Article (refereed) - postprint

Tipping, E.; Lofts, S.; Keller, W. 2021. The use of WHAM-FTOX, parameterized with laboratory data, to simulate zooplankton species richness in acid- and metal- contaminated lakes.

© 2020 Elsevier B.V.

This manuscript version is made available under the CC BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/
(cc) $\mathrm{E} \gamma-\mathrm{Nc}-\mathrm{ND}$

This version is available at http://nora.nerc.ac.uk/id/eprint/529241
Copyright and other rights for material on this site are retained by the rights owners. Users should read the terms and conditions of use of this material at https://nora.nerc.ac.uk/policies.htm|\#access.

This is an unedited manuscript accepted for publication, incorporating any revisions agreed during the peer review process. There may be differences between this and the publisher's version. You are advised to consult the publisher's version if you wish to cite from this article.

The definitive version was published in Aquatic Toxicology, 231, 105708. https://doi.org/10.1016/j.aquatox.2020.105708

The definitive version is available at https://www.elsevier.com/

Aquatic Toxicology 2021

The use of WHAM- $F_{\text {tox }}$, parameterized with laboratory data, to simulate zooplankton species richness in acid- and metal- contaminated lakes

E Tipping ${ }^{\text {a* }}$, S Lofts ${ }^{\mathrm{a}}$, W Keller ${ }^{\mathrm{c}}$

${ }^{a}$ UK Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster, LA1 4AP, United Kingdom; ${ }^{b}$ Cooperative Freshwater Ecology Unit, Laurentian University, Sudbury, Ontario, P3E 2C6, Canada
*Corresponding author: Dr Edward Tipping
Centre for Ecology \& Hydrology
Lancaster Environment Centre
Lancaster
LA1 4AP
United Kingdom
et@ceh.ac.uk

Declarations of interest: none

Abstract

The WHAM- $F_{\text {Tox }}$ model quantifies cation toxicity towards freshwater organisms, assuming an additive toxic response to the amounts of protons and metals accumulated by an organism. We combined a parameterization of the model, using data from multi-species laboratory toxicity tests, with a fitted field species sensitivity distribution, to simulate the species richness ($n_{\text {sp }}$) of crustacean zooplankton in acid- and metal-contaminated lakes near Sudbury, Ontario over several decades, and also in reference (uncontaminated) lakes. A good description of variation in toxic response among the zooplankton species was achieved with a log-normal distribution of a new parameter, β, which characterizes an organism's intrinsic sensitivity towards toxic cations; the greater is β, the more sensitive is the species. The use of β assumes that while species vary in their sensitivity, the relative toxicities of different metals are the same for each species (common relative sensitivity). Unbiased agreements between simulated and observed $n_{\text {sp }}$ were obtained with a high correlation ($r^{2}=0.81, p<0.0001, n=217$). Variations in zooplankton species richness in the Sudbury lakes are calculated to be dominated by toxic responses to $\mathrm{H}, \mathrm{Al}, \mathrm{Cu}$ and Ni , with a small contribution from Zn , and negligible effects of Cd , Hg and Pb . According to the model, some of the Sudbury lakes were affected predominantly by acidification (H and Al), while others were most influenced by toxic heavy metals (Ni, Cu, Zn); for lakes in the latter category, the relative importance of heavy metals, compared to H and Al, has increased over time. The results suggest that, if common relative sensitivity operates, $n_{\text {sp }}$ can be modelled on the basis of a single set of parameters characterizing the average toxic effects of different cations, together with a species sensitivity distribution.

1. Introduction

The quantitative prediction of the responses of freshwater ecosystems to the effects of potentially toxic metals and acidification is a continuing challenge in ecotoxicology. Most effort has been devoted to risk assessment for environmental protection. For metals, environmental quality standards have been based upon the results of laboratory toxicity testing for individual metals (Mance, 1987; Cairns and Mount, 1990), with recent major progress in taking bioavailability into account (Erickson et al., 1996) notably using Biotic Ligand Models (BLMs) (Di Toro et al., 2001, Paquin et al., 2002, Ardestani et al., 2015). In the case of acidification (in the implied absence of toxic metals other than aluminium), the most widely applied criterion is simply alkalinity (Sverdrup and De Vries, 1994; Henricksen and Posch, 2001).

Risk assessment aims to set acceptable limits for metal and acidity levels, but a more difficult task is to account for actual ecosystem responses to contamination. In the first place, it requires toxicity models that can deal with mixture effects. Examples of these are modified BLMs (Playle, 2004; Santore and Ryan, 2015), WHAM- $F_{\text {TOx }}$ (Tipping and Lofts, 2013, 2015), and related models (Balistrieri et al., 2015). In this work we used WHAM- $F_{\text {tox, }}$ which is based upon the relationship between metal body burdens and toxicity (Meador, 2006; Borgmann et al., 2008). It estimates the "metabolically active" proton and metal body burden by assuming that the cation-binding sites of humic acid (HA) are a proxy for those of the toxicity-responsive biomolecules of the organism in question. The toxic effect of each cation is the product of its fractional occupancy of the binding sites and its toxicity coefficient (α), and the sum of the products is equal to $F_{\text {Tox }}$, which quantifies the total toxicity. The WHAM speciation code (UK CEH, 2020) is used to calculate cation binding, assuming equilibrium with the bathing solution. The model has provided reasonable fits of laboratory toxicity data (Tipping and Lofts, 2013, 2015), and the approach is supported by field evidence; measured metal ($\mathrm{Al}, \mathrm{Ni}, \mathrm{Cu}, \mathrm{Zn}, \mathrm{Cd}$, $\mathrm{Pb})$ contents of stream bryophytes (Tipping et al., 2008), and macroinvertebrates (Stockdale et al., 2010; Tipping and Lofts, 2013; De Jonge et al., 2014) are correlated with WHAMcalculated loadings of HA.

Secondly, an appropriate field variable has to be simulated. An obvious one is species richness $\left(n_{\mathrm{sp}}\right)$, the number of species of a chosen taxon in a given water. As well as being a fundamental ecological univariate measure, richness has been widely used to demonstrate the toxic effects of contaminants in the field (Rainbow, 2018). There have been several studies in which the variable $n_{\text {sp }}$ has been related to water chemistry, in relation to metals and acidity.

