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Abstract 

Changes in river flows, especially extreme high and low flows, could be a particularly 
important impact of climate change in terms of the hazard to people and the 
environment. Here, a national-scale grid-based hydrological model is applied, with 

ensembles of global and regional climate projections from UK Climate Projections 
2018, to investigate the potential future changes in both floods and droughts in a 

consistent way across the whole of Great Britain (gauged and ungauged locations). 
Using hydrological model outputs for the climate projection ensembles, a clustering 
technique is applied to highlight ‘typical’ sets of changes in individual indicators of 

floods or droughts, but also to look at concurrent changes in pairs of flood and 
drought indicators. The results for regions across the country generally indicate 

decreases in low flows combined with increases in high flows up to the end of the 
21st century. There is significant variation in results for different regions, with those to 
the south/east tending to show greater decreases in low flows and a greater range of 

uncertainty in the projections for high flows. A grid-based cluster analysis also shows 
potentially important variation within regions, likely related to catchment properties. 

The potential future changes in derived climate hazards, such as the frequency or 
severity of floods and droughts, is a key piece of information required for adaptation 
planning, and the consideration of potential concurrent changes in a range of related 

hazards/risks, rather than viewing each in isolation, could be vital to avoid 
maladaptation. 
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1 Introduction 

The impact of projected climate change on the hydrological cycle is likely to be 
particularly apparent in changes in river flows, with extreme high and low flows 
potentially presenting a hazard for people, infrastructure, and the natural 

environment. There is some evidence that climate change has already affected 
occurrence of both floods (Razavi et al. 2020, Blöschl et al. 2019) and hydrological 

droughts (Dai 2013) in some parts of the world. In Britain, a series of recent floods 
(e.g. winters 2019/20, 2015/16 and 2013/14, summer 2012) and droughts (e.g. 
summer 2018, 2010-2012) have led to questions about the role climate change may 

already be having in such events (e.g. Pall et al. 2011, Kay et al. 2018b). The 
potential for future increases in magnitude and/or frequency of floods and droughts is 

a major concern (Jiménez Cisneros et al. 2014). 

Much of the research into the impacts of climate change on river flows in Britain has 
applied the UK Climate Projections 2009 (UKCP09; Murphy et al. 2009), which 

provided information about potential future climatic change via a range of products. 
For example, Prudhomme et al. (2012) looked at changes in mean seasonal river 

flows across Britain by the 2050s (medium emissions), simulated with the CERF 
hydrological model using change factors derived from the UKCP09 11-member 
perturbed parameter ensemble (PPE) of a Regional Climate Model (RCM). They 

showed consistent decreases in summer flows but both increases and decreases in 
winter flows, depending on location and ensemble member. Christierson et al. (2012) 

investigated changes in mean annual and monthly flow for 70 catchments by the 
2020s (medium emissions), simulated with two catchment-based hydrological 
models using sub-samples of the UKCP09 probabilistic projections. There was a 

high likelihood of a significant decline in summer flows. Charlton and Arnell (2014) 
simulated changes in high flow (Q5) and low flow (Q95) (respectively, the flow 
exceeded 5% and 95% of the time) for 6 catchments in England with the Cat-PDM 

hydrological model and the UKCP09 probabilistic projections. All 10,000 projections 
showed a decrease in low flows by the 2050s (medium emissions), while the 

proportion of projections giving an increase in high flows varied significantly between 
catchments, ranging from 20% to 80% by the 2050s.  

Studies specifically focussing on floods using UKCP09 projections include Cloke et 

al. (2013), who show likely increases in annual maximum flows in the upper Severn 
catchment using the HBV hydrological model and the UKCP09 RCM PPE, and Bell 

et al. (2016), who show likely increases in 5- and 20-year return period peak flows 
across much of Britain using the Grid-to-Grid national-scale hydrological model with 
the UKCP09 RCM PPE. Similarly, Collet et al. (2017) show typical increases in the 

100-year return period flood by the 2080s, using data for 281 catchments across GB. 
Kay and Jones (2012b) compare the use of alternative UKCP09 products to assess 

potential impacts on floods by the 2080s (medium emissions) for nine catchments in 
Britain. The results suggest likely future increases in 2- and 20-year return period 
peak flows in most cases, with relatively good agreement between methods, but with 

potential decreases in peak flows for some catchments in the south. 

Studies specifically looking at droughts or water shortages using UKCP09 

projections include Harris et al. (2013), who considered metrics related to triggering 
of reservoir controls for the North Staffordshire Water Resource Zone, using the 
HySim hydrological model and Aquator water resource model with time-series data 

from the UKCP09 weather generator. They showed that climate change was likely to 
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significantly increase the threat of water scarcity. Similarly, Gosling (2014) modelled 
22 catchments across Scotland using the UKCP09 RCM PPE, and showed an 

increase in summer water resource scarcity by the 2050s. More recently, the 
MaRIUS project (Managing the Risks, Impacts and Uncertainties of drought and 

water Scarcity) produced large numbers of RCM simulations (initial condition 
ensembles for baseline, near-future and far-future periods under RCP8.5 emissions) 
specifically designed for analysis of droughts (Guillod et al. 2018). Using these data 

to drive the Grid-to-Grid hydrological model, Rudd et al. (2019) showed that the 
severity of hydrological droughts is projected to increase in the future, while the peak 

intensity is projected to increase in south-eastern regions but decrease for much of 
the rest of Britain. Similarly, Kay et al. (2018a) showed future reductions in 7- and 
30-day low flows of 2- and 20-year return periods, which are generally larger in the 

south, and Dobson et al. (2020) showed a worsening of extreme droughts in the 
future, using a water resource system model for England and Wales.  

One factor highlighted by the above selection of papers is that floods and droughts 
are typically studied separately, and that differences in the models, methods and 
datasets applied make comparisons between studies difficult. A rare exception is 

Collet et al. (2018), who look at potential future changes in floods and droughts using 
a consistent method based on simulated data available for 281 catchments across 

Britain. They highlight ‘hotspots’ where future changes in the frequency, magnitude 
and duration of both floods and droughts increase by at least a certain amount. 
Catchments in the west of the country are more likely to be identified as hotspots. 

Visser-Quinn et al. (2019) use a similar technique to look at compound flood and 
drought hazard for 239 catchment across the UK simulated using three hydrological 

models and five Global Climate Models (GCMs). 

This paper investigates potential future changes in both floods and droughts in a 
consistent way across the whole of Great Britain (GB) — gauged and ungauged 

locations — using a national-scale grid-based hydrological model. It also applies the 
recent UK Climate Projections 2018 (UKCP18; Murphy et al. 2018), which were 

released by the UK Met Office to update the UKCP09 projections and similarly 
provide information about potential future climatic change via a range of products. 
Using hydrological model outputs for the climate projection ensemble, a novel 

application of a clustering technique is used to highlight ‘typical’ sets of changes in 
individual indicators of floods or droughts, but also to look at concurrent changes in 

pairs of flood and drought indicators. The methods are described in Section 2, with 
results presented Section 3, discussion in Section 4 and conclusions in Section 5. 

2 Methods 

2.1 Hydrological model 

The Grid-to-Grid (G2G) is a national-scale grid-based rainfall-runoff and routing 

model that typically operates on a 1km grid across GB at a 15-minute time-step (Bell 
et al. 2009), and includes an optional snow module (Bell et al. 2016). The model is 
parameterised using spatial datasets (e.g. soil grids) rather than catchment 

calibration.  

