy feature extraction methods dis-
cussed below. Multiple random sets of true negative samples allow for
testing of the random effect of point selection using the Receiver Oper-
ating Characteristics (ROC) curve tool and the Area Under Curve (AUC)
value (Nyk€anen et al., 2017). By repeating the ROC curve analysis 10
times using randomly generated true negative samples, Nyk€anen et al.
(2017) demonstrated that a more robust metric is obtained that high-
lights the potential for random variability in the AUC statistic.

For feature extraction, the training sample subsets are used to
generate 10 ROC curve analyses and determine the relevance and
sensitivity of the evidence layer and tune the parameters of the fuzzy
transformation or combination.

For modelling, the 10 sets of 34 true negative samples were combined
into a single dataset and reselected randomly into new training and
validation subsets using the same 70:30 split. The reselection of random
points is aimed at reducing the likelihood of overfitting due to feature
extraction being honed by the same training data used for modelling.
Model training data used the true positive training subset and the first
random true negative training subset. The model testing (and final AUC
values) used validation samples from all 10 reselected true negative
validation subsets as part of the ROC curve analysis for model evaluation.
2.2. Fuzzy feature extraction

The advent of high-resolution datasets of various types has meant that
mineral prospectivity models often include high numbers of input vari-
ables which increase the dimensionality. Minimising the number of
variables reduces data redundancy, which can improve classification
accuracy and reduce computation times (Witten et al., 2017). This pro-
cess also mitigates the “curse-of-dimensionality”, also known as the
Fig. 6. Granite geochemistry showing the distribution of granite types based on
the classification by Simons et al. (2016). The G2 granite is distinct having a low
Zr/Eu ratio and high K, however, the G1a granite shows a similar signature.



Table 2
AUC values for evidence layers transformed using fuzzy membership functions.
The AUC values are calculated from ten ROC curve analyses using randomly
generated false occurrences.

Evidence Layer Midpoint Spread Func. Mean SD

Proximity-to Granite in Z N/A N/A TOC 0.814 0.039
Proximity-to Granite in XY 2750 2 Small 0.887 0.03
Density all lines 0.478 4 Large 0.638 0.062
Proximity-to lines 2713.41 2 Small 0.577 0.055
Airborne K/eU ratio 0.7 10 Small 0.666 0.055
Geochem Soil W 7.08 2 Large 0.887 0.032
Geochem Soil Sn 57.57 3 Large 0.829 0.034
Geochem Soil As 55.08 2 Large 0.819 0.038
Geochem Soil Bi 1.4 2 Large 0.819 0.032
Geochem Soil Sb 2.83 2 Large 0.49 0.052
Geochem Soil Rb 159.46 3 Large 0.708 0.051
Geochem Soil Cs 16.36 3 Large 0.749 0.035
Geochem Soil Na 0.83 6 Small 0.701 0.057
Geochem Soil K/Cs 0.22 3 Small 0.764 0.029
Geochem Soil K/Rb 0.02 5 Small 0.751 0.051
Geochem Soil Ti/Sn 0.08 2 Small 0.824 0.037
Geochem Stream-sediment W 27.47 1 Large 0.874 0.031
Geochem Stream-sediment Sn 636.63 1 Large 0.722 0.057
Geochem Stream-sediment As 117.68 1 Large 0.824 0.032
Geochem Stream-sediment Bi 2.86 2 Large 0.809 0.032
Geochem Stream-sediment Sb 2.69 1 Large 0.594 0.036
Geochem Stream-sediment Rb 176.41 4 Large 0.644 0.045
Geochem Stream-sediment Cs 20.35 3 Large 0.69 0.047
Geochem Stream-sediment Na 6359.1 5 Small 0.709 0.052
Geochem Stream-sediment K/Cs 1813 3 Small 0.533 0.042
Geochem Stream-sediment K/
Rb

157.63 5 Small 0.668 0.058

Geochem Stream-sediment Ti/
Sn

387.78 2 Small 0.706 0.064

Geochem Stream-sediment K/
(Zr/Eu)

136.02 2 Small 0.739 0.044

Fig. 7. (A) Interpolated stream-sediment geochemical data for tungsten that
have been transformed using the fuzzy membership function. (B) Interpolated
soil geochemical data for tungsten that have been transformed using the fuzzy
membership function. (C) Resulting tungsten geochemical data that have been
combined using the fuzzyOR operator to emphasis key anomalies.
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“Hughes effect” (Hughes, 1968), whereby the number of training samples
required to capture data variance increases disproportionately with the
number of variables. This is an important consideration when only a
small number of training samples is available. For these reasons, the
extraction of the most relevant features or characteristics within the
evidence layers used in the prospectivity modelling is of paramount
importance.

