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Abstract  19 

The WHAM-FTOX model quantifies cation toxicity towards freshwater organisms, assuming 20 

an additive toxic response to the amounts of protons and metals accumulated by an organism. 21 

We combined a parameterization of the model, using data from multi-species laboratory 22 

toxicity tests, with a fitted field species sensitivity distribution, to simulate the species richness 23 

(nsp) of crustacean zooplankton in acid- and metal-contaminated lakes near Sudbury, Ontario 24 

over several decades, and also in reference (uncontaminated) lakes. A good description of 25 

variation in toxic response among the zooplankton species was achieved with a log-normal 26 

distribution of a new parameter, β, which characterizes an organism’s intrinsic sensitivity 27 

towards toxic cations; the greater is β, the more sensitive is the species. The use of β assumes 28 

that while species vary in their sensitivity, the relative toxicities of different metals are the same 29 

for each species (common relative sensitivity). Unbiased agreements between simulated and 30 

observed nsp were obtained with a high correlation (r2 = 0.81, p < 0.0001, n = 217). Variations 31 

in zooplankton species richness in the Sudbury lakes are calculated to be dominated by toxic 32 

responses to H, Al, Cu and Ni, with a small contribution from Zn, and negligible effects of Cd, 33 

Hg and Pb. According to the model, some of the Sudbury lakes were affected predominantly 34 

by acidification (H and Al), while others were most influenced by toxic heavy metals (Ni, Cu, 35 

Zn); for lakes in the latter category, the relative importance of heavy metals, compared to H 36 

and Al, has increased over time. The results suggest that, if common relative sensitivity 37 

operates, nsp can be modelled on the basis of a single set of parameters characterizing the 38 

average toxic effects of different cations, together with a species sensitivity distribution.  39 
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1. Introduction 40 

The quantitative prediction of the responses of freshwater ecosystems to the effects of 41 

potentially toxic metals and acidification is a continuing challenge in ecotoxicology. Most 42 

effort has been devoted to risk assessment for environmental protection. For metals, 43 

environmental quality standards have been based upon the results of laboratory toxicity testing 44 

for individual metals (Mance, 1987; Cairns and Mount, 1990), with recent major progress in 45 

taking bioavailability into account (Erickson et al., 1996) notably using Biotic Ligand Models 46 

(BLMs) (Di Toro et al., 2001, Paquin et al., 2002, Ardestani et al., 2015). In the case of 47 

acidification (in the implied absence of toxic metals other than aluminium), the most widely 48 

applied criterion is simply alkalinity (Sverdrup and De Vries, 1994; Henricksen and Posch, 49 

2001).  50 

Risk assessment aims to set acceptable limits for metal and acidity levels, but a more difficult 51 

task is to account for actual ecosystem responses to contamination. In the first place, it requires 52 

toxicity models that can deal with mixture effects. Examples of these are modified BLMs 53 

(Playle, 2004; Santore and Ryan, 2015), WHAM-FTOX (Tipping and Lofts, 2013, 2015), and 54 

related models (Balistrieri et al., 2015). In this work we used WHAM-FTOX, which is based 55 

upon the relationship between metal body burdens and toxicity (Meador, 2006; Borgmann et 56 

al., 2008). It estimates the “metabolically active” proton and metal body burden by assuming 57 

that the cation-binding sites of humic acid (HA) are a proxy for those of the toxicity-responsive 58 

biomolecules of the organism in question. The toxic effect of each cation is the product of its 59 

fractional occupancy of the binding sites and its toxicity coefficient (α), and the sum of the 60 

products is equal to FTOX, which quantifies the total toxicity.  The WHAM speciation code (UK 61 

CEH, 2020) is used to calculate cation binding, assuming equilibrium with the bathing solution. 62 

The model has provided reasonable fits of laboratory toxicity data (Tipping and Lofts, 2013, 63 

2015), and the approach is supported by field evidence; measured metal (Al, Ni, Cu, Zn, Cd, 64 

Pb)  contents of stream  bryophytes (Tipping et al., 2008), and macroinvertebrates (Stockdale 65 

et al., 2010; Tipping and Lofts, 2013; De Jonge et al., 2014) are correlated with WHAM-66 

calculated loadings of HA.  67 

Secondly, an appropriate field variable has to be simulated. An obvious one is species richness 68 

