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Aqua Temporaria Incognita 
 

It has been 12 years since Bishop et al. (2008) wrote the Invited Commentary “Aqua Incognita: the 

unknown headwaters”. They highlighted that “In most regions, the overwhelming majority of stream 

length lies beyond the frontiers of any systematic documentation and would have to be represented as 

a blank space on the assessment map. This means that for the majority of streams that support aquatic 

life, a systematic understanding is lacking on water quality, habitat, biota, specific discharge, or even 

how many kilometers of such streams are there. This blank space is so vast that it deserves a name to 

help us at least to remember that it is there. We propose calling it ‘Aqua Incognita’” (Bishop et al., 

2008; p. 1239). We continue to agree with this statement and the need to understand headwater 

streams better. In this commentary, we want to draw attention to a particular type of headwater 

stream that is even less frequently examined: headwater streams that flow intermittently, i.e., the 

Aqua Temporaria Incognita. Question 3 of the 23 unsolved problems in hydrology (Blöschl et al., 

2019) focuses on ephemeral dryland streams. We argue that this focus needs broadening to 

headwater temporary streams because they are ubiquitous in all climates. Headwater temporary 

streams feed larger perennial streams and are particularly sensitive to climate change and other 

human influences (Jaeger et al., 2014; Reynolds et al., 2015; Pumo et al., 2016). Their effective 

management and protection, therefore, requires an understanding of both natural and artificial 

causes of intermittence.  

Temporary streams are among the most hydrologically variable headwater systems (Wohl, 2017). 

They include intermittent streams that flow seasonally, ephemeral streams that only flow in 

response to rainfall or snowmelt events, and episodic streams that contain flowing water only during 

extreme rainfall events (Buttle et al., 2012). The terms used for these non-perennial streams vary 

(Busch et al., 2020) and more classes can be defined to describe the occurrence of pools with 

standing water (Gallart et al., 2017). Here we use the term temporary stream to refer to all non-

perennial streams, but we acknowledge that the exact naming and definition of these water bodies 

can have important implications for their legal protection (Caruso, 2011; Nikolaidis et al., 2013; 

Magand et al., 2020). In Switzerland, for instance, streams that flow on average less than 347 days 

per year (over a 10 year period) are considered non-permanent streams and regulations for 

permanent streams, such as requirements for permits to discharge or withdraw water, might not 

apply.  

Bishop et al. (2008) argued that the majority of the total stream length needs to be represented as a 

blank space on assessment maps because they are not part of any systematic documentation. 

Temporary streams in headwater catchments are rarely included in assessments and often not even 



 
 

shown on maps. Levick et al. (2008) reported that 59% of the streams in the U.S. (excluding Alaska) 

are temporary, but their survey was based on 1:100,000 scale topographic maps and did not include 

stream segments shorter than 1.6 km, such that it excluded all temporary headwater streams. 

Analyses based on the 1:24,000 scale National Hydrography Dataset (NHDPlus) suggested that 42% 

of all stream segments in the upper Colorado river are first-order streams with intermittent flow and 

that temporary streams make up 73% of the total stream length (Caruso and Haynes, 2011). All 

studies that have actually mapped temporary streams in the field have shown that they are far more 

prevalent than indicated by the dashed blue lines on maps (Hansen, 2001; Fritz et al., 2013). For 

example, the Swiss national topographic map shows 0.68 km of streams in the 13 ha upper Studibach 

catchment but repeated field mapping has shown that there are at least 3.77 km of streams, of 

which 2.66 km (71%) did not have flowing water during the dry summer of 2018 (van Meerveld et al., 

2019). Similarly, field mapping of stream heads during wet conditions in the 68 km2 Krycklan 

catchment in northern Sweden showed that 76% of the fully expanded network was missing on the 

official map (Ågren et al., 2015). A lack of knowledge about the location and extent of temporary 

streams hampers their protection (Caruso, 2011; Caruso and Haynes, 2011). 