A common and simple means of feature extraction is to use operators,
such as multiplication or division, to amplify the interactions between
different variables (Henery, 1994a, b). Some of these may also have the
benefit of mitigating noise and removing correlated data (Hastie et al.,
2009), e.g. radioelement ratios (IAEA, 2003). Another option is to
highlight features using data transformations or image enhancements.
There is a broad range of task-specific transformations and enhancements
that, when used with an appropriate MLA, result in a high degree of
accuracy (Sukumar et al., 2014).

In mineral prospectivity modelling, it is common to include "prox-
imity-to" evidence layers which is an example of feature extraction, e.g.
proximity-to structures. Many prospectivity models attempt to refine the
number of evidence layers using factor analysis, principal component
analysis or the singularity method to extract new features (Abedi et al.,
2013; Zhao et al., 2015; Wang et al., 2017a, b; Wang et al., 2018). The
Fuzzy Logic approach incorporates the transformation and weighting of
data and is also an example of the feature extraction process where the
fuzzy transformations and operators enhance and accentuate particular
characteristics.

The feature extraction methods discussed in this section concerns the
reduction and enhancement of the standardized variables generated
during data preparation (see Supplementary Information). This was
conducted in ESRI ArcGIS software and the ArcSDM 5 package, main-
tained by the Geological Survey of Finland (GTK, 2019), which compiles
various tools for mineral prospectivity modelling. It includes the ROC
curve tool that is used to guide the subjective fuzzy data transformations.
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2.2.1. The Receiver Operating Characteristics (ROC) curve tool
The output for mineral prospectivity modelling using MLAs is often a

binary classification. However, it is the class probabilities, the likelihood
that a pixel is classified correctly, that are of value when considering
prospectivity (Harris et al., 2015). It is good practice to evaluate the
accuracy of the prospectivity models, most commonly through the ROC
curve tool (Agterberg and Bonham-Carter, 2005; Fawcett, 2006; Rob-
inson and Larkins, 2007; Nyk€anen, 2008). This uses True Positives (TP),
True Negatives (TN), False Positives (FP) and False Negatives (FN) to
determine a range of metrics including Sensitivity (Eq. (1)) and Specificity
(Eq. (2)).



Table 3
AUC values for combined geochemical elements and ratios, calculated from ten
ROC curve analyses using randomly generated false occurrences. These are
compared to the geochemical values for original datasets from soil and stream-
sediment (SS) data. In some cases (W, Sn, As, Na) the combination is mutually
beneficial.

Element or
Ratio

Func. Mean SD Soil SS Improvement in
AUC

W OR 0.901 0.026 0.887 0.874 INCREASE
Sn OR 0.816 0.034 0.829 0.722 INCREASE
As OR 0.851 0.033 0.819 0.824 INCREASE
Bi OR 0.819 0.032 0.819 0.809 NO CHANGE
Sb OR 0.537 0.085 0.49 0.594 DECREASE
Rb OR 0.657 0.13 0.708 0.644 DECREASE
Cs OR 0.71 0.037 0.749 0.69 DECREASE
Na OR 0.758 0.048 0.701 0.709 INCREASE
K/Cs OR 0.676 0.04 0.764 0.533 DECREASE
K/Rb OR 0.713 0.055 0.751 0.668 DECREASE
Ti/Sn OR 0.724 0.061 0.824 0.706 DECREASE
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Sensitivity¼ TP
TPþ FN

(1)
Fig. 8. Schematic Random Forest diagram illustrating the interaction of deci-
sion trees in determining a classification value. Where randomly generated trees
attempt to resolve the class value for a single instance through a majority vote
system based on the leaf nodes (based on Belgiu and Dr�aguţ, 2016).
Specificity¼ TN
TN þ FP

(2)

The ROC curve tool plots Sensitivity against 1 - Specificity and this can
be used to calculate the AUC. From a modelling perspective, the AUC
values provide an accuracy measure with a range between 0 and 1 where
0.5 represents a random result. During feature extraction, more reliable
features that capture the traits of true positive samples, are achieved by
maximising the AUC value by tuning the enhancement parameters. A
minimised AUC value is still useful in this instant as it represents a cor-
relation with true negative samples and thus has an inverse relationship
to the model.