Macroinvertebrate species richness in mountain streams affected by metal mining was measured by Clements et al. (2000), and shown to be interpretable using the cumulative criterion unit, defined as the ratio of the instream metal concentration to the U.S. Environmental Protection Agency criterion concentration for freshwater aquatic organisms (based on laboratory tests), summed for all metals measured. Khan et al. (2012) demonstrated correlations between zooplankton species richness in acid- and metal-damaged lakes near Sudbury, Ontario and toxicity endpoints from laboratory studies with Daphnia magna, using toxic units to quantify metal mixture effects, and including BLM applications. Stockdale et al. (2010, 2014a,b) fitted WHAM- $F_{\text {Tox }}$ to field $n_{\text {sp }}$ data for stream invertebrates and lake zooplankton, using quantile regression to allow for additional variables, other than toxic cations, that might affect richness. Balistrieri et al. (2015) applied models based on the WHAM- F tox approach to stream invertebrate and lake zooplankton species richness.

In all of these studies, $n_{\text {sp }}$ was used to summarize ecosystem response to contamination, covering all species together. But to be more precise, the observed $n_{\text {sp }}$ arises because individual species respond differently to the toxic cations; the greater is the combined toxic stress in a given water, the fewer species can survive, and the smaller is $n_{\text {sp. }}$. Therefore, in the present work, we explored whether field data could be simulated by considering variations in sensitivity among species.

Our modelling approach assumes that all species in a given water accumulate protons and metals to the same extent, and that the relative toxicities of the cations are the same for each species. However, the species are assumed to differ in their intrinsic toxic sensitivity; some respond strongly to all cations, others weakly to all cations. This gives rise to a distribution of species sensitivities, and thereby to variations in $n_{\text {sp }}$ with water chemistry. Here, the relative responses of species to different cations were taken from the results of a meta-analysis (Tipping et al., 2019) in which WHAM- $F_{\text {Tox }}$ was used to analyse data from c. 2000 toxicity tests, thereby providing averaged, and presumably representative, values of the toxicity coefficient α for different metals. We introduced a new model parameter, β, that characterizes the sensitivity of each species (see Section 2.3). The aims of the study were first to determine whether the distribution of β values could be optimized so that the model could match field $n_{\text {sp }}$ data, and second to use the results to interpret changes in $n_{\text {sp }}$ in response to changing water chemistry.

We conducted our analysis using crustacean zooplankton species richness data, and water chemistry data, for nine lakes near Sudbury Ontario, which have been affected for more than

100 years by atmospherically-deposited acidity and metals, and for a number of uncontaminated reference lakes. Changes in lake water chemistry and species richness, as the Sudbury lakes recovered from initially high contaminating inputs, have been comprehensively monitored over several decades (Keller and Yan, 1991; Keller et al. 2019). The large data set arising from this sustained fieldwork provides an excellent test of the modelling approach. It cannot be assumed that zooplankton species richness in the lakes is determined only by the effects of toxic cations (protons and metals); other likely factors include changes in climate and calcium concentrations (Keller et al., 2019) and fish predation (Yan et al., 2016). Nonetheless, the high degree of contamination in these lakes means that such toxicity is a dominating factor, so the events at Sudbury come close to a "field ecotoxicity experiment". An advantage of using lake data is that they vary relatively slowly over time, owing to the large buffering volume of lakewater in comparison to inlet and outlet volumes, so that annual average water chemistry provides a good estimate of toxicant exposure.

2. Methods

2.1 Field data

Emissions from metal smelters at Sudbury, northeastern Ontario, caused contamination of surrounding lakes by acid deposition, while lakes closest to the smelters were also contaminated with metals, mainly Ni and Cu , and to lesser extents Zn, Cd and Pb . Reductions in emissions, which were started in the early 1970s, together with experimental neutralization in some cases, led to chemical and biological improvements (Keller et al., 2007, 2019). We used annually averaged chemistry and zooplankton richness data from 9 Sudbury lakes that had been monitored, approximately monthly during the open-water period, between 1973 and 2006, to obtain a total of 171 matched individual lake/year data points. We also employed data from 23 reference lakes in northeastern Ontario, each sampled once in the midsummers of 2003 and 2005, making a total of 217 data points for the analysis.

The water chemistry data are provided in Table S1. Temporal changes varied among the lakes, but generally the concentrations of $\mathrm{Ca}, \mathrm{SO}_{4}$ and trace metals $(\mathrm{Ni}-\mathrm{Cu}-\mathrm{Zn})$ declined over the period of our data, while pH and DOC concentration increased. In four of the lakes (Clearwater, Hannah, Lohi and Middle) there were appreciable increases in Na and Cl concentrations, due to road salting, while in the other five, concentrations of these solutes remained steady.

Values of $n_{\text {sp }}$ for zooplankton in the 9 Sudbury lakes ranged from 1.2 to 12.7 , and in the reference lakes from 8 to 16 (Table S1). Further information about the biological and chemical variations in the Sudbury lakes is available in Keller et al. (2019), and references therein.

2.2. Speciation calculations

We used WHAM7 (Tipping et al., 2011; UK CEH, 2020) to calculate lakewater chemical speciation, taking into account the competitive complexation of major and trace metals with inorganic ligands and dissolved organic matter. The measured data refer to unfiltered samples and therefore contain some suspended particulate matter (SPM, including zooplankton) with associated metals. However, the concentrations of SPM in these lakes are low, $<1 \mathrm{mg} \mathrm{L}^{-1}$ on average, and therefore we could assume that the data referred to dissolved chemical species; this assumption is justified in more detail in the Supplementary Information. As in previous work (Tipping et al., 2008; Stockdale et al., 2010) we attributed DOC to fulvic acid (FA), with the standard conversion [FA] $\left(\mathrm{g} \mathrm{L}^{-1}\right)=1.3$ [DOC] $\left(\mathrm{g} \mathrm{L}^{-1}\right)$, where square brackets indicate concentrations. We assumed that measured Al concentrations represented truly dissolved metal
(in inorganic forms and complexed with dissolved organic matter), and that Fe (III) concentrations were controlled by equilibrium with $\mathrm{Fe}(\mathrm{OH})_{3}$ (Lofts et al., 2008). We assumed a temperature of $10^{\circ} \mathrm{C}$ for all calculations.

