
The 2001, Intergovernmental Panel on Climate Change (IPCC) Working Group I report on the scientific ba-
sis of climate change suggested that the Atlantic meridional overturning circulation (AMOC) could weaken 
over the 21st century (Houghton et al., 2001). In the following year, 2002, the US National Research Coun-
cil's report Abrupt Climate Change: Inevitable Surprises? highlighted the North Atlantic circulation as at risk 
of abrupt change in a warming climate (NRC, 2002). In 2007, the Ocean Research Priorities Plan issued by 
the US Joint Subcommittee on Ocean Science and Technology (NSTC JSOST, 2007) identified improving 
understanding of AMOC as a key near-term priority. These reports noted the significant consequences for 
climate that are associated with AMOC, especially for those regions bordering the North Atlantic, but also 
further afield. Such reports provided the impetus for the deployment in 2004 of the AMOC observing sys-
tem at 26.5°N in the Atlantic under the auspices of the joint UK-US Rapid Climate Change program (a.k.a., 
RAPID) and the formation in 2008 of the US AMOC Program and Science Team.

The aim of this AMOC virtual special issue in AGU journals is to review and synthesize what has been 
learned about the AMOC since the beginning of the RAPID and US AMOC Programs, in terms of both 
observations (modern and paleo) and modeling (theoretical and numerical). In addition, the special is-
sue manuscripts identify many remaining gaps and challenges, providing guidance for future studies. 
The issue consists of nine papers across three journals: Journal of Geophysical Research: Oceans (Bow-
er et al., 2019; Hirschi et al., 2020; Jackson et al., 2019; Johnson et al., 2019; Little et al., 2019; Weijer 
et al., 2019), Reviews of Geophysics (McCarthy et al., 2020; Zhang et al., 2019), and Paleoceanography and 
Paleoclimatology (Moffa-Sanchez et  al.,  2019). The research described in these papers has focused on 
implementing, evaluating, and sustaining a pan-Atlantic observing system; assessing the AMOC state, 
variability, and secular change, including the use of paleoclimate records; and advancing our knowledge 
of AMOC variability mechanisms and predictability, as well as its impact on global climate, sea level, and 
ecosystems.

Prior to 2004, observations of the AMOC near latitude 26°N had been obtained from single basin-wide ship-
based measurements only intermittently (1957, 1981, 1992, and 1998), and these (together with a further 
hydrographic section in 2004) suggested that a possible slowdown of the AMOC had occurred (Bryden 
et al., 2005). However, five measurements over a period of almost 50 years could not be regarded as conclu-
sive. In contrast, the RAPID 26.5°N observing system provided daily measurements of the AMOC's strength 
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and vertical structure and continues to do so at the present time (McCarthy et al., 2020). The RAPID and US 
AMOC Programs, together with the 26.5°N AMOC observations, provided the foundation and impetus for 
a large number of studies covering observations (both modern and paleo) and ocean and climate modeling. 
For example, a recent OceanObs’19 paper details the many new AMOC observing systems that have been 
deployed in the North and South Atlantic over the last few years, stimulated by the success of the 26.5°N ob-
serving system (Frajka-Williams et al., 2019). The 26.5°N observations now provide a unique time series of 
the strength and vertical structure of the AMOC. These observations have enabled new research, provided 
new insights into the AMOC, and challenged the climate modeling community to improve the representa-
tion of the AMOC in coupled Earth system models that are used to predict future global climate change.

The role of the AMOC in the past abrupt climate changes was championed by Wally Broecker (e.g., Broeck-
er, 1991, 1997; Broecker et al., 1985; see also Alley, 2007). Essentially, this is the idea that freshening of the 
surface waters of the North Atlantic could trigger a reorganization of the AMOC leading to climatic impacts 
on short time scales (orders of years to decades, rather than centuries or millennia). The relevance of this 
idea to current climate change is clear. Since Broecker's early work, significant effort has been expended to 
study past climate changes under this paradigm. However, much of this research relates to what happened 
under conditions that are very different to those of the present climate (see e.g., Alley, 2007). Perhaps more 
relevant to understanding the AMOC today is to set the recent modern AMOC observations in a longer term 
context but under similar climatic conditions. For this reason, research has focused on the behavior of the 
AMOC over the last 1–2 millennia (Moffa-Sanchez et al., 2019).

As with all paleoceanographic studies, examining the behavior of the AMOC over the last 2 millennia de-
pends on using oceanographic proxies for changes in that behavior and its impacts. The proxies can provide 
information on a range of parameters (see Table 1 of Moffa-Sanchez et al., 2019). A continuing challenge is 
linking the various proxy data, each with a different temporal resolution and length of record, to provide a 
coherent picture. A further challenge is comparing the proxy results with climate model simulations (Mof-
fa-Sanchez et al., 2019 describe such comparisons for the last millennium). Some recent results suggest a 
weakening of the AMOC over the last 150 years (Caesar et al., 2018; Thornalley et al., 2018), but further 
back in time the behavior of the AMOC based on proxy data becomes less clear. However, the last 2 decades 
have seen the collection of far more proxy data than previously available, thereby allowing progress (Mof-
fa-Sanchez et al., 2019).