2.2.2. Fuzzy membership transformation
The subjective nature of fuzzy set theory and the Fuzzy Logic method

can be circumvented by refining input variables using the ROC curve tool
developed by Nyk€anen et al. (2015, 2017). The approach provides a
quantitative metric for assessing subjective aspects of the Fuzzy Logic
technique, namely the application of the fuzzy membership function and
fuzzy operators such as FuzzyOR (An et al., 1991; Bonham-Carter, 1994).
The tool optimises the output of these functions and operators and allows
tuning of the features to reflect the characteristics of known deposits. In
turn, the correlation of an input layer can be used to indicate whether it is
correctly included as part of the conceptual deposit model.

The method applied here used an iterative approach to assess the
fuzzy membership function where initial evidence layers are transformed
by determining a spread and midpoint. Once a variable was determined to
be ascending or descending, e.g. the target values are small or large,
respectively, the spread andmidpointwere tuned to create a layer with the
best AUC value with associated mean, median and standard deviation.
This approach provides information on the variability caused by random
points and of feature sensitivity, whilst minimising the chance of a biased
true negative sample set affecting the transformation. Note that the
proximity-to granite in Z layer was generated using the Table of Contents
(TOC) function from the ArcSDM 5 package.

A list of the final input variables and the optimised parameters used
for the fuzzy membership functions is provided in Table 2; full results for
all tested parameters are presented in the Supplementary Information
(S1). It is clear that some input variables have a much higher AUC than
others. Nyk€anen et al. (2017) suggest there is value in the inclusion of a
variable even where AUC values are close to 0.5 (random correlation)
because it may provide mutually beneficial information to a subsequent
combination of variables later in the analysis.
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2.2.3. Fuzzy operator combinations
Following fuzzy membership transformation, some associated input

variables were combined into single layers to not only enhance the
feature, but to also assist with dimensionality reduction. Elements with
geochemical analyses in the form of both soil and stream-sediment data
were integrated into single variables to represent the overall anomalies
for that element (Fig. 7). The same approach was also applied to
geochemical ratios, with the exception of K/(Zr/Eu), as this was only
created for stream-sediment data due to the absence of soil REE analyses
for the soil data. A visual inspection of the data was conducted prior to
integration to ensure that the values for each variable were comparable.

The fuzzyOR operator is considered to be the best tool to combine two
elements or ratios into a single input variable to maximise potential
anomalies (Bonham-Carter, 1994), as well as reduce dimensionality in
the model, and it is used here to maximise indications of geochemical
anomalies from both datasets. These were subsequently reassessed using
the ROC curve tool and new AUC values were calculated (Table 3). For
W, Sn, As and Na, this results in a synergistic effect where the AUC is
greater than both AUC values for the individual datasets. For Bi, Sb, Rb,
Cs, K/Cs, K/Rb and Ti/Sn, the AUC values fall between the lower and
upper values derived for the original datasets.
2.3. Machine learning for prospectivity modelling

Various MLAs are available for prospectivity modelling, however, it is
the Random Forest algorithm that has consistently proven to be highly
effective in comparison to Support Vector Machines and Artificial Neural
Networks (Carranza and Laborte, 2015a, b; Rodriguez-Galiano et al.,
2015; Carranza and Laborte, 2016; Sun et al., 2019). For this reason, two
Random Forest models are presented for prospectivity modelling, using:
(i) standardized input variables with no transformation; (ii) variables
transformed using the guided fuzzy set theory approach of Nyk€anen et al.
(2015, 2017).

An advantage of using MLAs for mineral prospectivity modelling is
the evaluation metrics available for each algorithm. Many classification
methods allow the probability of a pixel being correctly classified, the



Fig. 9. (A) Classification map, (B) Class probability map and (C) confidence
map for the standardised variables Random Forest prospectivity model. Classes
show the two class scenario where 1 is unprospective and 2 is prospective. The
class probability and confidence models are categorised to show 0.9 to 1 as
highly favourable (red), 0.8 to 0.9 as favourable (amber), 0.65 to 0.8 as less
favourable (turquoise), 0.5 to 0.65 as possibly favourable (blue) and <0.5 as
unfavourable (grey).
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class probabilities, to be interrogated. For mineral prospectivity model-
ling, class probabilities are often presented as the final result, but these
can be further manipulated through model variance (Kohavi and Wol-
pert, 1996; Cracknell and Reading, 2013). Model variance was imple-
mented as part of lithological mapping by Cracknell and Reading (2013)
in the Broken Hill area of New South Wales, Australia where higher
variance was an indicator for the presence of fault zones and was termed
“the upside of uncertainty”. This was further investigated using infor-
mation entropy (Kuhn et al., 2018).