The key variables characterizing the exposure of organisms to cations are $v_{\mathrm{HA}, \mathrm{H}}$ and $\nu_{\mathrm{HA}, \mathrm{M}}$ (mol gHA^{-1}), the amounts of protons and metals bound to humic acid (HA) in equilibrium with the lakewater solutions; the values of $v_{\mathrm{HA}, \mathrm{H}}$ and $\nu_{\mathrm{HA}, \mathrm{M}}$ are employed in the WHAM- $F_{\text {Tox }}$ model calculations, described in Section 2.3. On the assumption that the measured water chemistries represent dissolved concentrations (see above), the proton and metal contents of the organisms themselves were considered negligible (see Supplementary Information), and therefore in order to compute $\nu_{\mathrm{HA}, \mathrm{H}}$ and $\nu_{\mathrm{HA}, \mathrm{M}}$ we included HA in the calculation inputs at a concentration $\left(10^{-9} \mathrm{~g}\right.$ L^{-1}), sufficiently low that the solution speciation calculation would be unaffected.

2.3. WHAM-FTOX theory

The WHAM- $F_{\text {Tox }}$ model, recently slightly modified (Tipping et al., 2019), is based on the assumptions (a) that the toxic effects of protons and metal cations are additively related to their occupancies of binding sites possessed by biological organisms, and (b) that those binding sites can be represented by the binding sites of humic acid (HA). This enables the WHAM chemical speciation code to be used to calculate proton and metal binding by living organisms, taking into account competition effects, including the influence of pH .

The fractional site occupancies $\left(\theta_{\mathrm{H}}\right.$ and $\left.\theta_{\mathrm{M}}\right)$ of the biological binding sites are assumed to be the same as those of HA, obtained by dividing the $v_{\mathrm{HA}, \mathrm{H}}$ and $v_{\mathrm{HA}, \mathrm{M}}$ values (Section 2.2) by the HA content of proton-dissociating groups $\left(5.1 \times 10^{-3} \mathrm{~mol} \mathrm{~g}^{-1}\right)$. Values of θ_{H} and θ_{M} are dimensionless, and can vary from zero to unity.

The key variable in the model is $F_{\text {TOX }}$, defined by the equation

$$
\begin{equation*}
F_{\mathrm{TOX}}=\alpha_{\mathrm{H}} \theta_{\mathrm{H}}+\Sigma \alpha_{\mathrm{M}} \theta_{\mathrm{M}} \tag{1}
\end{equation*}
$$

where α_{H} and α_{M} are toxicity coefficients (dimensionless) for protons and metals, and the summation is over all toxic metals present in the bathing solution. Values of α_{M} depend upon the exposure time employed in a toxicity experiment. Here, we use values that apply to infinite exposure time, $\alpha_{\mathrm{M}, \max }$, estimated by extrapolation (Tipping et al., 2019) (Table 1).

The toxic response (TR) depends upon lower and upper thresholds (LT and UT) of $F_{\text {Tox }}$, between which TR increases linearly from zero to unity. Thus

$$
\begin{array}{cl}
F_{\mathrm{TOX}} \leq F_{\mathrm{TOX}, \mathrm{LT}} & \mathrm{TR}=0 \\
F_{\mathrm{TOX}, \mathrm{LT}}<F_{\mathrm{TOX}}<F_{\mathrm{TOX}, \mathrm{UT}} & \mathrm{TR}=\left(F_{\mathrm{TOX}}-F_{\mathrm{TOX}, \mathrm{LT})}\right) /\left(F_{\mathrm{TOX}, \mathrm{UT}}-F_{\mathrm{TOX}, \mathrm{LT}}\right) \\
F_{\mathrm{TOX}} \geq F_{\mathrm{TOX}, \mathrm{UT}} & \mathrm{TR}=1 \tag{4}
\end{array}
$$

From fitting laboratory toxicity data (Tipping and Lofts, 2013, 2015; Tipping et al., 2019), average values of $F_{\text {TOX,LT }}$ and $F_{\text {TOX, UT }}$ of 0.446 and 1.170 respectively have been derived, and these are used in the present work.

Here, we extend the model for application to a system with a number of different biological species, as in the lakes of the present study. This requires values of $\alpha_{\mathrm{m}, \text { max }}$ for each species i , expressed as

$$
\begin{equation*}
\alpha_{\mathrm{M}, \max , \mathrm{i}}=\beta_{\mathrm{i}} \alpha_{\mathrm{M}, \text { max,mean }} \tag{5}
\end{equation*}
$$

where $\alpha_{\mathrm{M}, \text { max,mean }}$ is the average value of $\alpha_{\mathrm{M}, \text { max }}$ over all species, and β_{i} (dimensionless) is a metal-independent constant characterizing the sensitivity of each species towards toxic cations. In the absence of values of $\alpha_{\mathrm{M}, \text { max }}$ for the zooplankton species that occur in the study lakes, we made the approximation that the $\alpha_{\mathrm{M}, \text { max,mean }}$ values for the zooplankton are equal to those derived by Tipping et al. (2019) in a meta-analysis of data for laboratory test species (Table 1); these test data covered all major taxa (invertebrates, plants, vertebrates).

Equation (5) means that the relative values of $\alpha_{\mathrm{M}, \max }$ for different metals are the same for each species; the species differ simply according to their β values. For example, from the values of $\alpha_{\mathrm{Al}, \text { max,mean }} \alpha_{\mathrm{Ni}, \text { max,mean }} \alpha_{\mathrm{Cu}, \text { max,mean }}$, and $\alpha_{\mathrm{Zn}, \text { max,mean }}$ of $2.6,31.1,34.6$, and 17.0 respectively (Table 1), a species with $\beta=0.5$ has $\alpha_{\mathrm{Al}, \text { max }}=1.3, \alpha_{\mathrm{Ni}, \max }=15.6, \alpha_{\mathrm{Cu}, \max }=17.3, \alpha_{\mathrm{Zn}, \max }=8.5$, while another species with $\beta=2.0$ has $\alpha_{\mathrm{Al}, \text { max }}=5.2, \alpha_{\mathrm{N}, \text { max }}=62.2, \alpha_{\mathrm{Cu}, \max }=69.2, \alpha_{\mathrm{Zn}, \max }=34.0$. The proportions of the $\alpha_{\mathrm{M}, \text { max }}$ values are $1: 12.0: 13.3: 6.5$ for both species. We refer to this behaviour as common relative sensitivity.