Bell et al. (2009) looked at model performance for 42 catchments across GB and 

showed that use of soil datasets enabled good performance, even for those with a 
higher proportion of baseflow. This was confirmed by an analysis for 34 catchments 
in the Thames basin, which also highlighted the differences between modelled and 
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observed flows when the latter are affected by factors like abstractions and 
discharges (Bell et al. 2012); anthropogenic influences are currently not included in 

the model, although work is underway to do so. The analysis of Bell et al. (2016) for 
13 upland catchments showed that the incorporation of a snow module improved 

performance, enabling the delay of water inputs from snow until melt occurs. Rudd et 
al. (2017) investigated model performance for low flows in 61 catchments across GB, 
showing reasonable performance for most (albeit better for monthly mean flows than 

daily mean flows). No clear relationships were found between model performance 
and catchment properties, suggesting that the use of spatial datasets by G2G is 

effective in enabling differences in hydrological response due to different physical 
characteristics. Formetta et al. (2018) looked at estimation of the index flood for 550 
catchments across GB, and showed good correspondence between the model-

derived values and those derived from observed data. Similar to Rudd et al. (2017), 
no clear relationships were found between model performance and catchment 

properties, suggesting that the model provides estimates of consistent quality across 
various types of catchment. In summary, G2G has been shown to perform well for a 
wide range of catchments across GB, particularly those with a relatively natural flow 

regime. As such, the model is well-suited to the consistent simulation of river flows 
across the whole country, at gauged and ungauged locations, under potential future 

changes in climate. 

G2G requires gridded input time-series of precipitation and potential evaporation 
(PE), as well as temperature data if the snow module is applied. Here, 1km grids of 

daily precipitation and min and max temperature are used (HadUK-Grid v1.0.0.0; 
Met Office et al. 2019), along with 40km grids of monthly short grass PE from the UK 

Met Office (MORECS; Hough and Jones 1997). The daily precipitation data are 
divided equally over each model time-step within a day, while the temperature data 
are interpolated through the day using a sine curve. The monthly PE data are copied 

down to the 1km grid and divided equally over each model time-step within a month.  

The model produces estimates of daily mean ‘river flow’ for every 1km grid box but 

only data from grid boxes with a catchment area of at least 50km2 are analysed here, 
as use of daily precipitation divided equally over the model time-step is unlikely to be 
appropriate for smaller catchments (Formetta et al. 2018). Tidal river points are also 

excluded. One feature of the model setup which is useful in this application is the 
ability to save a file of model ‘states’ (typically values of water storage) at a given 

time, for use as an initial condition for subsequent model runs. 

2.2 Climate change projections 

The UK Climate Projections 2018 (UKCP18; Lowe et al. 2018, Murphy et al. 2018) 

provide a range of products to enable assessment of the impacts of climate change 
in the UK over the 21st century. Two products are applied here — UKCP18 Global 

(60km) and UKCP18 Regional (12km) projections (Met Office Hadley Centre 
2018a,b).  

The UKCP18 Global projections comprise a 28-member ensemble, with 15 members 

(01-15) from a PPE of the Met Office Hadley Centre GCM and the other 13 (16-28) 
from alternative GCMs taken from CMIP5 (see Murphy et al. 2018 Table 3.1). The 

inclusion of data from other GCMs enables investigation of climate model structure 
uncertainty (although ensemble member 27 is excluded here, due to problems with 
the wind data), while the 15-member Hadley PPE covers climate model parameter 

uncertainty, and together they also cover natural internal variability. Ensemble 
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member 01 represents the standard parameterisation of the Hadley Centre GCM. 
These projections are for Dec 1899–Nov 2099 under RCP8.5 emissions (Riahi et al. 

2011). 

The UKCP18 Regional projections comprise a 12-member PPE of the Met Office 

Hadley Centre RCM, with each member nested in the equivalent GCM PPE member 
(note that there are no RCM members corresponding to GCM members 02, 03 and 
14). Ensemble member 01 represents the standard parameterisation of the RCM. 

These projections are for Dec 1980–Nov 2080, also under RCP8.5 emissions.  

The UKCP18 Global and Regional data are available re-projected from the native 

grids, to provide data covering the UK aligned with the GB national grid at 60km and 
12km resolutions respectively. The re-projected monthly precipitation and 
temperature data are used here.  

PE for short grass is not available directly from the climate models, but is estimated 
from other monthly climate variables (net downward surface long- and short-wave 

radiation, relative humidity, wind speed and temperature) using the Penman-
Monteith formulation (Monteith 1965), including future changes in stomatal 
resistance under higher atmospheric CO2 concentrations (Rudd and Kay 2016, 

Guillod et al. 2018). For some of the 13 CMIP5 GCMs, not all of the data required to 
estimate PE are available at the monthly time-step so the available seasonal data 

have been interpolated to monthly. This applied to multiple GCMs: members 16-18 
and 22 lack wind speed; 20, 22 and 26 lack relative humidity; and 16-28 are missing 
long- and short-wave radiation. In all cases, a cubic spline was used to interpolate 

seasonal data to monthly intervals (following tests comparing monthly data with 
interpolated seasonal data for ensemble members with data at both time-steps). PE 

is also only estimated for climate model grid boxes classed as ‘land’ , with PE for 
other boxes initially set to missing because direct estimation of PE using climate data 
for ‘sea’ boxes can lead to unrealistic values. However, some coastal 1km G2G grid 

boxes are located within climate model ‘sea’ boxes; in these locations, PE data are 
copied from the nearest climate model ‘land’ box. 

2.3 Application of climate change projections 

While RCM data can be used to directly drive hydrological models (e.g. Fowler and 
Kilsby 2007, Dankers and Feyen 2008, Bell et al. 2016), GCM data are generally 

considered too coarse for direct use in hydrological modelling in Britain, where even 
the largest catchment would only be covered by about three 60km grid boxes. Thus 

to enable use of both the UKCP18 Global and Regional projections, the delta change 
approach (sometimes called the change factor method) has been adopted. This 
involves the application of monthly change factors for a climate variable to a baseline 

time-series for that variable (e.g. Arnell 2003, Kay et al. 2020). While this gives 
perturbed time-series similar to the baseline in terms of relative size and ordering of 

events (Cloke et al. 2013), it has the advantage of avoiding potential issues with bias 
in climate model variables because it only uses changes rather than absolute values. 
The approach was used instead of more complex methods because a) it means that 

the baseline time-series is the same for each simulation, and b) bias-adjustment of 
climate model data generally lacks a sound physical basis, does not satisfy 

conservation laws, and adds uncertainty (e.g. Ehret et al. 2012, Teng et al. 2015, 
Maraun et al. 2017). 
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Previous applications of the delta change approach have typically involved use of 
fixed baseline and future time-slices, where the model is run with baseline observed 

climate time-series data, then re-run with the baseline data adjusted using monthly 
change factors derived to represent the mean monthly changes for a specific future 

time-slice relative to the baseline time-slice. Previous applications have also typically 
involved use of lumped or semi-distributed catchment-based hydrological models, 
with the same delta changes usually applied for the whole catchment. The change 

factors are multiplicative for precipitation and PE, and additive for temperature. 