There is often a predilection for distilling model performance to a
single accuracy metric. However, this is not ideal, especially with spatial
data where some aspects of the model may be well-constrained and other
components highly suspect. By incorporating a spatial assessment of
model reliability into the evaluation process, the user can enhance the
analysis andmitigate the potential limitations of a single accuracy metric.
To this end, we develop a new Confidence Metric, founded on model
variance, to evaluate the model and further investigate the extent of
prospective areas before giving some quantification of the depth to po-
tential targets.

2.3.1. Random Forest modelling
Prospectivity modelling was performed using the R statistical

computing language (R Core Team, 2019). A binary MLA classification
model was created where two classes were used (unfavourable and
favourable) to determine a simple class probability model. The Random
Forest models were implemented using the caret (Kuhn et al., 2019),
raster (Hijmans, 2019) and rgdal (Bivand et al., 2019) packages. A full
description of the R workflow is presented in the Supplementary Infor-
mation (S2).

The Random Forest method is an ensemble decision tree machine
learning algorithm first described by Breiman (2001). The method has
become increasingly popular in geoscience and has been used in pro-
spectivity modelling for a range of ore deposit types (e.g. O’Brien et al.,
2014; Carranza and Laborte, 2015a, b, 2016; Harris et al., 2015; Gao
et al., 2016; Hariharan et al., 2017; Sun et al., 2019; Li et al., 2020). The
approach combines multiple binary-split trees which limits overfitting
that can occur through multi-split trees (Hastie et al., 2009). The Random
Forest algorithm, illustrated in Fig. 8, utilises multiple decision trees (the
forest) which attempt to split a random selection of input variables. The
number of random variables is controlled by the user-defined mtry value
that can be determined using a random or grid search to find the best
value, or, as in this study, by calculating the square root of the number of
input variables (Breiman, 2001; Gislason et al., 2006; Belgiu and Dr�aguţ,
2016). A further parameter must be set, ntree, which dictates the number
of binary trees in the forest and controls the reproducibility of the results.
Based on a review by Belgiu and Dr�aguţ (2016), ntree is commonly set to
500 for most classification problems using remote sensing data. Carranza
and Laborte (2015b) increased ntree to 20,000 in order to achieve stable
predictions and lower the prediction error for a training set of 12 sam-
ples. Given the comparably small training sample size in this study (23
training samples and 11 validation samples), the ntree value of 20,000
was also adopted here.

A total of 28 input variables are included in the standardised model
(Table 2), while 17 variables are included in the fuzzy-transformed
model following combination of duplicate geochemical elements using
the fuzzyOR operator (Table 3). All fuzzy-transformed and combined data
were included in the modelling process despite the potentially low
relevance of Sb. The inclusion of Sb is due to its minor positive correla-
tion with known deposits that may still contribute some relevant
information.

The models were evaluated using the ROC curve tool to derive the
mean and median AUC values and associated standard deviation for each
model using the true positive validation subset and the 10 randomly
reselected true negative validation subsets (described in Section 2.1.4).
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2.3.2. The Confidence Metric
Spatial evaluation of the model can be undertaken by calculating the

model variance (Eq. (3)) of the class probabilities to derive an uncer-
tainty value (Kohavi and Wolpert, 1996). This approach was imple-
mented by Cracknell and Reading (2013) to show areas where the
classification is less reliable. In this study, model variance is exploited to
determine whether favourable targets are truly robust in the mineral
prospectivity model. By combining model variance and the class proba-
bilities into the new Confidence Metric using Eq. (4), exploration targets
can be refined to highlight the areas of highest confidence in the model.