From equations (1) and (5), the value of $F_{\text {Tox }}$ for species i is given by

$$
\begin{equation*}
F_{\mathrm{TOX}, \mathrm{i}}=\alpha_{\mathrm{H}} \theta_{\mathrm{H}}+\beta_{\mathrm{i}} \Sigma \alpha_{\mathrm{M}, \text { max }, \text { mean }} \theta_{\mathrm{M}} \tag{6}
\end{equation*}
$$

In a given water, all biological species possess the same values of θ_{H} and θ_{M}, but their sensitivities to the toxic cations vary through β_{i}. The greater is β_{i}, the more sensitive is the species to metals, since this gives greater $\alpha_{\mathrm{M}, \text { max, }}$ values from equation (5). It should be noted that the leading term in equation (6), $\alpha_{\mathrm{H}} \theta_{\mathrm{H}}$, is not affected by the value of β_{i}. This is because, thus far in the model development, α_{H} has been fixed at unity for all organisms, owing to the lack of toxicity testing data for H^{+}alone.

The model assumes that, in the absence of toxic effects, the number of species present in a lake during the summer period is $n_{\text {sp, max }}$, which is an integer. The model species are not equated with real, identified, species; they simply represent the range of sensitivities to toxic cations possessed by real species. The model species have values of β equal to $\beta_{1}, \beta_{2}, \beta_{3}$, etc, up to $\beta_{\text {nsp,max. }}$

Taking a probabilistic approach to the presence or absence of an individual species, values of $F_{\text {ToX, }}$ are computed from equation (6), and compared with $F_{\text {ToX,LT }}$ and $F_{\text {Tox,ut }}$ to obtain the probability of the model species being present $\left(P r_{i}\right)$ according to the following relationships

$$
\begin{array}{ll}
F_{\mathrm{TOX}, \mathrm{i}}<F_{\mathrm{TOX}, \mathrm{LT}} & P r_{\mathrm{i}}=1 \\
F_{\mathrm{TOX}, \mathrm{LT}}<F_{\mathrm{TOX}, \mathrm{i}}<F_{\mathrm{TOX}, \mathrm{UT}} & P_{r_{\mathrm{i}}}=\left(F_{\mathrm{TOX}, \mathrm{UT}}-F_{\mathrm{TOX}, \mathrm{i}}\right) /\left(F_{\mathrm{TOX}, \mathrm{UT}}-F_{\mathrm{TOX}, \mathrm{LT}}\right) \\
F_{\mathrm{TOX}, \mathrm{i}}>F_{\mathrm{TOX}, \mathrm{UT}} & P r_{\mathrm{i}}=0 \tag{9}
\end{array}
$$

The value of $n_{\text {sp }}$ is obtained by the summing the $P r_{i}$ values over all the possible model species. The results are non-integral because, between $F_{\text {Tox,lt }}$ and $F_{\text {TOX, UT, }}$ the model produces probabilities of presence, rather than binary presence/absence.

Alternatively, a simplified calculation can be performed in which the average of $F_{\text {Tox,LT }}$ and $F_{\text {Tox, ut }}$ is taken as a single cut-off, below which the species is present and above which it is absent. This produces integral values of $n_{\text {sp }}$.

2.4. Data fitting and statistics

We used Microsoft Excel to perform statistical computations, calculate percentiles of normal distributions, and carry out optimizations using the Solver function.

We set $n_{\text {sp, max }}$ to 13 for all the lakes, based on the 95% ile of the data set, and the choice of the same value (rounded) by Khan et al. (2012) in their study of these lakes.

For data fitting, we chose to minimize deviations in $\log _{10} n_{\text {sp }}$, so as to give due weight to results at low $n_{\text {sp }}$. Ideally, the fitted distribution of β should give a small root-mean-square deviation (RMSD) in $\log _{10} n_{\text {sp }}$, and the slopes of the linear and logarithmic plots of observed vs calculated $n_{\text {sp }}$ should be unity. We fitted the field data to the probabilistic version of the model (equations $7-9$), using the generalized reduced gradient nonlinear algorithm in Solver, and to the single cut-off version using the evolutionary algorithm. We tried several two-parameter distributions to fit the field data, assuming the β values to be evenly-distributed in all cases. We also fitted all 13β values individually.

3. Results

Using the probabilistic version of the model, the best choice of distribution for β was \log normal, with an unconstrained average value (Table 2). The fitted mean and standard deviation were -0.117 and 0.483 respectively. The derived distribution is shown in Figure 1. Panels (a) and (b) of Figure 2 show that unbiased fits were achieved with high statistical significance; for the logarithmic regression $r^{2}=0.81, p<0.0001$; for the linear regression $r^{2}=0.84, p<0.0001$. The probabilistic model was also fitted by optimizing all 13β values; this gave similar goodness-of-fit results (Table 2), and a distribution similar to the two-parameter log-normal distribution (Figure 1).

Application of the single cut-off version of the model led to a similar log-normal distribution, with fitted mean and standard deviation values of -0.098 and 0.519 respectively (Figure 1). Again, unbiased fits were obtained (Figure 2, panels (c) and (d)), with high correlations (logarithmic $r^{2}=0.81, p<0.0001$; linear $r^{2}=0.84, p<0.0001$). The fitting statistics were marginally poorer than those for the probabilistic log-normal fit (Table 2).

The importance of the different metals to the modelled values of $\log 10 n_{\text {sp }}$ can be gauged from Table 3, which shows RMSD in $\log _{10} n_{\text {sp }}$ obtained after the omission of individual metals from the analysis. The results are most sensitive to Cu , then Al and Ni , with a small dependence on Zn . There are negligible contributions from Cd, Hg and Pb to the estimation of $\log _{10} n_{\mathrm{sp}}$; although these metals have high values of $\alpha_{\mathrm{M}, \text { max,mean }}$ (Table 1), their low lakewater concentrations mean that their loadings of the zooplankton binding sites $\left(\theta_{\mathrm{Cd}}, \theta_{\mathrm{Hg}}, \theta_{\mathrm{Pb}}\right)$ are too small to affect $F_{\text {Tox }}$ (equation 1).