Here though, a transient grid-based approach was taken. This involves deriving grids 

of change factors for each month and year from the climate projection data, using 
multiple future 30-year time-slices moving on one year at a time, relative to a fixed 
baseline time-slice (Dec 1980–Nov 2010); the monthly change factors for a specific 

year are therefore calculated from the mean change over the 30 years centred on 
that year. The gridded observed climate time-series data (daily precipitation, daily 

min and max temperature and monthly PE; Section 2.1) for the baseline period are 
copied three times to cover the period up to Nov 2100, then the change factors are 
applied to the copied baseline data at the centre of the future 30-year time-slice 

(Figure 1). That is,  

 the delta change grids derived as a mean change for Decembers 1995–2024 

(relative to Decembers 1980–2009) are applied to data for Dec 2010 (copied from 
Dec 1980);  

 the delta change grids derived as a mean of Januarys 1996–2025 (relative to 

Januarys 1981–2010) are applied to data for Jan 2011 (copied from Jan 1981); 

 and so on, up to  

 the delta change grids derived as a mean change for Novembers 2085–2114 
(relative to Novembers 1981–2010) are applied to data for Nov 2100 (copied from 

Nov 2010). 

The change factors applied to the baseline data in each 1km grid box are those from 
the Global 60km or Regional 12km grid box within which it sits. A similar transient 

delta change approach was taken by Arnell et al. (2020). 

The change factors for a year are constructed from 30-year mean changes. To 

estimate change factors for the last few (15) years it is therefore necessary to 
extrapolate for 15 years beyond the last year to calculate the 30-year mean. For 
example, to derive delta changes for Nov 2100, data are required for Novembers 

2085–2114. For the Global projections, this extrapolation was done by simply fitting 
a linear regression to the last 40 years of data. The Regional projections only extend 

to 2080, so the change factors beyond 2080 were estimated from the corresponding 
Global projection ensemble member (scaled to account for differences between the 
Global and Regional model anomalies in the overlap period). Supp. Figure 1 

presents examples of the derivation of extrapolated delta changes.  

The derived delta changes show that precipitation tends to increase in winter and 

decrease in summer, particularly for later time-slices (e.g. Supp. Figure 2). 
Temperature generally increases throughout the year (e.g. Supp. Figure 3). PE 
typically increases in the late spring, summer and early autumn, with some potential 

decreases at other times of year, although winter changes are noisier since PE then 
is fairly low (e.g. Supp. Figure 4).  
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To achieve full transient outputs without repeating the baseline part of each run, and 
to enable use of water years for annual maxima (see Section 2.4), the G2G model’s 

state initialisation ability is used. Firstly, a spin-up run is completed for 1st Jan 1970 
to 31st Sep 1980, with the end states saved. Then the baseline run is completed for 

1st Oct 1980 to 31st Nov 2010, initialised using the states from the spin-up run, and 
writing a states file for 31st Sep 2010. Then, for each Global and Regional ensemble 
member, the three 30-year time-slices of delta change runs are completed (1st Oct 

2010 to 31st Nov 2040, 1st Oct 2040 to 31st Nov 2070, and 1st Oct 2070 to 31st Nov 
2100, using the baseline data for 1st Oct 1980 to 31st Nov 2010 in each case, and 

initialised using the states files output on 31st Sep of the previous time-slice in each 
case). In this way, the delta change runs are effectively continuous transient runs, 
but split to enable easier setup and processing.  

2.4 High and low flow indicators 

G2G is run with the transient delta change grids derived for each Global and 

Regional ensemble member. To analyse potential future changes in high flows, the 
annual maxima (AMAX) of daily mean flows are extracted for each water year (Oct-
Sep) during each run. The water year is used to try to avoid extraction of the same 

high flow event in two consecutive years. To analyse potential future changes in low 
flows, the annual minima (AMIN) of running 7-day and 30-day mean flows are 

extracted for each Dec-Nov 12-month period during each run. AMIN extraction would 
usually use calendar years, but Dec-Nov is used here to match with the climate 
model data running from December of the first year to November of the final year, 

whilst still likely avoiding extraction of the same low flow event in two consecutive 
years. 

Moving window analysis is then used to investigate transient changes in high and 
low flows, in a similar way to Kay et al. (2012a, 2018a). A 30-year moving window is 
applied, moved on by one year at a time, with high (low) flow frequency curves fitted 

to the 30 AMAX (AMIN) covered by each position of the window. As recommended 
for GB, the high flow frequency curve is fitted using the generalised logistic 

distribution (Robson and Reed 1999), while the low flow frequency curve is fitted 
using the generalised extreme value distribution (Zaidman et al. 2002). From each 
fitted curve, 5- and 20-year return period flows are derived.  

To enable regional averaging, the 5- and 20-year return period high (low) flows for 
each 1km cell are standardised by dividing by the baseline 2-year return period high 

(low) flow (referred to subsequently as ‘scaled magnitude’). This scaling is analogous 
to use of growth curves (e.g. Hosking and Wallis 1997). Regional averages are then 
calculated for each indicator (high flow and low flow of a specific return period) and 

each ensemble member, for the UKCP18 river-basin regions (Figure 2). The 
baseline performance of the standardised 5- and 20-year return period high and low 

flows, compared to gauged flows, is relatively good (Supp. Section 1.2). 

2.5 Cluster analysis 

For each indicator and each region (Section 2.4), there are time-series results for 27 

GCM and 12 RCM ensemble members (Section 2.2); a large amount of data. To 
reduce this, time-series clustering is applied as described below, to derive a small 

number of exemplar ensemble members for each indicator in each region. Note that 
the selection of exemplars does not imply greater probability – they are simply 
representative of a cluster of similar possible outcomes. 
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The time-series clustering is performed using Dynamic Time Warping (DTW; Sakoe 
and Chiba 1971) and DTW Barycenter Averaging (DBA) implemented in R using the 

dtwclust package (Sara-Espinosa 2019). In this method, the distance between each 
time-series is computed using DTW, designed to give small distances to time-series 

which have similar features even if the features are offset in time, by trying to "warp" 
the time-steps of one time-series to make it match a second as closely as possible 
(Supp. Section 1.3). Then clusters of time-series are generated such that within-

cluster distances are minimised and between-cluster distances are maximised, using 
DBA by adjusting and optimising the clusters' centres-of-mass by reassigning time-

series to different clusters. To summarise each cluster, the time-series closest to the 
centre of the cluster (as measured using DTW) is selected as an exemplar. This 
exemplar should be considered representative of the “average” behaviour of a 

cluster, but a cluster may vary in how close together members are in DTW distance, 
and some within-cluster variability is likely. To determine the optimal number of 

clusters in each region, the process is tried for two to five clusters, and the number of 
clusters is chosen which maximises the Calinski-Harabasz score, a ratio of between-
cluster and within-cluster variance (Calinski and Harabasz 1974).  

As well as applying the cluster analysis to individual indicators, the methodology is 
applied to pairs of indicators. Combinations of indicators can tell a more nuanced 

story of possible hydrological changes due to climate change than single indicators 
in isolation. For example, some regions may experience worse droughts and worse 
floods while others may experience worse droughts but reduced flooding. To 

understand how pairs of high and low flow indicators jointly change over time in each 
region, the clustering procedure was performed for bivariate time-series to identify 

sets of ensemble members with similar response for both the high and the low flow 
indicators. DTW was computed component-wise and summed to give distances, as 
different indicators were assumed to not directly depend on each other; rather the 

indicators all depend on a set of underlying climatic, meteorological and hydrological 
processes. 

Finally, to examine spatial similarity in the hydrological response to projected future 
changes in climate, a grid-based clustering is performed to identify geographical 
regions (sets of 1km grid cells) with a similar response. This is used to highlight 

areas with differing response (e.g. due to chalk vs clay soils/geology), which may be 
masked by use of regional averaging of indicators. For computing reasons, this 1km 

grid-based analysis is done for a subset of indicators and for a single climate 
ensemble member (RCM 01), keeping the number of clusters fixed to five. 