Fig. 10. (A) Classification map, (B) Class probability map and (C) confidence
map for the fuzzy-transformed variables Random Forest prospectivity model.
Classes show the two class scenario where 1 is unprospective and 2 is pro-
spective. The class probability and confidence models are categorised to show
0.9 to 1 as highly favourable (red), 0.8 to 0.9 as favourable (amber), 0.65 to 0.8
as less favourable (turquoise), 0.5 to 0.65 as possibly favourable (blue) and <0.5
as unfavourable (grey).
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model variance ðvÞ¼ 1� p2cP� � (3)

P

1� 1
c

where pc is the class probability for each class per pixel and c is the total
number of classes.

confidence
�
pconf

�¼ ðpc � vÞi � minðpc � vÞ
maxðpc � vÞ � minðpc � vÞ (4)

where i indicates a per pixel subtraction.
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By subtracting the model variance, the values of pixels with high
uncertainty are reduced accordingly, leaving only the most reliable areas
with high class probabilities. In some cases, this can reduce the value to
less than zero and, for the purposes of comparison, Eq. (4) normalises the
output to a range of 0 to 1.

2.3.3. Areal evaluation
The spatial distribution of the prospectivity is quantitatively evalu-

ated using areal analysis. Total areal extents are calculated for each level
of prospectivity, unfavourable through to highly favourable, as a sum of
the area for each level and as a percentage of total area of the model. The
analysis provides a quantitative assessment of the spatial distribution of
the class probabilities for each model and the associated confidence. The
proportion of pixels at each prospectivity level is compared to determine
which model is better at discriminating prospective areas.

2.3.4. Depth evaluation
The rich mining history of SW England means that there is an

extensive repository of data but the quality of digital records is highly
variable. Legacy mining data is available through the British Geological
Survey from the Mineral Exploration and Investigation Grants Act
(MEIGA) records and published works such as Dines (1956). These re-
sources are used to further evaluate the depth at which potential targets
may occur.

3. Results and discussion

The results of the MLA modelling using both feature extraction
methods are presented below. These are assessed, based on the AUC
values from ROC curve analysis, and further evaluated using the Confi-
dence Metric, areal analysis and legacy mining data. These evaluation
techniques aim, respectively, to generate robust targets, compare the
spatial attributes of the model and to give an indication of whether tar-
gets are likely to reside at surface or at depth.

3.1. Tungsten prospectivity modelling results

The results of the modelling using standard and fuzzy input variables
are presented in Figs. 9 and 10. Each figure comprises the binary clas-
sification of all prospective areas, the class probability for a cell being
classified as prospective and the confidence map derived using Eq. (4).

The class map for the prospectivity model shows broad areas of
prospective areas for tungsten mineralisation due to the binary classifi-
cation. The Random Forest class probability map is therefore more useful
as it signifies the likelihood that a location is prospective. For Figs. 9 and
10, the data have been categorised to show only values greater than 0.5
in colour, this is to indicate that anything below this value would have
been classified as unfavourable in the binary classification.

The class probability map for the standardised variables (Fig. 9)
shows a good correlation with known tungsten occurrences. Areas of
high favourability are constrained to areas of known deposits marked as
W–Y in Fig. 9B, which include the Camborne-Redruth district, the St
Austell district and the east Bodmin-Kit Hill area, respectively. However,
no highly favourable areas are identified that were not previously known
and only limited areas have been identified as favourable.

Fig. 10 shows the class probability map for the fuzzy-transformed
variables that identifies highly favourable areas over known tungsten
occurrences, similar to those in Fig. 9B (W–Y), including the Cligga Head
area (Z). Additional areas include the Breage district (A), the southern
margin of the Bodmin Granite (B) and some discrete targets along the
eastern margin of the Dartmoor Granite (C) which are new prospects. The
map also shows broader areas of favourable prospectivity away from
main targets.

The ROC curve tool was used to validate these models and generate a
quantitativemeasure of accuracy for the binary classification. A summary
of the validation results from the ROC curve analysis is included in



Table 4
AUC values for each Random Forest™ prospectivity model. Calculated from ten
ROC curve analyses using randomly generated false occurrences. The key pa-
rameters have been included for each model.