(nsp), the number of species of a chosen taxon in a given water. As well as being a fundamental 69 

ecological univariate measure, richness has been widely used to demonstrate the toxic effects 70 

of contaminants in the field (Rainbow, 2018). There have been several studies in which the 71 

variable nsp has been related to water chemistry, in relation to metals and acidity. 72 
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Macroinvertebrate species richness in mountain streams affected by metal mining was 73 

measured by Clements et al. (2000), and shown to be interpretable using the cumulative 74 

criterion unit, defined as the ratio of the instream metal concentration to the U.S. Environmental 75 

Protection Agency criterion concentration for freshwater aquatic organisms (based on 76 

laboratory tests), summed for all metals measured. Khan et al. (2012) demonstrated correlations 77 

between zooplankton species richness in acid- and metal-damaged lakes near Sudbury, Ontario 78 

and toxicity endpoints from laboratory studies with Daphnia magna, using toxic units to 79 

quantify metal mixture effects, and including BLM applications. Stockdale et al. (2010, 80 

2014a,b) fitted WHAM-FTOX to field nsp data for stream invertebrates and lake zooplankton, 81 

using quantile regression to allow for additional variables, other than toxic cations, that might 82 

affect richness. Balistrieri et al. (2015) applied models based on the WHAM-FTOX approach to 83 

stream invertebrate and lake zooplankton species richness. 84 

In all of these studies, nsp was used to summarize ecosystem response to contamination, 85 

covering all species together. But to be more precise, the observed nsp arises because individual 86 

species respond differently to the toxic cations; the greater is the combined toxic stress in a 87 

given water, the fewer species can survive, and the smaller is nsp. Therefore, in the present 88 

work, we explored whether field data could be simulated by considering variations in 89 

sensitivity among species. 90 

Our modelling approach assumes that all species in a given water accumulate protons and 91 

metals to the same extent, and that the relative toxicities of the cations are the same for each 92 

species. However, the species are assumed to differ in their intrinsic toxic sensitivity; some 93 

respond strongly to all cations, others weakly to all cations. This gives rise to a distribution of 94 

species sensitivities, and thereby to variations in nsp with water chemistry. Here, the relative 95 

responses of species to different cations were taken from the results of a meta-analysis (Tipping 96 

et al., 2019) in which WHAM-FTOX was used to analyse data from c. 2000 toxicity tests, 97 

thereby providing averaged, and presumably representative, values of the toxicity coefficient 98 

α for different metals. We introduced a new model parameter, β, that characterizes the 99 

sensitivity of each species (see Section 2.3). The aims of the study were first to determine 100 

whether the distribution of β values could be optimized so that the model could match field nsp 101 

data, and second to use the results to interpret changes in nsp in response to changing water 102 

chemistry. 103 

We conducted our analysis using crustacean zooplankton species richness data, and water 104 

chemistry data, for nine lakes near Sudbury Ontario, which have been affected for more than 105 
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100 years by atmospherically-deposited acidity and metals, and for a number of 106 

uncontaminated reference lakes. Changes in lake water chemistry and species richness, as the 107 

Sudbury lakes recovered from initially high contaminating inputs, have been comprehensively 108 

monitored over several decades (Keller and Yan, 1991; Keller et al. 2019). The large data set 109 

arising from this sustained fieldwork provides an excellent test of the modelling approach. It 110 

cannot be assumed that zooplankton species richness in the lakes is determined only by the 111 

effects of toxic cations (protons and metals); other likely factors include changes in climate 112 

and calcium concentrations (Keller et al., 2019) and fish predation (Yan et al., 2016). 113 

Nonetheless, the high degree of contamination in these lakes means that such toxicity is a 114 

dominating factor, so the events at Sudbury come close to a “field ecotoxicity experiment”. An 115 

advantage of using lake data is that they vary relatively slowly over time, owing to the large 116 

buffering volume of lakewater in comparison to inlet and outlet volumes, so that annual average 117 

water chemistry provides a good estimate of toxicant exposure.   118 
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2. Methods 119 

2.1 Field data  120 

Emissions from metal smelters at Sudbury, northeastern Ontario, caused contamination of 121 

surrounding lakes by acid deposition, while lakes closest to the smelters were also 122 

contaminated with metals, mainly Ni and Cu, and to lesser extents Zn, Cd and Pb. Reductions 123 

in emissions, which were started in the early 1970s, together with experimental neutralization 124 

in some cases, led to chemical and biological improvements (Keller et al., 2007, 2019). We 125 

used annually averaged chemistry and zooplankton richness data from 9 Sudbury lakes that 126 

had been monitored, approximately monthly during the open-water period, between 1973 and 127 