3 Results 

3.1 Regional average high flow changes 

The results for 5-year and 20-year return period high flows typically show an 

increase over time in response to climate change, across all regions and both return 
periods, although regions to the south/east (e.g. SE England, Thames and Anglian) 
can show decreases and tend to have a greater range of climate projection 

uncertainty (Figure 3). This is consistent with the typical increases in winter 
precipitation (Supp. Figure 2). The cluster analysis identifies only two clusters for the 

majority of regions; the North Highland region is unique in having four clusters at 
both return periods.  



 

9 

For 5-year return period high flows in the most south-easterly regions (Anglian, 
Thames and South East England), one exemplar indicates an increase in high flows 

but the other exemplar indicates a decrease in high flows by the end of the time 
period (Figure 3). In contrast, regions across the rest of the country almost 

exclusively display multiple clusters with exemplars that indicate increased high 
flows, although some regions (e.g. Severn and Dee) have clusters with exemplars 
showing an initial decrease and then an increase. For two regions (West Highland 

and Severn) a small cluster (fewer than three members) is identified which indicates 
greatly increased high flows. In contrast, the two small clusters in the North Highland 

region (each with fewer than five members) indicate relatively little change in high 
flows by the end of the time period.  

For 20-year return period high flows the geographic split seen for 5-year return 

period high flows shifts location (Figure 3). While northern and north-western regions 
still primarily display clusters that tend towards increases in high flows, eastern 

regions from Tweed southwards display one cluster with decreasing high flows, and 
the Severn shows a similar pattern. Only two regions display clusters with fewer than 
five members: North Highlands, in which the small cluster again shows relatively little 

change in high flows by the end of the time period, and Severn, in which the small 
cluster is meandering in nature but generally reflects large increases in high flows. 

The future changes for 20-year return period high flows are generally less smooth in 
their progression through time than for 5-year return period high flows, due to 
inherent greater uncertainty in estimation of higher return period flows. 

3.2 Regional average low flow changes 

The results for 5-year and 20-year return period low flows typically show a decrease 

over time in response to climate change, across all regions and both return periods 
for both 7-day and 30-day durations (Figure 4). Decreases tend to be larger in 
regions to the south/east. This is consistent with the typical decreases in summer 

precipitation and increases in PE (Supp. Figures 2-4). As for high flows, the cluster 
analysis identifies only two clusters for the majority of regions. The exemplars of the 

clusters identified within each region generally display similar behaviour for both 7-
day and 30-day low-flows. 

For 5-year return period low flows the cluster exemplars generally indicate a 

decrease in low flows throughout the analysed time period (Figure 4). The 
exceptions are in regions that display a higher than average number of clusters, 

where smaller clusters (fewer than five members) can show small increases in low 
flows (e.g. Tay and Northumbria). For the Tay for example, there are four clusters 
identified for the 30-day duration low flows, one of which indicates increasing low 

flows. The northern Scottish regions (West Highlands, North Highlands and North 
East Scotland) all have one cluster indicating a decrease in low flows and a second 

cluster with a flatter response through the time period.  

There are similar overall patterns for the 20-year return period low flows (Figure 4); 
most regions display two clusters that both indicate a decrease in low flows. 

However, the only region with a cluster showing a (marginal) increase in low flows is 
Northumbria (for 30-day duration), although Anglia has a smaller cluster showing a 

flat response. While the West Highland region still displays a cluster with a flatter 
response, the other northern Scottish regions now display multiple clusters with 
decreasing low flows.  
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3.3 Regional average high and low flow changes 

The paired clustering results, performed for selected pairs of high and low flow 

changes (i.e. 5-year return period high flows with 5-year return period 7-day low 
flows, and 20-year return period high flows with 20-year return period 7-day low 

flows) show some significant differences between regions (Figure 5 and Supp. 
Section 2.1).  

Most regions have only two clusters, with only Argyll and SW England (5-year) and 

NW England, Northumbria and West Wales (20-year) giving three clusters. For all 
eastern regions, the cluster exemplars are in the same order for both high and low 

flows. Specifically, the cluster exemplar with the greatest decrease in low flows also 
has the least increase (or greatest decrease) in high flows, while the cluster with the 
least decrease in low flows also has the greatest increase (or least decrease) in high 

flows (e.g. SE England, Figure 5). In contrast, western regions are much more 
variable in high vs low flow response. For example, for 5-year return period flows, 

while the two clusters in West Highland behave similarly to those for the eastern 
regions, the two clusters in NW England have exemplars that swap order over time 
but end up in the same order for high and low flows, and the two clusters in West 

Wales have exemplars consistently of opposite order for high and low flows — the 
cluster with the greatest decrease in low flows also has the greatest increase in high 

flows. For Argyll, for 5-year return period flows, all three cluster exemplars show 
relatively similar increases in high flows, but they show very different changes in low 
flows — two show decreases, of different amounts, but one shows a small increase. 

Results for 20-year return period flows can differ to some extent from those for 5-
year return period flows, particularly in terms of number of clusters, but the general 

pattern is similar. 

Many of the cluster exemplars show changes over time that are roughly monotonic, 
particularly for low flows and the lower return period, although with varying rates so 

the cluster order can change over time. However, some cluster exemplars show 
highly non-monotonic behaviour, with a period of increases followed by a period of 

decreases, or vice-versa (Figure 5 and Supp. Section 2.1). 

These results indicate that the nature of the combined response of high and low 
flows to climate change is variable across the regions, and that there is significant 

variability between climate ensemble members. 

3.4 Analysis of cluster exemplars and membership 

To assess whether specific ensemble members are commonly chosen as exemplars 
across different regions, the number of times each ensemble member is chosen is 
counted for each indicator. This shows that there are no ensemble members 

consistently selected, across all regions, for any indicator (Figure 6a). Every 
ensemble member is selected at least once as a regional exemplar, for at least one 

high or low flow indicator, but GCM/RCM 05 occurs frequently for low flows, and 
some ensemble members (GCM/RCM 01 and 10 and GCM 22) are selected in at 
least one region for all indicators. However, there is a tendency for the largest two 

clusters to have one exemplar from the Hadley PPE (either RCM or GCM 01-15) and 
one from the CMIP5 GCMs (16-28), particularly for low flows (Figure 6b).  

Even though no ‘universal’ exemplars are identified, there may be subsets of 
ensemble members which are repeatedly found in the same cluster, which may lead 
to simpler summaries of future changes in indicators. Examining the clusters as a 
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whole, a simple similarity metric was computed by summing, across all considered 
indicators and regions, the number of times a pair of climate ensemble members has 

different cluster labels. There is a clear distinction between the Hadley PPE and the 
CMIP5 GCMs, showing great similarity within these groups and high dissimilarity 

between them (Supp. Section 2.2). Using a hierarchical ordering, high similarity can 
also be seen between equivalent RCMs and GCMs (e.g. RCM 08 and GCM 08), 
shown through close proximity on the axes. 

3.5 Grid-based high and low flow changes 

The results of the national 1km clustering for 5-year return period high flows (for 

RCM 01) highlight a high level of spatial variability in the response (Figure 7a). 
Although some clusters are generally more dominant in the west and others are 
more dominant in the east, areas covered by the same cluster can be far apart and 

relatively disconnected from each other. This suggests that spatial variation in 
catchment properties (which can occur at relative small spatial scales), as well as 

spatial differences in climatic change (which generally only occur at larger spatial 
scales), affect the spatial pattern of response. As an example, analysis of a proxy 
baseflow index derived from soil data (BFIHOST; Boorman et al. 1995) for the 1km 

points within each cluster shows that cluster 1, which has the largest change in 
scaled high flow magnitude over time, is more likely to have higher baseflow (Figure 

7a). Previous work has shown a relationship between catchment properties and 
potential future changes in flood peaks in Britain (Kay et al. 2014). 