Temporary streams have high biodiversity and are home to many endemic species (Stanley et al., 

1997; Meyer et al., 2007; Stubbington et al., 2017); the dry riverbed is an egg bank for aquatic 

invertebrates and a seed bank for aquatic plants (Brock et al., 2003; Steward et al., 2012). The onset 

and cessation of flow significantly affect the species assemblage (Pařil et al., 2019; Sarremejane et 

al., in press). Connectivity of previously disconnected stream segments increases streamflow (e.g., 

Godsey and Kirchner, 2014; Jensen et al., 2017; Pate et al., 2020). Sediment and organic material that 

have collected in the dry river bed are flushed during the onset of flow, leading to high sediment and 

nutrient fluxes (Hladyz et al., 2011; Fortesa et al., 2021) and high rates of biogeochemical 

transformations and ecosystem respiration (Acuña et al., 2005; Romaní et al., 2006; von Schiller et 

al., 2017; Hale and Godsey, 2019). The expansion of the flowing stream network during wet periods, 

furthermore, leads to a more direct connection between the hillslopes and the stream, resulting in 

shorter travel times (van Meerveld et al., 2019) and the potential bypassing of riparian buffer strips 

(Wigington et al., 2005).  

Even though it is the repeated presence and absence of flowing water that shapes temporary stream 

ecosystems and the onset and duration of flow in headwater temporary streams affect water 

quantity and quality in downstream perennial streams, there are very limited hydrological data for 

temporary streams. Temporary streams are generally not included in stream monitoring networks, 

and where present, they are sometimes only operated seasonally as the dry period is not considered 

interesting for water management (Peters et al., 2012). Even in experimental headwater catchments, 



 
 

gauging stations are usually placed at the point of perennial flow. As a result, temporary streams are 

largely underrepresented in hydrological studies and monitoring networks (Benstead and Leigh, 

2012; Snelder et al., 2013; Godsey and Kirchner, 2014). The lack of gauging of temporary streams has 

to be kept in mind when datasets are compiled to determine the abundance and variation in 

temporary stream dynamics. The catalogue of temporary streams in Europe collected as part of the 

SMIRES initiative (Sauquet et al., 2020) highlights the high variation in their hydrological response. 

Still, systematic analyses of the spatial patterns in the onset and cessation of flow or trends therein 

are difficult due to the lack of data (Tramblay et al., in press). For example, only 7% of the U.K. 

benchmark network of near-natural catchments that are considered suitable for the analysis of 

trends in streamflow are non-perennial (Harrigan et al., 2018).Only 10% of the more than 4000 

gauging stations in France with daily discharge data available in the national HYDRO database 

(http://www.hydro.eaufrance.fr) are likely naturally intermittent (Figure 1b). The fraction was 

highest (22%) for gauging stations with a catchment area ≤10 km2. The ONDE (Observatoire National 

des Etiages) network was designed by the French Biodiversity Agency, https://ofb.gouv.fr/) to 

complement the hydrometric network and reports the hydrological state (flowing water, standing 

water in isolated pools, dry streambed) for 3350 tributary streams at least five times per year (once 

per month between May and October). Most sites (85%) are located on streams with a catchment 

area ≤100 km2 and 20% of the sites have a catchment area ≤10 km2 (Figure 1a). For almost half (49%) 

of the sites, there was at least one observation of no flow prior to January 2020 (Figure 1a).  

Hydrometric challenges in measuring very low flows may mean that the stream is considered to be 

flowing, even though it is dry (or vice versa). Furthermore, the reported zero flows often reflect a 

data issue rather than a real measurement of zero flow (Zimmer et al., 2020). This means that data 

on zero flows cannot be used without looking at their quality codes. For example, analysis of the data 

in the aforementioned French HYDRO database showed that a notable proportion of the 730 gauging 

stations for which an occurrence of zero flow was reported are unlikely to be temporary streams 

(Figure 1b). This (admittedly fairly subjective) assessment involved data screening of no-flow 

occurrence (seasonality of null values, consistency with historical droughts, etc.), recession curves 

(changes in discharge before and after the sequence of null values, etc.), additional information from 

nearby ONDE sites, and information from the hydrometric services (personal communication). For 

publicly available datasets knowledge about specific practices is needed before the discharge data 

can be used to compute statistics on no-flow events. For example, Environment Canada used to 

denote flows smaller than 1 L s-1 as zero (Peters et al., 2012). We therefore recommend that a label 

“temporary stream” should be added to the metadata of gauging stations to avoid any ambiguity, 



 
 

especially for stations in temperate climates where intermittence is not frequently observed. 