Model type Input layers Key
parameters

Mean SD

Random Forest
(standardised
variables)

All evidence layers with
zero mean and equal
variance

mtry ¼ 5;
ntree ¼
20,000

0.959 0.03

Random Forest
(fuzzy-
transformed
variables)

All fuzzy evidence layers,
including geochemical
data merged using the
fuzzy OR operator

mtry ¼ 4;
ntree ¼
20,000

0.960 0.04
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Table 4. The average AUC values for both class probability models are
very high and not significantly different. It is unsurprising that both
models have such similar AUC values due to sharing the same initial
evidence layers and the invariance of the Random Forest algorithm to
changes in scale (but not midpoint and spread) imparted by the fuzzy
membership transformation. Furthermore, the similarity in AUC values
underlines that the use of training samples with the ROC curve tool
during feature extraction has not overly biased the model. However, the
reduction in dimensionality from 28 to 17 input variables in the fuzzy-
transformed model appears to have provided no significant improve-
ments to the modelling process.

Despite the minimal difference in AUC values, the lack of new highly
prospective targets in the standardised variable model is disappointing.
Nevertheless, the greater number of new targets in the fuzzy-transformed
model indicates that the incorporation of user-knowledge, through fuzzy-
transformed variables during feature extraction, has refined target
identification within a data-driven Random Forest modelling approach.

3.2. Target confidence

The use of model variance (Eq. (3)) and manipulation of this metric
into a measure of target confidence is novel and has demonstrated sig-
nificant value for evaluating the prospectivity models. The confidence
maps for each model shown in Figs. 9C and 10C reveal highly favourable
and favourable areas that are not only significantly refined in area, but
define more reliable targets. Any area shown to be > 0.5 in terms of
confidence should be compared to the class probability map to determine
its favourability and those areas with high class probabilities and high
confidence are likely to be robust. Therefore, the confidence map helps to
elucidate highly favourable and favourable areas and interpret reliable
exploration targets. Furthermore, it gives a greater understanding where
the model has performed best and goes beyond the use of single accuracy
metrics that can be misleading.

3.3. Model comparison from areal evaluation

The two Random Forest models presented here can also be assessed to
determine the prospectivity by area. Models for class probability and
confidence have been assessed in terms of area in Table 5. These show the
total area and normalised area for each class shown in Figs. 9 and 10.
Table 5
Area assessment for both standardised and fuzzy-transformed models. The data have b
percentage for both the class probability (Prob) map and confidence (Conf) maps. Sm

Class Fuzzy-transformed model

Σ Prob Prob (%) Σ Conf Conf (%

<0.5 4597.3 76.58 5693.2 94.83
0.5–0.65 723.88 12.06 174.02 2.9
0.65–0.8 460.3 7.67 104.73 1.74
0.8–0.9 188.33 3.14 28.74 0.48
0.9–1.0 33.67 0.56 2.82 0.05
Total 6003.47 100 6003.52 100
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The total areas are similar for each model and small discrepancies are
due to rounding errors. The class probability model for standardised
variables shows a greater proportion of the study area having some de-
gree of prospectivity (>0.5). In contrast, the class probability model for
the fuzzy-transformed variables shows a smaller proportion of the study
area to be prospective (>0.5) but the areas that are identified have a
greater degree of prospectivity. The most prospective areas (>0.8) ac-
counts for 3.7% of the total area compared to 2% when using stand-
ardised variables. Similarly, the confidence model for both methods has
been assessed. If a value of>0.5 is taken as a reasonable confidence level,
3.2% and 5.2% of the models for standard variables and fuzzy-
transformed variables, respectively, can be considered to be robust.

The results from this analysis would infer that the fuzzy-transformed
variables give an overall greater confidence when generating exploration
targets compared to the standardised variables. By revisiting Table 3, it
can be seen that the combination of W, Sn, As and Na has a mutually
beneficial effect on the AUC values compared to the prior values for the
individual soil and stream-sediment geochemical layers. These mutually
beneficial combinations are likely to improve the MLA model and
enhance target delineation.
3.4. Evaluation using legacy mining data

New targets were identified from the Random Forest model using
fuzzy-transformed variables. These include the Breage district, the
southern margin of the Bodmin Granite and a series of discrete targets
along the eastern margin of the Dartmoor Granite labeled A, B and C,
respectively (Fig. 10B). These are further highlighted in Fig. 11 alongside
additional legacy data to further assess the fuzzy-transformed variable
model.

In the Breage district (Fig. 11A), historic mining records indicate
tungsten mineralisation was intersected at depth at Prospidnick mine on
the SW margin of the Carnmenellis Granite and at Great Wheal Fortune
mine on the eastern margin of the Tregonning-Godolphin Granite (Dines,
1956). Furthermore, a borehole was drilled in the area to 214.14 m that
intersected the granite contact at 173.6 m where the upper 20 m showed
greisen textures and reported tungsten and tin mineralisation in assay
(Ball et al., 1984). Note, this occurrence is missing from the BGS Geo-
Index (2018) data.