2006, to obtain a total of 171 matched individual lake/year data points. We also employed data 128 

from 23 reference lakes in northeastern Ontario, each sampled once in the midsummers of 2003 129 

and 2005, making a total of 217 data points for the analysis. 130 

The water chemistry data are provided in Table S1. Temporal changes varied among the lakes, 131 

but generally the concentrations of Ca, SO4 and trace metals (Ni-Cu-Zn) declined over the 132 

period of our data, while pH and DOC concentration increased. In four of the lakes (Clearwater, 133 

Hannah, Lohi and Middle) there were appreciable increases in Na and Cl concentrations, due 134 

to road salting, while in the other five, concentrations of these solutes remained steady. 135 

Values of nsp for zooplankton in the 9 Sudbury lakes ranged from 1.2 to 12.7, and in the 136 

reference lakes from 8 to 16 (Table S1). Further information about the biological and chemical 137 

variations in the Sudbury lakes is available in Keller et al. (2019), and references therein. 138 

2.2. Speciation calculations  139 

We used WHAM7 (Tipping et al., 2011; UK CEH, 2020) to calculate lakewater chemical 140 

speciation, taking into account the competitive complexation of major and trace metals with 141 

inorganic ligands and dissolved organic matter. The measured data refer to unfiltered samples 142 

and therefore contain some suspended particulate matter (SPM, including zooplankton) with 143 

associated metals. However, the concentrations of SPM in these lakes are low, < 1 mg L-1 on 144 

average, and therefore we could assume that the data referred to dissolved chemical species; 145 

this assumption is justified in more detail in the Supplementary Information. As in previous 146 

work (Tipping et al., 2008; Stockdale et al., 2010) we attributed DOC to fulvic acid (FA), with 147 

the standard conversion [FA] (g L-1) = 1.3 [DOC] (g L-1), where square brackets indicate 148 

concentrations. We assumed that measured Al concentrations represented truly dissolved metal 149 



7 
 

(in inorganic forms and complexed with dissolved organic matter), and that Fe(III) 150 

concentrations were controlled by equilibrium with Fe(OH)3 (Lofts et al., 2008). We assumed 151 

a temperature of 10oC for all calculations. 152 

The key variables characterizing the exposure of organisms to cations are νHA,H and νHA,M (mol 153 

gHA-1), the amounts of protons and metals bound to humic acid (HA) in equilibrium with the 154 

lakewater solutions; the values of νHA,H and νHA,M are employed in the WHAM-FTOX model 155 

calculations, described in Section 2.3. On the assumption that the measured water chemistries 156 

represent dissolved concentrations (see above), the proton and metal contents of the organisms 157 

themselves were considered negligible (see Supplementary Information), and therefore in order 158 

to compute νHA,H and νHA,M we included HA in the calculation inputs at a concentration (10-9 g 159 

L-1), sufficiently low that the solution speciation calculation would be unaffected. 160 

2.3. WHAM-FTOX theory  161 

The WHAM-FTOX model, recently slightly modified (Tipping et al., 2019), is based on the 162 

assumptions (a) that the toxic effects of protons and metal cations are additively related to their 163 

occupancies of binding sites possessed by biological organisms, and (b) that those binding sites 164 

can be represented by the binding sites of humic acid (HA). This enables the WHAM chemical 165 

speciation code to be used to calculate proton and metal binding by living organisms, taking 166 

into account competition effects, including the influence of pH. 167 

The fractional site occupancies (θH and θM) of the biological binding sites are assumed to be 168 

the same as those of HA, obtained by dividing the νHA,H and νHA,M values (Section 2.2) by the 169 

HA content of proton-dissociating groups (5.1×10-3 mol g-1). Values of θH and θM are 170 

dimensionless, and can vary from zero to unity. 171 

The key variable in the model is FTOX, defined by the equation 172 

FTOX =  αHθH + Σ αMθM     (1) 173 

where αH and αM are toxicity coefficients (dimensionless) for protons and metals, and the 174 

summation is over all toxic metals present in the bathing solution. Values of αM depend upon 175 

the exposure time employed in a toxicity experiment. Here, we use values that apply to infinite 176 

exposure time, αM,max, estimated by extrapolation (Tipping et al., 2019) (Table 1). 177 

The toxic response (TR) depends upon lower and upper thresholds (LT and UT) of FTOX, 178 

between which TR increases linearly from zero to unity. Thus 179 
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FTOX ≤ FTOX,LT  TR = 0       (2) 180 