Temporal variations of $n_{\text {sp }}$ are matched fairly well for most of the Sudbury lakes, whether the probabilistic or single cut-off versions of the model are applied (Figure 3). However, there is a tendency for the model to underestimate the rates of increase in $n_{\text {sp }}$, most noticeably for Middle Lake. Observed patterns of inter-annual variability in $n_{\text {sp }}$ are reproduced in some instances, but they are often missed. In particular, the observed n_{sp} values for Clearwater Lake are much more variable than the calculated ones.

Contributions of the different cations to $F_{\text {Tox }}$ are shown for the 9 Sudbury lakes in Figure 4, based on results from the probabilistic version of the model. Results are shown for the central model species in the distribution of 13 species, that is, model species number 7 , for which $\beta=$ 0.764 (Figure 1). Results for model species 3 and 11 are shown in Figures S1A and S1B. The relative contributions of the metal cations are the same for each model species, but their
absolute contributions vary. The contribution of H^{+}to $F_{\text {TOX }}$ is the same for each model species (see Methods).

As expected from the results in Table 3, the main effects were due to $\mathrm{H}, \mathrm{Al}, \mathrm{Ni}$ and Cu , with small contributions from Zn . The lakes can be distinguished by the contributions of different toxic cations to $F_{\text {Tox }}$, and the consequent effects on $n_{\text {sp }}$. In Laundrie and Whitepine Lakes, acidification has been dominant, the main toxic effects coming from H and Al . At the other extreme, Hannah and Middle Lakes have been most affected by heavy metals ($\mathrm{Ni}, \mathrm{Cu}, \mathrm{Zn}$) especially in the later years. The other five lakes have been affected to similar extents by acidification and heavy metals. Overall, the relative influence of the heavy metals has increased with time, even though their lakewater concentrations have been falling. According to the model, this was because metal accumulation by the zooplankton increased due to declining competition by H and Al for complexation by the organisms; the effect applies especially to Ni in Clearwater, Hannah, Lohi and Middle Lakes.

4. Discussion

In this work we combined the average values of metal-related parameters ($\alpha \mathrm{M}$, max,mean, Table 1) estimated from laboratory toxicity test results (Tipping et al., 2019) with fitted model species sensitivity distributions for lake zooplankton. Optimization of only two parameters (the average and standard deviation of $\log _{10} \beta$) produced remarkably good fits (Figures 2 and 3) to field observations of zooplankton species richness in 217 lakewaters covering substantial ranges of pH , and concentrations of major ions and toxic metals (Table S1). Extending the optimization to all $\log _{10} \beta$ values of the assumed total of 13 model species made almost no difference to the goodness of fit (Table 2), and so the assumption of an evenly-spaced lognormal distribution is justified.

We applied the model in two ways. Firstly, in line with laboratory toxicity testing, we assumed that the toxic effect leading to the presence or absence of a species could vary between lower and upper threshold values of $F_{\text {TOX }}$ (equations $2-4$), related to conventional dose-response curves. We then interpreted the intermediate values in terms of the probability of the species being present (equations $7-9$). Alternatively, a simpler approach could be taken, whereby a single cut-off value of $F_{\text {Tox }}$ (the average of the lower and upper thresholds) was taken as the condition where presence changes to absence, or vice versa. The single cut-off version of the model is perhaps more closely related to field measurements, which also deal with simple presence or absence. On the other hand, the probabilistic version might provide a better representation of the average $n_{\text {sp }}$ over a sampling season, providing non-integer values to compare with the non-integer observations that arise from averaging results for different dates within the yearly period of sampling a given lake. However, the results obtained with the two approaches are very similar, and do not affect any conclusions that might be drawn.

With the approximation (Section 2.3) that average values of $\alpha_{\mathrm{M}, \text { max, mean }}$ for the zooplankton are the same as those derived for laboratory test species (Table 1), the optimized average values of $\log _{10} \beta$ are -0.117 (probabilistic) and -0.098 (single cut-off), equivalent to β values of 0.76 and 0.80 . From the fit of all $13 \log _{10} \beta$ values, we obtain a mean β of 0.72 These values imply that the average lake model species is somewhat less sensitive to toxic metals than the average species used in toxicity testing, for which an average β near to 1.00 is expected. But the difference in average sensitivity is not great, suggesting that the toxicity parameters ($\alpha_{\mathrm{M}, \text { max,mean }}$) derived from laboratory results (Tipping et al., 2019) are strongly relevant to field behaviour.

The fitting parameters can be used to gauge the range of sensitivities of zooplankton species to toxic cations, by considering ratios of high and low β values. Taking the values for model species 1 (least sensitive) and 13 (most sensitive), we obtain ratios of 22 , 51 and 68 respectively from the 13-parameter fit, the probabilistic log-normal fit, and the single cut-off log-normal fit. Alternatively, the corresponding ratios from species 2 and 12 are 12,14 and 18, which are perhaps more realistic because the field data may not define the extremes of the distributions very well. These ratios indicate a considerable range in the abilities of different model species to resist cation toxicity.

The assumption of common relative sensitivity, in which the sensitivity of a model species towards toxic metals is characterized by the parameter, β, allows the model to attribute toxic effects separately, to variations among metals on the one hand, and among species on the other. If such a differentiation cannot be made, then it is difficult to see how modelling based on the responses of individual species could be done, unless comprehensive toxicity data were available for every species. In the present case, common relative sensitivity only has to apply to three metals, Al, Ni and Cu , since the toxic effects of the others are calculated to be small or negligible (Table 3). Moreover, the results in Figure 4, predicting that some lakes have responded principally to Ni and Cu , while others have been mainly affected by acidification, including the effect of A1, means that the field data do not provide a strong test of the need for common relative sensitivity. For example, it is quite possible for there to be no relationship between the sensitivities of zooplankton towards Ni and Cd . As far as we have been able to ascertain, there was no published evidence for or against common relative sensitivity until Fettweis et al. (2020) reported correlations among toxic endpoints for the effects of Ni, Cu and Zn on the growth rates of 8 phytoplankton species. More research on this topic is warranted.