The results of the national 1km clustering for 5-year return period low flows (for RCM 

01) show less spatial variability in the response than for high flows (Figure 7b). Areas 
covered by the same cluster show a general north/north-west to south/south-east 

pattern and are relatively spatially coherent, suggesting that low flow changes are 
perhaps more affected by spatial variations in climatic change than catchment 
properties. However, previous work has suggested that potential future changes in 

droughts in Britain could be worse in groundwater-dependent areas (Rudd et al. 
2019), and the low flow results in Figure 7b are consistent with that as cluster 1 

shows the largest decrease in scaled low flow magnitude over time and is also more 
likely to have higher baseflow (using BFIHOST). 

4 Discussion 

The simulated future decreases in low flows are consistent with previous studies 
using UKCP09 projections (e.g. Charlton and Arnell 2014, Christierson et al. 2012) 

and later large ensemble projections for GB (Visser-Quinn et al. 2019, Kay et al. 
2018a). Similarly, the typical increases in high flows, with potential decreases in 
some locations, are consistent with previous studies using UKCP09 (e.g. Collet et al. 

2018, Bell et al. 2016, Kay and Jones 2012b) and a recent study using the UKCP18 
probabilistic projections in a sensitivity-based approach (Kay et al. 2021).  

The UKCP18 Global and Regional projections are only available for the RCP8.5 
emissions scenario, which is a high scenario (Riahi et al. 2011) but should not be 
considered implausible, particularly up to mid-century (Schwalm et al. 2020). Lower 

scenarios should lead to lower eventual impacts (e.g. Kay et al. 2021). Also, all of 
the UKCP18 Regional projections and 15 of the 27 UKCP18 Global projections are 

from the same climate model — that of the Met Office Hadley Centre (Section 2.2) — 
and there is high similarity between equivalent Regional and Global PPE members. 
The remaining 12 global projections are each derived from different GCMs, which is 
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very valuable in terms of assessing climate model uncertainty as the Global multi-
model ensemble tends to cover a broader range of potential climatic changes than 

the Regional PPE (Supp. Section 1.1). Future work could apply projections from 
other climate modelling projects (e.g. EuroCORDEX, Jacob et al. 2020). The use of 

only one hydrological model is an additional potential source of uncertainty, 
particularly for low flows (e.g. Vetter et al. 2017), but climate models are generally 
considered to be the main source of uncertainty in projected hydrological changes 

(e.g. Thober et al. 2018, Marx et al. 2018). 

Rather than directly using the climate model data to drive the hydrological model, the 

delta change method is used to apply climatic changes derived from climate models 
to baseline observed climate data. As well as enabling the application of the coarser 
resolution Global multi-model ensemble alongside the Regional PPE, this method 

has a number of advantages, including the typically higher spatial resolution of 
available observed data (Section 2.3), however it does not allow for future changes 

in the variability or sequencing of events (Cloke et al. 2013). Future work could apply 
more complex delta change methods (e.g. van Pelt et al. 2012), and compare results 
to direct use of RCM data. Use of future climate time-series has been shown to lead 

to a broader impact range than use of delta changes when modelling future change 
in flood peaks, although ensemble median impacts were similar (Kay and Jones 

2012b).  

Other factors that are likely to affect future changes in river flows include changes in 
land-cover, and changes in patterns and amounts of abstractions and discharges. 

Such factors are highly complex to project into the future, and not included in the 
hydrological modelling here. A further factor not included here is the effect of a 

possible increase in leaf area index (due to carbon fertilisation of vegetation) on 
future PE, although stomatal closure under higher CO2 concentrations is included 
(Rudd & Kay 2016).  

Further work will look at clustering for a wider range of indicators of change in river 
flow, and how clusters relate to catchment properties. Using fuzzy clusters, which 

assign probabilities of being in one cluster or another, would give more flexibility in 
cluster membership so that nearby clusters could be more easily identified. If 
uncertainty in the indicator time-series is well described, then this could be included. 

If exact timings of regime changes are of interest, a Euclidean metric could replace 
the Dynamic Time Warping approach to give stronger weight to temporal 

coincidence of features. 

5 Conclusions 

The analysis presented here shows the potential impacts of climate change on 

extreme high and low flows across Great Britain. The impacts are modelled in a 
consistent way, using a grid-based hydrological model with a transient delta change 

approach and Global and Regional climate projections from UKCP18 – the latest 
climate projections for the UK. Clusters are used to summarise the results from the 
climate projection ensembles. The results generally indicate decreases in low flows 

combined with increases in high flows up to the end of the 21st century. There is 
significant variation in cluster exemplars for different regions of the country, with 

regions to the south/east tending to show greater decreases in low flows and a 
greater range of uncertainty in the projections for high flows (including potential 
decreases in some regions). The paired cluster analysis shows that the nature of the 



 

13 

combined response of high and low flows varies between regions. The grid-based 
cluster analysis also shows potentially important variation within regions, likely 

related to the properties of individual catchments.  

The simulation of potential future changes in derived climate hazards, such as the 

frequency or severity of floods and droughts, is a key first step required for 
adaptation planning. The subsequent translation of hazard into risk (e.g. numbers of 
people/properties affected by floods or water use restrictions) could be as important 

for policy-makers. However, many other factors affect the exposure component of 
risk (e.g. presence of flood defences, land use on flood plains, population change, 

construction of new reservoirs etc.), each of which is highly complex to project into 
the future. Indeed, factors like urbanisation could potentially have a greater effect on 
future flood risk than climate change, particularly for smaller catchments (Poelmans 

et al. 2011), while the relative importance of climate change and population growth 
for exposure to future extreme droughts has been shown to vary globally (Smirnov et 

al. 2016). The consideration of potential concurrent changes in a range of related 
hazards/risks, rather than viewing each in isolation, could be vital to avoid 
maladaptation (e.g. Huntjens et al. 2012). 

The results here demonstrate that climate change as represented by the new 
UKCP18 Global and Regional climate projections will have clear effects on both high 

and low flows across Britain, and that some regions may experience an increase in 
both floods and droughts. However, there is considerable uncertainty in the 
magnitude of change at a place, due to uncertainty in projected climate changes, 

and spatial variability in catchment properties increases the variability in the 
hydrological response to climate change across Britain. 

Acknowledgements 

This work was funded by the Natural Environment Research Council, grant number 
NE/S016457/2. 

References 

Arnell, N.W. (2003). Relative effects of multi-decadal climatic variability and changes 

in the mean and variability of climate due to global warming: future streamflows in 
Britain. J. Hydrol, 270, 195–213. 

Arnell N.W., Kay, A.L., Freeman, A. et al. (2020). Changing climate risk in the UK: a 
multi‐sectoral analysis using policy relevant indicators. Climate Risk Management, 

doi:10.1016/j.crm.2020.100265. 

Bell, V.A., Kay, A.L., Cole, S.J. et al. (2012). How might climate change affect river 

flows across the Thames Basin? An area-wide analysis using the UKCP09 Regional 
Climate Model ensemble. Journal of Hydrology, 442–443, 89–104. 

Bell, V.A., Kay, A.L., Davies, H.N., Jones, R.G. (2016). An assessment of the 

possible impacts of climate change on snow and peak river flows across Britain. Clim 
Change, 136(3), 539–553. 