FTOX,LT < FTOX < FTOX,UT  TR = (FTOX − FTOX,LT) / (FTOX,UT − FTOX,LT)  (3) 181 

FTOX ≥ FTOX,UT  TR = 1       (4) 182 

From fitting laboratory toxicity data (Tipping and Lofts, 2013, 2015; Tipping et al., 2019), 183 

average values of FTOX,LT and FTOX,UT of 0.446 and 1.170 respectively have been derived, and 184 

these are used in the present work.  185 

Here, we extend the model for application to a system with a number of different biological 186 

species, as in the lakes of the present study. This requires values of αM,max for each species i, 187 

expressed as  188 

αM,max,i = βi αM,max,mean      (5) 189 

where αM,max,mean is the average value of αM,max over all species, and βi (dimensionless) is a 190 

metal-independent constant characterizing the sensitivity of each species towards toxic cations. 191 

In the absence of values of αM,max for the zooplankton species that occur in the study lakes, we 192 

made the approximation that the αM,max,mean values for the zooplankton are equal to those 193 

derived by Tipping et al. (2019) in a meta-analysis of data for laboratory test species (Table 1); 194 

these test data covered all major taxa (invertebrates, plants, vertebrates). 195 

Equation (5) means that the relative values of αM,max for different metals are the same for each 196 

species; the species differ simply according to their β values. For example, from the values of 197 

αAl,max,mean, αNi,max,mean, αCu,max,mean, and αZn,max,mean of 2.6, 31.1, 34.6, and 17.0 respectively 198 

(Table 1), a species with β = 0.5 has αAl,max = 1.3, αNi,max = 15.6, αCu,max = 17.3, αZn,max = 8.5, 199 

while another species with β = 2.0 has αAl,max = 5.2, αNi,max = 62.2, αCu,max = 69.2, αZn,max = 34.0. 200 

The proportions of the αM,max values are 1 : 12.0 : 13.3 : 6.5 for both species. We refer to this 201 

behaviour as common relative sensitivity. 202 

From equations (1) and (5), the value of FTOX for species i is given by 203 

FTOX,i = αHθH + βi Σ αM,max,mean θM     (6) 204 

In a given water, all biological species possess the same values of θH and θM, but their 205 

sensitivities to the toxic cations vary through βi.  The greater is βi, the more sensitive is the 206 

species to metals, since this gives greater αM,max,i values from equation (5). It should be noted 207 

that the leading term in equation (6), αHθH, is not affected by the value of βi. This is because, 208 

thus far in the model development, αH has been fixed at unity for all organisms, owing to the 209 

lack of toxicity testing data for H+ alone. 210 
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The model assumes that, in the absence of toxic effects, the number of species present in a lake 211 

during the summer period is nsp,max, which is an integer. The model species are not equated 212 

with real, identified, species; they simply represent the range of sensitivities to toxic cations 213 

possessed by real species. The model species have values of β equal to β1, β2, β3, etc, up to 214 

βnsp,max.  215 

Taking a probabilistic approach to the presence or absence of an individual species, values of 216 

FTOX,i are computed from equation (6), and compared with FTOX,LT and FTOX,UT to obtain the 217 

probability of the model species being present (Pri) according to the following relationships 218 

FTOX,i < FTOX,LT  Pri = 1       (7) 219 

FTOX,LT < FTOX,i < FTOX,UT Pri  = (FTOX,UT - FTOX,i) / (FTOX,UT - FTOX,LT)  (8) 220 

FTOX,i > FTOX,UT  Pri = 0       (9) 221 

The value of nsp is obtained by the summing the Pri values over all the possible model species. 222 

The results are non-integral because, between FTOX,LT and FTOX,UT, the model produces 223 

probabilities of presence, rather than binary presence/absence. 224 

Alternatively, a simplified calculation can be performed in which the average of FTOX,LT and  225 

FTOX,UT is taken as a single cut-off, below which the species is present and above which it is 226 

absent. This produces integral values of nsp. 227 

2.4. Data fitting and statistics 228 

We used Microsoft Excel to perform statistical computations, calculate percentiles of normal 229 

distributions, and carry out optimizations using the Solver function. 230 

We set nsp,max to 13 for all the lakes, based on the 95%ile of the data set, and the choice of the 231 

same value (rounded) by Khan et al. (2012) in their study of these lakes.  232 

For data fitting, we chose to minimize deviations in log10 nsp, so as to give due weight to results 233 

at low nsp. Ideally, the fitted distribution of β should give a small root-mean-square deviation 234 