Related to the question of abrupt change is that of the stability of the AMOC. As originally noted by Stom-
mel (1961), based on a simple box model of the circulation, the overturning could be in a monostable or 
bistable regime. If the latter is the case then, in principle, the AMOC could abruptly flip into an off state, 
with serious consequences to climate, sea level, and ecosystems. Weijer et al. (2019) note that, despite pro-
gress in observations and modeling, the possibility of multiple equilibrium states for the existing or future 
AMOC cannot be ruled out, and that determining whether the AMOC is near a threshold where it could 
suddenly flip into another state is an important open research question.

With regard to measured changes in the AMOC, recent observations have provided a wealth of new insights. 
Specifically, data from the RAPID array in the subtropical gyre at 26.5°N (2004–present; Frajka-Williams 
et al., 2019; McCarthy et al., 2020); the Overturning in the Subpolar North Atlantic Program (OSNAP) array 
in the subpolar gyre, spanning Canada-Greenland-Scotland range (2014–present; Lozier et al., 2019); and 
the South Atlantic MOC Basin-wide Array at 34.5°S (2009–present; Kersalé et al., 2020) together with other 
observational studies (Bower et al., 2019; McCarthy et al., 2019), theoretical work (Johnson et al., 2019), and 
modeling efforts (Danabasoglu et al., 2019; Hirschi et al., 2020, Zhang et al., 2019), have challenged what 
were once accepted views of the AMOC. Such previous paradigms include the AMOC is driven by thermo-
haline changes and varies on time scales of years to millennia; changes in convection in the Labrador Sea 
play a key role in the AMOC; and the deep return flow is confined to the Deep Western Boundary Current 
(DWBC). It is now known that the AMOC is highly variable on all time scales, from days to millennia, and 
that much of that variability on shorter time scales is wind forced, though thermohaline forcing is impor-
tant for longer time scales (Hirshi et al., 2020; Jackson et al., 2019; Johnson et al., 2019). As well as the 
DWBC, some of the AMOC return flow is via interior pathways in both the North and South Atlantic, away 
from the western boundary, so less meridionally coherent (Bower et al., 2019). Finally, changes in the deep 
flow are occurring between 3,000 and 5,000 m and, based on the short record available from the OSNAP 
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array, these seem not to be linked to Labrador Sea convection, but to changes in the eastern part of subpolar 
gyre and the regions farther north (Hirshi et al., 2020; Zhang et al., 2019).

From a climate prediction perspective, it is known that Atlantic Multidecadal Variability (AMV) has many 
impacts that are of importance both societally and economically (Zhang et al., 2019). The impacts include 
meridional shifts in the Intertropical Convergence Zone and associated rainfall; and changes in the strength 
of the Sahel and Indian summer monsoons, frequency of Atlantic hurricanes, variability of climate across 
Europe, North America and Asia, and the extent of Arctic sea ice, among others. There is good evidence that 
the AMOC is a key driver of AMV and so of its climatic impacts, and that it is the AMOC-induced changes 
in the meridional heat transport (MHT) that are critical, as the heat exchange between ocean and atmos-
phere drives many of the climatic impacts. The AMV timescale, being multidecadal, means that the link be-
tween AMV and AMOC cannot be verified as yet from RAPID observations, the time series being less than 
2 decades in length. Nevertheless, both observations, including paleo-climatic ones, and modeling strongly 
support the AMOC-AMV link. These links are important when it comes to making decadal predictions of 
climate change and its impacts, in which the ocean plays a key role through its heat content and AMOC 
memory. The issue of decadal predictability and the skill of decadal predictions are also critical—how well 
do the decadal predictions do in terms of forecasting climatic impacts, such as those listed above? There 
is evidence that the North Atlantic region possesses decadal predictability because of the AMOC-AMV re-
lationship, but deficiencies in coupled ocean-atmosphere models and limited length of observational time 
series are challenges that need to be overcome (Zhang et al., 2019).

As well as the impacts mediated by the AMV, a potentially significant, more direct, impact of AMOC chang-
es manifests itself in sea level rise on the eastern seaboard of the United States. Specifically, a decrease in 
the AMOC could lead to coastal flooding with its associated negative societal and economic consequences. 
Recent work (Little et al., 2019) has shown, both from observations and modeling, that the AMOC-sea level 
link is complex. Different models, while showing an antiphase relationship between the AMOC and sea 
level, differ in the amplitude of the effect and in the spatial structure of the along-coast variations. Aspects 
of the link such as the importance of local versus remote forcing and of coastal circulations remain to be 
understood. If the mechanisms leading to an AMOC-sea level link can be elucidated, then the much longer 
term tide gauge observations of sea level along the U.S. East Coast could be used to reconstruct the behavior 
of the AMOC on longer time scales.