An implied assumption in our approach is that the accumulation of metals via dietary intake does not represent a quantitatively different exposure route. We have previously argued (Stockdale et al., 2014a) that because the dietary organisms on which zooplankton feed are exposed to the same lakewater as the zooplankton themselves, they are loaded with metals in the same proportions experienced by the zooplankton in water-borne exposure. Therefore, relative metal loadings of zooplankton are the same by both routes. It can also be noted that the WHAM- $F_{\text {Tox }}$ model does not entail a specific mode of cation uptake; it merely asserts that the loading of cations by organisms is related, via equilibrium complexation reactions, to the bathing water composition.

A limitation to this study is the approximate nature of the WHAM- $F_{\text {Tox }}$ model, including the assumption that HA is an adequate surrogate for toxicity-sensitive biomolecules. The model only provided a broad-brush encapsulation of laboratory toxicity testing data (Tipping et al., 2019), and those data did not evenly cover a wide range of species and metals, being biased towards one metal, $\mathrm{Cu}(76 \%$ of all endpoints used) and with 72% of the endpoints applying to just five test species. Correction for water chemistry was poorer than has been obtained in focused multi-parameter modelling in individual studies. Another aspect that requires improvement is the necessary use of a constant value (1.0) of α_{H}, owing to a lack of studies of toxicity by H^{+}alone. However, it seems unlikely that improving WHAM- $F_{\text {Tox }}$ and its parameterization would necessarily improve the field modelling reported here, without more research into common relative sensitivity and species sensitivity distributions.

It should be noted that the method of application of WHAM- F Tox in the present study differs from that in earlier work in which the model was applied to zooplankton data from a wide range of lakes, including those in the vicinity of Sudbury (Stockdale et al., 2014a). In the previous work, a larger number of model parameters were fitted to the field data, and account was taken, via quantile regression, of effects other than cation toxicity in determining values of $n_{\text {sp }}$. This means that the parameter values determined in this and the previous study are not comparable. Furthermore, as explained in the Introduction, the important difference between the studies is that in the present analysis, the toxic responses of individual species are summed to obtain $n_{\text {sp }}$, whereas in the earlier work $n_{\text {sp }}$ was treated as an overall ecosystem response.

Whereas the model allows 13 invariant species, characterized only by their sensitivities towards toxic cations (β values), the real zooplankton populations in the lakes are drawn from a larger number of different species; some 65 different species were observed at different times in the 9 Sudbury lakes. Although many of these occurred only rarely, the observed average $n_{\text {sp }}$ values are certainly made up of more than 13 different species. In the absence of toxic effects, $n_{\text {sp }}$ depends on a variety of factors, including water body morphometry (Dodson, 1992), climate (Hessen et al., 2006; Keller et al., 2019), ultraviolet radiation (Marinone et al 2006), chemical and thermal variability (Shurin et al., 2010), non-toxic chemistry (DeSellas et al 2011, Sinclair \& Arnott 2017), lake productivity (Dodson, 1992, Hessen et al., 2006), predation (Knapp et al 2001, MacLennan et al 2015), niche availability (Walseng et al., 2006), long-range dispersal (Shurin et al., 2000), and competition (Hebert, 1982). The combination of some or all of these factors determines which species succeed in a given lake in a given year, and although some species may occur regularly, others come and go. This compositional variation in the
zooplankton populations means that the 13 model species cannot be equated with real zooplankton species, but it does appear, from the reasonably successful fitting of the data, that the fitted distribution of β values covers the range of toxic sensitivities of species that occur in the field.

Although the modelling accounts for much of the temporal variation in n_{sp} as the lakes recovered from the most extreme toxic conditions (Figure 3), other factors may have played a role. For example, the changes in water chemistry are likely to have affected biota other than zooplankton, and thereby have had indirect effects on $n_{\text {sp }}$, resulting from changes in food sources and predation pressure. Yan et al. (2016) concluded that in the later years of recovery the introduction of piscivorous fish relieved the pressure on zooplankton by planktoniferous fish, allowing faster recovery from contaminant effects. Furthermore, climate change has likely affected (increased) zooplankton richness at Sudbury (Keller et al., 2019). A full explanation of zooplankton species richness in the Sudbury lakes, and for field systems in general, would require the combined modelling of ecology and toxicity.

This study has demonstrated the possibility that species richness can be modelled on the basis of laboratory-derived parameters for metals (α values) together with a fitted species sensitivity distribution (β values). Further progress with respect to toxic effects in the field requires the issue of common relative sensitivity to be resolved, and testing of the approach on other ecosystem types. Potentially, this could lead to a generally applicable method of quantifying and predicting ecosystem damage by, and recovery from, toxic cations, including attribution of the relative toxic effects of different cations.

5. Conclusions

(a) Species richness data for zooplankton in contaminated lakes near Sudbury, and in reference lakes, were successfully fitted with WHAM- $F_{\text {Tox }}$, parameterized with laboratory toxicity data for metals, and with an optimized log-normal species sensitivity distribution.
(b) The most important toxic cations were $\mathrm{H}, \mathrm{Al}, \mathrm{Ni}$ and Cu , with a small contribution from Zn , and negligible toxic effects attributable to Cd, Hg and Pb .
(c) The results highlight the issue of common relative sensitivity, which means that a species is intrinsically sensitive, or insensitive, to toxic cations. Further research is need to establish the validity or otherwise of this concept.
(d) Some of the lakes at Sudbury were affected predominantly by acidification (H and Al), while others were most influenced by toxic heavy metals $(\mathrm{Ni}, \mathrm{Cu}, \mathrm{Zn})$. For lakes in the latter category, the relative importance of heavy metals to toxicity has increased over time, despite their decreased concentrations.

Acknowledgments

We thank Norman Yan (York University) for the key role he has played in establishing and maintaining the long- term monitoring programs on Sudbury lakes, Anthony Stockdale (University of Manchester) for helpful comments on the draft manuscript, and Stephen Thackeray for helpful discussions. We acknowledge the constructive review comments of Joseph S. Meyer, and three anonymous referees. The work was partly supported by the Natural Environment Research Council, grant number NE/T003200/1. ET and SL dedicate the paper to the memory of their friend and colleague Richard F. Shore.