(RMSD) in log10 nsp, and the slopes of the linear and logarithmic plots of observed vs calculated 235 

nsp should be unity. We fitted the field data to the probabilistic version of the model (equations 236 

7 – 9), using the generalized reduced gradient nonlinear algorithm in Solver, and to the single 237 

cut-off version using the evolutionary algorithm. We tried several two-parameter distributions 238 

to fit the field data, assuming the β values to be evenly-distributed in all cases.  We also fitted 239 

all 13 β values individually. 240 
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3. Results 241 

Using the probabilistic version of the model, the best choice of distribution for β was log-242 

normal, with an unconstrained average value (Table 2). The  fitted mean and standard deviation 243 

were -0.117 and 0.483 respectively. The derived distribution is shown in Figure 1. Panels (a) 244 

and (b) of Figure 2 show that unbiased fits were achieved with high statistical significance; for 245 

the logarithmic regression r2 = 0.81, p < 0.0001; for the linear regression r2 = 0.84, p < 0.0001. 246 

The probabilistic model was also fitted by optimizing all 13 β values; this gave similar 247 

goodness-of-fit results (Table 2), and a distribution similar to the two-parameter log-normal 248 

distribution (Figure 1). 249 

Application of the single cut-off version of the model led to a similar log-normal distribution, 250 

with fitted mean and standard deviation values of -0.098 and 0.519 respectively (Figure 1). 251 

Again, unbiased fits were obtained (Figure 2, panels (c) and (d)), with high correlations 252 

(logarithmic r2 = 0.81, p < 0.0001; linear r2 = 0.84, p < 0.0001).  The fitting statistics were 253 

marginally poorer than those for the probabilistic log-normal fit (Table 2). 254 

The importance of the different metals to the modelled values of log10 nsp can be gauged from 255 

Table 3, which shows RMSD in log10 nsp obtained after the omission of individual metals from 256 

the analysis. The results are most sensitive to Cu, then Al and Ni, with a small dependence on 257 

Zn. There are negligible contributions from Cd, Hg and Pb to the estimation of log10 nsp; 258 

although these metals have high values of αM,max,mean (Table 1), their low lakewater 259 

concentrations mean that their loadings of the zooplankton binding sites (θCd, θHg, θPb) are too 260 

small to affect FTOX (equation 1). 261 

Temporal variations of nsp are matched fairly well for most of the Sudbury lakes, whether the 262 

probabilistic or single cut-off versions of the model are applied (Figure 3). However, there is a 263 

tendency for the model to underestimate the rates of increase in nsp, most noticeably for Middle 264 

Lake. Observed patterns of inter-annual variability in nsp are reproduced in some instances, but 265 

they are often missed. In particular, the observed nsp values for Clearwater Lake are much more 266 

variable than the calculated ones. 267 

Contributions of the different cations to FTOX are shown for the 9 Sudbury lakes in Figure 4, 268 

based on results from the probabilistic version of the model. Results are shown for the central 269 

model species in the distribution of 13 species, that is, model species number 7, for which β = 270 

0.764 (Figure 1). Results for model species 3 and 11 are shown in Figures S1A and S1B. The 271 

relative contributions of the metal cations are the same for each model species, but their 272 
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absolute contributions vary. The contribution of H+ to FTOX is the same for each model species 273 

(see Methods). 274 

As expected from the results in Table 3, the main effects were due to H, Al, Ni and Cu, with 275 

small contributions from Zn. The lakes can be distinguished by the contributions of different 276 

toxic cations to FTOX, and the consequent effects on nsp. In Laundrie and Whitepine Lakes, 277 

acidification has been dominant, the main toxic effects coming from H and Al. At the other 278 

extreme, Hannah and Middle Lakes have been most affected by heavy metals (Ni, Cu, Zn) 279 

especially in the later years. The other five lakes have been affected to similar extents by 280 

acidification and heavy metals. Overall, the relative influence of the heavy metals has increased 281 

with time, even though their lakewater concentrations have been falling. According to the 282 

model, this was because metal accumulation by the zooplankton increased due to declining 283 

competition by H and Al for complexation by the organisms; the effect applies especially to Ni 284 

in Clearwater, Hannah, Lohi and Middle Lakes.  285 
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4. Discussion  286 