Nevertheless, this status needs to be updated regularly, particularly after droughts.  

For many applications (e.g., understanding ecological processes and biogeochemical cycling) it is 

crucial to know whether there is flowing water, or pools with standing water, or if the streambed is 

dry (Gallart et al., 2012; Bonada et al., 2020). Gauging stations are designed to measure flow, not to 

provide information on the presence of pools. Pools of standing water are common and provide 

important refugia during dry periods (e.g., Marshall et al., 2016). At 39% of the sites in the ONDE 

network pools were observed at least once. For comparison, dry streambeds were observed at least 

once for 34% of the sites.  

In light of the difficulties in gauging temporary streams, the costs associated with establishing and 

maintaining gauging stations, and the extremely high spatial variation in the occurrence of flow along 

the channel, new approaches to obtain data on the state of temporary streams are being tested. 

While field mapping provides the most detailed spatial data (Wigington et al., 2005; Malard et al., 

2006; Doering et al., 2007; Godsey and Kirchner, 2014; Jensen et al., 2017; Sefton et al., 2019), it is 

difficult to do in headwater catchments during rainfall events because conditions can change quickly. 

Some studies have used drones with cameras for the mapping (Spence and Mengistu, 2016; Borg 

Galea et al., 2019; Calsamiglia et al., 2020) but this is difficult for very small headwater streams 

where vegetation is dense, or during intense rainfall events. Other studies have used low-cost 

electrical resistance (Blasch et al., 2002; Goulsbra et al., 2009; Bhamjee and Lindsay, 2011; Sherrod et 

al., 2012; Chapin et al., 2014; Paillex et al., 2020) or temperature (Ronan et al., 1998; Constantz, 

2008) sensors to determine the onset and cessation of flow. The sensor networks developed by 

Bhamjee et al. (2016) and Assendelft and van Meerveld (2019) even allow differentiation of standing 

water (pools) and flowing water. Even though the initial tests of these sensors are promising, their 

use has yet to become commonplace, likely due to the need to invest in sensor development and 

maintenance. Aerial photographs, images from Google Street View and interviews with inhabitants 

have been used determine the medium-term state of temporary streams in populated areas (Gallart 

et al., 2017). Physical and biological indicators can also be used to determine the duration of the 

flowing state for temporary streams (Fritz et al., 2020).  

Crowdsourcing or citizen science is an alternative approach to obtaining data on the state of 

temporary streams (Kampf et al., 2018). Visual observations at a range of locations can lead to data 

with a relatively high temporal resolution (Figure 2) or can generate detailed maps of the presence of 

flow along rivers (Turner and Richter, 2011; Allen et al., 2019). Although initial analyses suggest high 

interrater agreement (Seibert et al., 2019), the accuracy and usefulness of these data still need to be 

determined. Furthermore, the involvement of the public is a challenge, particularly for national or 



 
 

international projects for which it is more difficult to organize local outreach events to raise 

awareness of the project and the importance of temporary stream observations. The involvement of 

the public can be a challenge as dry streams are valued less than flowing streams (Armstrong et al., 

2012) and because small streams are often overlooked. Citizen science helps to increase public 

awareness on environmental issues, and short-term, large-scale projects are particularly well-suited 

for this (Pocock et al., 2013). To obtain repeated data from many sites, it is useful to engage 

environmental management agencies. When they include the quick citizen science-based approaches 

in their regular monitoring, a large number of additional data points can be collected. For example, 

the French authority SR3A in charge of water management for tributaries to the Rhone River used 

the CrowdWater approach (www.crowdwater.ch) to map the presence of flow in temporary streams 

(Figure 3). Together with the data from the ONDE network, these observations contributed to real-

time monitoring of the state of the rivers and supported water restriction measures. Similarly, 1050 

observations were submitted for 145 spots in the UK between January 2019 and July 2020 using the 

CrowdWater app, mostly on chalk streams in the south-east of England. These observations 

complement surveys conducted by the Environment Agency. Knowledge of the patterns of 

intermittence for these groundwater-fed streams helps the agency to identify the impacts of 

abstractions and other stressors, track droughts, and inform ecological flow requirements.   