Bell, V.A., Kay, A.L., Jones, R.G. et al. (2009). Use of soil data in a grid-based 
hydrological model to estimate spatial variation in changing flood risk across the UK. 
J Hydrol, 377(3–4), 335–350. 

https://doi.org/10.1016/j.crm.2020.100265


 

14 

Blöschl, G., Hall, J., Viglione, A. et al. (2019). Changing climate both increases and 
decreases European river floods. Nature 573, 108–111.  

Boorman, D.B., Hollis, J.M., Lilly, A. (1995). Hydrology of soil types: a hydrologically 
based classification of the soils of the United Kingdom. IH Report No. 126, Institute 

of Hydrology, Wallingford, UK, 137pp. 

Calinski, T., Harabasz, J. (1974). A dendrite method for cluster analysis. Comms in 
Stats, 3(1), 1–27. 

Charlton, M.B., Arnell, N.W. (2014). Assessing the impacts of climate change on 
river flows in England using the UKCP09 climate change projections. J Hydrol, 519, 

1723–1738. 

Christierson, B.v., Vidal, J-P., Wade, S.J. (2012). Using UKCP09 probabilistic 
climate information for UK water resource planning. J Hydrol, 424–425, 48–67. 

Cloke, H.L., Wetterall, F., He, Y. et al. (2013). Modelling climate change impact on 
floods with ensemble climate projections. Q.J.R. Meteorol. Soc., 139, 282–297.  

Collet, L., Beevers, L., Prudhomme, C. (2017). Assessing the impact of climate 
change and extreme value uncertainty to extreme flows across Great Britain. Water, 
9, 103.Collet, L., Harrigan, S., Prudhomme, C. et al. (2018). Future hot-spots for 

hydro-hazards in Great Britain: a probabilistic assessment. Hydrol. Earth Syst. Sci., 
22, 5387–5401. 

Dai, A. (2013). Increasing drought under global warming in observations and models. 
Nat Clim Chang, 3, 52–58. 

Dankers, R., Feyen, L. (2008). Climate change impact on flood hazard in Europe: An 

assessment based on high resolution climate simulations. J Geophys Res,113, 
D19105. 

Dobson, B., Coxon, G., Freer, J., Gavin, H., Mortazavi‐Naeini, M., Hall, J.W. (2020). 

The spatial dynamics of droughts and water scarcity in England and Wales. Water 

Resources Research, 56, e2020WR027187.  

Ehret U, Zehe E et al. (2012). HESS Opinions "Should we apply bias correction to 

global and regional climate model data?" Hydrol Earth Syst Sci, 16, 3391–3404. 

Formetta, G., Prosdocimi, I., Stewart, E., Bell, V. (2018). Estimating the index flood 
with continuous hydrological models: an application in Great Britain. Hydrol Res, 49, 

123–133. 

Fowler HJ, Kilsby CG (2007). Using regional climate model data to simulate 

historical and future river flows in northwest England. Climatic Change 80(3–4), 337–
367. 

Gosling, R. (2014). Assessing the impact of projected climate change on drought 

vulnerability in Scotland. Hydrology Research, 45(6), 806-816. 

Guillod, B.P., Jones, R.G., Dadson, S.J. et al. (2018). A large set of potential past, 

present and future hydro-meteorological time series for the UK. Hydrol. Earth Syst. 
Sci., 22(1), 611–634. 

Harris, C.N.P., Quinn, A.D., Bridgeman, J. (2013). Quantification of uncertainty 

sources in a probabilistic climate change assessment of future water shortages. 
Clim. Change, 121, 317–329. 



 

15 

Hosking, J.R.M., Wallis, J.R. (1997). Regional Frequency Analysis: An Approach 
Based on L-Moments. Cambridge University Press, UK. 

Hough, M., Jones, R.J.A. (1997). The United Kingdom Meteorological Office rainfall 
and evaporation calculation system: MORECS version 2.0– an overview. Hydrol. 

Earth Syst. Sci., 1(2), 227–239. 

Huntjens, P., Lebel, L., Pahl-Wostl, C. et al. (2012). Institutional design propositions 
for the governance of adaptation to climate change in the water sector. Global 

Environmental Change, 22, 67-81. 

Jacob, D., Teichmann, C., Sobolowski, S. et al. (2020). Regional climate 

downscaling over Europe: perspectives from the EURO-CORDEX community. Reg 
Environ Change, 20, 51. 

Jiménez Cisneros, B.E., Oki, T., et al. (2014). Freshwater resources. In: Climate 

Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral 
Aspects. Contribution of Working Group II to the Fifth Assessment Report of the 

Intergovernmental Panel on Climate Change [Field, C.B. et al. (eds.)]. Cambridge 
University Press, Cambridge, United Kingdom and New York, NY, USA, pp.229–269. 

Kay, A.L., Bell, V.A., Guillod, B.P. et al. (2018a). National-scale analysis of low flow 

frequency: historical trends and potential future changes. Clim Change, 147(3–4), 
585–599. 

Kay, A.L., Booth, N., Lamb R. et al. (2018b). Flood event attribution and damage 
estimation using national-scale grid-based modelling: Winter 2013/14 in Great 
Britain. Int J Climatol, 38(14), 5205-5219. 

Kay, A.L., Crooks, S.M., Davies, H.N., Prudhomme, C. and Reynard, N.S. (2014). 
Probabilistic impacts of climate change on flood frequency using response surfaces. 

I: England and Wales. Regional Environmental Change, 14(3), 1215–1227. 

Kay, A.L., Jones, D.A. (2012a). Transient changes in flood frequency and timing in 
Britain under potential projections of climate change. Int J Climatol, 32(4), 489–502. 

Kay, A.L., Jones, R.G. (2012b). Comparison of the use of alternative UKCP09 
products for modelling the impacts of climate change on flood frequency. Clim 

Change, 114(2), 211–230. 

Kay, A.L., Rudd, A.C., Fry, M. et al. (2021). Climate change impacts on peak river 
flows: combining national-scale hydrological modelling and probabilistic projections. 

Climate Risk Management, 31, 100263. 

Kay, A.L., Watts, G., Wells, S.C., Allen, S. (2020). The impact of climate change on 

UK river flows: a preliminary comparison of two generations of probabilistic climate 
projections. Hydrol Process, 34(4), 1081–1088. 

Lowe, J.A., Bernie, D., Bett, P. et al. (2018). UKCP18 Science Overview report. 

Exeter, UK: Met Office Hadley Centre. 

Maraun, D., Shephard, T.G., Widmann, M. et al. (2017). Towards process-informed 

bias correction of climate change simulations. Nat Clim Change, 7, 764–773. 

Marx, A., Kumar, R., Thober, S., et al. (2018). Climate change alters low flows in 
Europe under global warming of 1.5, 2, and 3°C. Hydrol. Earth Syst. Sci., 22, 1017–

1032. 



 

16 

Met Office Hadley Centre (2018a). UKCP18 Global Projections on a 60km grid over 
the UK for 1900-2100. Centre for Environmental Data Analysis, July 2019. 

https://catalogue.ceda.ac.uk/uuid/854bb0de8a5e4bfaafe322bbfc57ea57 

Met Office Hadley Centre (2018b). UKCP18 Regional Projections on a 12km grid 

over the UK for 1980-2080. Centre for Environmental Data Analysis, September 
2019. https://catalogue.ceda.ac.uk/uuid/589211abeb844070a95d061c8cc7f604 

Met Office, Hollis, D., McCarthy, M. et al. (2019). HadUK-Grid Gridded Climate 

Observations on a 1km grid over the UK, v1.0.0.0 (1862-2017). Centre for 
Environmental Data Analysis, 14 November 2019. 

doi:10.5285/2a62652a4fe6412693123dd6328f6dc8.  