In this work we combined the average values of metal-related parameters (αM,max,mean, 287 

Table 1) estimated from laboratory toxicity test results (Tipping et al., 2019) with fitted model 288 

species sensitivity distributions for lake zooplankton. Optimization of only two parameters (the 289 

average and standard deviation of log10 β) produced remarkably good fits (Figures 2 and 3) to 290 

field observations of zooplankton species richness in 217 lakewaters covering substantial 291 

ranges of pH, and concentrations of major ions and toxic metals (Table S1). Extending the 292 

optimization to all log10 β values of the assumed total of 13 model species made almost no 293 

difference to the goodness of fit (Table 2), and so the assumption of an evenly-spaced log-294 

normal distribution is justified. 295 

We applied the model in two ways. Firstly, in line with laboratory toxicity testing, we assumed 296 

that the toxic effect leading to the presence or absence of a species could vary between lower 297 

and upper threshold values of FTOX (equations 2 – 4), related to conventional dose-response 298 

curves. We then interpreted the intermediate values in terms of the probability of the species 299 

being present (equations 7 – 9). Alternatively, a simpler approach could be taken, whereby a 300 

single cut-off value of FTOX (the average of the lower and upper thresholds) was taken as the 301 

condition where presence changes to absence, or vice versa. The single cut-off version of the 302 

model is perhaps more closely related to field measurements, which also deal with simple 303 

presence or absence. On the other hand, the probabilistic version might provide a better 304 

representation of the average  nsp over a sampling season, providing non-integer values to 305 

compare with the non-integer observations that arise from averaging results for different dates 306 

within the yearly period of sampling a given lake. However, the results obtained with the two 307 

approaches are very similar, and do not affect any conclusions that might be drawn. 308 

With the approximation (Section 2.3) that average values of αM,max,mean for the zooplankton are 309 

the same as those derived for laboratory test species (Table 1), the optimized average values of 310 

log10 β are -0.117 (probabilistic) and -0.098 (single cut-off), equivalent to β values of 0.76 and 311 

0.80. From the fit of all 13 log10 β values, we obtain a mean β of 0.72 These values imply that 312 

the average lake model species is somewhat less sensitive to toxic metals than the average 313 

species used in toxicity testing, for which an average β near to 1.00 is expected. But the 314 

difference in average sensitivity is not great, suggesting that the toxicity parameters 315 

(αM,max,mean) derived from laboratory results (Tipping et al., 2019) are strongly relevant to field 316 

behaviour.  317 
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The fitting parameters can be used to gauge the range of sensitivities of zooplankton species to 318 

toxic cations, by considering ratios of high and low β values. Taking the values for model 319 

species 1 (least sensitive) and 13 (most sensitive), we obtain ratios of 22, 51 and 68 respectively 320 

from the 13-parameter fit, the probabilistic log-normal fit, and the single cut-off log-normal fit. 321 

Alternatively, the corresponding ratios from species 2 and 12 are 12, 14 and 18, which are 322 

perhaps more realistic because the field data may not define the extremes of the distributions 323 

very well. These ratios indicate a considerable range in the abilities of different model species 324 

to resist cation toxicity. 325 

The assumption of common relative sensitivity, in which the sensitivity of a model species 326 

towards toxic metals is characterized by the parameter, β, allows the model to attribute toxic 327 

effects separately, to variations among metals on the one hand, and among species on the other. 328 

If such a differentiation cannot be made, then it is difficult to see how modelling based on the 329 

responses of individual species could be done, unless comprehensive toxicity data were 330 

available for every species. In the present case, common relative sensitivity only has to apply 331 

to three metals, Al, Ni and Cu, since the toxic effects of the others are calculated to be small or 332 

negligible (Table 3). Moreover, the results in Figure 4, predicting that some lakes have 333 

responded principally to Ni and Cu, while others have been mainly affected by acidification, 334 

including the effect of Al, means that the field data do not provide a strong test of the need for 335 

common relative sensitivity. For example, it is quite possible for there to be no relationship 336 

between the sensitivities of zooplankton towards Ni and Cd.  As far as we have been able to 337 

ascertain, there was no published evidence for or against common relative sensitivity until 338 

Fettweis et al. (2020) reported correlations among toxic endpoints for the effects of Ni, Cu and 339 

Zn on the growth rates of 8 phytoplankton species. More research on this topic is warranted. 340 

An implied assumption in our approach is that the accumulation of metals via dietary intake 341 

does not represent a quantitatively different exposure route. We have previously argued 342 