Hydrological models (Williamson et al., 2015; Ward et al., 2018; Yu et al., 2018; Gutiérrez-Jurado et 

al., 2019), topographic data (Prancevic and Kirchner, 2019) and statistical approaches (Snelder et al., 

2013; Russell et al., 2015; González-Ferreras and Barquín, 2017; Beaufort et al., 2019; Jaeger et al., 2019; 

Konrad and Rumsey, 2019; Durighetto et al., 2020) have been used to predict where streams are 

temporary and can be used to determine where additional data on the state of temporary streams 

may be most useful. However, to train and validate these models, more observations of the state of 

temporary streams and stream network dynamics are needed. Data on the presence or absence of 

flowing water in different tributaries or the total flowing stream length can be used to calibrate 

hydrological models (Stoll and Weiler, 2010) or to validate the simulations of the stream network 

from physically-based coupled surface-subsurface flow models. The comparison of observations and 

simulations is less direct for conceptual (i.e., bucket-type) models, but observations can be used  

indirectly in model calibration or validation because they provide information on storage dynamics. 

The basic approach, in this case, is to compare the average or typical stream conditions to the 

dynamics of the simulated (groundwater) storage. 

Previous model studies have focused on climate change and other human impacts on flow 

intermittence, particularly for Mediterranean catchments (Jaeger et al., 2014; Reynolds et al., 2015; 

Pumo et al., 2016; Querner et al., 2016; Tzoraki et al., 2016; De Girolamo et al., 2017) or globally 



 
 

(e.g., Döll and Schmied, 2012). They predict a shift from perennial to intermittent flow regimes and 

an increased duration of the dry state, which will impact freshwater ecosystems (e.g., Cipriani et al., 

2014; Jaeger et al., 2014). Observations of trends in flow persistence in headwater streams can 

provide important information and an early warning of how the dynamics of larger streams may be 

altered due to climate or land-use change because even small shifts can cause them to switch from 

being perennial to temporary.  

We add our call for more studies on temporary streams to those of similar commentaries (Larned et 

al., 2010; Datry et al., 2011; Kampf et al., 2018; Shanafield et al., 2020). In particular, we call on 

hydrologists and citizens to observe, sense and report the hydrological state of the aqua temporaria 

incognita. These data will improve our understanding of these unique streams and the impacts of 

climate and land use change and water management on them, both directly and through the testing 

and refinement of hydrological models. Without these data, it is as if we are trying to complete a 

puzzle on how headwater catchments function and how water affects ecological processes, while the 

majority of the puzzle pieces are hidden under the carpet. Recent studies provide some information 

on how many of the pieces are hidden, but our knowledge is so limited that we do not even know 

what is printed on them. This makes it impossible to complete the puzzle of our landscape and how it 

functions. Developing that understanding will not only expand our knowledge about temporary 

streams but will also entail a fundamental rethinking of how water is connected to landscapes. That 

is because the current understanding of high flows, when much of the water leaves the landscape, 

has not included a large component of the land-water interface during and after these high flows - 

aqua temporaria incognita. 
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Figure captions 
Figure 1. Frequency distribution of the number of sites in the ONDE network (a) and the number of French 
gauging stations available in the HYDRO database (b) as a function of catchment area. The sites for which at 
least once no flowing water (i.e., dry streambed or standing water in isolated pools) was observed and stations 
on potential intermittent streams are indicated by the filled area. For the gauging stations (b), all stations that 
include an occurrence of zero flow are shown with a dashed line (all data until 01.01.2020).  

Figure 2. Examples of eight-month time series of observations of the hydrological state of temporary streams 
made with the CrowdWater app for a site in Portugal (a) and a site in Switzerland (b). Note that the two Figures 
show a different period. Source: https://www.spotteron.com/crowdwater/spots/89106 (a) and 
https://www.spotteron.com/crowdwater/spots/245853 (b). 

Figure 3. The number of observations made with the CrowdWater app (Seibert et al., 2019) for temporary 
streams (colored circles,) by August 9, 2020, as well as the locations of the gauging stations (black triangles) 
and the ONDE sites (grey squares). The inset shows the location of the area in France and the Rhone river. 
Background elevation data from https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1-0-and-derived-
products. The stream network was obtained from http://www.sandre.eaufrance.fr/. 
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