References

Ardestani, M.M., Van Straalen, N.M., Van Gestel, C.A.M., 2015. Biotic ligand modeling approach: synthesis of the effect of major cations on the toxicity of metals to soil and aquatic organisms. Environ. Toxicol. Chem. 34, 2194-2204.
Balistrieri, L.S., Mebane, C.A., Schmidt, T.S., Keller, W., 2015. Expanding metal mixture acute toxicity models to natural stream and lake invertebrate communities. Environ. Tox. Chem. 34, 761-776.

Borgmann, U., Norwood, W.P., Dixon, D.G., 2008. Modelling bioaccumulation and toxicity of metal mixtures. Hum. Ecol. Risk Assess. 14, 266-289.

Cairns, J., Mount, D.I., 1990. Aquatic toxicology. Environ. Sci. Technol. 24, 154-161.
Clements, W. H., Carlisle, D. M., Lazorchak, J. M., Johnson, P. C., 2000. Heavy metals structure benthic communities in Colorado mountain streams. Ecol. Appl. 10, 626-638.
De Jonge, M., Lofts, S., Bervoets, L., Blust, R., 2014. Relating metal exposure and chemical speciation to trace metal accumulation in aquatic insects under natural field conditions. Sci. Tot. Environ. 496, 11-21.
DeSellas, A. M., Paterson, A. M., Sweetman, J. N., Smol, J. P., 2011. Assessing the effects of multiple environmental stressors on zooplankton assemblages in Boreal Shield lakes since pre-industrial times. J. Limnol. 70, 41-56.

Di Toro, D.M., Allen, H.E., Bergman, H.L., Meyer, J.S., Paquin, P.R., Santore, R.C., 2001. A biotic ligand model of the acute toxicity of metals I. Technical basis. Environ. Toxicol. Chem. 20, 2383-2396.

Dodson, S.I., 1992. Predicting crustacean zooplankton species richness. Limnol. Oceanogr. 37, 848-856.

Erickson, R.J., Benoit, D.A., Mattson, V.R., Nelson, H.P., Leonard, E.N., 1996. The effects of water chemistry on the toxicity of copper to fathead minnows. Environ. Toxicol. Chem. 15, 181-193.

Fettweis, A., Bergen, B., Hansul, S., De Schamphelaere, K., Smolders, E., 2020. Mixture toxicity of Ni, Cu and Zn on eight freshwater algal species: what determines a something-from-nothing effect? Extended Abstract SETAC Dublin 2020.

Hebert, P.D.N., 1982. Competition in zooplankton communities. Ann. Zool. Fennici 19, 349356.

Henriksen, A., Posch, M., 2001. Steady-state models for calculating critical loads of acidity for surface waters. Water Air Soil Pollut. Focus 1, 375-398.

Hessen, D. O., Faafeng, B. A., Smith, V. H., Bakkestuen, V., Walseng, B., 2006. Extrinsic and intrinsic controls of zooplankton diversity in lakes. Ecology 87, 433-443.
Keller W., Yan, N.D., Gunn, J.M., Heneberry, J., 2007. Recovery of acidified lakes: lessons from Sudbury, Ontario, Canada. Water Air Soil Pollut. Focus 7, 317-322.
Keller, W., Heneberry, J., Edwards, B.A., 2019. Recovery of acidified Sudbury, Ontario, Canada, lakes: a multi-decade synthesis and update. Environ. Rev. 27, 1-16.

Keller, W., Yan, N.D., 1991. Recovery of crustacean zooplankton species richness in Sudbury area lakes following water quality improvements. Can. J. Fish. Aquat. Sci. 48, 16351644.

Khan, F.R., Keller, W., Yan, N.D., Welsh, P.G., Wood, C.M., McGeer, J., 2012. Application of biotic ligand and toxic unit modelling approaches to predict improvements in zooplankton species richness in smelter-damaged lakes near Sudbury, Ontario. Environ. Sci. Technol. 46, 1641-1649.

Knapp, R. A., Matthews, K. R., Sarnelle, O., 2001. Resistance and resilience of alpine lake fauna to fish introductions. Ecol. Monogr. 71, 401-421.

Lofts, S., Tipping, E., Hamilton-Taylor, J., 2008. The chemical speciation of Fe(III) in freshwaters. Aquat. Geochem. 14, 337-358.
MacLennan, M. M., Dings-Avery, C., Vinebrooke, R. D., 2015. Invasive trout increase the climatic sensitivity of zooplankton communities in naturally fishless lakes. Freshwat. Biol. 60, 1502-1513.

Mance, G., 1987. Pollution Threat of Heavy Metals in Aquatic Environments. Pollution Monitoring Series. Springer, Dordrecht.
Marinone, M. C., Marque, S. M., Suárez, D. A., Diéguez, M. d. C., Pérez, P., De Los Ríos, P., Soto, D., Zagarese, H. E., 2006. UV Radiation as a Potential Driving Force for Zooplankton Community Structure in Patagonian Lakes. Photochem. Photobiol. 82, 962-971.

Meador J., 2006. Rationale and procedures for using the tissue-residue approach for toxicity assessment and determination of tissue, water, and sediment quality guidelines for aquatic organisms. Hum. Ecol. Risk. Assess. 12, 1018-1073.
Paquin, P.R., Gorsuch, J.W., Apte, S., Batley, G.E., Bowles, K.C., Campbell, P.G.C., et al., 2002. The biotic ligand model: a historical overview. Comp. Biochem. Physiol. C 133, 3-35.

Playle, R.C., 2004. Using multiple metal-gill binding models and the toxic unit concept to help reconcile multiple-metal toxicity results. Aquat. Toxicol. 67, 359-370.

Rainbow, P.S., 2018. Trace Metals in the Environment and Living Organisms. Cambridge University Press, Cambridge, 742pp.
Santore, R.C., Ryan, A.C., 2015. Development and application of a multimetal multibiotic ligand model for assessing aquatic toxicity of metal mixtures. Environ. Toxicol. Chem. 34, 777-787.
Shurin, J. B., 2000. Dispersal limitation, invasion resistance, and the structure of pond zooplankton communities. Ecology 81, 3074-3086.

Shurin, J. B., Winder, M., Adrian, R., Keller, W., Matthews, B., Paterson, A. M., Paterson, M. J., Pinel-Alloul, B., Rusak, J. A., Yan, N. D., 2010. Environmental stability and lake zooplankton diversity - contrasting effects of chemical and thermal variability. Ecol. Lett. 13, 453-463.