(Stockdale et al., 2014a) that because the dietary organisms on which zooplankton feed are 343 

exposed to the same lakewater as the zooplankton themselves, they are loaded with metals in 344 

the same proportions experienced by the zooplankton in water-borne exposure. Therefore, 345 

relative metal loadings of zooplankton are the same by both routes. It can also be noted that the 346 

WHAM-FTOX model does not entail a specific mode of cation uptake; it merely asserts that the 347 

loading of cations by organisms is related, via equilibrium complexation reactions, to the 348 

bathing water composition. 349 
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A limitation to this study is the approximate nature of the WHAM-FTOX model, including the 350 

assumption that HA is an adequate surrogate for toxicity-sensitive biomolecules. The model 351 

only provided a broad-brush encapsulation of laboratory toxicity testing data (Tipping et al., 352 

2019), and those data did not evenly cover a wide range of species and metals, being biased 353 

towards one metal, Cu (76% of all endpoints used) and with 72% of the endpoints applying to 354 

just five test species. Correction for water chemistry was poorer than has been obtained in 355 

focused multi-parameter modelling in individual studies. Another aspect that requires 356 

improvement is the necessary use of a constant value (1.0) of αH, owing to a lack of studies of 357 

toxicity by H+ alone. However, it seems unlikely that improving WHAM-FTOX and its 358 

parameterization would necessarily improve the field modelling reported here, without more 359 

research into common relative sensitivity and species sensitivity distributions. 360 

It should be noted that the method of application of WHAM-FTOX in the present study differs 361 

from that in earlier work in which the model was applied to zooplankton data from a wide range 362 

of lakes, including those in the vicinity of Sudbury (Stockdale et al., 2014a). In the previous 363 

work, a larger number of model parameters were fitted to the field data, and account was taken, 364 

via quantile regression, of effects other than cation toxicity in determining values of nsp. This 365 

means that the parameter values determined in this and the previous study are not comparable. 366 

Furthermore, as explained in the Introduction, the important difference between the studies is 367 

that in the present analysis, the toxic responses of individual species are summed to obtain nsp, 368 

whereas in the earlier work nsp was treated as an overall ecosystem response. 369 

Whereas the model allows 13 invariant species, characterized only by their sensitivities towards 370 

toxic cations (β values), the real zooplankton populations in the lakes are drawn from a larger 371 

number of different species; some 65 different species were observed at different times in the 372 

9 Sudbury lakes. Although many of these occurred only rarely, the observed average nsp values 373 

are certainly made up of more than 13 different species. In the absence of toxic effects, nsp 374 

depends on a variety of factors, including water body morphometry (Dodson, 1992), climate 375 

(Hessen et al., 2006; Keller et al., 2019), ultraviolet radiation (Marinone et al 2006), chemical 376 

and thermal variability (Shurin et al., 2010), non-toxic chemistry (DeSellas et al 2011, Sinclair 377 

& Arnott 2017), lake productivity (Dodson, 1992, Hessen et al., 2006), predation (Knapp et al 378 

2001, MacLennan et al 2015), niche availability (Walseng et al., 2006), long-range dispersal 379 

(Shurin et al., 2000), and competition (Hebert, 1982). The combination of some or all of these 380 

factors determines which species succeed in a given lake in a given year, and although some 381 

species may occur regularly, others come and go. This compositional variation in the 382 
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zooplankton populations means that the 13 model species cannot be equated with real 383 

zooplankton species, but it does appear, from the reasonably successful fitting of the data, that 384 

the fitted distribution of β values covers the range of toxic sensitivities of species that occur in 385 

the field. 386 

Although the modelling accounts for much of the temporal variation in nsp as the lakes 387 

recovered from the most extreme toxic conditions (Figure 3), other factors may have played a 388 

role. For example, the changes in water chemistry are likely to have affected biota other than 389 

zooplankton, and thereby have had indirect effects on nsp, resulting from changes in food 390 

sources and predation pressure. Yan et al. (2016) concluded that in the later years of recovery 391 

the introduction of piscivorous fish relieved the pressure on zooplankton by planktoniferous 392 

fish, allowing faster recovery from contaminant effects. Furthermore, climate change has likely 393 

affected (increased) zooplankton richness at Sudbury (Keller et al., 2019). A full explanation 394 

of zooplankton species richness in the Sudbury lakes, and for field systems in general, would 395 

require the combined modelling of ecology and toxicity. 396 

This study has demonstrated the possibility that species richness can be modelled on the basis 397 

of laboratory-derived parameters for metals (α values) together with a fitted species sensitivity 398 

distribution (β values). Further progress with respect to toxic effects in the field requires the 399 

issue of common relative sensitivity to be resolved, and testing of the approach on other 400 

ecosystem types. Potentially, this could lead to a generally applicable method of quantifying 401 

and predicting ecosystem damage by, and recovery from, toxic cations, including attribution 402 

of the relative toxic effects of different cations.   403 
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5. Conclusions 404 