Monteith, J.L. (1965). Evaporation and environment. Symposia of the Society for 
Experimental Biology, 19, 205–234. 

Murphy, J.M., Harris, G.R., Sexton, D.M.H. et al. (2018). UKCP18 Land Projections: 
Science Report. Met Office Hadley Centre, Exeter, UK. 

Murphy, J.M., Sexton, D.M.H., Jenkins, G.J. et al. (2009). UK Climate Projections 
Science Report: Climate change projections. Met Office Hadley Centre, Exeter, UK. 

Pall P, Aina T, Stone DA et al. (2011). Anthropogenic greenhouse gas contribution to 
flood risk in England and Wales in autumn 2000. Nature, 470, 382-386. 

Poelmans, L., Van Rompaey, A., Ntegeka, V., Willems, P. (2011). The relative 
impact of climate change and urban expansion on peak flows: A case study in 
central Belgium. Hydrological Processes, 25, 2846–2858. 

Prudhomme, C., Young, A., Watts, G. et al. (2012). The drying up of Britain? A 
national estimate of changes in seasonal river flows from 11 Regional Climate Model 
simulations. Hydrol Process, 26(7), 1115–1118.  

Razavi, S., Gober, P., Maier, H.R. et al. (2020). Anthropocene Flooding: Challenges 
for Science and Society. Hydrol Process, 34(8), 1996–2000. 

Riahi, K., Krey, V., Rao, S. et al. (2011). RCP-8.5: exploring the consequence of high 
emission trajectories. Climatic Change, 109, 33–57. 

Robson, A.J., Reed, D.W. (1999) Statistical procedures for flood frequency 

estimation, vol 3. Flood Estimation Handbook, Institute of Hydrology, Wallingford, UK 

Rudd, A.C., Bell, V.A., Kay, A.L. (2017). National-scale analysis of simulated 

hydrological droughts (1891-2015). J Hydrol, 550, 368–385. 

Rudd, A.C., Kay, A.L. (2016). Use of very high resolution climate model data for 
hydrological modelling: estimation of potential evaporation. Hydrol Res, 47(3), 660–

670. 

Rudd, A.C., Kay, A.L., Bell, V.A. (2019). National-scale analysis of future river flow 

and soil moisture droughts: potential changes in drought characteristics. Clim. 
Change, 156(3), 323–340. 

Sakoe, H., Chiba, S. (1971). Recognition of continuously spoken words based on 

time-normalization by dynamic programming. J. Acoust. Soc. Japan, 7(9). 

Sara-Espinosa, A. (2019). dtwclust: Time series clustering along with optimisations 

for the dynamic time warping distance. (Version 5.5.6) https://CRAN.R-
project.org/package=dtwclust  

https://catalogue.ceda.ac.uk/uuid/854bb0de8a5e4bfaafe322bbfc57ea57
https://cran.r-project.org/package=dtwclust
https://cran.r-project.org/package=dtwclust


 

17 

Schwalm, C.R., Glendon, S., Duffy, P.B. (2020). RCP8.5 tracks cumulative CO2 
emissions. Proc Nat Acad. Sci, 117, 19656‐19657. 

Smirnov, O., Zhang, M., Xiao, T. et al. (2016). The relative importance of climate 

change and population growth for exposure to future extreme droughts. Climatic 
Change, 138, 41–53. 

Teng, J., Potter, N.J., Chiew, F.H.S. et al. (2015). How does bias correction of 

regional climate model precipitation affect modelled runoff? Hydrol. Earth Syst. Sci., 
19, 711–728.Thober. S., Kumar, R., Wanders, N., et al. (2018). Multi-model 

ensemble projections of European river floods and high flows at 1.5, 2, and 3 
degrees global warming. Environ. Res. Lett. 13, 014003. 

van Pelt, S.C., Beersma, J.J., Buishand, T.A. et al. (2012). Future changes in 

extreme precipitation in the Rhine basin based on global and regional climate model 
simulations. Hydrol. Earth Syst. Sci., 16, 4517–4530. 

Vetter, T., Reinhardt, J., Flörke, M. et al. (2017). Evaluation of sources of uncertainty 
in projected hydrological changes under climate change in 12 large-scale river 
basins. Clim. Change, 141, 419–433.  

Visser-Quinn, A., Beevers, L., Collet, L. et al. (2019). Spatio-temporal analysis of 
compound hydro-hazard extremes across the UK. Advances in Water Resources, 

130, 77–90. 

Zaidman, M.D., Keller, V., Young, A.R. (2002) Low flow frequency analysis: 
guidelines for best practice. R&D Technical Report W6-064/TR1. Bristol, 

Environment Agency  



 

18 

Figures 

 

Figure 1 Schematic of the transient delta change approach (Section 2.3). The time 
period of the available (GCM and RCM) climate projection anomalies is represented by 
the top line, with the derivation of transient delta changes from multiple 30-year sub-
periods of the anomalies shown by the middle horizontal lines. The baseline observed 
data, copied three times to cover the period up to Dec 2100, are represented by the 
bottom line. The application of each set of monthly delta changes to a year of the 
copied baseline data is represented by the vertical dashed lines. 
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Figure 2 Map of the river-basin regions. 



 

20 

 

Figure 3 Projected change in the scaled magnitude of high flow indicators across 
river basin regions for a) 5-year return period high flows and b) 20-year return period 
high flows. Each plot shows all ensemble data (grey dotted lines) and the selected 
cluster exemplars (blue lines, with the line style indicating cluster size; solid for larger 
clusters and dashed or dotted for smaller clusters - see legend). 
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Figure 4 Projected change in the scaled magnitude of low flow indicators across river 
basin regions for a) 5-year return period low flows and b) 20-year return period low 
flows. Each plot shows all ensemble data (grey dotted lines) and the selected cluster 
exemplars for 7-day duration and 30-day duration (blue and red lines respectively, 
with the line style indicating the cluster size; see legend). 
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Figure 5 Clustering results for five regions, for paired high flows and 7-day low flows 
(5- and 20-year return period). The coloured lines indicate the same cluster for the 
indicator pair in a region, but there is no equivalence in colours between regions or 
for 5- and 20-year return period results. See Supp. Section 2.1 for the paired cluster 
results for all 19 regions. 
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Figure 6 Counts of a) the number of times each climate ensemble member is selected 
as a cluster exemplar for a region, and b) the number of times each pair of climate 
ensemble members is selected as the exemplars for the largest two clusters in a 
region, for the high and low flow indicators separately and paired. The equivalent 
Hadley GCM and RCM PPE members are grouped together for simplicity in each case. 
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Figure 7 Results of 1km clustering across GB for a) 5-year return period high flows 
and b) 5-year return period 7-day low flows. Note that in this case there is no 
equivalence between the clusters for high and low flows. 
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Supplementary Material 
 

1 Methods 

1.1 Application of climate change projections 

Figure 1 shows examples of the derivation of extrapolated GCM and RCM delta 

changes, for two months and for a single grid box and ensemble member in each 
case. 

The derived delta changes show that precipitation tends to increase in winter and 

decrease in summer, particularly for later time-slices (e.g. Figure 2). Temperature 
generally increases throughout the year (e.g. Figure 3). PE typically increases in the 
late spring, summer and early autumn, with some potential decreases at other times, 

although winter changes are noisier since PE then is fairly low (e.g. Figure 4).  