Sinclair, J. S., Arnott, S. E., 2018. Local context and connectivity determine the response of zooplankton communities to salt contamination. Freshwat. Biol. 63, 1273-1286.

Stockdale, A., Tipping, E., Lofts, S., Ormerod, S.J., Clements, W.H., Blust, R., 2010. Toxicity of proton-metal mixtures in the field: linking stream macroinvertebrate species diversity to chemical speciation and bioavailability. Aquat. Toxicol. 100, 112-119.
Stockdale, A., Tipping, E., Lofts, S., Fott, J., Garmo, Ø.A., Hruska, J., et al., 2014a. Metal and proton toxicity to lake zooplankton: a chemical speciation based modelling approach. Environ. Poll. 186, 115-125.

Stockdale, A., Tipping, E., Fjellheim, A., Garmoc, Ø.A., Hildrew, A.G., Stephen Lofts, S., et al., 2014b. Recovery of macroinvertebrate species richness in acidified upland waters assessed with a field toxicity model. Ecol. Indic. 37, 341-350.
Sverdrup, H., de Vries, W., 1994. Calculating critical loads for acidity with the simple mass balance method. Water Air Soil Pollut. 72, 143-162.

Tipping, E., Vincent, C.D., Lawlor, A.J., Lofts, S., 2008. Metal accumulation by stream bryophytes, related to chemical speciation. Environ. Pollut. 156, 936-943.

Tipping, E., Lofts, S., 2013. Metal mixture toxicity to aquatic biota in laboratory experiments: application of the WHAM-F tox $_{\text {model. Aquat. Toxicol. 142-143, 114-122. }}$.

Tipping, E., Lofts, S., 2015. Testing WHAM-Ftox with laboratory toxicity data for mixtures of metals $(\mathrm{Cu}, \mathrm{Zn}, \mathrm{Cd}, \mathrm{Ag}, \mathrm{Pb})$. Environ. Toxicol. Chem. 34, 788-798.
Tipping, E., Lofts, S., Sonke, J.E., 2011. Humic Ion-Binding Model VII: a revised parameterisation of cation-binding by humic substances. Environ. Chem. 8, 225-235.
Tipping, E., Stockdale, A., Lofts, S., 2019. Systematic analysis of freshwater metal toxicity with WHAM-Ftox. Aquat. Toxicol. 212, 128-137.

UK Centre for Ecology and Hydrology. 2020. Windermere Humic Aqueous Model (WHAM7). Available at https://www.ceh.ac.uk/services/windermere-humic-aqueous-model-wham [verified 15 September 2020].
Walseng, B., Hessen, D. O. Halvorsen, G., Schartau, A. K., 2006. Major contribution from littoral crustaceans to zooplankton species richness in lakes. Limnol. Oceanogr. 51, 2600-2606.

Yan, N.D., Bailey, J., McGeer, J.C., Manca, M.M., Keller, W., Celis-Salgado, M.P., Gunn, J.M., 2016. Arrive, survive and thrive: essential stages in the re-colonization and recovery of zooplankton in urban lakes in Sudbury, Canada. J. Limnol. 75(s2), 4-14.

536 Table 1. Values of $\alpha_{\mathrm{M}, \text { max, mean, obtained by averaging values from laboratory toxicity tests }}$ 537 reported by Tipping et al. (2019).

Cation	n	$\alpha_{\mathrm{M}, \text { max, mean }}$	SE
H		(1.0)	
Al	7	2.6	0.0
Ni	79	31.1	3.4
Cu	1543	34.6	0.7
Zn	118	17.0	1.3
Cd	152	673	35
Hg	5	621	347
Pb	33	126	24

538 The value for H is set to $1.0 ; n=$ number of data; $\mathrm{SE}=$ standard error.

Table 2. Fitting statistics for different distributions of β.

	RMSD in $\log _{10} n_{\mathrm{sp}}$	log-log slope	linear slope
Probabilistic, two-parameter distributions			
linear*	0.105	0.930	0.875
linear with intercept ≥ 0.00	0.105	0.905	0.858
normal*	0.106	0.943	0.889
normal with mean fixed at 1.00^{*}	0.108	0.970	0.927
log-normal	0.098	1.013	1.010
log-normal with mean fixed at 0.00	0.111	1.127	1.209
Probabilistic, fit of all 13 β values	0.097	1.008	0.986
Single cut-off, two-parameter log-normal	0.102	1.035	1.019

$\mathrm{RMSD}=$ root-mean-square deviation
*some modelled β values were negative.

Table 3. Effect of omitting individual metals on the root mean-squared deviation in $\log _{10} n_{\mathrm{sp}}$.

Metal omitted	RMSD
None	0.098
Al	0.174
Ni	0.116
Cu	0.212
Zn	0.099
Cd	0.098
Hg	0.098
Pb	0.098

Figure captions

Figure 1. Distributions of $\log _{10} \beta$ values for lakewater zooplankton species, estimated by fitting the field data. The lines show the two-parameter lognormal fits; the full line is for the probabilistic version of the model, the dashed line refers to the single cut-off version. The points show the 13 values fitted independently.

Figure 2. Comparison of observed species richness ($n_{\text {sp,obs }}$) with values calculated using WHAM- $F_{\text {Tox }}\left(n_{\text {sp,calc }}\right)$. The top two panels show results with the probabilistic version of the model; the same data are plotted on (a) linear and (b) logarithmic (right) scales. The lower panels show results with the single cut-off version, with (c) linear and (d) logarithmic scales. The 1:1 line is shown in each case. Data for the Sudbury lakes are shown by filled circles, reference lake data by open circles.

Figure 3. Temporal dependence of species richness (n_{sp}) in each Sudbury lake. The points are observations, full lines refer to calculations with the probabilistic version of WHAM- $F_{\text {TOX }}$, dashed lines to calculations with the single cut-off version.

Figure 4. Contributions of different toxic cations to $F_{\text {Tox }}$ and change over time for Sudbury lakes. Calculated results from the probabilistic version of WHAM- $F_{\text {Tox }}$ are shown for the central species in the distribution of 13 species (species number 7, $\beta=0.764$ (Figure 1).

Figure 1.

Figure 2.

Figure 3.