(a) Species richness data for zooplankton in contaminated lakes near Sudbury, and in reference 405 

lakes, were successfully fitted with WHAM-FTOX, parameterized with laboratory toxicity 406 

data for metals, and with an optimized log-normal species sensitivity distribution. 407 

(b) The most important toxic cations were H, Al, Ni and Cu, with a small contribution from 408 

Zn, and negligible toxic effects attributable to Cd, Hg and Pb. 409 

(c) The results highlight the issue of common relative sensitivity, which means that a species 410 

is intrinsically sensitive, or insensitive, to toxic cations. Further research is need to establish 411 

the validity or otherwise of this concept. 412 

(d) Some of the lakes at Sudbury were affected predominantly by acidification (H and Al), 413 

while others were most influenced by toxic heavy metals (Ni, Cu, Zn). For lakes in the 414 

latter category, the relative importance of heavy metals to toxicity has increased over time, 415 

despite their decreased concentrations.  416 
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Table 1. Values of αM,max,mean, obtained by averaging values from laboratory toxicity tests 536 

reported by Tipping et al. (2019). 537 

Cation n αM,max,mean SE 

H  (1.0)  

Al 7 2.6  0.0 

Ni 79 31.1 3.4 

Cu 1543 34.6 0.7 

Zn 118 17.0 1.3 

Cd 152 673 35 

Hg 5 621 347 

Pb 33 126 24 

The value for H is set to 1.0; n = number of data; SE = standard error.  538 
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Table 2. Fitting statistics for different distributions of β. 539 

 RMSD in 
log10 nsp 

log-log 
slope 

linear  
slope 

Probabilistic, two-parameter distributions   
linear* 0.105 0.930 0.875 

linear with intercept ≥ 0.00 0.105 0.905 0.858 

normal* 0.106 0.943 0.889 
normal with mean fixed at 1.00*  0.108 0.970 0.927 
log-normal 0.098 1.013 1.010 
log-normal with mean fixed at 0.00 0.111 1.127 1.209 

Probabilistic, fit of all 13 β values 0.097 1.008 0.986 

Single cut-off, two-parameter log-normal 0.102 1.035 1.019 

RMSD = root-mean-square deviation 540 

*some modelled β values were negative.  541 
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Table 3. Effect of omitting individual metals on the root mean-squared deviation in log10 nsp. 542 
 543 

Metal omitted RMSD 

None 0.098 
Al 0.174 
Ni 0.116 
Cu 0.212 
Zn 0.099 
Cd 0.098 
Hg 0.098 
Pb 0.098 

  544 
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Figure captions 545 

Figure 1. Distributions of log10 β values for lakewater zooplankton species, estimated by fitting 546 

the field data. The lines show the two-parameter lognormal fits; the full line is for the 547 

probabilistic version of the model, the dashed line refers to the single cut-off version. The 548 

points show the 13 values fitted independently. 549 

Figure 2. Comparison of observed species richness (nsp,obs) with values calculated using 550 

WHAM-FTOX (nsp,calc). The top two panels show results with the probabilistic version of the 551 

model; the same data are plotted on (a) linear and (b) logarithmic (right) scales. The lower 552 

panels show results with the single cut-off version, with (c) linear and (d) logarithmic scales. 553 

The 1:1 line is shown in each case. Data for the Sudbury lakes are shown by filled circles, 554 

reference lake data by open circles. 555 

Figure 3. Temporal dependence of species richness (nsp) in each Sudbury lake. The points are 556 

observations, full lines refer to calculations with the probabilistic version of WHAM-FTOX, 557 

dashed lines to calculations with the single cut-off version. 558 

Figure 4. Contributions of different toxic cations to FTOX and change over time for Sudbury 559 

lakes. Calculated results from the probabilistic version of WHAM-FTOX are shown for the 560 

central species in the distribution of 13 species (species number 7, β = 0.764 (Figure 1).561 
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