Figure 3 also shows that the temperature increases from the Regional PPE tend 
towards the higher end of the Global multi-model ensemble range, particularly for 

summer (c.f. Murphy et al. 2018 Fig. 5.2) and autumn. The increases in PE from the 
Regional PPE also tend towards the higher end of the Global multi -model ensemble 
range (Figure 4). Differences between the Global and Regional ensembles are less 

obvious for changes in precipitation, but the Global multi-model ensemble does tend 
to cover a broader range of changes than the Regional PPE (Figure 2). In particular, 

some Global ensemble members can give increases in summer precipitation. 
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Figure 1 Example derivation of precipitation delta changes for January and July, for a 
single climate ensemble member and grid box. a) Yearly GCM anomalies from the 
baseline mean (blue; mm/day), with a linear trend fitted to the last 40 years of data 
(light blue solid) used to extrapolate to 2114 (light blue dashed). b) GCM delta 
changes for 30-year time-slices (blue, with those that include extrapolated data in 
light blue). c) Yearly RCM anomalies from the baseline mean (red) and their 
extrapolation to 2114 (gold dashed) using the slope of the trend from the equivalent 
GCM ensemble member and location (as in a)). d) RCM delta changes for 30-year time-
slices (red, with those that include extrapolated data in gold). 
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Figure 2 Monthly delta changes in precipitation for locations in Scotland (top) and 
southern England (bottom). Changes are shown for each GCM ensemble member 
(blue, with those that include extrapolation in light blue), and each RCM ensemble 
member (red, with extrapolation in gold). The grid box Easting and Northing are 
shown above each set of plots. 
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Figure 3 As Figure 2, but for changes in temperature.  
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Figure 4 As Figure 2, but for changes in PE.  
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1.2 Baseline performance of simulated high and low flows 

The simulated standardised 5- and 20-year return period high and low flows for the 

baseline period, for locations corresponding to gauged catchments, are compared to 
values derived in the same way from gauged flow data held by the National River 

Flow Archive (NRFA; www.ceh.ac.uk/data/nrfa/).  

The first comparison uses data for locations corresponding to a set of benchmark 
catchments (UKBN2; Harrigan et al. 2018), which was specifically designated as a 
set of 146 catchments across the UK where human disturbance to flows is 

considered minimal and flow gauging is considered reliable. Simulated data are 
available for 97 of the benchmark catchments, after discounting those that are too 

small (<50km2), have a large proportion of missing data (>20%) in the baseline 
period (Dec 1980-Nov 2010) or are located in Northern Ireland. A subset of 75 of 
these is used for the high flow comparison and a subset of 71 is used for the low flow 

comparison, based on information available with the benchmark list about potential 
issues with high and low flow gauging respectively (Figure 5). The second 

comparison uses data for locations corresponding to 703 NRFA gauging stations 
(again discounting catchments by the above criteria on area, missing data and 
location) (Figure 5). 

 

Figure 5 The catchments used for the baseline performance assessment; UKBN2 
catchments used for high flows (left), UKBN2 catchments used for low flows (middle), 
and the full set of catchments assessed (right). 

 

Figure 6a presents boxplots of the range of the percentage differences between the 
simulated and observed values for each indicator, across the appropriate set of 

benchmark catchments in each case. Performance for high flows is good, with 
median values close to zero and differences mostly within ±10%. For low flows, the 
median difference between modelled and observed flows is negative, indicating 

more under-estimation, and some catchments show large percentage differences, 
but this is because small differences in small numbers can give large percentage 

http://www.ceh.ac.uk/data/nrfa/
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differences. The median difference for the actual (not standardised) 7-day low flows 
is -0.07 m3s-1 for both the 5- and 20-year return period, while the largest magnitude 

differences are less than 3 m3s-1. There are also particular issues with the gauging of 
low flows that could lead to large percentage differences between simulated and 

gauged flows (e.g. even a small error in the datum, or seasonal growth of algae; 
nrfa.ceh.ac.uk/accuracy-fitness-for-purpose).  

When assessed across the much larger set of NRFA catchments (Figure 6b), the 
median performance for high flows is very similar to that for the benchmark 

catchments, with a small increase in the 25th–75th percentile range. The median 
performance for low flows is slightly more negative than for the benchmark 

catchments, with a similar 25th–75th percentile range. For both high and low flows, 
the overall spread of differences increases substantially for the larger set of NRFA 
catchments compared to that for the benchmark catchments. This is unsurprising as 

some of the additional catchments will have substantial artificial influences to flows, 
whereas the G2G essentially simulates natural flows. 

a) 

 
b) 

 

Figure 6 Boxplots summarising the comparison of the simulated and observed 
standardised 5- and 20-year return period (RP5 and RP20) high and low flows, across 
a) the set of benchmark catchments, and b) the set of 703 NRFA catchments. Each 
box shows the 25th-75th percentile range, with the line showing the 50th percentile and 
the whiskers the 10th-90th percentiles. Lines outside the box show the overall min and 
max (if within the plotted range).  
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1.3 Cluster analysis 

To generate clusters for a single indicator and region, the distance between each 

pair of time-series must be computed. Dynamic Time Warping is used to measure 
the distance between time-series with a focus on highlighting feature similarity 

(rather than the precise timing of features). Figure 7 shows how DTW distance is 
computed, with examples of close and distant pairs of time-series. Once distance 
has been computed between each pair of time-series, clusters are generated by 

choosing groups which minimise within-group distances and maximise between-
group distances. Cluster exemplars are chosen as the member closest to the 

“centre-of-mass” of the cluster. 

 

Figure 7 Schematic of Dynamic Time Warping. a) Time points are matched to 
minimise distance between two time-series (green lines show matched time points). 
b) A pair of time-series close in DTW space. c) A pair of time-series distant in DTW 
space. 

 

2 Results 

2.1 Regional average high and low flow changes 

Figure 8 shows the clustering results for each river-basin region for 5-year return 
period high flows paired with 5-year return period 7-day low flows. Figure 9 shows 

the equivalent clustering results for 20-year return period high flows paired with 20-
year return period 7-day low flows. Note that there is no equivalence in colours 
between regions or for 5- and 20-year return period results. 
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Figure 8 Clustering results for paired high flows and 7-day low flows (5-year return 
period). The coloured lines indicate the same cluster for the indicator pair in a region, 
but there is no equivalence in colours between regions. 
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Figure 8 continued. 
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Figure 9 Clustering results for paired high flows and 7-day low flows (20-year return 
period). The coloured lines indicate the same cluster for the indicator pair in a region, 
but there is no equivalence in colours between regions. 
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Figure 9 continued. 
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2.2 Analysis of cluster exemplars and membership 

An examination of the number of times a pair of climate ensemble members has 

different cluster labels, across all considered indicators and regions, shows that 

there is a clear distinction between the Hadley PPE and the CMIP5 GCMs, with high 

similarity within these groups and high dissimilarity between them (Figure 10). Using 

a hierarchical ordering, high similarity can also be seen between equivalent RCMs 

and GCMs (e.g. RCM 08 and GCM 08), shown through close proximity on the axes. 

 

Figure 10 Symmetric heatmap showing pairwise similarity of clustering between 
climate ensemble members. Darker colours indicate ensemble members appearing 
more frequently in different clusters. Ensemble members are reordered by similarity 
using a hierarchical dendrogram (left); nearby ensemble members are more 
frequently in the same cluster. 
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