Studies conducted under MEIGA are not recorded in the BGS Geo-
Index (2018). The mineralisation along the southern margin of the
Bodmin Granite (Fig. 11B) was investigated by Consolidated Gold Fields
Ltd as part of regional tungsten exploration study funded by MEIGA in
1972. Tungsten and tin anomalies were identified in streams and
follow-up soil sampling was also conducted. A drilling campaign along
the southern margin of the granite was conducted which intersected
tungsten mineralisation but grades and tonnages were deemed uneco-
nomic at the time.

Targets identified in Fig. 11C along the eastern margin of the Dart-
moor Granite require further follow-up work. No records of tungsten
have been found, however, four mines are inferred by Dines (1956) to
become uneconomic with depth with respect to tin and it was suggested
that other “uneconomic” metals may exist but are not described further.
een calculated in a GIS to show the area accounted for by each class as a sum and a
all discrepancies are attributed to rounding errors.

Standardised model

) Σ Prob Prob (%) Σ Conf Conf (%)

4526.6 75.4 5811.73 96.81
969.72 16.15 106.61 1.78
386.5 6.44 67.89 1.13
108.59 1.81 14.1 0.23
12.07 0.2 3.21 0.05
6003.47 100 6003.54 100



Fig. 11. Key target locations based on the class probability map from the fuzzy-transformed variables model. The Breage district is shown in (A) where drilling
projects and mining legacy data are shown to validate the targets. Targets around the Bodmin Granite are shown in (B) with new areas validated by a drilling report.
The eastern margin of the Dartmoor Granite is shown in (C) where mining legacy data are proximal to favourable targets.
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One of these mines exists outside of the surface crop of the granite and
intersects the granite margin at approximately 90 m below surface.

The use of these additional resources helps validate the mineral
prospectivity model. The reference to tungsten mineralisation found in
old mines and former drilling projects suggests that some of these targets
may be within a few hundred meters of surface. This further supports the
model for identifying blind deposits and the inclusion of the proximity-to
granite in Z evidence layer is likely to be important; high resolution
gravity measurements may improve the analysis significantly.

4. Conclusions

Mineral prospectivity modelling has been conducted using a data-
driven Random Forest MLA approach for tungsten in SW England. A
particular focus has been put on feature extraction and the use of initial
variables that were standardised to zero mean and equal variance
compared to those that were further processed using knowledge-driven
fuzzy membership and fuzzy overlay functions.

The two models presented here have similar accuracies based on ROC
curve analysis but show different spatial distributions of prospectivity in
the region. The model that uses standardised variables only identifies
areas of high prospectivity (>0.9) proximal to the training data. The
second model, using fuzzy-transformed input variables, identifies three
new highly prospective targets that were previously unidentified in the
training data. The improvement in target generation is directly attrib-
utable to the use of knowledge-driven feature extraction techniques
within a data-driven MLA framework.
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These models are enhanced using model variance to derive a new
Confidence Metric. The Confidence Metric is a simple calculation to infer
where class probabilities are most robust. These are presented as a map
that can be combined with the initial class probabilities to determine the
most reliable targets. The approach results in spatially refined and robust
mineral exploration targets that can allow for a more focused follow-up
field campaign.

The models have been further evaluated by an areal analysis showing
that the fuzzy-transformedmodel is a better discriminator for prospective
areas compared to the standardised variable model due to the mutually
beneficial effect of combining geochemical layers such as W, Sn, As and
Na during feature extraction. Also, the fuzzy-transformed model has
greater confidence and generates a greater proportion of robust targets
by area based on the Confidence Metric. By conducting model evaluation
in this way, two models with the same statistical accuracy but different
spatial distributions can be better understood. This study underlines how
single accuracy metrics can be fallible when applied to spatial datasets.

Finally, the use of legacy mining data further reinforces the strength
of the model where all three new target areas have potential economic
mineralisation either through direct sampling or inferred from mine
descriptions. Further, the legacy mining data suggests that the targets
generated may be within 300 m of surface. This would indicate the
“proximity-to granite in Z” evidence layer derived from regional gravity
data is valuable and that new discoveries of tungsten mineralisation in
SW England may be enhanced by a new high-resolution gravity survey.
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