In order to make progress in understanding the dynamical behavior of the AMOC, improved theoretical 
understanding is required to provide a context for both the observations and the results obtained from both 
ocean and coupled Earth system models. Theoretical advances (Johnson et al., 2019) have shown, for ex-
ample, that the wind field in both hemispheres is important for the AMOC mean strength and variability, 
that sloping boundaries are crucial in allowing ocean basins to remain stratified, and that eddies at high 
latitudes also influence the dynamics of the AMOC. Nevertheless, many questions remain to be addressed, 
such as the relationship of the AMOC variability to the background state, and how best to represent air-sea 
interactions and parameterize smaller scale processes, such as those occurring at the sub-mesoscale, in 
ocean circulation models to improve AMOC simulations.

An alternative way to gain understanding of the AMOC, how and why it is changing, and its variabili-
ty is to combine observations and dynamically consistent models and perform ocean reanalysis (Jackson 
et al., 2019). Considerable progress has been in ocean reanalysis, partly due to an improved network of 
observations, but also to improvements in models and techniques for combining models with ocean data. 
When tested against the RAPID AMOC observations at 26.5°N (Jackson et al., 2019), the different reanal-
yses show similar behavior, reduced spread, and greater consistency, in contrast with a prior effort which 
considered an earlier and longer (1960–2007) period (Karspeck et al., 2017). Essentially, the availability of 
Argo data since the mid-2000s provides greater observational constraints on the reanalyses leading to bet-
ter agreement among the reanalyses and also with moored AMOC observations. The reanalyses suggest a 
weakening of the AMOC between 2005 and 2009; a further rapid decrease around 2010 which is followed 
by an equally fast recovery; and a very small gradual strengthening thereafter with lots of variability. The 
reanalyses are largely consistent with the latest RAPID observations, although the AMOC increase since 
2010 is not statistically significant (see Figure 3 and analysis in Moat et al., 2020). However, the reanalyses 

SROKOSZ ET AL.

10.1029/2020JC016745

3 of 5



Journal of Geophysical Research: Oceans

underestimate the MHT even though they have the expected strong correlation between the MHT and 
AMOC strength (as seen in the observations), so improvements are still required.

Many modeling advances are predicated on an increase over time in computing power and this is true of 
modeling of the AMOC, with much higher resolution ocean models available now as compared to those 
available at the start of the RAPID observations in 2004 (Hirschi et al., 2020). These higher resolution mod-
els, which can resolve or permit the oceanic eddies, have allowed the investigation of aspects such as the 
chaotic component of the AMOC, essentially the effect of mesoscale eddies on its short-term variability. 
This in turn requires running an ensemble of models at high resolution, which is now becoming possible. 
The existence of this chaotic component to the AMOC may affect attempts to make decadal predictions of 
its variability and of the AMV. As discussed in Hirschi et al. (2020), in general, high-resolution models also 
suggest the presence of high-frequency AMOC variability that has not been previously noted in lower reso-
lution models or observations. Whether such variability exists in the real world remains an open question.

Despite the tremendous progress in AMOC-related research as articulated in the Special Issue manuscripts, 
there are many remaining challenges that should be addressed to further our understanding. From the ob-
servational side, such challenges include gaps in the observing system (e.g., shelf regions and deep oceans), 
disparate observational strategies, and reductions in funding that jeopardize sustained observations (Fra-
jka-Williams et al., 2019; McCarthy et al., 2020). Earth system models continue to show persistent biases, 
particularly in the North Atlantic, and AMOC variability mechanisms and their characteristics vary signif-
icantly across models (e.g., Danabasoglu et al., 2019; Zhang et al., 2019).

Although the US AMOC Program formally “sunsets” in 2021, research on the AMOC in the United States 
will continue. The original motivation for AMOC observations, the possibility of AMOC decline or rapid 
collapse under anthropogenically induced climate change, remains. The latest IPCC special report on the 
ocean and cryosphere (Pörtner et al., 2019) states that “Observations, both in situ (2004–2017) and based 
on sea surface temperature reconstructions, indicate that the AMOC has weakened relative to 1850–1900 
(medium confidence),” and that “The AMOC is projected to weaken in the 21st century under all RCPs (very 
likely), although a collapse is very unlikely (medium confidence).” These conclusions and the above challeng-
es present new opportunities and motivations for the community. Specifically, collaborative research that 
includes a hierarchy of models, theory, high-resolution paleo records, and sustained and processed-based 
observations promises to advance our understanding, potentially leading to improved models and predic-
tion skills, among others, of AMOC variability and its associated climate impacts.
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